A DV ANCES |IN

ENGINEERING
SOFTWARE

ELSEVIER

Advances in Engineering Software 31 (2000) 743-751
www elsevier.com/locate/advengsoft

Panel session: future directions and challenges for Java implementations
of numeric-intensive industrial applications

M. Ginsberg™*, J. Hauser”, J.E. Moreira®, R. Morgan®, J.C. Parsons®, T.J. Wielenga®

*HPC Rescarch and Education, 35764 Congress Road. Farmington Hills, MI 48335-1222, USA
"Center of Logistics and Expert Svstems, Karl-Scharfenberstr. 55-57, 38229 Salzgitter, Germany
‘IBM T.J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598-0218, USA
SCompag Computer Corporation, MS ZK02-3/N30, 110 Spitbrook Roud, Nushua, NH 03062-2698, USA
“Engineering Systems International, 5330 Carroll Canvon Road, San Diego, CA 92]21, USA
fEngineerin(g' Insight, LLC, 411 Huron View Boulevard, Suite 200, Ann Arbor, M1 48103, USA

Abstract

This panel session focuses on utilization of Java for numeric-intensive applications, including the advantages and disadvantages of Java for
future use with industrial independent software vendor (ISV)-based finite element methods (FEM) codes. Discussion will address both partial
use of Java and/or complete code implementation; activities in this area are already in progress and have been reported by the Java Grande
Forum (see http://www.javagrande.org). Some of the issues that will be discussed by the panelists and audience include: performance
comparisons of Java, Fortran, C, and C+ +; primary deficiencies of Java with respect to future development of competitive commercial ISV-
based FEM codes; Java standardization bottlenecks; strategies for transitioning to Java from existing large legacy commercial codes; current
and future numeric-intensive benchmarks; actions to improve Java floating-point performance. This session 1s represented by biographical
sketches of the panel participants, their individual reflections on the panel theme, and a list of related Internet references. © 2000 Elsevier

ClibPD

Science Ltd. All rights reserved.

Keywords: Java for numeric-intensive applications; Large-scale industrial simulations: High-performance computing: Parallel computation

1. Introduction

This session focuses on the use of Java to implement
large-scale industrial simulations. The views expressed by
the panelists are their own and do not necessarily represent
the official viewpoints of their employers. The panel’s
collective experience reflects diverse interests in use of
Java for numerical intensive applications, creation of ISV-
based FEM software as well as development and utilization
of optimized Java compilers and numerical libraries. In
Section 2, all the participant surface and e-mail addresses
are provided as well as phone and fax numbers so that
anyone can follow up on any panel issues. Section 3
provides a brief biographical sketch of each person, while
Section 4 presents individual viewpoints. Section 5 gives a
few summary remarks and is followed by a list of references
related to the panel theme and compiled by the participants.

Readers are encouraged to dialog with one or more of the
panel participants to exchange viewpoints. Send suggestions

* Corresponding author. Tel.: +1-248-477-7018; fax: +1-248-477-3129.
E-mail address: m.ginsberg@ieee.org (M. Ginsberg).

for future panel themes to the panel organizer listed in the
next section.

.-

2. Participants

Myron Ginsberg, PhD, Organizer and Moderator
President

HPC Research and Education (HPC R&E)

Tel.: (248) 477-7018

fax: (248) 477-3129

e-mail: m.ginsberg@ieee.org

Jochem Hauser, PhD, panelist

Head, Parallel Computing Department

Center of Logistics and Expert Systems (CLE)
Tel.: 49-5341-875-401

fax: 49 5341-875-402

e-mail: jh@cle.de

Jose E. Moreira, PhD, panelist
Research Staff Member

0965-9978/00/$ - see front matter © 2000 Elsevier Science Ltd. All rights reserved.

PII: S0965-9978(00)00018-1

wavwlastio.com

http://www.fastio.com/

ClibPD

744 M. Ginsberg et al. / Advances in Engineering Software 31 (2000) 743-751

Scalable Parallel Systems Department
IBM Thomas J. Watson Research Center
Tel.: (914)-945-3987

fax: (914)-945-4425

e-mail: jmoreira@us.ibm.com

Robert Morgan, panelist

Principal Member of Technical Staff
Compaq Computer Corporation

Tel.: (603)-884-0159

fax: (603)-884-0153

e-mail: bob.morgan@compag.com

John C. Parsons, panelist

Development Manager

Engineering Systems International Corporation
Tel.: (619)-623-3992

fax: (619)-623-2799

e-mail: jparsons@cts.com

Thomas J. Wielenga, panelist
President

Engineering Insight, LLC
Tel.: (734)-913-8520

fax: (734)-913-8521

e-mail: tw@EngInsight.com

3. Biographic profiles

Myron Ginsberg, organizer and moderator, is currently
President of HPC Research and Education. Dr Ginsberg
has well over twenty-five years of high-performance
computing experience in private industry {General Motors
Research, EDS High-Performance Computing Group, HPC
Research and Education), government research labs (US
Army Research Laboratory, NASA Electronics Research
Center, NASA Langley Research Center), and academia
(University of Iowa, Southern Methodist University,
University of Michigan). He has been significantly involved
in General Motor’s initial and continuing supercomputer
efforts. He has edited four SAE volumes on automotive
supercomputer applications. Myron has received the SAE
Distinguished Speaker Award, the SAE Forest R, McFar-
land Award in recognition of his outstanding service in the
automotive supercomputing field, and has been the recipient
of the SAE Excellence in Oral Presentation Award. He has
served as a distinguished national lecturer in high-perfor-
mance computing for ACM, SIAM, IEEE, ASME, SAE,
and Sigma Xi. He is also a Fellow of the ACM in recogni-
tion of his “pioneering and sustained contributions to super-
computing research and its application to the automotive
industry”. In his current position he has recently investi-
gated for DaimlerChrysler the future use of Java for both
large-scale numeric intensive computations and for automo-
tive embedded systems. Myron has a BA and MA in Mathe-

wavwlastio.com

matics and a PhD in Computer Science (specializing in
mathematical software and numerical analysis).

