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Abstract

We present short programs that demonstrate the unsound-
ness of Java and Scala’s current type systems. In partic-
ular, these programs provide parametrically polymorphic
functions that can turn any type into any type without
(down)casting. Fortunately, parametric polymorphism was
not integrated into the Java Virtual Machine (JVM), so these
examples do not demonstrate any unsoundness of the JVM.
Nonetheless, we discuss broader implications of these find-
ings on the field of programming languages.

Categories and Subject Descriptors D.3.2 [Programming
Languages]: Language Classifications—Object-oriented
languages; D.3.3 [Programming Languages]: Language
Constructs and Features—Polymorphism

General Terms Design, Languages, Reliability, Security

Keywords Unsoundness, Java, Scala, Null, Existential

1. Introduction

In 2004, Java 5 introduced generics, i.e. parametric polymor-
phism, to the Java programming language. In that same year,
Scala was publicly released, introducing path-dependent
types as a primary language feature. Upon their release
12 years ago, both languages were unsound; the examples
we will present were valid even in 2004. But despite the fact
that Java has been formalized repeatedly [3, 4, 6, 9, 10, 18,
26, 38], this unsoundness has not been discovered until now.
It was found in Scala in 2008 [40], but the bug was deferred
and its broader significance was not realized until now.

This experience illustrates some potential lessons for our
community to learn. For example, when researching a fea-
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ture, we often develop a minimal calculus employing that
feature and then verify key properties of that calculus. But
these results provide no guarantees about how the feature in
question will interact with the many other common features
one might expect for a full language. The unsoundness we
identify results from such an interaction of features. Thus,
in addition to valuing the development and verification of
minimal calculi, our community should explore more ways
to improve our chances of identifying abnormal interactions
of features within reasonable time but without unreasonable
resources and distractions. Ideally our community could pro-
vide industry language designers with deep insights into how
a given feature fits within the landscape of language design
as a whole, all while maintaining our community’s indepen-
dence and productivity.

On that note, another lesson from this experience is that
one well understood feature should be refined. In particular,
the design of constrained generics is itself overconstrained.
There is a notion of a well-formed generic type, in which all
type arguments satisfy the constraints on the corresponding
type parameters. Most languages simply reject types that
are not well-formed, but our examples show that relying
on well-formedness is not always sound. Furthermore, well-
formedness is not always necessary for soundness, as we
informally show is the case for constrained generics. Thus,
in addition to exploring type systems in which everything is
well-formed, our community should explore type systems in
which ill-formed types can be accepted. Section 6 has more
discussion on these lessons and others, and afterwards we
informally present potential fixes to Java and Scala that are
currently being discussed with the respective teams.

2. Java’s Generics

Java generics are a form of parametric polymorphism [12,
33]. Classes and interfaces can be specified to have type pa-
rameters and instantiated to have type arguments. For exam-
ple, List<E> is an interface for data structures implementing
indexable lists of elements of type E.

Before the introduction of parametric polymorphism,
Java already had subtype polymorphism as a key feature
of the language. An ArrayList instance could be provided to



code that expected a List, Collection, or Serializable. In-
teraction of subtype polymorphism and parametric polymor-
phism is non-trivial. As an attempt to enable powerful inter-
action of these features, Java 5 introduced wildcards [12].

Wildcards encode a form of use-site variance [39]. Sup-
pose a method wants a List of Numbers. That method might
get Numbers from the List and add Numbers to the List. But in
many cases a method does only one of these two things. A
method just getting Numbers from the List could just as eas-
ily be provided a List of Integers or a List of Floats and the
method would still work perfectly well. This indicates that
the method is a covariant use of the List of Numbers [36]; it
works given any List of any subtype of Number. In Java, this
is expressed using the type List<? extends Number>, where
? extends Number is an explicitly constrained wildcard that
represents some unknown subtype of Number. On the other
hand, a method just giving Numbers to the List could just as
easily be provided a List of Objects and the method would
still work perfectly well. This indicates that the method is a
contravariant use of the List of Numbers [19]; it works given
any List of any supertype of Number. In Java, this is expressed
using the type List<? super Number>, where ? super Number
is an explicitly constrained wildcard that represents some
unknown supertype of Number.

Java also has generic methods, i.e. parametrically poly-
morphic methods, and so Java specifies how wildcards
should interact with such methods. As an example, consider
the following method signature:

<E> List<E> reverse(List<E> list) {...}

The <E> at the beginning of the signature indicates that
the method works for any type E. Next, suppose a vari-
able ns has type List<? extends Number>, and consider what
the type of reverse(ns) should be. The challenge is that
? extends Number is not itself a type, and treating it as such
would be unsound.

To type-check this, Java uses wildcard capture. A wild-
card represents some type, but each wildcard can represent a
different type. So, when an expression supplied to a generic
method has a type with wildcard type arguments, Java cap-
tures the wildcard by introducing a fresh type variable that
represents the unknown type described by the wildcard. Java
then replaces each wildcard type argument in the type with
its corresponding fresh type variable, and then type-checks
the generic method using that modified type.

As an example, the following steps are taken to type-
check reverse(ns) from above:

1. Determine that the type of ns is List<? extends Number>.

2. This type has a wildcard type argument, so introduce a
fresh type variable, say X, for that wildcard.

3. Change the type argument to X, resulting in List<X>.

4. Type-check the call to reverse using List<X> as the type
of its argument.

This process results in the type List<X>. But there is
something unsatisfactory with this result. With ns, we knew
that every value provided by the list is a Number. We reversed
that list, so the new list should have the same property. But
the type List<X> describes no such information, since X is just
some arbitrary type variable that could represent anything.
The fact is, there are actually two more steps in wildcard
capture that are designed to address such concerns.

