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1 Introduction

Algebraic geometry is the study of algebraic varieties: an algebraic variety is, roughly
speaking, a locus defined by polynomial equations. The well-known parabola, given as the
graph of the function f(x) = x2, is an immediate example: it is the zero locus of the
polynomial y − x2 in R2.
One of the advantages of algebraic geometry is that it is purely algebraically defined and
applies to any field, including fields of finite characteristic. It is geometry based on algebra
rather than on calculus, but over the real or complex numbers it provides a rich source of
examples and inspiration to other areas of geometry.
A short historical background:

• Some of the roots of algebraic geometry date back to the work of the Hellenistic Greeks
from the 5th century BC.

• The birthplace of modern algebraic geometry is Italy in the 19th century. The Italian
school studied systematically projective varieties, and gave geometric proofs. Many
objects got their names from Italian mathematicians. (Cremona, Castelnuovo, del
Pezzo, Segre, Veronese, Severi, etc.)

• In the beginning of the 20th century the language and techniques found their limit and
a stronger framework was needed. O. Zariski gave algebraic geoemtry a firm algebraic
foundation and A. Weil studied varieties as abstract algebraic objects, not as subsets
of affine or projective spaces.

• Serre in the ’50s developed sheaf theory, and was a founder of the French algebraic
geometry school.

• Grothendieck in the ’60s introduced a much larger class of objects called schemes.
These are varieties with multiple components and Serre‘s sheaf theory is crucial to
develop this notion.

• Deligne and Mumford in the late ’60s introduced stacks. These are more abstract
objects appearing for example in the situation when we study quotients of varieties
with group actions. Stacks have become and are becoming popular in the study of
certain moduli spaces.

Throughout these notes, k is an algebraically closed field and any ring will be commutative
Background material: This course heavily builds on some basic results in commutative
algebra. It is very much recommended to visit the Part C Commutative Algebra course, or
study the notes of the course or the relevant books in the following bibliography.
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1. K. A. Smith et al: An Invitation to Algebraic Geometry

2. Miles Reid: Undergraduate Algebraic Geometry

3. Miles Reid: Undergraduate Commutative Algebra

4. Atiyah-Macdonald: Introduction to Commutative Algebra

5. R. Hartshorne: Algebraic Geometry, Chapter I (more advanced)

6. Eisenbud-Harris: The Geometry of Schemes

2 Affine Algebraic Varieties

2.1 Affine varieties

Let k be an algebraically closed field, and kn the n-dimensional vector space over k.

Definition 2.1. A subset X ⊆ kn is a variety if there is an ideal I ⊆ k[x1, . . . , xn] such
that

X = V(I) = {x ∈ kn|f(x) = 0, ∀ f ∈ I}

We say that X is the vanishing set of I.

Recall that R = k[x1, . . . , xn] is a Noetherian ring, that is, all its ideals are finitely generated.
If I = (f1, . . . , fr) is generated by r elements then

V(I) = V(f1, . . . , fr) = {x ∈ kn|fi(x) = 0, i = 1, . . . , r}.

Example 2.2. 1. V(x1, x2) ⊆ k2 is {0}, the origin.

2. V(x1, x2) ⊆ k3 is {(0, 0, x3) : x3 ∈ k}, the third coordinate axis.

3. V(x1 − a1, . . . , xn − an) = {(a1, . . . , an)} ∈ kn

4. V(1) = ∅, where 1 denotes the constant 1 polynomial.

5. For f ∈ k[x1, x2], V(f) ⊂ k2 is an affine plane curve. If the degree of f is 2 this is
called conic, if the degree is 3 it is a cubic curve.

6. V(f) ⊆ kn for a polynomial f is called a hypersurface.

7. V(f) where f = a1x1 + . . .+ anxn is a linear form is called a hyperplane.

8. Let kn2 be the vector space of n × n matrices over k, then the determinant det is a
polynomial in the entries, and SL(n, k) = V(det−1).
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9. A non-example: open balls in Cn. Say, B(0, 1) = {z ∈ C : |z| < 1} is not a variety.

Definition 2.3. The Zariski topology on kn is the topology whose closed sets are the
affine varieties V(I) for I ⊂ k[x1, . . . , xn].

We use the notation Ank for "kn with the Zariski topology". We leave as an exercise on
Sheet 1 to show that this is indeed a well-defined topology, that is, union of opens is open
and intersection of finitely many closed is closed in the Zariski topology. (What is the ideal
which defines the union and intersection of two varieties?)
We collect the main features of our new topology versus the well-known Euclidean topology
in the following table:

Euclidean Topology Zariski Topology
Analytically defined Algebraically defined
Metric spaces No notion of distance if k 6= C
Works only for Cn or Rn Works for any (alg closed) k
Cn,Rn is not compact Ank is compact (arbitrary

covers have finite subcovers)
Hausdorff Not Hausdorff in general
Small open sets Every open set is dense (*)

Definition 2.4. The Zariski topology on an affine variety X ⊆ Ank is the restricted
topology, that is, the closed subsets of X are {X ∩ V(I) : I ⊆ k[x1, . . . , xn]}.

Definition 2.5. An affine variety X ⊂ Ank is called reducible if it can be written as a
non-trivial union of two subvarieties X = X1 ∪X2 where X1 6= ∅, X2 6= ∅. Otherwise it is
called irreducible.

Example. For example, V(x1x2) ⊆ A2 is reducible: V(x1x2) = V(x1)∪V(x2) is the union
of the coordinate axes.
Note that

Cn = {(z1, . . . , zn)|Im(z1) ≥ 0} ∪ {(z1, . . . , zn)|Im(z1) ≤ 1}

is reducible in the Euclidean topology, but irreducible in the Zariski topology.
Property (*) does not hold for every affine variety, just for irreducible ones.

Definition 2.6. Let X ⊆ An be a subset. Define

I(X) = {f ∈ k[x1, . . . , xn]|f(x) = 0 ∀x ∈ X}

its vanishing ideal in k[x1, . . . , xn].
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Example. Let I ⊆ k[x1, . . . , xn] be an ideal. Does I(V(I)) = I hold? The answer is: not
necessarily. Take for example I = (x2) ⊂ k[x, y]. We have V(I) = V(x2) = {(0, y) : y ∈
k} ∼= A1. However, I(V(I)) = (x).
Note that the ideals (x2) and (x) define the same subvariety of A2. But not the same scheme
– the ideal (x2) corresponds to the y-axis with multiplicity 2! This is the fundamental idea
of defining and working with schemes instead of varieties. The Nullstellensatz below will
give the relationship between I(V(I)) and I in general.

2.2 Morphisms

Definition 2.7. A morphism of affine spaces F : An → Am is given by a polynomial
map x = (x1, . . . , xn) 7→ (f1(x), . . . , fm(x)), where fi ∈ k[x1, . . . , xn].
A morphism F : X → Y of affine varieties X ⊆ An, Y ⊆ Am is given by a polynomial map
An → Am that restricts to X, such that F (X) ⊆ Y .
An isomorphism is a morphism which has an inverse morphism.

Remark. The image of a morphism need not be an affine variety. For example the image
of the map A2 → A1, (x, y) 7→ x restricted to the subvariety V(xy− 1) ⊂ A2 is A1 \ {point},
which is not a closed subvariety in A1

3 Projective Varieties

3.1 Review of Projective Space

Let k∗ = k \ {0} be the group of units in k, i.e the nonzero elements. Ways to think of
projective space:

Definition 3.1. 1. Pnk = An+1 \ {0}/ ∼ where (x0, . . . , xn) ∼ (λx0, . . . , λxn) for
λ ∈ k∗. A point of Pn is often denoted by [x0 : . . . : xn], where x0, . . . , xn are
the homogeneous coordinates.

2. For k = C, PnC = Sn/ ∼, that is {x ∈ Cn+1|‖x‖ = 1}/"antipodal points". Note that
P1
C is the Riemann sphere.

3. Pnk as compactified affine space: Pnk = An ∪ Pn−1 = {[x0 : . . . : xn]|x0 6= 0} ∪ {[x0 :
. . . : xn]|x0 = 0} the n-dimensional affine space with a hyperplane at infinity. By
induction, we have the standard decomposition Pnk = Ank ∪ A

n−1
k . . . ∪ A0

k.

3.2 Projective Varieties

Recall that there are no non-constant holomorphic functions on P1
k=Riemann sphere, so

zero loci of polynomials are trivial. Instead of this, we use homogeneous polynomials on
kn+1.
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Definition. A polynomial F ∈ k[x0, . . . , xn] is homogeneous of degree d if every monomial
xi00 . . . x

in
n which appears with nonzero coefficient has degree d = i0 + . . . + in. This is

equivalent to saying F (λx0, . . . , λxn) = λdF (x0, . . . , xn) for all λ ∈ k.
A homogeneous ideal I = (F1, . . . , Fr) ⊂ k[x0, . . . , xn] is an ideal generated by homogeneous
polynomials F1, . . . , Fr (whose degree are not necessarily the same)

Note that the value of F is not well defined at a point [x0 : . . . : xn] of Pn, but the zero
locus is well-defined, since F (x0, . . . , xn) = 0⇔ F (λx0, . . . λxn) = 0.