Jochem Hauser, panelist, is Head of the Parallel Com-
puting Department at the Center of Logistics and Expert
Systems (CLE) in Salzgitter, Germany. He is currently on
sabbatical leave at ETH Zurich where he is teaching two
courses in High Performance Computing with emphasis on
object oriented programming (OOP) using Java for science
and engineering applications. Since 1993, Dr Hauser has
been a Professor of Computer Science and Parallel Com-
puting at the University of Applied Sciences, Braunschweig-
Wolfenbuettel, Germany and also Head of the parallel
Computing Department at the Center of Logistics and Expert
Systems (CLE) in Salzgitter, Germany. He is also a con-
sultant to the European Space Agency in the field of aero-
dynamic simulation and high performance computing.
Previously, from 1988—-1992, Professor Hauser was the
Head of the Aerothermodynamics Section at the European
Space Research and Technology Centre (ESTEC), Noordwijk,
The Netherlands of the European Space Agency. From
1985—-1987 he was Professor of Computer Science at the
Technical College of Landshut, Germany. From 19761984
he was a research scientist at a German National Research
Center where he was leading a research group in environ-
mental fluid dynamics, CFD, and numerical grid generation.
Dr Hauser’s research interests are in the development of
algorithms for grid generation for complex geometeries as
well as high-performance -algorithms for parallel archi-
tectures in the area of computational fluid dynamics with
specific areas of interest in numerical acceleration schemes
and domain decomposition algorithms for structured multi-
block domains for paralle] processing. Dr Hauser’s algo-
rithm research efforts were honored with a NATO
Scientific Affairs Divisional Award (1984) for environmen-
tal flow simulation and the NASA distinguished lectureship
(1991). Dr Hauser previously taught at Hamburg University
in the Department of Physics. He holds a Diploma in Physics
from Giessen University in Germany (1973) and a Drrer. nat.
in space physics from Giessen University (1975).

Robert Morgan [34], panelist, is a Principal Member of
Technical Staff for the Core Technology Group of Compaq
Computer Corporation and a Senior Lecturer at Boston
University’s Metropolitan College Computer Science
Department. He has been an active participant in computer
research for thirty-five years of which the last twenty-five
years has been involved in compiler development and
language design. Currently, he is the designer for the imple-
mentation of a parallel language and leader of a research
project on the efficient compilation of Java. Previously, he
was a senior scientist at Compass, designing high-perfor-
mance compilers for high-performance computers. Robert
is a member of IFIPS Working Group 2.3 on System Imple-
mentation Languages and Compilers. He is also the author
of the book entitled, Building an Optimizing Compiler,
published by Digital Press.

Jose E. Moreira, panelist, is a Research Staff Member in

http://www.fastio.com/

ClibPD

M. Ginsberg et al. / Advances in Engineering Software 31 (2000) 743751 745

the Scalable Parallel Systems Department at IBM T.J.
Watson Research Center. He received BS degrees in physics
and electrical engineering in 1987, and an MS degree in
electrical engineering in 1990, all from the University of
Sao Paulo, Brazil. He received his PhD degree in electrical
engineering from the University of Illinois at Urbana-Cham-
paign in 1995. Since joining IBM in 1995, he has worked on
various topics related to the design and execution of parallel
dpplications. His current research activities include perfor-
mance evaluation and optimization of Java programs and
scheduling mechanisms for the ASCI Blue-Pacific project.

John C. Parsons, panelist, is Development Manager for
Engineering Systems International Corporation. He came to
ESI in July 1994 to head up a newly formed software devel-
opment group. His team is responsible for the development,
selection, and integration of software tools and components
in their next generation applications. Prior to joining ESI,
John spent 11 years in the CAD/CAM/CAE industry where
he held positions in marketing, technical support, and
research and development with General Electric, Calma,
and Computervision.

Thomas J. Wielenga, panelist, is President of Engineering
Insight, LLC, a company that specializes in the simulation of
vehicle dynamics. He obtained his PhD (1984) in Mechanical
Engineering and MS in Computer Aided Engineering from
the University of Michigan. He received BS in Mechanical
Engineering from Michigan State University.

Tom was involved in writing commercial dynamics soft-
ware (ADAMS) at Mechanical Dynamics, Inc. (MDI).
During that time he wrote and managed code having to do
with sparse matrices, DAEs, and various modeling
elements. He also taught courses on the theory of mechan-
ical system simulation (ADAMS) for MDI and represented
them in international competitions.

He started a company in 1989 to create a new mechanical
system simulation program and in the process designed and
implemented a modeling language (SimO) that was object
oriented, and similar in many ways to the now pervasive
Java language. Since then through the years he has followed
the application of numerical algorithms and physical model-
ing in various languages including Fortran, C, C+ +, Java,
and now Jpython.