The first additional step incorporates the explicit con-
straints on the wildcard. The wildcard ? extends Number has
an explicit constraint on it stating that the unknown type
must be a subtype of Number. In the type-checking process,
the explicit constraint on the wildcard is reflected by adding
that constraint to the fresh type variable X. As a consequence,
any value provided by a List<X> is known to be a Number be-
cause X is constrained to be a subtype of Number.

The second additional step incorporates the implicit con-
straints on the wildcard [12, 35]. To understand what im-
plicit constraints are, consider the following class, noting in
particular the constraint on the type parameter N:

class Numbers<N extends Number> extends List<N> {
public N totalSumOfValues() {...}
}

Next, suppose nums has type Numbers<?>, and then consider
what the type of reverse(nums) should be. If we apply
the above extended process, we determine that its type is
List<Y>, where Y is a fresh type variable. But Y is uncon-
strained because the wildcard in Numbers<?> has no explicit
constraints on it. As a consequence, we no longer know that
the values provided by the list are Numbers.

But even though the wildcard in Numbers<?> has no ex-
plicit constraints, we know that implicitly it is a subtype of
Number. This is because the unknown type that the wildcard
represents must at least be a valid type argument to Numbers,
which implies it must be a subtype of Number due to the con-
straint on the corresponding type parameter N. Using this rea-
soning, Java also adds implicit constraints to the fresh type
variable Y to reflect that it must be a valid type argument.
Java looks at the type parameter corresponding to the wild-
card and duplicates all constraints on that type parameter as
constraints on the corresponding fresh type variable. In this
way, Java is able to deduce that all the values provided by
the list resulting from reverse(nums) are in fact Numbers.

These are the basic mechanisms for type-checking with
wildcards. There are more mechanisms, such as subtyping,
but these are sufficient for our example.

3. Unsoundness of Java

Now that we know the relevant features of Java, we use them
to create a method coerce in Figure 1 that can turn any type
into any type, without (down)casting. This code type-checks
according to the Java Language Specification [12] and is
compiled by javac, version 1.8.0_25. Stepping through the
code, one can see that coerce simply returns the value of its



class Unsound {
static class Constrain<A, B extends A> {}
static class Bind<A> {
<B extends A>
A upcast(Constrain<A,B> constrain, B b) {
return b;
}
}
static <T,U> U coerce(T t) {
Constrain<U,? super T> constrain = null;
Bind<U> bind = new Bind<U>();
return bind.upcast(constrain, t);
}
public static void main(String[] args) {
String zero = Unsound.<Integer,String>coerce(0);
}
}

Figure 1. Unsound valid Java program compiled by javac,
version 1.8.0_25

argument t. When executed, a ClassCastException is thrown
inside the main method with the message “java.lang.Integer
cannot be cast to java.lang.String”. The reason is that the
JVM does not directly support generics, implementing them
through type erasure and type casts. This is fortunate since
it causes the JVM to catch the error before it can directly
cause severe problems, such as accessing memory associated
with a field that is not actually present (though it might be
possible that it can indirectly cause problems).

In order to understand the example, the critical type to
look at is Constrain<U,? super T>. The wildcard in this type
is explicitly constrained to be a supertype of T. Furthermore,
the wildcard is implicitly constrained to be a subtype of U be-
cause the class Constrain states that its second type argument
must be a subtype of its first. This means that the wildcard is
constrained to be a supertype of T and a subtype of U.

Next, consider the method upcast of variable bind. The
variable bind has type Bind<U>. This means its upcast method
will return a U if provided a Constrain<U,B> and a B for some
subtype B of U. It does so by using its stated constraint on B
to upcast its second parameter to the return type. However,
the type argument for B is not specified, so it must be in-
ferred. Type-argument inference is done by first collecting
the known assumptions and the necessary requirements, and
then solving constraints in an attempt to determine if there
is a valid type argument. We use Figure 2 to track these as-
sumptions and requirements, and bind.upcast’s stated con-
straint on B forms Requirement e) in that figure. But to de-
termine the remaining assumptions and requirements, one
must first consider the arguments to the generic method.

We supply bind.upcast with the first argument constrain
of type Constrain<U,? super T>. This type has a wildcard
type argument, so Java captures the wildcard by introduc-
ing a fresh type variable, say Z. This wildcard is explicitly

a) Assumption
b) Assumption

T<: Z
Z<:U
¢) Requirement | B=172
d) Requirement | T <: B
e) Requirement | B <: U

Explicit constraint on wildcard
Implicit constraint on wildcard

constrain is a Constrain<U, Z>
tisaT
Stated by bind.upcast

Figure 2. Type-argument inference for Figure 1

constrained to be a supertype of T, so Java declares that Z is
assumed to be a supertype of T, forming Assumption a) in
Figure 2. This wildcard is also implicitly constrained to be
a subtype of U, so Java declares that Z is assumed to be a
subtype of U, forming Assumption b) in Figure 2.