Definition 3.2. X ⊂ Pnk is a projective variety if it is the vanishing set of a homogeneous
ideal I = (F1, . . . , Fr), that is

X = V(I) = {x ∈ Pnk |Fi(x) = 0 i = 1, . . . , r}

Definition 3.3. The Zariski topology on Pnk is the topology whose closed subsets are
projective subvarieties. The Zariski topology on X ⊂ Pnk is the induced topology.

Example. 1. If L = a0x0 + . . .+anxn is a non-zero linear form then V(L) = {[x0 : . . . :
xn]|L(x0, . . . , xn) = 0} is called a projective hyperplane. We denote by Hi = {[x0 :
. . . : xn]|xi = 0} the ith coordinate hyperplane. Its complement is

Ui = {[x0 : . . . : xn] ∈ Pnk |xi 6= 0}

and Ui is called the ith coordinate chart. There is a bijection map φi : Ui → Ank
defined as

[x0 : . . . : xn] 7→
(
x0

xi
, . . . ,

x̂i
xi
, . . . ,

xn
xi

)
where the element under hat is removed. The inverse is

(x1, . . . , xn) 7→ [x1 : . . . : xi−1 : 1 : xi : . . . xn]

We leave as an exercise that φi is a homeomorphism in the Zariski topology (see the
first Problem sheet).

If X ⊂ Pn is a projective variety then X =
⋃n
i=0X ∩ Ui is an open cover of X.

2. Projective hypersurfaces are defined as V(F ) ⊆ Pn, where F is homogeneous.

3. Curves of the form V(y2z − x(x − z)(x − λz)} are called elliptic curves. (see the
algebraic curves course)

Definition 3.4. The affine cone over a projective variety X = V(I) ⊆ Pnk is the affine
variety X̂ = V(I) ⊂ An+1

k .
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The map An+1 \ {0} → Pn such that x 7→ [x] restricts to X̂ \ {0} → X. If x ∈ X̂ then
λx ∈ X̂ for all λ ∈ k, because F (x) = 0 implies that F (λx) = λdF (x) = 0. So the affine
cone is indeed a cone in Ank :it is the union of lines represented by the points of X in Pnk .

Example 3.5. Consider X = V(x2 + y2 − z2) ⊆ P2 and X̂ = V(x2 + y2 − z2) ⊆ A3.
We have Uz = {[x : y : 1]|x, y ∈ k} and so X ∩ Uz = V(x2 + y2 − 1) ⊆ A2, which is the
analogue of a circle. Now the points outside Uz are Hz = {[x : y : 0] : x, y ∈ k} and
Hz ∩X = V(x2 +y2−0) which includes points [1 : i : 0], [1 : −i : 0]. Can we see these points
as limit points? Yes, set ỹ = iy and the equation now is x2 − y2 = 1. The real part is a
hyperbola, and it has asymptotes, which lines correspond to the points [1 : i : 0], [1 : −i : 0].

Definition 3.6. If X ⊆ An ⊂ Pn is an affine variety with a fixed embedding of An ⊂ Pn,
then its projective closureX ⊆ Pn is the smallest projective variety containingX ⊆ An ⊆ Pn.

How can we find the projective closure? The process is called homogenisation, and goes as
follows. Let f ∈ k[x1, . . . , xn] be a polynomial of degree d. Then f = f0 + . . . + fd where
fi is homogeneous of degree i and fd 6= 0. The homogenization of f is the homogeneous
polynomial

F = xd0f0 + xd−1
0 f1 + . . .+ x0fd−1 + fd

If X = V(F ) ⊆ Pn, then X ∩ U0 = V(f) ⊆ U0 ' An.
We will not prove the following theorem, but see examples on the first problem sheet.

Theorem 3.7. Let X ⊆ An be an affine variety, take I(X) ⊆ k[x1, . . . , xn]. Let Ĩ be the
ideal generated by the homogenisation of all elements of I(X). Then X = V(Ĩ) ⊆ Pn is the
projective closure of X ∩ U0 = X.

Remark. We can have isomorphic affine varieties with non isomorphic projective closures:
V(y − x2),V(y − x3), are isomorphic subvarieties of A2, but their projective closure in P2

are not isomorphic, see the first problem sheet.

Example 3.8. X = V(x2 + y2 − 1) ⊆ A2 = Uz ⊂ P2 has projective closure X = V(x2 +
y2 − z2) ⊆ P2

3.3 Morphisms of Projective Varieties

We start with an example.
The polynomial map φ : P1 → P2, [s : t] 7→ [s2 : st : t2] is well-defined, and restricts to a
map P1 → V(xz − y2) ⊆ P2. This map is in fact a bijection, but its inverse is given as:

[s2 : st : t2]
?−→ [s : t]

t6=0
= [st : t2]

= s6=
0

[s2 : st]
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So define the map φ−1 : V(xz − y2)→ P1 such that

[x : y : z]→

{
[x : y] if x 6= 0

[y : z] if z 6= 0

On the overlap, ie when x 6= 0, z 6= 0(⇒ y 6= 0), we have [x : y] = [xz : yz] = [y2 : yz] = [y :
z]. So this is a well defined map, and φ ◦ φ−1 = IdP1 .
This suggests that morphism are locally polynomial maps: there is an open cover such that
the map is polynomial on every patch.

Definition 3.9. Let X ⊆ Pn, Y ⊆ Pm be projective varieties. A map F : X → Y
is a morphism of projective varieties if for all p ∈ X there exists an open neighborhood
p ∈ U ⊆ X, such tha there exist homogeneous polynomials f0, . . . , fm ∈ k[x0, . . . , xn] of the
same degree such that F |U : U → Y agrees with [q]→ [f0(q) : . . . : fm(q)].
An isomorphism of projective varieties is a morphism with an inverse morphism.

Remark. Note that the fi must be of the same degree in the above. Also that fi(p) 6= 0
for at least one i for all p ∈ U . We will see later that the open cover in the definition of a
morphism can always be chosen to be an affine cover, i.e U is an open subset of an affine
variety.

Example. (Another example of a morphism) Projection from a point. Suppose that
X ⊆ Pn and p ∈ Pn such that p /∈ X. Fix H = V(L) ∼= Pn−1 a hyperplane (L is a linear
form) such that p /∈ H. Define a map πp : X → H ∼= Pn−1 such that q → qp ∩H, where qp
is the line passing through points p, q.
Pick coordinates on Pn so that p = [1 : 0 : . . . : 0]. H = {[x0 : . . . : xn]|x0 = 0} (such a
choice can be easily made: in An+1 choose basis starting with a representative for p, then
vectors spanning H, p /∈ H says this can be chosen to be a basis). Then the projection πp
is given by πp : [x0, . . . , xn] 7→ [0 : x1 : . . . : xn].

Definition 3.10. (Projective Equivalence) We say that X ⊆ Pn, Y ⊆ Pn are projectively
equivalent if they are transformed into each other by a linear change of coordinates in
Pn. That is there exists a linear transformation A ∈ GL(n + 1, k) which esteblishes an
isomorphism A : X → Y, [x0 : . . . : xn] 7→ [Ax0 : . . . : Axn] between X and Y . (The inverse
is given then by the inverse matrix A−1).

Remark. Note that in this situation A and λA define the same transformation in projec-
tive space for λ ∈ k∗, and in fact the group which acts is

PGL(n, k) = P(GL(n+ 1, k)) = GL(n+ 1, k)/k∗
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Remark. We will see in §5 that projective equivalence is a stronger relation than iso-
morphism, namely, the homogeneous coordinate ring of a projective variety depends on the
embedding into the projective space, and therefore isomorphic projective varieties might
have non-isomorphic homogeneous coordinate rings.
However, projectively equivalent varieties have isomorphic coordinate rings.
The projective hyperplanes H0, H1 ⊆ P2 are projectively equivalent via the matrix

A =

 0 1 0
1 0 0
0 0 1


On the other hand, P1 ∼= H0 ⊆ P2 and P1 ∼= V(xz − y2), but V(xz − y2) is not projectively
equivalent to H1, because they have different degrees, see the proof later.

4 Pretty Examples

4.1 Veronese maps

The goal of this section is to construct different embeddings of the same projective variety.
That is, for a given X ⊂ Pn construct other embeddings Y ⊂ Pm such that X and Y
are isomorphic. As a first step the Veronese maps embed Pn non-trivially into a bigger
projective space Pm (m > n).

Definition 4.1. The degree d Veronese map νd : Pn → P(n+d
d )−1 is defined as [x0 : . . . :

xn] 7→ [. . . : xI : . . .], where the coordinates run over a basis of monomials of degree d in
x0, . . . , xn. Here I = (i0, . . . , in) ∈ Nn+1 stand for multiindices with i0 + . . . + in = d and
xI = xi00 · · ·xinn .

Remark. 1. The dimension of the target projective space is ]{(i0, . . . , in) : i0+. . .+in =
d}− 1 =

(
n+d
d

)
− 1. νd depends on the order of the multiindeces, but by changing the

order results projectively equivalent images.