Since 1979, he has been involved in modeling the motion
of vehicles and machinery. He has modeled sport utility
vehicles, chair-lifts, truck suspensions, and engines. He
has designed and patented an engine and is patenting a
device to prevent on-road rollovers in sport utility vehicles.
He is 2 member of SAE, ASME, IEEE, and SIAM and is a
registered P.E. in the State of Michigan.

4, Participant reflections
4.1. Myron Ginsberg viewpoint

From the perspective of twenty years in the automotive

wavwlastio.com

industry, I have to candidly admit that most implementations
of large-scale, numeric-intensive automotive applications
such as crash modeling and/or aerodynamic design simu-
lations will very slowly adapt to total Java implementations.
The worldwide automotive industry is dominated by the use
of about a dozen commercial software codes primarily
written in Fortran and C with a few in C++. The top
priority with this class of automotive applications is speed
of execution; this is extremely important as the simulation
models grow increasingly complex while the lead time
between vehicle concept and production continues to shrink
with the major auto companies targeting lead times on the
order of 18 months at present [16—18]. This means that the
[SV-based codes must use very aggressive parallel imple-
mentations to reduce execution time per run. Most ISVs
have fine-tuned their Fortran and C implementations to
run very fast and until they can be convinced that Java
implementations will run significantly faster than what
they now have, they are very unlikely to switch, especially
since they have large-investments in legacy code.

The argument that adoption of object-oriented code will
drastically reduce code design and maintenance times will
not be sufficient to sway these people because of the
significant amount of legacy code, small staffs, and little
or no time to do substantial re-writes. The ISVs who have
already moved to C+ + appreciate the reusability argument
and are very happy with C++ with no current interest in
switching to Java.

What is most likely to happen in the auto industry is a
slow, conservative movement to Java usage. Already most
ISVs appreciate the use of Java for graphical user interfaces
(GUIs) as well as support for visualization and code
segments written in different environments from the rest
of their package. Moving to Java wrappers of legacy Fortran
or C should be the next stage of evolution followed by use of
Java fine-tuned numerical libraries [8,10,12] as they become
widely available. The ISVs will still have to be convinced that
the Java thread mechanisms to support parallelism provide at
least the same performance levels as obtained on specific
host machines using their native parallelism facilities.

The skeptical automotive ISVs will also have to be
convinced that overall Java performance, especially speed,
is superior to other existing approaches. The creation of
some meaningful Java benchmarks that positively reflect
on Java performance for attributes dominating industrial
simulation problems would be very helpful to influence
the ISVs. Furthermore, such benchmarks will have to expli-
citly demonstrate that Java approaches are indeed faster
than obtainable in other languages such as C+ +. Certainly,
the current work on JIT compilers and Java numerical
libraries should help to impress the skeptic ISVs, IF
progress in those areas rapidly continues. Also, the work
at IBM Research clearly indicates that many of the current
Java limitations can be overcome [26-33].

Another great concern about Java from the numerical
analysis community is the behavior of Java floating-point

http://www.fastio.com/

ClibPD

746 M. Ginsberg et al. / Advances in Engineering Software 31 (2000) 743-751

arithmetic. At present Java does not adhere to all the IEEE
floating-point conventions and favors portability over
accuracy on a given platform, i.e. opts for the same result
across all platforms rather than the best attainable results on
each platform. This has been discussed in several papers
[19,25]. Sun has proposed some changes in this area [38].

Furthermore, if Java is to become the implementation
language of choice, not only in the auto industry but also
in significant segments of other industries, we will have to
see grass roots industrial support for the necessary changes
to make Java competitive in the numeric-intensive large-
scale industrial simulation category. At present I don’t see
any evidence of such support. Indeed in trying to organize
this panel I went to all of the automotive ISVs and only one
agreed to serve. The others felt very reluctant to get up in
public and say anything about Java. Privately, most were
very negative and have more optimistic feelings about
increased use of C or C++ rather than Java. Also, it should
be noted that even with Fortran 90, 95, and 2000, object-
oriented facilities can be used by those vendors who would
be more content with object-oriented techniques in those
environments with which they are already comfortable [20].

At present the visible supporters for Java for large-scale
simulations seem to be mainly from academia as well as
from a few government and industrial research labs
[3,8,10,12,15,23,24}. If the Java Grande Forum [24] is to
have any significant impact on private industry, it must
convince those people of the benefits of Java implemen-
tations over other alternatives. At present, it is not obvious
to me if that will readily happen in any industry. It will take
some brave and innovative pioneers to lead the way and
overcome the widespread skepticism. We have a few such
pioneers on the current panel. The Symposium audience and
readers of the proceedings should explore with an open
mind the progress with Java illustrated in some of the biblio-
graphic references below.

Perhaps identifiable groups from various industries need
to be actively represented in the Java Grande Forum to
express their specific needs for Java improvement for their
applications.

Another problem is that there is too much HYPE asso-
ciated with Java use and this along with disagreements
about Java standards and the range of application can
greatly impede progress. The potential market for use of
Java is so large (particularly for areas like embedded
systems), greed has motivated some vendors which can
and are resulting in impediments to the creation of
practical standards which, in turn, can essentially
weaken the practical use of Java for some application
areas.

Part of the conflict centers around portability vs. effi-
ciency. For some applications such as large-scale, numeric
intensive simulations, maximum speed and accuracy may
require Java modifications and/or extensions or be practi-
cally impossible to implement. How much can Java be
modified and still be Java and not fragment the original

wavwlastio.com

attributes of the language? Should there be some natural
limits to the domain of Java applicability?