Java then type-checks bind.upcast(constrain, t) using
Constrain<U,Z> as the type of constrain. Java uses that type
to determine that the type parameter B of upcast must be
syntactically identical to the type argument Z, forming Re-
quirement c) in Figure 2. Java then determines that the type
of t must be a subtype of B, forming Requirement d) in Fig-
ure 2. At this point, all the assumptions and requirements
have been gathered, and the invocation type-checks if there
exists a type argument for B that satisfies the requirements in
Figure 2 under the assumptions in that figure.

Requirement c) informs us that there is at most one such
type argument: Z. Furthermore, the remaining requirements
correspond exactly to the assumptions. That is, the explicit
constraint on the wildcard in Constrain<U,? super T> im-
plies t is a valid second argument, and the implicit constraint
on that wildcard implies the constraint stated by bind.upcast
is satisfied. As a consequence, the method type-checks. Fur-
thermore, even though type-argument inference in Java is
undecidable, this type argument is identified by javac, ver-
sion 1.8.0_25, which consequently accepts and compiles
the code in Figure 1. However, constraint solving is gen-
erally a non-deterministic process, and type-argument infer-
ence itself is non-deterministic [35], so the Eclipse Compiler
for Java, ecj version 3.11.1.v20150902-1521, and the current
compiler for the upcoming Java 9, javac build 108, fail to
type-check this code. They consider Requirements d) and e)
first, instead of Requirement c), and recognize that the in-
vocation can only type-check if T were a subtype of U. Intu-
itively, this is impossible, but this example shows that this
intuition is incorrect. Note that their rejection of the un-
sound code in Figure 1 is merely an accident of the non-
deterministic nature of constraint solving. They still accept
the code in Figure 3, which is also unsound for similar rea-
sons. On the other hand, the code in Figure 4 is an unsound
Java program that all 3 compilers reject even though it is
valid, illustrating how inconsistent the type-argument infer-
ence algorithms are.

Note that bind.upcast can only be executed to do the
unsound coercion if we can actually provide a value of
type Constrain<U,? super T>. Without knowing that T is a
subtype of U, it is impossible to create such an instance.



class Unsound9 {
static class Type<A> {
class Constraint<B extends A> extends Type<B> {}
<B> Constraint<? super B> bad() { return null; }
<B> A coerce(B b) {
return pair(this.<B>bad(), b).value;
}
}
static class Sun<T> {
Type<T> type;
T value;
Sum(Type<T> t, T v) { type = t; value = v; }
}
static <T> SunkT> pair(Type<T> type, T value) {
return new Sum<T>(type, value);
}
static <T,U> U coerce(T t) {
Type<U> type = new Type<U>();
return type.<T>coerce(t);
}
public static void main(String[] args) {
String zero = Unsound9.<Integer,String>coerce(0);
}
}

Figure 3. Unsound valid Java program compiled by javac,
JDKO build 108, and ecj, version 3.11.1.v20150902-1521

So type-checking the method invocation could actually be
sound since it might be unreachable. But in Java null inhab-
its every reference type, a property we call implicit nulls,
as opposed to having a type be inhabited by null only if
the type explicitly declares so, a property we call explicit
nulls. Thus, although it is impossible to create an instance
of Constrain<U,? super T>, one can simply use null to by-
pass the critical assumptions that were used to argue the
soundness of these features, most notably implicit-constraint
generation in wildcard capture.

4. Scala’s Path-Dependent Types

Scala also has both parametric and subtype polymorphism.
But to illustrate unsoundness, we rely more on its main
feature: path-dependent types.

Path-dependent types allow values to have individualized
types associated with them. For example, a graph object can
have a type member that indicates the type of its vertices. A
type member is denoted as in the following trait (where a
trait is, for our purposes, akin to an interface):

trait Graph {

type Vertex;

def getNeighbors(v :
}

This code does not specify what the implementation of
Vertex is; it simply indicates that the Graph object has some

Vertex) : List[Vertex]

class UnsoundSpec {
static class Constrain<A, B extends A> {}
static <A,B extends A>
A upcast(Constrain<A,B> constrain, B b) {
return b;
}
static <T,U> U coerce(T t) {
Constrain<U,? super T> constrain = null;
return upcast(constrain, t);
}
public static void main(String[] args) {
String zero = coerce(0);
}
}

Figure 4. Unsound valid Java program

type of vertices. This type might be indices used to index
an adjacency matrix, or it might be a class whose instances
store a list of neighbors.

Given an immutable variable g of type Graph, there is
an associated path-dependent type g.Vertex representing the
type of the vertices of the graph g. This type is truly cou-
pled with the specific variable g. Given another immutable
variable g2 of type Graph, values of type g2.Vertex cannot
be used as values of type g.Vertex and vice versa. Thus, the
implementation of g can guarantee that a vertex passed to
g.getNeighbors is necessarily a vertex of g rather than some
other Graph.

There are a few more details that need to be mentioned.
As with type parameters, type members can be constrained
to indicate they must be a subtype of something and/or a
supertype of something. Also, Scala traits, being similar to
interfaces, can be inherited multiple times, so Scala allows
traits to be combined using the keyword with to represent
values that inherit both traits. With these final details, we
can demonstrate that Scala’s type system is unsound.

5. Unsoundness of Scala

Now that we know the relevant features of Scala, we use
them to create a method coerce in Figure 5 that can turn
any type into any type without (down)casting. This code
type-checks according to the Scala Language Specifica-
tion [27] and is compiled by scalac, version 2.11.7. Step-
ping through the code, one can see that coerce simply returns
the value of its argument t. When executed on the JVM, a
ClassCastException is thrown inside the main method just as
with our Java example.