2. An other interpretation of the Veronese map is the following:

νd : P(An+1)→ P(SymdAn+1)

[v] 7→ [vd],

where SymdAn+1 is the d symmetric product of the vector space An+1.

Example. 1. The image of the Veronese map νd : P1 → Pn is called the rational normal
curve of degree d. For example ν2 : P1 → P2 is given by [x0 : x1] 7→ [x2

0 : x0x1 : x2
1].

The image is the projective variety ν2(P1) = V(z(2,0)z(0,2) − z2
(1,1)), where zi,j is the

homogeneous coordinate on P2 where xixj appears in the map.
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2. The Veronese surface is the image of the degree 2 Veronese embedding in P5:

[x0 : x1 : x2] 7→ [x2
0 : x2

1 : x2
2 : x0x1 : x0x2 : x1x2]

Proposition 4.2. The image of νd : Pn → P(n+d
d )−1 is the projective variety

W = V(
{
zIzJ − zKzL : I, J,K,L ∈ Nn+1, I + J = K + L

}
),

and the image is isomorphic to Pn. In particular, νd(Pn) is an intersection of quadrics, the
zero locus of quadratic polynomials. Here the sum of the multiindices I = (i0, . . . , in), J =
(j0, . . . , jn) is I + J = (i0 + j0, . . . , in + jn).

Proof.
Recall that the homogeneous coordinates of P(n+d

d )−1 are indexed by the degree d monomials
in (n+ 1) variables; we can write them as zI for I = (i0, . . . , in) ∈ Nn+1 with

∑
ij = d.

If I + J = K + L, then zIzJ − zKzL vanishes on νd(Pn) as

xIxJ − xKxL = xI+J − xK+L = 0.

This implies that νd(Pn) ⊂ W . To show that W ⊂ νd(Pn) and νd is an isomorphism onto
W we construct the inverse of νd, that is a morphism φ : W → Pn such that φ ◦ νd = idPn

and νd ◦ φ = idW .
Let z = [. . . : zI : . . .] ∈ W. Then one of the coordinates z(d,0,...,), z(0,d,...), . . . , z(0,...,,0,d) is
nonzero, otherwise from the equations zIzJ = zKzL all of them would be zero, which cant
occur for a point in Pm. Indeed, assume that z(d,0,...,0) = z(0,d,...,0) = . . . = z(0,...,,0,d) = 0 but
z(i0,...,in) 6= 0. Without loss of generality we can assume that i0 > 0, and it is maximal, that
is, z(j0,...,jn) = 0 for j0 > i0. Note that i0 < d, so there is an other index, say i1, such that
d > i1 > 0. The left hand side of the equation z2

(i0,...,in) = z(i0+1,i1−1,...,in)z(i0−1,i1+1,...,in) is
nonzero, therefore z(i0+1,i1−1,...,in) 6= 0, which contradicts to the maximality of i0.
Let Ui ⊂W be the subset of W where the coordinate indexed by xdi is nonzero. So the sets
U0, . . . , Un cover W and we can define a map

φi : Ui → Pn

z 7→ [z(1,0,...,d−1i,...,0) : z(0,1,0,...,d−1i,0,...,0) : · · · : z(0,...,d−1i,0,...,1)]

for z ∈ Ui. That is, we send z to the (n+1)-tuple of its coordinates indexed by x0x
d−1
i , . . . , xnx

d−1
i .

These maps agree on the overlaps Ui∩Uj , where from the equation z(0,...,1a,...d−1j ,...,0)z(0,...,di,...,0) =
z(0,...,1a,...d−1i,...,0)z(0,...,1i,...d−1j ,...,0) we get

z(0,...,1a,...,d−1i,...,0) =
z(0,...,di,...,0)

z(0,...,1i,...,d−1j ,...,0)
z(0,...,1a,...,d−1j ,...,0)
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and therefore

[z(1,0,...,d−1i,...,0) : z(0,1,0,...,d−1i,0,...,0) : · · · : z(0,...,d−1i,0,...,1)] =

[z(1,0,...,d−1j ,...,0) : z(0,1,0,...,d−1j ,0,...,0) : · · · : z(0,...,d−1j ,0,...,1)]

So these maps patch together to define a morphism of projective varieties φ : W → Pn.
The composition φ ◦ νd : Pn → νd(Pn)→ Pn is

[x0 : · · · : xn] 7→ vd(x) 7→ [x0x
d−1
i : · · · : xnxd−1

i ] = [x0 : · · · : xn],

the identity map. Equally easily, one checks that νd ◦ φ : νd(Pn) → Pn → νd(Pn) is the
identity map on W , that is, z = νd(φ(z)), so νd is surjective, and therefore W ⊂ νd(Pn) and
νd defines an isomorphism between Pn and W = νd(Pn) with inverse φ.

Subvarieties of Veronese Varieties

Proposition 4.3. If Y ⊆ Pn is a projective variety, then νd(Y ) is a subvariety of νd(Pn)
and in particular of Pm.

Proof.
We defined νd : Pn → P(n+d

d )−1 as an induced map from the map v̂d : An+1 → A(n+d
d ), [x0 :

. . . , : xn] 7→ [. . . : xI : . . .] of the affine cones. Any g(z) ∈ k[zI : I ∈
(
n+d
d

)
] of homogeneous

degree a defines a map ga : A(n+d
d ) → k. Then g ◦ ν̂d has degree ad, and we can in fact get

all homogeneous degree ad polynomials this way. For example, if g = y0, then a = 1 and
g(ν̂d(x)) = g(. . . : xI : . . .) = xd0.
Next, note that if F ∈ k[x0, . . . , xn] is a homogeneous polynomial, then

V(F ) = V(x0F, x1F, . . . , xnF ) ⊆ Pn

holds. So if Y = V(F1, . . . , Fr) ⊆ Pn, and mi is the degree of Fi, and we choose a such that
ad > mi for all i, then there exist homogeneous degree ad polynomials G1, . . . , Gs such that
Y = V(G1, . . . , Gs).
Then Gi = Hi ◦ v̂d for some Hi of degree a. Now by definition, y ∈ νd(Y ) if and only
if y = νd(x) where Gi(x) = 0 for all i. But Gi(x) = Hi(νd(x)), so x ∈ Y if and only if
νd(x) ∈ V(H1, . . . ,Hs). Therefore νd(Y ) = νd(Pn) ∩ V(H1, . . . ,Hs).

Example. ν2 : P2 → P5 and Y = V(x3
0 +x3

1) ⊆ P2. Then we can find homogeneous degree
4 generators using the trick in the proof:

Y = V(x4
0 + x0x

3
1, x

3
0x1 + x4

1, x
3
0x2 + x3

1x2)
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where
x4

0 + x0x
3
1 = (x2

0)2 + (x0x1)x2
1 = z2

(2,0,0) + z(1,0,0)z(0,2,0)

. Similarly we can rewrite the other two generator as homogeneous degree 2 polynomials
on P5 to get

ν2(Y ) = V(z2
(2,0,0) + z(1,1,0)z(0,2,0), z

2
(0,2,0) + z(1,1,0)z(2,0,0), z(2,0,0)z(1,0,1) + z(0,1,1)z(0,2,0))

Remark 4.4. Proposition 4.3 allows us to construct different embeddings of Y ⊂ Pn into
big projective spaces with isomorphic images.

4.2 Segre maps

Recall from the first lecture, that the Zariski topology on P2 is not identical with the product
topology on P1×P1. To resolve this problem we describe P1×P1 as a subvariety of a bigger
projective space and restrict the Zariski topology on the projective space to the subvariety.

Definition 4.3. The Segre morphism is defined as

σn,m : Pn × Pm → P(n+1)(m+1)−1

([x0 : . . . : xn], [y0 : . . . : ym]) 7→ [x0y0 : x1y0 : . . . : xnym]

where the coordinates run over the pairwise products. The Segre variety is Σn,m = σn,m(Pn×
Pm).

Remark. 1. We can view this map as matrix multiplication

Pn × Pm → P(M(n+1)×(m+1))

((x0, . . . , xn), (y0, . . . , ym)) 7→


x0

...
xn

(y0 . . . ym
) = [xiyj ]

The coordinates zij on the target space P(n+1)(m+1)−1 are indexed by the entries of
this n×m matrix.

2. An other interpretation is

σn,m : P(An+1)× P(Am+1)→ P(An+1 ⊗ Pm+1)

([x], [y]) 7→ [x⊗ y]

13



3. The degree d Veronese embedding is the composition of the diagonal embedding of Pn
into the product of d copies of Pn, the Segre embedding and the projection from the
tensor product to the symmetric product:

P(An+1) ↪→ P(An+1)× . . .× P(An+1)︸ ︷︷ ︸
d

→ P((An+1)⊗d)→ P(Symd(An+1))

Proposition 4.4. i) Σn,m is a projective variety cut out by the 2×2 minors of the matrix
(zij). That is

Σn,m = {[zij ] : 2× 2 minors of (zij) vanish} = V(zijzkl − zilzkj : 0 ≤ i < k ≤ n, 0 ≤ j < l ≤ m)

ii) Define the morphism πn : Σn,m → Pn, (πm : Σn,m → Pm) such that πn takes [z00, . . . , znm]
to a non zero column [z0j : . . . : znj ] ∈ Pn of the matrix. (Likewise πm for the rows.) These
are well defined morphisms.

iii) πn × πm : Σn,m → Pn × Pm is the inverse morphism to σn,m.