4.2. Jochem Hauser viewpoint

In the following, we briefly outline why we believe that
Java should be and actually is rhe language for software
engineering in science and engineering, and, in particular,
for high-performance computing on parallel architectures in
areas like computational fluid dynamics, computational
physics, ete.

The release of the Java programming language by Sun
Microsystems in late 1995 was an instant success with the
Internet programming community. At that time, however,
Java seemed to be unfit as a language for scientific and
engineering programming because it was an interpreted
language, and execution time was some two orders of
magnitude higher when compared to corresponding C or
Fortran codes.

Since then, Sun has released three major revisions,
version 1.02 supporting distributed objects and database
connectivity in 1996, and version 1.1 in 1997 added a robust
event handling, Java Beans, and improved Remote Method
Invocation (RMI). The most recent Java Development Kit
(JDK), 1.2, appeared in late 1998, adding the Java Swing
toolkit to produce portable graphics user interfaces (GUI).

When we compared Java with existing programming
languages that are mainly used in science and engineering,
namely Fortran and C (to some extent C+ +), despite its
similar syntax to C, it became clear that Java was not just
another programming language. Java is a fully object-
oriented programming (OOP) language, providing,
however, a much cleaner design than C++. OOP allows
code construction reflecting, for instance, the engineering
design process, because objects can be software coded and
integrated. In addition, Java is the programming language
for the Internet, and thus Java objects on disparate machines
or even separate networks can be connected.

Producing engineering software in Java requires a differ-
ent way of thinking; i.e. central to Java is the class concept.
A class is a collection of data structures and methods,
describing the functionality of a certain item, for example,
a wing. An aircraft can be described by a set of classes,
representing a wing, fuselage, nacelle, pylon, engine, etc.
A specific aircraft can be constructed by instantiating
objects from these classes. In this way, a direct mapping
of the engineering parts to respective software objects can
be achieved. The Java language mechanism allows encap-
sulation and inheritance, meaning that an existing class can
be used and modified according to the needs of the code
designer. The validated parent class will not be touched,
allowing complete code reusability. The interface notion
of Java extends the concept of inheritance, providing
some kind of template. The Java OOP approach provides
profoundly improved software productivity, Java's
robust mechanism for exception handling promotes code

http://www.fastio.com/

ClibPD

M. Ginsberg et al. / Advances in Engineering Saftware 31 (2000) 743-751 747

reliability, a feature considered to be essential for today’s
large and complex codes.

Most important for parallel computing, Java provides the
thread concept. This is a lightweight process, allowing
starting hundreds or even thousands of these threads from
within a Java application and thus achieving concurrency.
The mapping of threads to processors as well as thread
scheduling is done by Java and the OS (virtual shared
memory required; no distributed Java virtual machine exists
at present). A major requirement to industry is to provide
not only advanced thread schedulers, but also a standard
API to allow the creation of custom schedulers. Threads
also provide a way to obtain dynamic load balancing for a
parallel application without explicitly assigning tasks
to processors: a threaded application is said to be self-
scheduling. Java also provides a mechanism for synchroniz-
ing threads and for sending messages between threads. No
additional message passing libraries or language dialects are
needed. Moreover, Java supports the clienr—server concept
through remote objects, implemented by RMI. The engineer,
wanting to perform a computation, starts the server (parallel
machine) from his client (workstation) bv providing proper
authentication to the simulation code’s security mechanism,
that is part of Java. He then sends his own solver version at
run time in the form of a remote object to the server code,
i.e. replacing the default solver on the server. In this way, a
multitude of different applications can be constructed,
concentrating on the actual physics and mathematics,
while the code infrastructure is already in place.

In all discussions we had so far, Java’'s lack of perfor-
mance has been cited. This argument, at best, is of no
concern now. First, just-in-time compilers (JIT) are now
available, resulting in enormous speedups over the inter-
preted Java code. Using the latest jite of JDK 1.1.6 from
IBM alpha works for Linux Kernel 2.2.10, and writing a
simple matrix multiplication code, C = A X B, resulted in
a floating-point performance of 24.8 MFlops on a Pentium
11, 300 MHz processor (the JDK for Linux is in an early
stage and provides no optimization). During my oral presen-
tation I will give some floating-point numbers for compar-
isons of Java and C on the Linux OS. It should be noted that
the IBM compiler is a pre-release alpha version that does
not provide optimization at present (July 1999).

The design of any software should strictly follow
Kernighan’s rule Make it right before you make it faster.
The key issue for large-scale parallel Java code is paralle!
scalabiliry, i.e. will the Java thread concept deliver high
parallel efficiency for large number of processors. The
results of tests using the Caltech HP V class machine (32
processors, July 99) will be presented and discussed. The
other important question addresses the quality of the
dynamic load balancing. We will present speedup results
resulting from improvement in compiler technology, in
particular IBMs and Sun’s Hotspot compilers. These
numbers shall serve to illustrate the dynamic, only two-
year-old history, of Java compiler technology. Second,

wavwlastio.com

speeds between 80 and 90% of corresponding Fortran
programs were reported by a group of scientists (for
instance see Ref. [3] of IBMs Watson Research Center.
This group also provides Java numerics classes.

In the panel presentation the design philosophy and
computational results of the JParNNSS [2], the Java parallel
Navier-Stokes solver—an EC and Ministry of Science and
Culture of Lower Saxony, Germany—funded program, will
be reported. We will also present the Java parallel test suite
for science and engineering to demonstrate the viability of
the parallel thread concept for a range of engineering and
scientific computations.