In order to understand the example, the critical type to
look at is LowerBound[T] with UpperBound[U]. Instances of
this type have a type member M that is both a supertype of T
(because the instance satisfies LowerBound[T]) and a subtype
of U (because the instance satisfies UpperBound[U]).



object unsound {
trait LowerBound[T] {
type M >: T;
}
trait UpperBound[U] {
type M <: U;
}
def coerce[T,U](t : T) : U= {
def upcast(lb : LowerBound[T], t : T) : 1lb.M =t
val bounded : LowerBound[T] with UpperBound[U]
= null
return upcast(bounded, t)
}
def main(args : Array[String]) : Unit = {
val zero : String = coerce[Integer,String] (0)
}
}

Figure 5. Unsound valid Scala program compiled by
scalac, version 2.11.7

Next, consider the function upcast. It takes a value whose
type member is a supertype of T, and a value of type T, and
then upcasts the latter value to the former’s type member,
taking advantage of the supertype constraint.

When we call this function using a value that is a
LowerBound[T] and an UpperBound[U], its type member hap-
pens to also be a subtype of U, so the returned value can
subsequently be used as a U.

Note that this reasoning assumes that we can actually pro-
vide a LowerBound[T] with UpperBound[U]. Without knowing
that T is a subtype of U, it is impossible to create such an in-
stance. So this reasoning could all be sound. But, Scala also
has implicit null values. So, although it is impossible to cre-
ate such an instance, one can simply use null to bypass the
critical assumptions that were used to argue the soundness
of these features.

6. Lessons to be Learned

We have demonstrated that two major industry languages
are unsound, both 12 years after having been released. Both
of these languages have had significant involvement from
academics, especially with respect to the features used in this
paper. The following are some lessons to be learned from
this experience.

6.1 Tolerating Nonsense Types

It might not make sense for algorithmic subtyping to be tran-
sitive in all settings. For example, suppose L is a subtype of
everything, and that T is a supertype of everything. It is un-
reasonable to expect an algorithm to report that Integer is
a subtype of String whenever the context has a type vari-
able V that is specified to be a supertype of T and a subtype
of L (note the reversal). Neither Integer nor String refer-
ence V, so one would not expect the algorithm to consider

the bounds on V. Nonetheless, for algorithmic subtyping to
be transitive, it would have to do precisely this due to the
following derivation:

Integer < T <V < 1 < String

Type variables like V can arise from what we call “non-
sense” types. For example, V and its inconsistent constraints
would arise from capturing the wildcard in the pseudo-type
Constrain<!l,? super T> using the Constrain class from
Figure 1.

Often one imposes restrictions on types to disallow non-
sense types, where nonsense is whatever the designer at hand
considers it to be. But this strategy can be fickle. For exam-
ple, suppose a subtyping algorithm was proved correct under
the assumption that all types in the derivation were valid.
But type validation is an algorithm itself, and one that of-
ten relies on subtyping. Furthermore, due to designs such as
F-bounded polymorphism [7], the relevant subtyping deriva-
tion may reference the type being validated. Thus we get a
circular dependency between type validation and subtyping.

Another issue is that types arise from intermediate type-
checking algorithms. For example, suppose we had intersec-
tion types and an invariant class Array. One might require all
types to be a subtype of at most one instantiation of Array in
order to deduce type equivalences. That is, no type should
be a subtype of Array<String> and Array<Integer>, since it
is impossible to belong to both. But consider the following
pseudo-code, where A and B are type variables:

interface Property<T> { boolean holdsFor(T t); }
Array<A> as = ...;

Property<? super Array<A>> propa = ...;

Property<? super Array<B>> propb = ...;

boolean holds = (... ? propa : propb).holdsFor(as);

When determining the type of the conditional expression
(... ? propa : propb), the type-checker computes the join,
i.e. least common supertype, of Property<? super Array<A>>
and Property<? super Array<B>>. With intersection types,
this join is Property<? super Array<A>NArray<B>>. This con-
tains the type Array<A>MArray<B>, which violates the restric-
tion because it is a subtype of both Array<A> and Array<B>
by the definition of type intersection. This nonsense type is
never written by the programmer but instead arises as a result
of the join algorithm. If the algorithms used to type-check
holdsFor are written assuming such nonsense types cannot
exist, they might mistakenly and unsoundly accept the last
line of code in the example.

Note that Array<A>MArray<B> is inhabitable — the vari-
able A could represent the same type as B. So nonsense types
are not the same as uninhabitable types. They are simply vi-
olations of the (often implicit) assumptions of how the de-
signer expects types to be used. But nonsense types might
not always be written directly by programmers, and they
may not be easy to identify. An insistence on preventing non-
sense types is what most delayed the development of a core



calculus for Scala because nonsense types can so easily arise
from even the core features of the language [2].

Thus, if one wants to reject nonsense types, they must
do two things. First, they must check that the algorithm for
identifying nonsense types works correctly even if nonsense
types arise as the algorithm progresses, or prove that all
types that arise during this process are in fact sensible. Sec-
ond, they must prove that all types constructed intermedi-
ately during compilation are themselves sensible assuming
the types they were constructed from are sensible. This is
easily accomplished for many kinds of nonsense. For exam-
ple, one can ensure that all names are in scope, and every use
of a generic class has the correct number of type arguments.