Proof.
i) The columns of σn,m([x0 : . . . : xn], [y0 : . . . : ym]) = [xiyj ] are scalar multiples of
each other, so all 2 × 2 minors vanish on Σn,m. On the other hand, if all 2 × 2 minors
of (zij) vanish then it has rank 0, or 1. Rank 0 is impossible though, since at least one
zij 6= 0. So all columns are scalar multiples of one another. Let x0, . . . , xn be a nonzero
column, and y0, . . . , ym be these scalars (at least one of them is nonzero) then [zij ] =
σn,m([x0, . . . , xn], [y0, . . . , ym]) is in the image of σn,m.
ii) Let UΣ

ij = {[z00 : . . . : znm] ∈ Σn,m|zij 6= 0} = Uij ∩ Σn,m be the open subset where
zij 6= 0. Define

πijn : UΣ
ij → Pn

[z00 : . . . : znm] 7→ [z0j : . . . : znj ]

Since columns are scalar multiples of one another, πijn |UΣ
ij = πkln |UΣ

kl for any i, j, k, l, so these
define a morphism πn : Σn,m → Pn.

iii) On the affine chart Ui × Uj ⊂ Pn × Pm where yi 6= 0 and xj 6= 0 the composition
(πn × πm) ◦ σn,m reads as

([x0 : . . . : xn], [y0, . . . : ym]) 7→


x0

...
xn

(y0 . . . ym
)

7→ ([yix0 : . . . : yixn], [xjy0 : . . . : xjym]) = ([x0 : . . . : xn], [y0 : . . . : ym]),

14



so on every open chart the composition is the identity, so (πn × πm) ◦ σn,m = idPn×Pm .
Similarly, on UΣ

ij we have

(σn,m ◦ (πn × πm))([z00 : . . . : znm]) = [z0jzi0 : z1jzi0 : . . . : znjzim] = [z00 : . . . : znm]

using that the row and column rank of (zij) is 1. So σn,m ◦ (πn × πm) = idΣn,m

Definition 4.5. The Zariski topology on Pn × Pm is defined as the induced topology
on Σn,m. So σn,m : Pn × Pm → Σn,m is an isomorphism with inverse πn × πm defined in
Proposition 4.4.

Proposition 4.6. If Y ⊆ Pn, Y ⊂ Pm are projective varieties, then σn,m(X × Y ) ⊂
P(n+1)(m+1)−1 is a subvariety.

Proof. We only give the equations of the image but do not prove that they indeed cut
out the image. Suppose X = V(F1, . . . , Fs) ⊆ Pn and Y = V(G1, . . . , Gr) ⊆ Pm. Then

σn,m(X × Y ) = Σn,m ∩ V({Fk(z0j , . . . , znj), Gl(zi0, . . . , zim) : 1 ≤ k ≤ s, 1 ≤ l ≤ r,
0 ≤ j ≤ m, 0 ≤ i ≤ n),

so by definition X × Y is closed.

Definition 4.7. If X ⊆ Pn and Y ⊆ Pm are projective varieties, then the topology on
X × Y is the induced topology on σn,m(X × Y ).

4.3 Grassmannians and Flag Manifolds

Grassmannians and flag manifolds are generalisations of projective spaces and they are
fundamental objects in geometry and representation theory.

Definition 4.8. For 1 ≤ d < n the Grassmannian Grass(d, n) is the set of all d-
dimensional vector subspaces of kn:

Grass(d, n) = {V ⊂ kn : V is a linear vector subspace of dimension d}

For 1 ≤ d1 < d2 < . . . < ds < n the flag manifold Flag(d1, . . . , ds, n) is the set of flags of
linear vector subspaces of dimension d1, . . . , ds:

Flag(d1, . . . , ds, n) = {V1 ⊂ . . . ⊂ Vs ⊂ kn : Vi is a linear vector subspace of dimension di}

Theorem 4.9. The Grassmannian Grass(d, n) can be embedded as a subvariety of P(nd)−1

k .
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Proof. Let V ∈ Grass(d, n) be a d dimensional subspace in kn. Choose basis vectors
(ai1, . . . ain), i = 1, . . . , d of V and put these into the rows of a d× n matrix: a11 · · · a1n

· ·
ad1 · · · adn

 .

This matrix has full rank as its rows are linearly independent, and two matrices (aij) and
(bij) define the same subspace if and only if there is a g ∈ GL(d) such that (aij) = g · (bij),
therefore

Grass(d, n) = {d× n matrices of rank d}/GL(d, k)

can be identifies by the orbits of this action. Let ∆i1,...,id denote the minor formed by the

columns 1 ≤ i1 < . . . < id ≤ n. Define the map Grass(d, n)→ P(nd)−1

k by a11 · · · a1n

· ·
ad1 · · · adn

 7→ [∆1,...,d : . . . : ∆n−d+1,n−d+2,...,n],

which is well defined on the orbits of GL(d, k) as the action of g multiplies each minor by
det(g), and at least one minor is nonzero (because the matrix has full rank). This map is
injective (left as an exercise). This embedding is also known as the Plucker embedding. We

can’t prove here that the image is closed in P(nd)−1

k , but its vanishing ideal is generated by
the following Plucker relations: for any l < d

∆i1,...,id∆j1,...,jd − Σq1<...<ql∆i1,...,j1,...,jl,...,id∆iq1 ,...,iql ,jl+1,...,jd

where (i1, . . . , j1, . . . , jl, . . . , id) denotes the list (i1, . . . , id) with the entries iq1 , . . . , iql re-
placed by j1, . . . , jl and vice versa for the other factor.
For the details we recommend Harris: Algebraic geometry, a first course.

Remark 4.10. 1. For k = C an other interpretation of the Plucker embedding is the
following:

Grass(d, n)→ P(∧dCn) = P(nd)−1

V 7→ ∧dV

where ∧dCn is the dth exterior power of Cn. If {v1, . . . , vd} is a basis of V then this
map send V to the line spanned by v1 ∧ . . . ∧ vn. For details we refer again to Harris’
book.

2. For k = C the image of the Plucker embedding is smooth and Grass(d, n) is a complex

submanifold of P(nd)−1

C . We do not prove this here.
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3. It is not hard to find out the analogous Plucker embedding of the flag manifold

Flag(d1, . . . , ds, n) ↪→ P( n
d1

)−1 × . . .× P( n
ds

)−1.

5 Hilbert’s Nullstellensatz

In this section we study functions on affine and projective varieties. We will see that there
is a strong relationship between the category of varieites and the algebra of functions on
them.

5.1 Affine Nullstellensatz

Recall that if X ⊆ An an affine variety, then

I(X) = {f ∈ k[x1, . . . , xn] : f(X) = 0}

is the vanishing ideal of the variety. Note also that I(V(I)) 6= I in general, for example
I(V(x2)) = (x).

Lemma 5.1. Let X,Y be affine varieties in An, I, J ideals in k[x1, . . . , xn]

1. X ⊂ Y ⇒ I(X) ⊃ I(Y )

2. I ⊂ J ⇒ V(I) ⊃ V(J)

3. X an affine variety, then X = V(I(X))

4. I an ideal, then I ⊂ I(V(I))

Proof.
1) f(Y ) = 0⇒ f(X) = 0.
2) If x ∈ V(J) then f(x) = 0 for all f ∈ J ⇒ f(x) = 0 for all f ∈ I which implies x ∈ V(I).
3) x ∈ X then f(x) = 0 for all f ∈ I(X) so X ⊆ V(I(X)). On the other hand X = V(J) for
some ideal J . Then J ⊆ I(X). In this case though, we get from (2) that V(I(X)) ⊆ V(J) =
X
4) If f ∈ I then f(x) = 0 for all x ∈ V(I).

Definition 5.2. For J C k[x1, . . . , xn], the radical of J is defined as

√
J =

{
r ∈ k[x1, . . . , xn] : ∃k ≥ 1, rk ∈ J

}
.
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√
J is an ideal: if rk11 , r

k2
2 ∈ J then (r1 + r2)k1+k2 =

∑(
k1+k2
i

)
ri1r

k1+k2−i
2 ∈ J as i ≥ k1 or

k1 + k2 − i ≥ k2 holds. And if rk ∈ J, f ∈ k[x1, . . . , xn] then (rf)k = rkfk ∈ J .
For example, (x2) ⊂ k[x] is not equal to its radical ideal, its radical is

√
(x2) = (x).

Definition 5.3. Let R be a commutative ring with unit.

• We call an ideal J ⊂ R radical ideal, if J =
√
J .