Java also harnesses the power of visual and graphics
programming, providing the Swing toolkit for portable 2D
graphics and GUI programming as well as a 3D application
programmer’s interface (API) for three-dimensional
graphics, based on the Open GL standard.

The success of Java mainly stems from the explosive
growth of the Java class library, providing features for
numerical intensive computation, multimedia, database
connectivity, native methods (calling of C code), network
programming. This will allow the code designer to address
all questions of computer simulation using a single
language. By reusing the classes provided from various
sources, Web distributed software-engineering projects
can be tackled that were virtually impossible before the
advent of Java.

There is a price to pay, however, because the legacy
codes will have to be rewritten in Java. We feel that this
task might not be as cumbersome as perhaps anticipated,
because application specific routines can be directly
converted into Java, while the structure of a general parallel
simulation code for handling complex geometries only has
to be written once. Only the actual solver for the specific
engineering application would have to be provided. Again,
we would like to cite another one of Kernighan’s rules Don’t
patch bad code, rewrite it. There is always a compromise
between flexibility and efficiency, and in the past, the Java
language has been viewed as only flexible, but delivering
reduced efficiency. The new generation of Java compilers,
for instance by Sun and IBM, is beginning to change this by
opening what we call “efficiency windows”. Further speed
increase is achieved through advanced thread management
as demonstrated in HPs V class architecture.

Software is the lifeblood of our IT society, and a major
effort has to be made to bring software development cost
down and software reliability up. Otherwise, we might face
the anachronism of running Fortran on the future quantum
computer.

We conclude our remarks, by citing the Java Grande
Forum (www.javagrande.org):

Java has potential to be a better environment for
‘Grande application development’ than any previous
languages such as Fortran and C+ +.

http://www.fastio.com/

ClibPD

748 M. Ginsberg et al. / Advances in Engineering Software 31 (2000) 743-751

This statement is fully backed by our own programming
experience of two decades as well as using numerous
programming languages, and by writing Java codes over
the last 18 months for large scale problems in science and
engineering.

4.3. Jose Moreira viewpoint

For the past two years, the Numerically Intensive Java [3]
team at IBM Watson has been developing techniques to
improve the performance of Java in scientific and engineer-
ing applications. We have developed an optimizing Java
compiler that typically produces between 80 and 100% of
the performance of corresponding Fortran codes [7,31]. We
have also developed linear algebra libraries, coded entirely
in Java, that achieve 80% of the performance of the best
existing native libraries.

We believe that these levels of performance, when
combined with the software engineering advantages of
Java, are enough to attract many applications developers.
Nevertheless, we want to go a step further and demonstrate
that Java can deliver better performance than Fortran for
important classes of applications. In the next paragraphs I
will briefly summarize the techniques we have developed to
achieve high performance in numerically intensive Java
code.

As identified by the Numerics Working Group of the Java
Grande Forum [23,24], there are three major performance
issues with respect to Java that have to be addressed: (1)
multidimensional arrays; (2) complex numbers; and (3) effi-
cient use of floating-point hardware.

Java does not support true multidimensional arrays. A
true multidimensional array is characterized by an elemental
data type, a rank (number of axes), and a rectangular shape
defined by the extent of each axis. Java does support arrays
of arrays, which allow it, to a certain degree, to simulate true
multidimensional arrays. For example, a double[] []
object is an array of pointers to vectors of doubles.
Note, however, that rectangularity of the structure is not
guaranteed. Furthermore, Java arrays of arrays can display
both intra- and inter-array aliasing. That is, two distinct
indices for the same array can actually refer to the same
data, and two (distinct or not) indices of different arrays
can refer to the same data.

The solution we adopt, and also proposed by the Java
Grande Forum, is to introduce multidimensional arrays in
Java through a class library. To that purpose, we have devel-
oped the Array package for Java [7,30,31]. This package,
written entirely in Java, provides a collection of classes for
doing array-based numerical computing in Java. There is a
specific class for each combination of rank and elemental
data type. For example, doubleArray2D implements a
two-dimensional rectangular array of doubles. This
approach statically binds semantics to syntax, allowing a
compiler to recognize the exact operation being performed.
The shape of a multidimensional array from the Array

wavwlastio.com

package is defined at the moment the object is instantiated
and it is immutable. The semantics of operations on Array
package arrays is carefully defined so that compilers can
aggressively optimize user code in a completely thread-
safe manner.

A key compiler optimization that we have developed is
versioning for bounds checking elimination [27,29]. This
optimization creates regions of code that are guaranteed to
be free of run-time exceptions. We can then apply a whole
spectrum of traditional optimization and parallelization
techniques that have been developed for more traditional
languages (Fortran and C) during the past decades. A run-
time test is performed during program execution to deter-
mine if it is safe, from a program semantics perspective, to
execute this highly optimized version, or if a more con-
servative and slower version must be executed instead.
We have found that, for numerical applications, the bulk
of the computation is performed in the optimized versions.
The combined approaches with the Array package and
aggressive compiler optimizations have led to Java code
executing at 80—100% of the speed of corresponding
Fortran code.