But many of the more complex forms of sensibility, such
as type-argument validation, do not easily satisfy these cri-
teria. For such cases, the alternative we propose is simple:
allow nonsense types except where soundness specifically
relies on sensibility. For example, type-argument validation
only needs be done when creating a new instance of a generic
class and when inheriting a generic class. This is because
only the implementations of the methods of the new instance
rely on the specified requirements of the type arguments. Ev-
erything else simply relies on the fact that all instances have
sound implementations of their methods. This can be proved
by abstracting the signature and inheritance of all classes of
a program into interfaces with no constraints on their type
parameters. Except for new and inheritance, every mention
of a class can be replaced with its associated interface and
the program will still type-check and have the same seman-
tics. Thus, new and inheritance are the only places that need
type arguments to satisfy the constraints on the respective
type parameters.

Language designers should consider both how to reject
nonsense types and how to accept them before deciding on
which approach to take. Different strategies are appropri-
ate for different problems. In fact, changing from the for-
mer strategy to the latter strategy is what finally enabled the
development of sound models for Dependent Object Types
(DOT) [1, 30], the minimal calculus for Scala. The examples
in this paper were found by applying experience with non-
sense types to identify a point in the soundness proof for this
minimal calculus that fails to generalize to null values. Thus
understanding rather than ignoring nonsense types is critical
to preventing unsoundness.

6.2 The Billion-Dollar Mistake

Implicit nulls, a key component of our examples, were in-
vented by Tony Hoare, who refers to this invention as his
billion-dollar mistake [17]. The feature has been a cause of
many bugs in software. It adds a case that is easy to for-
get and difficult to keep track of and reason about. Interest-
ingly, here it causes the same problem for the same reasons,
but at the type level. The reasoning for wildcards and path-
dependent types would be perfectly valid if not for implicit
null values.

Many already would like to remove implicit nulls from
industry. This finding gives us more impetus to do so. As
type systems become more advanced, it becomes more im-
portant for types to provide guarantees that are not invali-
dated by implicit nulls.

Null values have their uses though, so simply casting
them aside would be naive. Instead, we need to understand
their uses and provide features that sufficiently accommo-
date those use cases. For example, implicit nulls are use-
ful for representing the absence of a returned value, the ab-
sence of an optional argument, unknown values, uninitial-
ized fields, and exceptional behavior.

Our community has a variety of solutions for each of
these use cases. Now is a good time to collaborate with in-
dustry teams to put these solutions into practice, since recent
industry languages such as Ceylon, Kotlin, and Rust have
already made nulls explicit in reaction to the problems that
implicit nulls have caused [5, 22, 31]. But each solution our
community provides has its own advantages and disadvan-
tages, making different solutions appropriate for different
languages. Our community should build better relationships
with industry so that design teams know who might be inter-
ested in helping and would help them identify the solution
best suited for the language at hand rather than the contact’s
own preferred solution. If our community wants to remove
implicit nulls from industry, where appropriate, our commu-
nity should make greater effort to appreciate the complex
compromises that have to be made in practice so that our
work can successful transfer out of academia.

6.3 Unforeseen Interactions

There have been many formalizations of subsets of and ex-
tensions to Java [3, 4, 6, 9, 10, 18, 26, 38], many of which
were proved sound, but none of which found this error. The
reason is that none of them handle the full feature set of Java.

Earlier work on Java had the goal of proving Java sound,
making an effort to handle large subsets of Java [9, 26]. In
particular, they made a point of considering features that al-
ready had a history of unsoundness, with mutable state be-
ing the most notorious such feature. But even these exten-
sive formalizations considered only a subset of the Java lan-
guage, still making them incomplete, and the Java language
has since become even more complex.

The problem is that Java, along with many other major
industry languages, is extremely large. It provides features
for efficiency, for concurrency, for convenience, for main-
tainability, for interoperability, for security, for transportabil-
ity, for serialization, for debugging, for fault tolerance, and
so on. At present, researchers simply do not have the time
to formalize languages and prove valuable theorems at this
scale, or even to communicate these formalizations to each
other. Furthermore, we need to explore new possibilities in
addition to inspecting current standards, and we need to con-
sider far more options than can ever become reality.



So an effort was made to minimize formalizations to just
the subset of Java necessary to capture the core features
of the language, making it easier to design extensions to
Java and prove their soundness. This effort culminated in
Featherweight Java (FJ) [18]. To demonstrate its extensibil-
ity, Igarashi et al. developed an extension of FJ with gener-
ics, resulting in Featherweight Generic Java. Wild FJ [38]
and TameFJ [6] then extended Featherweight Generic Java
with wildcards and existential types capable of expressing
both explicit and implicit constraints. The concision of these
calculi is what enabled our community to quickly develop
and reason about these and many other extensions to Java.
And, with the growth of proof assistants, minimization has
become a valuable tool for addressing the massive effort in-
volved in mechanical formalization and verification of these
languages and extensions.

Unfortunately, in minimizing Java to a core calculus, null
pointers were dropped. Every extension afterwards focused
on proving the soundness of its new feature, so its creators
did not add the feature of null pointers that was already
deemed uninteresting. As a consequence, none of these ex-
tensions have been proved compatible with null pointers.
And in fact, what we have just demonstrated is that both
Wild FJ and TameFJ are not compatible with null pointers.