• p  R is prime ideal if ab ∈ p⇒ a ∈ p or b ∈ p.

• m  R is maximal ideal if the only ideal strictly containing it is R.

Remark. Recall from commutative algebra the following results.

1. Maximal ⇒ prime ⇒ radical for ideals in any ring. Note also that radical doesn’t
necessarily imply prime, for example (xy) ⊂ k[x, y] is radical but not prime. And
prime does not imply maximal, e.g. (y − x2) ⊂ k[x, y].

2. I ⊂ R is maximal ⇔ R/I is a field.
When R = k[x1, . . . , xn] we can say more (see Theorem 5.9):
I ⊂ k[x1, . . . , xn] is maximal ⇔ k[x1, . . . , xn]/I ' k is the base field.

3. I ⊂ R is prime ideal ⇔ R/I is an integral domain. (no zero divisors)

Theorem 5.4. (Nullstellensatz) Let k be an algebraically closed field. Then

1. Maximal ideals of k[x1, . . . , xn] are of the form (x − a1, . . . , x − an) = I(a) where
a = (a1, . . . , an) ∈ kn.

2. If J ( k[x1, . . . , xn] is a proper ideal, then V(J) 6= ∅

3. We have that I(V(I)) =
√
I

Note that 2) is not true for k = R: V(x2 + 1) = ∅ in A1
R.

Lemma 5.5. I(X) is a prime ideal if and only if X is irreducible

Proof.
If X is irreducibe and ab ∈ I(X) but a /∈ I(X), b /∈ I(X) then X ⊂ V(a) ∪ V(b) so
X = (X ∩ V(a)) ∪ (X ∩ V(b)) is a nontrivial decomposition as a /∈ I(X) and therefore
X ∩ V(a) & X and similarly X ∩ V(b) & X. A contradiciton.
Assume I(X) is prime but X = (X ∩ V(I1)) ∪ (X ∩ V(I2)) is a nontrivial decomposi-
tion. Since X1 * X2, I1 * I2, and therefore ∃p ∈ I2 \ I1, and similarly q ∈ I1 \ I2. Then
pq ∈ I1I2 = I(X1∪X2) = I(X) but p, q /∈ I1I2 = I(X) so I(X) is not prime, contradiction.
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Corollary 5.6. According to the Nullstellensatz, we have the following bijections

{Radical ideals in k[x1, . . . , xn]} ↔ {Affine subvarieties of Ank}
∪ ∪

{Prime ideals} ↔ {Irreducible subvarieties of Ank}
∪ ∪

{Maximal ideals} ↔ {Points in Akn}

We will need 3 ingredients to the proof of the Nullstellensatz.

Lemma 5.7. A ring R is Noetherian (that is, all ideals are finitely generated) if any
ascending sequence of ideals terminates. That is, if I0 ⊆ I1 ⊆ · · · ⊂ R, then there exists an
n such that In = In+1 = . . ..

Definition 5.8. A topological space is Noetherian if all descending sequences of closed
sets terminate. That is, if X0 ⊃ X1 ⊃ · · · is a chain of closed subsets then Xn = Xn+1 = . . .
for some n.

We don’t prove the following technical theorem here, for a proof see Miles Reid’s Under-
graduate Algebraic Geometry.

Theorem 5.9. If k is a field with infinitely many elements and if K is another field,
finitely generated over k as a k-algebra, then K is algebraic over k.

We turn to the proof of the Nullstellensatz.
Proof. To prove (1) first we show that if a = (a1, . . . , an) ∈ Ank , then I(a) = (x1 −
a1, . . . , xn − an) ⊂ k[x1, . . . , xn] is a maximal ideal. Define the evaluation map at a:

π : k[x1, . . . , xn] → k

g 7→ g(a)

This is clearly onto, so

k[x1, . . . , xn]

Kerπ
∼= k

and so Kerπ is maximal. But xi−ai ∈ Kerπ for all i, so (x1−a1, . . . , xn−an) ⊆ Kerπ On
the other hand, applying the affine linear transformation xi 7→ xi−ai, there is an expansion
around a = (a1, . . . , an):

g(x1, . . . , xn) = g(a1, . . . , an) +
∑

α(xi − ai) +
∑

αβ(xi − ai)(xj − aj) + . . .

Thus, if g(a1, . . . , an) = 0 then g ∈ (x1 − a1, . . . , xn − an), so Kerπ ⊂ (x1 − a1, . . . xn − an)
is maximal, and therefore they are equal and maximal.
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Conversely, suppose m is a maximal ideal in k[x1, . . . , xn], and we show that m = I(a) for
some a ∈ An. First,

k[x1, . . . , xn]/m := K

is a field. K is finitely generated as a k-algebra, so apply Theorem 5.9. This implies that
K is algebraic over k, and therefore k = K (since k is algebraically closed). Let π denote
the projection to the the quotient. Then we have

k ↪→ k[x1, . . . , xn]
Kerπ=m−−−−−→

π
K = k

Define ai = π(xi) ∈ k. Since π is a projection, we have π2 = π, so π(π(xi)) = π(xi), and
therefore π(xi−ai) = π(xi)−π(π(xi)) = 0, so xi−ai ∈ Kerπ for all i = 1, . . . , n. Therefore

(x1 − a1, . . . , xn − an) ⊆ Kerπ = m,

but as we proved above, (x1−a1, . . . , xn−an) is maximal, and if two maximal ideals contain
each other they must be equal.

(1)⇒ (2) We have that k[x1, . . . , xn] is Noetherian so chains of ascending ideals terminate.
So for J ⊆ k[x1, . . . , xn] we must have that J ⊆ m, where m is some maximal ideal. This now
gives that V(m) ⊆ V(J) by Lemma 5.1. (1), however, implies that m = (x1−a1, . . . , xn−an)
for some a ∈ Ank . Thus, a ∈ V(m) ⊆ V(J) which implies that V(J) 6= ∅

(2) ⇒ (3) Suppose that J ⊆ k[x1, . . . , xn]. We want to show that
√
J = I(V(J)). Let

f ∈ I(V(J)), want to show that fN ∈ J for some N . Introduce t, an extra variable, and
define Jf = (J, ft− 1) ⊆ k[x1, . . . , xn, t]. Then,

V(Jf ) =
{

(a1, . . . , an, b) = (p, b) ∈ An+1 : p ∈ V(J), bf(p) = 1
}

But if bf(p) = 1 then f(p) 6= 0. However, p ∈ V(J) and f ∈ I(V(J)) so f(p) = 0 by
definition, which means V(Jf ) = ∅. Thus, (2) implies that Jf = k[x1, . . . , xn, t] and 1 ∈ Jf .
Now, let f1, . . . , fn be generators for J and fi ∈ k[x1, . . . , xn]. We have that

1 =

n∑
i=1

aifi + a0(ft− 1)

for some ai ∈ k[x1, . . . , xn, t]. Let N be the highest power of t appearing in the ai’s. Then
fN · ai(x1, . . . , xn, t) = bi(x1, . . . , xn, ft) where bi are some other polynomials in n + 1
variables. So fN =

∑
bifi + b0(ft − 1) ∈ k[x1, . . . , xn, ft]. The image of this equation in

k[x1, . . . , xn, ft]/(ft− 1). is fN =
∑
bif i ∈ k[x1, . . . , xn, ft]/(ft− 1). Note that

ι : k[x1, . . . .xn] ↪→ k[x1, . . . , xn, ft]/(ft− 1)
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is an embedding, and

bi = ι(bi(x1, . . . , xn, 1)), f i = ι(fi(x1, . . . , xn))

are in the image. Since ι is an injection and homomorphism, the equation f
N

=
∑
bif i

implies fN =
∑
bi(x1, . . . , xn, 1)fi(x1, . . . , xn) ∈ J .

A fundamental idea in algebraic geometry is that affine varieties are in bijection with finitely
generated reduced k-algebras.

Definition 5.10. If X ⊆ An is an affine variety, then

A(X) := k[x1, . . . , xn]|X ∼= k[x1, . . . , xn]/I(X)

is the coordinate ring of X.

These are polynomial functions on X, think of A(X) as k[x1, . . . , xn] where xi = xi + I(X).

Considering A(X) as a quotient ring, remember that the ideals J in R/I are in one to one
correspondence with ideals Ĩ in R such that J ⊂ Ĩ.

Definition. Let R be a commutative ring with unit. We call 0 6= r ∈ R nilpotent if
rn = 0 for some n. A ring without nilpotent elements is called reduced.

Lemma 5.11. k[x1, . . . , xn]/I is reduced if and only if I is radical.

Proof. Note that
√
I = I if and only if fn ∈ I implies that f ∈ I, but f + I = 0 in

k[x1, . . . , xn]/I if and only if f ∈ I.

Therefore by Lemma 5.1, A(X) is reduced for any affine variety X.

Example. Let X = V(y − x2) ⊆ A2, then A(X) = k[x, y]/(y − x2) ∼= k[x]. Remember
that X ∼= A1 and A(A1) = k[y], so isomorphic varieties in this example have isomorphic
coordinate rings. Is this always true?