Java does not support complex numbers as primitive
types. The obvious solution is to implement a Complex
class, and such a standard class is proposed by the Java
Grande Forum. The problem with this approach is that a
Complex object needs to be used to represent every
complex number value created during a program execution,
including intermediate results of expressions. This leads to a
voracious rate of object creation and destruction, which in
turn kills the performance of any complex number Java
application. We have observed Java performance that is
typically 100 times slower than a corresponding Fortran
code.

We address the problem with complex numbers by
enhancing our compiler with the ability to recognize opera-
tions on Complex objects. Using a technique called seman-
tic expansion, the compiler replaces as many operations on
Complex objects as possible with operations on complex
values [40,41]. Complex values can be stored in machine
registers and require no creation/destruction overhead.
When combined with multidimensional arrays of complex
numbers from the Array package, semantic expansion
produces Java performance that is between 60 and 90% of
the performance of corresponding Fortran codes.

With respect to efficient use of floating-point hardware,
we focus on the fused multiply—add (fma) instruction. A
fused multiply—add computes aX b + ¢ with a single
rounding operation at the end. That is, the result is the
correctly rounded value for the infinitely precise number.
For machines that support the fma, in particular the
POWER/PowerPC, it can double the throughput of the float-
ing-point units; however, the result from a fma instruction
can be slightly different from that of a multiply-and-round
followed by an add-and-round sequence. Therefore, the use
of fmas is disallowed in Java. We have shown that the use of

http://www.fastio.com/

ChhPD

M. Ginsberg et al. / Advances in Engineering Software 31 (2000) 743-751 749

fma can be very beneficial to the performance of Java codes.
In the context of linear algebra codes, we have seen up to a
factor of two improvements. In fact, only with the use of the
fma we can approach Fortran performance for that class of
computations.

We conclude by emphasizing that the technology for
delivering high performance in Java numerical applications
already exists. Standardization efforts are necessary to
define “official” versions of the Array package and
Complex class, so that Java environments can start to
optimize for those components. We also need to promote
the necessary changes in the language so that efficient use of
floating-point hardware, in particular the fma instruction,
can be made.

4.4. Bob Morgan viewpoint

High performance computing requires high performance
everything—Ilibraries, run-time systems, and compilers.
Compiling for Java is a challenge. Just using libraries will
not work—at some point a researcher will write different
code that must be compiled; thus the compiler must generate
code as good as Fortran—this is not easy in Java. In fact, it
may not be possible. We are expending intense energy to
build the best compiler [27].

4.5. John Parsons viewpoint

At ESI [5] we do not currently use Java in the develop-
ment of our PREDICTIVE VIRTUAL PROTOTYPE
TESTING products. Why, well, today 90% of the solver
code is written in Fortran, which is still a very robust and
powerful language. Currently all our developers are very
proficient in Fortran and C. We draw many top PhD
candidates to our development team but we encounter
very few resumes from top candidates that have Java exper-
tise. In the Graphics and User interface applications area we
primarily use C and C+ + in our legacy application but are
quickly moving towards a new applications base that is
primarily C++ combined with many high quality third
party class libraries.

The solver development has been progressing for over
20 years in this way and we have hundreds of man-years
of development that cannot be easily replaced. Recently
many additional man-years have been spent moving the
code towards supporting the multi-processor and massively
parallel customer environments of today.

In fact, software development is only one part of this huge
effort. The years of validation and testing with many very
important companies around the world are an important part
of our company’s success. If we attempt to replace the soft-
ware with JAVA, it would be very expensive. Any failure
could be disastrous to both our company and that of our
customers.

I do see that JAVA could be useful in some areas but
improvements are required if it is to succeed as a replace-
ment in Numeric Intensive Industrial Applications. Those

wavwfastio.com

areas in need of improvement include: Education and Train-
ing; Improved performance; Monetary support from UNIX
vendors to port existing products; Support from the user
community to port and validate our existing products
re-engineered in JAVA; Re-use improvement to help in
using existing Fortran and C code.

4.6. Thomas Wielenga viewpoint

Historically, numerical algorithms have been implemen-
ted in the language most often used by the practicing
engineers. The first practical language to implement numer-
ical algorithms was Fortran. It has a great deal of inertia, and
the majority of public algorithms are still found in Fortran.
However, there has been gradual progress to languages that
are less immediately suited to numerical analysis. Gradu-
ally, algorithms became available in C (see Numerical
Recipes in C), C+ +, and now Java. The penetration into
the later languages has come at a faster pace than with the
earlier languages. In addition, changes to these languages to
facilitate efficient numerical calculations have come with
time (Fortran), and are being proposed for Java (Java
Grande Forum activity).

Object oriented languages are being supplanted by
component architectures (COM, Java Beans, CORBA) as
the building blocks of commercial programs. In addition
to the component technologies, high level scripting
languages (tcl, perl, python) are becoming popular as a
means to “‘glue” various components together, to provide
prototypes and even end-user solutions.

Although these new languages, component technologies,
and scripting technologies are not especially suited to the
fastest processing of numerical problems, the software
industry is moving toward them as a solution to the even
more difficult problem of providing overall software
solutions on a variety of platforms. The provider of numer-
ical solution methods should take the new component tech-
nologies into account when designing the interface to be
used by its customers. Some of these technologies allow
combining the strengths of these new software technologies
with the speed of numerical algorithms implemented in
traditional languages. Pros and cons of several approaches
will be discussed.