The issue is that inhabitants of existential types provide
evidence that some type satisfying certain constraints exists,
but null pointers provide no such evidence. Wild FJ, TameFJ,
and Java make use of those constraints to implement use-site
variance. But by making null pointers implicit, existential
types being inhabited no longer guarantees anything. In our
examples, we create a type whose evidence implies T is a
subtype of U and use this evidence to convert from one to
the other. We then falsify this evidence with a null pointer to
instantiate the unsoundness. Thus, the unforeseen interaction
of features has caused Java and Scala to be unsound.

6.3.1 On Methodology

The question at hand is how such critical oversights might
be prevented in the future. This is not the first time an in-
teraction of features has posed some of the most interesting
challenges for a language. Possibly the most famous exam-
ple is the interaction of parametric polymorphism and mu-
table state. Gordon, Milner, and Wadsworth actually identi-
fied this interaction in their initial publication of ML [11],
which considers the full language in depth. Yet it took a
decade to arrive at the modern solution known as the value
restriction [37]. Still later, a similar interaction between mu-
table state and existential quantification led to unsoundness
in Cyclone [15], which is important to Java’s design for wild-
cards [34]. More specific to object-oriented programming,
the interaction of subtyping and inheritance made Eiffel [24]
unsound [8].

Complications are not always in the form of unsoundness.
The interaction of parametric polymorphism and recursion
makes type inference undecidable unless polymorphic recur-

sion is disallowed [16, 21, 23, 25]. The interaction of subtyp-
ing and parametric polymorphism makes subtyping undecid-
able [28], even without impredicative polymorphism [20],
and even without multiple-instantiation inheritance [14].

The issue is that we do not have some oracle that can
tell us whether a minimization unintentionally elided a criti-
cal feature with unexpected interactions. And yet, we can-
not afford to regularly handle the entirety of a language
such as Java. Had Wild FJ and TameFJ been derived from
Flatt et al.’s ClassicJava [10], they would have identified
these concerns, but this would have also required more work
without it being clear that this additional work would come
with additional benefits.

Here we consider some possible methodologies that
might help identify problematic interactions of features
ahead of time without hindering the advancement of our
field. These methodologies are not meant to be replacements
for minimal calculi. Different methodologies are appropri-
ate for different settings, and minimal calculi have already
proven their value to our community. But we hope our com-
munity will explore the methodologies below and encourage
the ones that seem successful and efficient. This is meant to
start a discussion, or give stronger voice to an ongoing one,
so we use Featherweight Java (FJ) as a running example to
illustrate the methodologies and their potential place within
this discussion. Featherweight Java is an interesting case
because it, along with Generic Featherweight Java, is itself
compatible with implicit nulls; only in extending it do these
incompatibilities arise. So ideally these methodologies can
help forecast problematic features for not only the calculus
at hand, but even the extensions built upon that calculus.

Threats to Validity When reporting an experimental eval-
uation, it is standard practice in many communities to report
the “Threats to Validity”. That is, no experiment can provide
a guarantee, and one must explicitly discuss how the given
experimental results might fail to generalize. We could apply
a similar standard to minimization: one must explicitly dis-
cuss the properties of the minimization that are most likely
to fail to generalize, as well as which features are most likely
to present unforeseen complications.

In the case of FJ, a threat to validity is that it has different
values from Java, which has significant effect on the induc-
tion principles of the proof. null is one notable Java value
that is absent from FJ, so the calculus and its soundness may
not generalize to that feature. In this way, when researchers
build upon a minimal calculus, they might have a better idea
of which features absent from the calculus they should still
consider in more detail, if only informally.

Open-Ended Calculi An alternative is to develop “open-
ended” minimal calculi and proofs. That is, develop the syn-
tax, typing rules, and semantics with the understanding that
each of these components is incomplete. Similarly, prove the
desired properties of the open-ended calculus without as-
suming the given operations in the calculus are the only op-



erations in the calculus. Of course, this is impossible to do in
general, so one would need to specify the assumptions made
about the remaining unknown features. These assumptions
formally expose much of the threat to validity of the min-
imization, as well as allow researchers to know when they
can simply reuse the proof without any customization. Note
that one can state assumptions that are more general than is
necessary to prove soundness of the closed minimal calcu-
lus. Thus this methodology might allow one to develop com-
posable minimal calculi and proofs that one could be more
confident will generalize to the full language.

In the case of FJ, this would first amount to adding . .. to
the grammar, typing rules, and semantics. Then, for the
soundness theorem, one would add the requirement that each
typing rule in ... concluding I' - e : 7 can show that
e reduces soundly given that each of the assumptions of
the rule reduces soundly. Here reducing soundly means not
getting stuck and, if reducing to a value, then then that
value has type 7. Note that this requirement is stated in
terms of values. In the case of FJ, the only values are class
instances. But Java has more values. For example, Java has
primitive values. But primitive values can never have a class
type, making it clear that they would have to be wrapped
to interact with FJ, and consequently these wrappers would
satisfy the requirements of FJ and thereby be sound. On the
other hand null can have any class type. Thus the open-
ended methodology would inform the researchers that they
should consider null at least informally, and then either add
it to the calculus to strengthen its representation of the full
language, or state it as a threat to validity for subsequent
researchers to keep in mind. This methodology might clarify
what exactly is guaranteed in the more general case, might
better illustrate why the system is sound, and might simplify
the process for extending to more features or adding new
features by simply proving that the invariant is maintained
with the new cases.