The map X → A(X) associates to an affine variety a finitely generated reduced algebra.
Can we construct a a reverse map? Let R be a finitely generated reduced k-algebra. Let
a1, . . . , an be its generators. The map k[x1, . . . , xn] → R such that xi 7→ a is surjective.
Let I be the kernel. We then have that k[x1, . . . , xn]/I ∼= R. R is reduced so I must be
a radical ideal of k[x1, . . . , xn]. We can take V(I) = XR ⊆ An. This is not a well-defined
correspondence yet, as we could have picked different generators, say b1, . . . , bm. Would this
have given the same variety though?
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Theorem 5.12. We have a contravariant equivalence of categories{
affine varieties and

morphisms of affine varieties

}
↔
{

finitely generated reduced
k-algebras and homomorphisms of k-algebras

}
This means that

1. The two processes X → A(X) and R→ XR defined above are well defined, and inverse
to each other, that is:

• If X,Y are isomorphic varieties then A(X) ' A(Y ). If R,S are isomorphic
algebras then XR and XS are isomorphic varieties.
• X ' XA(X) and R ' A(XR).

2. If F : X → Y is a morphism of affine varieties, it induces a k-algebra homomorphism
F# : A(Y )→ A(X) and (F ◦G)# = G# ◦ F#. (So # is a contravariant functor)

3. If f : R → S is a k-algebra homomorphism, then we have a morphism of affine
varieties f# : XS → XR such that (f ◦ g)# = g# ◦ f#.

4. ·# is the inverse functor of ·#, that is, (F#)# = F and (f#)# = f up to isomorphism,
in other words the following two diagrams commute

X

∼=
��

F // Y

∼=
��

XA(X)

(F#)#
// YA(Y )

R

∼=
��

f
// S

∼=
��

A(XR)
(f#)#

// A(XS)

Let’s see some examples before we start the proof.

Example. Let X = V(x2 − y) ⊆ A2 and Y = A1 and I : X → Y such that (x, y) 7→ y.
Then

F# : k[y] → k[x, y]/(x2 − y) ∼= k[x]

y 7→ (y ◦ F )(x, y) = y

and this map is an isomorphism, so the parabola V(x2 − y) is isomorphic to the x axis A1,
the isomorphism is given by the projection. This is what we expected.

Example. Let X = V(y2 − x3) ⊆ A2 and Y = A1 and F : A1 → X such that t 7→ (t2, t3).
The pullback is defined as

F# : k[x, y]/(y2 − x3) → k[t]

x 7→ x ◦ F = t2

y 7→ y ◦ F = t3
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Here, t is not in the image and so X � A1. Indeed, X = V(y2 − x3) is the cusp, with
singularity at the origin, which is heuristically not isomorphic to A1.

We turn to the proof now.
Proof. Proof of 2) Given a morphism F : X → Y and g ∈ A(Y ), g represents a
polynomial function g : Y → k. Then g ◦ F : X → k is a polynomial function so define
F# : A(Y )→ A(X) such that g 7→ F#g = g ◦ F . It is then clear that (G ◦ F ) = F# ◦G#.
Proof of 3) If f : R→ S is a k-algebra homomorphism then choose representations

R =
k[x1, . . . , xn]

I
and S =

k[y1, . . . , ym]

J

so we have V(I) ⊆ An and V(J) ⊆ Am. We want a morphism V(I)→ V(J). We will define
a morphism f# : Am → An which satisfies f#|V (J) : V(J) → V(I), giving us the desired
morphism V(J)→ V(I).
Let Fi ∈ k[y1, . . . , ym] be the polynomial representing f(xi) ∈ k[y1, . . . , ym]/J . Define
f# : Am → An by f# : a 7→ (F1(a), . . . , Fn(a)). This map on Am depends on our choice
of the Fi’s. Let a ∈ V(J), we want to show that f#(a) ∈ V(I). Let G ∈ I. Consider
G(f#(a)) = G(F1(a), . . . , Fn(a)). Now a ∈ V(J) so any p ∈ k[x1, . . . , xm]/J is well defined
on a and in particular, f(xi) is well defined and equal to the chosen representative Fi, that
is, if Fi, F ′i represent the same element f(xi) in S then Fi(a) = F ′i (a), and we denote this
by f(xi)(a). So

G(f#(a)) = G(f(x1)(a), . . . , f(xn)(a)) = f(G)(a)

(Here we use that f is an algebra homomorphism! Namely, f(G(x1, . . . , xn)) = G(f(x1), . . . , f(xn)).)
We have however that G ∈ I and so G = 0 in R, so f(G) = 0 and G(f#(a)) = 0 for all
G ∈ I, therefore f#(a) ∈ V(I). Now for

R =
k[x1, . . . , xn]

I
→f S =

k[y1, . . . , ym]

J
→g T =

k[z1, . . . , zl]

L

we have

(f ◦ g)#(a) = ((f ◦ g)(x1)(a), . . . (f ◦ g)(xn)(a)) = (g(f(x1))(a), . . . , g(f(xn))(a)) =∗

(f(x1)(g(y1)(a), . . . , g(ym)(a)), . . . , f(xn)(g(y1)(a), . . . , g(ym)(a))) = f#(g#(a)) = (g#◦f#)(a),

where at ∗ we use again that f ,g are algebra homomorphisms.
Proof of 1) Using the defined functors this is automatic now. If F : X → Y is an
isomorphism, there is an inverse F−1 : Y → X such that F ◦ F−1 = Id. Now (IdX)# =
IdA(X) by definition, so idA(Y ) = (F ◦ F−1)# = (F−1)# ◦ F# so F# has an inverse, and
therefore it is an isomorphism.
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Similarly, if f : R → S is an isomorphism of algebras with inverse f−1 then IdXS
=

(f ◦ f−1)# = f−1
# ◦ f#, so f−1

# is an inverse of f#. Finally, X ' XA(X) and R ' A(XR)
follow from the definitions.
Proof of 4) Choose representations R = k[x1, . . . , xn]/I, S = k[y1, . . . , ym]/J and a ∈
Am, g ∈ A(XR) = k[x1, . . . , xn]/I. Then we have

(f#)#(g)(a) = (g ◦ f#)(a)

= g(f(x1)(a), . . . , f(xn)(a))

= f(g)(a)

and so (f#)#(g)(a) = f(g)(a) for all a ∈ Am. This means that (f#)#(g) and f(g) are the
in S.

5.2 Projective Nullstellensatz

Remember that projective varieties are defined by homogeneous polynomials. Now we study
the homogeneous version of the affine Nullstellensatz.

Definition 5.13. A graded ring is a commutative ring of the form R = ⊕d≥0Rd, where
Rd is a subgroup under addition, Rd ∩ Re = {0} when d 6= e, and RdRe ⊆ Rd+e where
RdRe = {rdre : rd ∈ Rd, re ∈ Re}. We call the elements of Ri the degree i elements.

Example. k[x1, . . . , xn] with k[x1, . . . , xn]d = degree-d homogeneous polynomials

Definition 5.14. I ⊆ R is a homogeneous ideal of the graded ring R if I = ⊕d≥0I ∩Rd
holds.

Proposition 5.15. 1. I is a homogeneous ideal if and only if I can be generated by
homogeneous elements.

2. If I is homogeneous then I is prime if and only if for all f, g homogeneous in R, fg ∈ I
implies that f ∈ I or g ∈ I

3. Sums, products, intersections, radicals of homogeneous ideals are homogeneous.

4. If R is graded and I is homogeneous, then R/I is a graded ring.

Proof. Exercise 5. on Sheet 3.

Recall that for affine varieties X ⊆ An+1, we have I(V(I)) =
√
I and an isomorphism of

categories

{affine varieties, morphisms of affine varieties} '
{finitely generated reduced k-algebras, k-algebra homomorphisms}
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For projective varieties, the story is not quite as good but there is still a lot to be said. Pro-
jective varieties are defined by homogeneous ideals, that is X = V(I) where I is generated
by homogeneous elements.

Definition 5.16. IfX ⊆ Pn is a projective variety then I(X) = {F ∈ k[x0, . . . , xn]|F is homogeneous , F (X) =
0} is the homogeneous vanishing ideal of X.

We have V(x0, . . . , xn) = ∅, so the Nullstellensatz is not true for homogeneous ideals. We
call (x0, . . . , xn) ⊂ k[x0, . . . , xn] the irrelevant ideal. In the affine case, it corresponds to
{0} ∈ An+1, which is not a point of Pn. Lemma 5.1 remains true in projective case, and the
proof is the same:

Lemma 5.17. 1. I ⊆ J ⇒ V(J) ⊆ V(I) for I, J homogeneous ideals

2. X ⊆ Y ⇒ I(Y ) ⊆ I(X) for X,Y projective varieties in Pn

3. X = V(I(X)) for X a projective variety in Pn

4. I ⊆ I(V(I)) for I a homogeneous ideal in k[x1, . . . , xn]

But due to the unwanted irrelevant ideal, the Nullstellensatz is slightly different:

Theorem 5.18. (Homogeneous Nullstellensatz) Let k be algebraically closed field. Then

1. If J is a homogeneous ideal then V(J) = ∅ ⊂ Pn if and only if (x0, . . . , xn) ⊂
√
J

2. If V(J) 6= ∅ then I(V(J)) =
√
J

Proof. This is a corollary of the affine case. WriteX = V(J) ⊂ Pn, and X̂ = V(J) ⊂ An+1

for the affine cone over V(J). Then

1. X = ∅ ⇔ X̂ ⊆ {0} ⇔ I(X̂) =
√
J ⊇ I({0}) = (x0, . . . , xn) by the affine Nullstellen-

satz.