S. Summary

During the presentations and the question and answer
segment for this session, a variety of issues are examined.
From the viewpoints summarized above in Section 4, we
observe that although most panelists can see advantages of
Java implementations of numeric-intensive, large-scale
industrial simulations, they disagree as to the time frame
when the limitations of Java for this category of application
will be overcome. Some see the web-centric, object-
oriented reusability attributes of Java as powerful motiva-
tion for immediate use. Others with lots of legacy Fortran,

http://www.fastio.com/

ClibPD

750 M. Ginsberg et al. / Advances in Engineering Sofrware 31 (2000) 743-751

C, and/or C++ code are more pessimistic with respect to
their immediate needs for the fastest possible code execu-
tion and the lack of sufficient time and manpower to do
significant code re-writes. As the availability of high quality
and fast Java numerical libraries and tools increase, no
doubt the pessimism of the latter group will subside. The
question is when will this likely happen. Industrial people
need to be vocal NOW if they want Java in the near future to
meet there needs and replace their existing implementa-
tions. At present the vocal proponents seem to come
primarily from academia, a few government labs, and
some hardware/software vendors. Mainstream industrial
people who could benefit from excellent Java implementa-
tions for large-scale computing seem to be mostly sitting on
the sidelines waiting to see what happens.

Persons interested in continuing the dialogue about
aspects of the panel theme should examine one or more of
the internet references listed in the Reference section and/or
contact any or all of the panel participants; participant
addresses are given in Section 2 and their company web
sites are listed in the bibliography.

References

[2] Center of Logistics and Expert Systems Publications, http:/
www.cle.de/ctd/publications/index.html/.

[3] Ninja: numerically intensive Java. http://www.research.ibm.com/
ninja/.

[5] The ESI Home Page, http://www.esi.fr/.

|7] Artigas PV, Gupta M, Midkiff SP, Moreira JE. High performance
computing in Java: language and compiler issues. IBM Research
Report RC 21482 (96940), IBM T. J. Watson Research Center, York-
town Heights, NY, 20 May 1999; published in Proceedings, 12th
Workshop on Language and Compilers for Parallel Computers,
August 1999 available at htp://domino.watson.ibm.com/library/
CYBERDIG.NSF/Home and then search under author; PostScript
file available at http://www.research.ibm.com/ninja under author
names,

[8} Bik A. Gannon DB. A note on Level 1 BLAS in Java. Proceedings,
Workshop on Java for Computational Science and Engineering—
Simulation and Modeling I1, June 1997, available at http://www.npac.
syr.edu/users/gcf/03/javaforcse/acmspecissue/latestpapers.html.

[10} Boisvert RF, Dongarra JJ, Pozo R, Remington KA, Stewart GW.
Developing numerical libraries in Java. ACM 1998 Workshop on
Java for High-Performance Network Computing, ACM SIGPLAN
1998; available at http://www.cs.ucsb.edu/conferences/java98.

[12] Casanova H, Dongarra JJ, Doolin DM. Java access to numerical
librartes. Presented at the ACM 1997 Workshop on Java for Science
and Engineering Computation, available at http://www.npac.syr.edu/
projects/javaforcse/acmprog/prog.html.

[15] Getov V, Flynn-Hummel S, Mintchev S. High-Performarce parallel
programming in Java: exploiting native libraries. ACM 1998 Work-
shop on Java for High-Performance Network Computing; available at
http://www.cs.ucsb.edu/conferences/java98/program.html.

[16] Ginsberg M. Current and future status of HPC in the world automo-
tive industry. In: Henderson ME, Anderson CR, Lyons SL, editors.
Object oriented methods for inter-operable scientific and engineering
computing, Philadelphia: SIAM, 1999. p. 1-10.

f17] Ginsberg M. Influences, challenges, and strategies for automotive
HPC benchmarking and performance improvement. Parallel Com-
puting Journal 1999;25(12):1459-76.

www . fastio.com

{18] Ginsberg, M. Future directions of Java in support of automotive large-
scale simulations. Proceedings, Computer Technology Solutions for
the Manufacturing Enterprise, Society of Manufacturing Engineers,
Dearborn MI, September 1999.

[19] Gosling, J. The evolution of numerical computing in Java. htp://
Jjava.sun.com/people/jag/FP.html.

[20] Gray MG, Roberts RM. Object-based programming in Fortran 90.
Computers in Physics 1997:11(4):355-61.

[23] Recent activities of the Java Grande Forum numerics working group,
http://math nist.gov/javanumerics/reports/jgfnwg-02. html.

[24] Java Grande Forum Reports. Making Java work for high-end comput-
ing. JGF-TR-1; Desktop access to remote resources. JGF-TR-2; MPI
for Java position document and draft specification. JGF-TR-3 avail-
able at http://www javagrande.org/reports.htm.

f25] Kahan W, Darcy JD. How Java’s floating-point hurts everyone every-
where. ACM 1998 Workshop on Java for High-Performance Network
Computing, Stanford University, Palo Alto, CA. | March 1998: http://
www.cs.berkeley.edu/~wkahan/JAV Ahurt.pdt.

[26] Midkiff SP, Moreira JE, Snir M. Java for numerically intensive
computing: from flops to gigaflops. Proceedings of Frontiers '99.
Los Almitos, CA: IEEE, Computer Society Press, 1999, p, 251-9,

{27] Midkift SP, Moreira JE, Snir M. Optimizing array reference checking
in Java programs. IBM Systems Journal 1998;37(3):409-53.