Minimizing to Cross-Cutting Features An entirely differ-
ent approach is to change the goal of minimization. Whereas
traditionally minimization has removed the complex fea-
tures, one could alternatively minimize to remove the fea-
tures with the least cross-cutting impact. That is, if a feature
is simply another case in a proof, with no effect on the design
of the proof, its invariants, or its guarantees, then remove it.
This might significantly reduce the capability of the calcu-
lus, but such a reduction does not matter if that capability is
not relevant to the question at hand. In this way, the discus-
sion of the work could focus on the most challenging aspects
of the language or proof, which the researchers’ expertise is
most relevant to, rather than the aspects that might easily be
recreated by the reader or successor.

These two approaches will often disregard many of the
same features. Access modifiers have no effect on evaluation
and only restrict typability. Exceptions simply bypass com-
putation, much like non-termination, and use and reduce to

class SingleParameters<Ignore> {
static class Bind<A> {
class Curry<B extends A> {
A curry(B b) { return b; }
}
<B extends A>
Curry<B> upcast(Constraint<B> constraint) {
return new Curry<B>();
b
class Constraint<B extends A> {}
<B> A coerce(B t) {
Constraint<? super B> constraint = null;
return upcast(constraint) .curry(t);
}
}
public static void main(String[] args) {
Bind<String> bind = new Bind<String>();
String zero = bind.<Integer>coerce(0);
}
}

Figure 6. Unsound valid Java program with only single-
parameter methods and single-type-parameter classes com-
piled by javac, version 1.8.0_25

the same values as exceptionless programs in Java. So in the
case of FJ, both these features would be ignored by both min-
imization strategies for soundness. However, in Java con-
structors are simply an initialization of all fields to null fol-
lowed by a method initializing the fields, and methods with
multiple parameters can be translated to single-parameter
methods using currying. Even type parameters for classes
can be curried, and Figure 6 shows that multiple parameters
are unnecessary for unsoundness. On the other hand, null
adds an exceptional case to the invariant of the proof, one
that must be explicitly handled by the semantics of the lan-
guage. Furthermore, null and mutable state are crucial to
the design of Java, affecting how various features are imple-
mented (such as constructors), and which features are omit-
ted (such as closures that can access all variables in scope).
Thus in the case of FJ, this difference in methodology
might amount to reintroducing null and mutable state, and
removing constructors and simplifying methods to have ex-
actly one parameter. In fact, this difference is necessary to
accurately model object creation in Java, or at least the as-
pect of it that would be most concerning for soundness.
In particular, because constructors can invoke methods in
Java, those methods can unknowingly access fields that have
not been initialized. Such fields can even be declared final,
which causes the type-checker to guarantee that it is initial-
ized by the constructor and exactly once. This is why Java
actually initializes all (reference) fields to null and then mu-
tates them when initialized by the constructor. This can cre-
ate a back door in the type system. Our examples can be
rewritten to have no use of the expression null and instead



class Nullless<T, U> {

class Constrain<B extends U> {}

final Constrain<? super T> constrain;

final U u;

Nullless(T t) {
u = coerce(t);
constrain = getConstrain();

}

<B extends U>

U upcast(Constrain<B> constrain, B b) {
return b;

}

U coerce(T t) {
return upcast(constrain, t);

}

Constrain<? super T> getConstrain() {
return constrain;

}

public static void main(String[] args) {
String zero = new Nullless<Integer,String>(0).u;

}

}

Figure 7. Unsound valid Java program without null com-
piled by javac, version 1.8.0_25

access an uninitialized field, as shown in Figure 7. Thus null
and mutable state are both complexities for which soundness
is interesting. A proof of soundness for this system would be
much more likely to generalize, since this system has the
same values as Java, addresses state, and more accurately
reflects object initialization in Java. It would also provide
guarantees for the most worrisome cases, recognizing that
null is an exceptional expression in the system and that ob-
ject initialization in Java has weak guarantees.

Hindsight 1t is important to reiterate that in all this dis-
cussion we might simply be applying hindsight to claim so-
lutions for a tough problem. The current methodology us-
ing minimal calculi makes no such claim, and yet has been
very effective for our community. Nonetheless, while much
research should stick to such well understood methodolo-
gies, we hope some research will explore new methodolo-
gies for this problem, and we hope our community will ac-
commodate and encourage this exploration. Over time we
might be able to discern which methodologies or combina-
tions thereof, if any, can effectively address this problem.
Meanwhile there are issues besides methodology that should
also be considered in this discussion.

6.3.2 On Mechanical Verification

More recently, one huge advantage of minimal systems is
that they can be mechanically verified with a reasonable,
albeit still high, amount of effort. So advancements in me-
chanical verification might be necessary to reasonably ex-

tend this standard and the guarantee it provides to more com-
plex systems. Incorporation of nominal logic [29] might re-
duce much of the tedium in verifying these systems. Spe-
cialization for finite types and types with decidable equality,
including especially functions from those types, might en-
able simpler reasoning about finite contexts and finite-arity
operations. First-class treatment of the functors whose fix-
points form inductive and coinductive structures might im-
prove the extensibility of our calculi and their proofs. In gen-
eral, specialization of mechanical proof systems to common
paradigms in our field might allow us to immediately focus
our effort on the interesting aspects of the problem at hand,
similar to what we do in our informal proofs.