2. Suppose that X = V(J) 6= ∅. Then X̂ ⊂ An+1 is defined and we have that

F ∈ I(X)⇔ F (X) = 0⇔ F (X̂) = 0⇔ F ∈ I(X̂) =
√
J

by the affine Nullstellensatz. Where did we use that X 6= ∅?
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Corollary 5.19. All the arrows below are 1 : 1

{Homogeneous radical ideals J $ k[x0, . . . , xn]} ↔ {Projective varieties V ⊆ Pn}
∪ ∪

{Homogeneous prime ideals} ↔ {Irreducible projective varieties V ⊆ Pn}
∪ ∪

{Irrelevant ideal(x0, . . . , xn)} ↔ {Empty set}

Now we prove our theorem on the projective closure of an affine variety.

Theorem 5.20. Identify An with U0 ⊆ Pn (U0 = {[x0 : . . . : xn] : x0 6= 0}). Let X ⊆ An
be an affine variety. Let Ĩ be the ideal generated by the homogenisation of all elements in
I(X). Then Ĩ is radical and V(Ĩ) = X ⊆ Pn.

Proof. First we’ll show X ⊆ V(Ĩ). If G ∈ Ĩ then G|U0(x0, . . . , xn) = G(1, x1, . . . , xn) ∈
I(X). So G|U0(X) = 0. Hence, G|U0∩X = G|X = 0. But G vanishes on some closed set
V(G) ⊂ Pn and X is the smallest closed set in Pn containing X. So G(X) = 0. We now
show that V(Ĩ) ⊆ X. This is implied by I(X) ⊆ I(V(Ĩ)). But Ĩ ⊆ I(V(Ĩ)) so it’s enough
to show that I(X) ⊆ Ĩ (⇒ V(Ĩ) ⊆ V(I(X)) = X). Suppose G ∈ k[x0, . . . , xn] homogeneous
and G(X) = 0 (G ∈ I(X)), then G(X∩U0) = 0 so G(1, x1, . . . , xn) := g(x1, . . . , xn) ∈ I(X).
So the homogenisation g̃ of g is in Ĩ. Then g̃xt0 = G fr some t ≥ 0. So G ∈ Ĩ. Hence,
I(X) ⊆ Ĩ. Finally we have seen that I(V(Ĩ)) ⊆ Ĩ. The lemma tells us that Ĩ ⊆ I(V(Ĩ)) so
Ĩ = I(V(Ĩ)) =

√
Ĩ by the Nullstellensatz.

5.3 Do we get equivalence of categories?

Recall that elements of the affine coordinate ring are polynomial functions on X. We don’t
have polynomial functions on projective varieties (just the constant functions). We do
however have I(X) ⊆ k[x0, . . . , xn].

Definition 5.21. The homogeneous coordinate ring of X ⊂ Pn is the coordinate ring of
its cone:

S(X) = k[x0, . . . , xn]/I(X) = A(X̂)

Note that there is no interpretation of polynomials on X. These are polynomials on X̂.
So we have a map X 7→ S(X), and now we want a map in the other direction like in the
affine case: given a graded finitely generated k-algebra, can we get a projective variety? We
want a representation R = k[x0, . . . , xn]/I for some homogeneous ideal I. But the degree
of x1, . . . , xn is 1, so to get an isomorphism of graded algebras R need to have a set of
generators of degree 1. Then write R = k[x0, . . . , xn]/I and let XR = V(I). Hence, we have
the following equivalence
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Theorem 5.22. The homogeneous nullstellensatz defines a bijection

{Projective Varieties with an embedding X ⊂ Pn} ↔
{

Reduced, finitely generated k-algebras
generated by n+1 elements of degree 1

with a representation

}
Remark. How much weaker is this than the affine case?

• X ⊆ Pn comes with an embedding.

• k-algebra must have the right number of generators of degree 1.

• No morphism picture here, see the coming remark below. Therefore, this is not an
equivalence of categories.

Remark. The above correspondence we have is really the correspondence between affine
cones of projective varieties and reduced finitely generated in degree 1 k-algebras. But a
morphism X̃ → Ỹ of affine cones, does not necessarily descend everywhere to a morphism
X → Y of projective varieties. (See Ex. 3 on Sheet 1).
Moreover, isomorphic projective varieties can have non-isomorphic affine cones, so S(X) is
not invariant under isomorphism. Here is an example.
If R is a graded ring, say R = ⊕d≥0Rd, we may define R(e) = ⊕d≥0Rde, give grading
R

(e)
d = Rde. Then (if R is a reduced, finitely generated in degree 1 k-algebra), then R and

R(e) define the same projective variety. (Proof on problem sheet 4). But R is not isomorphic
to R(e) in general as graded algebra, since they have different number of generators in degree
1.

Example. Take the Veronese embedding νd : Pn → P(n+d
d ). We have proved that νd(Pn) ∼=

Pn as projective varieties. But their affine cone is not isomorphic! The affine cones are
determined by the graded rings k[x0, . . . , xn] and k[x0, . . . , xn](d), and the first has n + 1,
the latter has

(
n+d
d

)
generators of degree 1.

5.4 Spectrum, Maximal Spectrum and Schemes

Recall that points in affine space are in bijection with maximal ideals in k[x1, . . . , xn], namely
{a} = V(x1 − a1, . . . , xn − an) for a = (a1, . . . , an) ∈ An.

Definition 5.23. The maximal spectrum

Specmk[x1, . . . , xn] = {m ⊆ k[x1, . . . , xn] : m is a maximal ideal}

As a set Specmk[x1, . . . , xn] = An. Can we put a topology on Specmk[x1, . . . , xn] to have
this as equality of topological spaces? Yes, we can.
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Closed subsets of An are V(I)’s such that I is an ideal of k[x1, . . . , xn] and for a ∈ V(I) we
have I ⊆ (x1 − a1, . . . , xn − an) = I({a}). Thus, let

V(I) = {m ∈ Specmk[x1, . . . , xn] : I ⊆ m}

We then have a topology on Specmk[x1, . . . , xn] whose closed sets are {V(I) : I / k[x1, . . . , xn]}.
We get

Theorem. An = Specmk[x1, . . . , xn] as topological spaces

Now let R be a finitely generated reduced k-algebra. Write R = k[x1, . . . , xn]/I(X) so
R = A(X). We have bijections

Points in X = V(I(X)) ↔ max ideals m ⊆ k[x1, . . . , xn] such that I(X) ⊆ m
↔ max ideals m ⊆ k[x1, . . . , xn]/I(X) = R

Define

SpecmR = {m / R : m maximal}

Then SpecmR = X = XR as a set with the identificationX 3 a 7→ m = {f ∈ R : f(a) = 0} ⊂
k[x1, . . . , xn], and the inverse is m 7→ V(m) for m ⊂ R maximal.
Again, we want this bijection to be homeomorphism of topological spaces, so we put
topology on SpecmR. If Y ⊆ X we have that I(X) ⊆ I(Y ) and so I(X) is an ideal
in R = k[x1, . . . , xn]/I(X), and points of Y ⊆ An are in bijection with maximal ideal
m ∈ k[x1, . . . , xn] such that I(Y ) ⊆ m which is in bijection with maximal ideals m ⊆
k[x1, . . . , xn]/I(X) such that I(Y ) ⊆ m.
So, for I /R, define V(I) = {m ∈ SpecmR|I ⊆ m}, and define these to be the closed subsets
of Specm(R).

Theorem. Specm(R) = XR as toplogiacal spaces.

Can we also find the corresponding functors ·#, ·# defined before? If R,S are finitely
generated reduced k-algebras and f : R → S is a k-algebra homomorphism, then the pre-
image of a maximal ideal is maximal, which defines a map f# : SpecmS → SpecmR such
that m 7→ f−1(m). This is the same map as before.
A note on schemes: If R is a commutative ring, but not necessarily reduced or finitely
generated k-algebra, then we can still define and study Specm(R). The problem here is that
the pre-image of a maximal ideal under the ring-homomorphism f : R→ S is not necessarily
maximal, so we can’t define the category. But pre-image of a prime ideal is always prime!!
So we define

Spec(R){p ⊂ R|p is prime ideal}
and the same topology, and we call it a scheme, and study the geometry of that. This is the
fundamental idea of Grothendieck from the 1960’s. It allows to study arithmetic questions
via arithmetic rings (like Z) and their spectra.
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Example. What is Spec(Z)? What is the topology on it?