[28] Moreira JE, Midkift SP, Gupta M. A comparison of Java, C/C++,
and Fortran for numerical computing. IEEE Antennas and Propa-
gation Magazine 1998:40(5):102-5,

[29] Moreira JE. Midkiff SP. Gupta M. From flop to megaflops: Java
for technical computing. Proceedings of the 11th International
Workshop on Languages and Compilers for Parallel Computing,
LCPC™98, 1998; also IBM Research Report RC 21166 (revised)
(94594), 31 August 1998: available at http://domino.watson.ibm.com
Aibrary/CYBERDIG.NSF/Home and then lookup author(s) or report
name.

[30] Moreira JE, Midkiff SP. Gupta M. A standard Java array package for
technical computing. IBM Research Repert RC 21369 (96233), IBM
T.J. Watson Research Center. Yorktown Heights, NY, 21 December
1998. Proceedings of the 1999 SIAM Conference on Parallel Proces-
sing for Scientific Computing. http://domino.watson.ibm.com/library/
CYBERDIG.NSF/Home and then search under author.

[31} Moreira JE, Midkiff SP. Gupta M, Artigas PV, Snir M, Lawrence RD.
Java programming for high performance numerical computing, IBM
Research Report RC 21481 (96939), IBM T.J. Watson Research
Center, Yorktown Heights, NY, 20 May 1999; to appear in IBM
Systems Journal. 2000; hittp://domino.watson.ibm.com/library/
CYBERDIG.NSF/Home and then search under author.

[32] Moreira JE, Midkiff SP, Gupta M, Lawrence RD. High perfor-
mance computing with the Array Package for Java: a case study
using data mining. Proceedings of SC99. Portland, Oregon, Novem-
ber 1999.

[33} Moreira JE, Midkiff SP, Snir M. A Java array package. See http: //
math.nist.gov/javanumerics/array/. Available for download at
www.alphaWorks.ibm.com/tech/ninja.

[34] Morgan R. Building an optimizing compiler. Digital Press, 1998.

[38] Sun Microsystems. Sun proposes modification to Java programming
languages’ floating point specification. 1998; see http://www. sun.
com/smi/Press/sunflash9803/sunflash.980324.17.html.

{40] Wu P, Midkiff SP, Moreira JE, Gupta M. Efficient support for
compiex numbers in Java. Research Report RC 21393, IBM T.J.
Watson Research Center, Yorktown Heights, NY, 27 January 1999,
Proceedings of the 1999 ACM Java Grande Conference.

[41] Wu P, Midkiff SP, Moreira JE, Gupta M. Improving Java performance
through semantic inlining. Technical Report RC 21313 (96030), IBM
Research Division, IBM T.J. Watson Research Center, Yorktown
Heights, New York, 14 October 1998; available at http://domino.wat-
son.ibm.com/library/CYBERDIG.NSF/Home and then search under
author(s) or title.

http://www.fastio.com/

ChhPD

M. Ginsberg et al. / Advances in Engineering Software 31 (2000) 743-751 751

Further reading

[11 HPC Research and Education Home Page, htip://www.rust.net/
~ginsberg.

{4] Compaq’s Extreme Java TechnologyHome Page, http://www.digital .-
com/java/.

[6] Engineering Insight, LLC Home Page, http://www.Englnsight.com.

[9] Blount B, Chatterjee S. An evatuation of Java for numerical comput-
ing. Proceedings of ISCOPE’98, Lecture notes in computer science,
vol. 1505. 1998. p. 35-46.

[11] Budimlic Z, Kennedy K. Optimizing Java: theory and practice.
Concurrency: Practice and Experience 1997;9(6):445-63.

[13] Cierniak M, Li W. Just-in-time optimization for high-performance
Java programs. Concurrency,
1997:9(11):1063-73.

[14] Compagq's fast Java virtual machine, June 1999, http://www digital.-
com/java/Fast)IVM.html.

[21] Hauser J. JavaPar: Internet based parallel computational fud
dynamics solver using the Java thread concept. See http://
www._cle.de/ctd/personnel/hacuser/index.html.

Practice and Experience

wavwfastio.com

[22] Hauser J, et al. A pure Java paralle] flow solver. Proceedings, 37th
AJAA Aerospace Science Meeting and Exhibit, AIAA 99-0549,
Reno, NV, 11-14 January 1999; also available at htp:/
www.cle.de/cfd/publications/HaveJaval .pdf.

[35] Philippsen M. Is Java ready for computational science? In Euro-
PDS'98, Second European Parallel and Distributed Conference,
Vienna, Austria, 1-3 July 1998. p. 299-304: also at http://www.
ipd.ira.uka.de/~phlipp/JavaCS.ps.gz.

[36] Schwab M, Schroeder J. Algebraic Java classes for numerical opti-
mization. ACM Workshop on Java for high-performance network
computing. ACM SIGPLAN, 1998. See http: //www.cs.ucsb.edu/
conferences/java98.

[37] Seshadri V. IBM high performance compiler for Java. AlXpert Maga-
zine September 1997: see http://www.developer.ibm.com/hbrary/
aixpert.

[39] Winkelmann R, Hiuser J. Williams RD. Strategies for parallel and
numerical scalability of large CFD codes. In: Tezduyar TE. editor. To
be published in: special issue of Parallel computing. Amsterdam:
North-Holland, 1998.

http://www.fastio.com/

	Panels~2\743.tif
	Panels~2\744.tif
	Panels~2\745.tif
	Panels~2\746.tif
	Panels~2\747.tif
	Panels~2\748.tif
	Panels~2\749.tif
	Panels~2\750.tif
	Panels~2\751.tif