6.3.3 On Values

There are some cultural issues to consider as well. Our com-
munity values simplicity. Simplicity makes concepts easier
to communicate and comprehend, theorems easier to prove
and confirm, and fundamentals easier to separate from ac-
cidentals. This value in itself is not problematic. The prob-
lem is that, while valuing simplicity, our community must
also recognize the need for complexity in many situations.
Not all problems are best simplified, especially those tied to
complex systems such as industry. And while most of our
community’s research should not be tied to such complex
systems, there is room to encourage more research along this
front so that the present and future languages used by mil-
lions of people around the world might live up to our ideals.
Many other fields have been able to interact with, contribute
to, appreciate, and benefit from industry despite its complex-
ities and without being limited by it. Our field should strive
for the same balance.

6.3.4 On Process

Lastly, our review and publication process seems biased
against anticipating the interaction of features. It simply
takes more space to present a larger calculus, or to formal-
ize and discuss the assumptions of an open-ended calculus.
And yet our most prestigious publication venues permit the
same amount of space for all work, regardless of how much
space is appropriate for the work. This biases against thor-
ough considerations of interactions, and it favors minimal
closed solutions with no guarantee of composability. It also
encourages our community to stick with what is familiar
and needs less explanation, rather than branching out both
in terms of what tools we can apply and what problems we
can apply our own techniques to. Of course there are many
good reasons for page limits, so a solution to this bias would
need to take many concerns into consideration.

Not everything is simple, and our community must figure
out how to encourage complexity when appropriate. Java has
been the first- or second-most used programming language
for over 15 years, 12 of which has been with generics, and
yet we still do not have a formalization of it that has both
null pointers and generics, let alone wildcards.



7. Potential Fixes

Here we speculate how to fix the fundamental sources of un-
soundness that we have identified for Java and Scala. These
languages are widely used, so backwards compatibility is
important. Of course, any fix to unsoundness cannot in the-
ory be backwards compatible, so one must assess and ac-
count for how these languages are used in practice. Per the
discussion in Section 6, we focus on solutions that can toler-
ate nonsense types.

In Java, the unsoundness is caused by wildcard capture
specifically during type-argument inference. Although wild-
card capture is used during subtyping, it is only used in sit-
uations where a value in question being null automatically
implies subtyping holds anyways. Type-argument inference
is the only feature that captures a wildcard without the corre-
sponding value being used when the wildcard’s evidence is
used. Thus, it is both necessary and sufficient to either reject
a method invocation or insert null checks when a captured
wildcard’s evidence introduces a subtyping (not involving
the fresh capture variables) that would not otherwise hold.

Determining when evidence introduces a potentially
problematic new subtyping is challenging algorithmically
because capture can introduce subtypings between fresh cap-
ture variables and these still need to be accepted. The fact
that these constraints can be recursive, meaning a fresh cap-
ture variable is constrained by itself, makes it challenging
to separate these subtypings from the subtypings they im-
ply that are not in terms of fresh variables. So one solution
is to restrict wildcards so that capturing them never intro-
duces new subtypings. This could be done by not using im-
plicit constraints, but implicit constraints are actually used
in practice on occasion. It could be done by not allowing
? super when the wildcard has an implicit constraint, which
Tate et al. determined is extremely rare in practice [35].
Another solution is to only introduce implicit constraints be-
tween what Greenman et al. call “materials” [13], which they
have determined would be almost certainly be backwards
compatible in practice. These constraints are not recursive,
which would make it easier to determine if they introduce a
new subtyping. Regardless, there is likely to be a backwards-
compatible-in-practice solution with no or minimal run-time
overhead.

In Scala, the unsoundness is caused by using a path-
dependent type where the path contains a null pointer. Unfor-
tunately, path-dependent types give an explicit name to the
possibly non-existent type. This enables inconsistencies to
be developed and exploited across the program, rather than
in a single place like with wildcards. Therefore, the best so-
lution is most likely to check that paths are valid at run time,
using compile-time analysis to reduce these checks. The fact
that null-pointer checks are already well optimized in the
JVM hopefully implies that this might still produce only
light run-time overhead despite the frequency of the checks.

Moving forward, we are currently discussing the issues
with the teams for both languages. The Java team already
had concerns about the types we used [32]. This work has
demonstrated that those types can in fact lead to unsound-
ness. However, the discussion in Section 6 suggests that the
solution might be to amend type-argument inference rather
than disallow such types. The team plans to adopt one of the
aforementioned potential solutions, but at this point needs
to investigate more to determine which solution is best. The
Scala team has identified yet more sources of unsoundness
in Scala closely related to our example but using more ad-
vanced features in place of null pointers. Because there cur-
rently seems to be no principled solution to all these sources,
they have deferred fixing the issues, for now relying on the
JVM to catch the complex corner cases at run time.

8. Conclusion

We have shown that Java and Scala are unsound and have
been for 12 years. Their unsoundness is due to an unfore-
seen interaction of features that are each sound separately.
The unsoundness was missed repeatedly due to our commu-
nity’s reliance upon minimal calculi; mechanically verified
proofs would not have prevented the problem. Any language
with types that provide evidence without directly using the
corresponding value is susceptible to this issue. Given that
this issue was missed even after significant formalization
effort, it is likely that many less-thoroughly-examined hy-
pothetical languages and features in our literature share the
same problem. This suggests that we as a community need
to encourage more research on holistic language design and
formalization so that we can prevent such problems in the
future.
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