6 Primary Decomposition

Let R be a Noetherian ring, typically R = k[x1, . . . , xn]/J is the coordinate ring of a variety.
If I ⊆ R is a radical ideal, then by the Nullstellensatz

I = P1 ∩ . . . ∩ Pr

is the intersection of prime ideals corresponding to the irreducible components of C(I).
What is I is not radical? Do we have a similar "decomposition into smaller pieces" of V(I)?

Definition 6.1. An ideal Q ( R is primary if for f, g ∈ R

fg ∈ Q⇒ f ∈ Q or gn ∈ Q for some n > 0.

Equivalently, if all zero devisors of R/Q 6= 0 are nilpotent.

The radical P = rad(Q) of a primary ideal is prime:

fg ∈ P ⇒ fngn ∈ Q for some n > 0⇒ fn ∈ Q or gnm ∈ Q⇒ f or g ∈ P.

Definition 6.2. The primary ideal Q is called P -primary if P = rad(Q). A primary
decomposition of an ideal I ⊂ R is an expression

I = Q1 ∩ . . . ∩Qk

with each Qi primary. This is the shortest primary decomposition of I if

1. I * ∩i 6=jQi for any 1 ≤ j ≤ k

2. Qi is Pi-primary with Pi 6= Pj for i 6= j.

Note that if Q1, Q2 are P -primary ideal then so is Q1 ∩Q2, so we can easily get a shortest
decomposition from any given one by grouping together the Qi’s with the same radical.

Proposition 6.3. In a Noetherian ring R every ideal has a primary decomposition

Proof. Let’s call an ideal I ⊂ R indecomposable if

I = J ∩K with J,K ideals ⇒ I = J or I = K

Note that every prime ideal is indecomposable.
Step 1: In R every ideal is the intersect of indecomposables.
Indeed, let S denote the set of ideals in R which are not expressible as intersection of
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indecomposables. Assume that S 6= ∅. Then there is a maximal element of S (since R is
Noetherian), say I, which cannot be indecomposable, but then I = J ∩K with J,K strictly
bigger ideals. But then J,K /∈ S and therefore J,K are intersections of indecomposables
and therefore so is I.
Step 2: In R every indecomposable ideal is primary.
Note that Q ⊂ R is indecomposable ⇔ 0 ⊂ R/Q is indecomposable, and the same for
primary ideals, so it is enough to prove that if R is a Noetherian ring then

0 ⊂ R indecomposable ⇒ 0 ⊂ R primary.

To prove this let x, y ∈ R with xy = 0. Then y ∈ Ann(x). Consider the chain

Ann(x) ⊂ Ann(x2) ⊂ . . . ⊂ Ann(xn) ⊂ . . .

Since R is Noetherian, Ann(xn) = Ann(xn+1) for some n. Now (xn) ∩ (y) = 0; indeed,
if a = cy ∈ (xn) ∩ (y) then ax = cxy = 0, and on the other hand, a = dxn, but then
ax = dxn+1 so d ∈ Ann(xn+1) = Ann(xn), that is a = dxn = 0.
Hence if 0 is indecomposable, xy = 0 then xn or y = 0 so 0 is primary.

Example. Take I = (y2, xy) ⊂ k[x, y]. A primary decomposition is

I = (y) ∩ (x, y)2

where (y) is already prime and (x, y)2 is primary to (x, y). This is not unique:

I = (y) ∩ (x, y2) or I = (y) ∩ (x+ y, y2)

are primary decompositions too.

Theorem 6.4. The prime ideals Pi = rad(Qi) of any primary decomposition

I = Q1 ∩ . . . ∩Qs

are uniquely determined, these are called the associated primes to I and the corresponding
reduced components V(Pi) ⊂ V(I) are the associated reduced components. Those components
which are set theoretically not maximal are called embedded components.

Proof. P1, . . . , Ps are precisely those prime ideals of R which occur as the annihilator of
some point in R/I:

Pi = Ann(xi) = {r ∈ R : rxi ∈ I},
and therefore they are uniquely determined by I.

So the primary decomposition is not necessarily unique, but the associated primes are. In
the example above these associated primes are (x) and (x, y). The origin V(x, y) is an
embedded point.
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7 Algebraic groups and group actions

Definition. An affine algebraic group is an affine variety with group structure, and struc-
ture morphisms. That is the multiplication m : G ×G → G and inverse map ·−1 : G → G
are morphisms of affine varieties.

Example. • Finite groups (discrete points on a variety)

• SLn(k) = V(det−1) ⊂ An2 is an algebraic group.

• k∗ = k \ {0} is an affine variety if we think of it as V(xy − 1) ⊆ A2

• k ∼= A1 with additive structure

Definition. The action of G on X, is a morphism of affine varieties G ×X → X, with
the usual properties for a group acting on a set.

Example. k acts on A2 such that t(a, b) = (t−1a, tb) for all t ∈ k∗. O1 = (0, 0) is an orbit,
so are O2 = {(a, 0) : a ∈ k∗} and O3 = {(0, b) : b ∈ k∗}. Finally there is a one-parameter
family of orbits O(s) = V(xy−s). The closures of O2, O3 contain O1. What sort of quotient
will work? Can we think of the quotient as an affine variety?

Definition 7.1. (Categorical Quotient) Let G be an affine algebraic group acting on the
affine variety X. Then F : X → Y is a categorical quotient (F is a morphism, Y is affine)
if

1. F is constant on the orbits of the group action

2. If H : X → Z is another morphism constant on the orbits, then H factors uniquely
through F . That is there exists an F ′ : Y → Z such that the following diagram
commutes

X
H //

F   

Z

Y

F ′

OO

Definition. The action of G on X induces a G-action on A(X) via fg(x) = f(gx).

If F : X → Y is constant on the G-orbits, then F# : A(Y ) → A(X)G, the image sits in
the G-invariant subring of A(X). Is the image equal to the ring of invariants? It is, if G
satisfies the following property: every representation of G is reducible, i.e. it is the direct
sum of irreducible representations. These groups are called reductive algebraic groups.
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Example. (C,+) is not reductive: The matrix representatation z 7→
(

1 z
0 1

)
has a

invariant line but it is not the direct sum of two 1-dimensional representations. But finite
groups, k∗ or SL(n, k) are reductive.

Theorem 7.2. (deep) If the reductive group G acts on X linearly, that is g(x + y) =
g(x) + g(y), then A(X)G is a finitely generated reduced k-algebra.

Remark. Note that (k,+) does not satisfy the above.

Lemma 7.3. If X is an affine variety, and a, b ∈ X and if f(a) = f(b) for all f ∈ A(X)
then a = b.

Proof. Embed X ⊆ An, write a = (a1, . . . , an) and b = (b1, . . . , bn). Then if a 6= b, we
have ai 6= bi for some i and so xi(a) 6= xi(b)

Theorem 7.4. If G is reductive and acts linearly on X, then the map α# : X →
Specm(A(x)G) associated to the embedding α : A(X)G ↪→ A(X) is a categorical quotient
of affine varieties.

Proof. First we show that α# is constant on the orbits. Assume it is not, and α#(x) 6=
α#(gx) for some x ∈ X, g ∈ G. By Lemma 7 there is an f ∈ A(Specm(A(x)G)) = A(X)G

such that f(α#(x)) 6= f(α#(gx)). But then

α(f)(x) = (α#
#f)(x) = f(α#(x)) 6= f(α#(gx)) = (α#

#f)(gx) = α(f)(gx)

which is impossible as α(f) = f ∈ A(X)G (α is an embedding!), we get a contrdiction.
Second, we prove the universal property of α#. Assume that h : X → Z is constant on
orbits. We want to find a morphism h̃ : Specm(A(x)G)→ Z that makes

X
h //

α#
  

Z

Y

h̃

OO

commutative.
If f ∈ A(Z) then h#f(x) = f(h(x)) = f(h(gx)) = h#f(gx) for all g ∈ G, x ∈ X, as h is
invariant. Thus, h#f ∈ A(X)G so there are morphisms

A(Z)→h# A(X)G ↪→α A(X)

which induces the desired morphism of varieties:

X → Specm(A(x)G)→ Z.
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Example. 1) k∗ acts on A2 such that t(a, b) = (t−1a, tb) for all t ∈ k∗, (a, b) ∈ A2.
The induced k∗-action on k[x, y] is t · x = tx and t · y = t−1y for all t ∈ k∗. Then
k[x, y]k

∗
= k[xy] ∼= k[w] (check this!) with the map k[w] ↪→ k[x, y] such that w 7→ xy. This

defines the quotient map A2 → A1 such that (a, b) 7→ ab. The orbits are {xy = s 6= 0} 7→ s,
{(a, 0), a 6= 0} 7→ 0, {(0, b), b 6= 0) 7→ 0 and {(0, 0)} 7→ 0
We see that the quotient map is not injective on orbits, in other words: the categorical
quotient A1 is not "the set of orbits". Two orbits map to the same point iff the closure of
their orbits has a nontrivial intersection.

2) Z2 acts on A2 such that (−1)(a, b) = (−a,−b), inducing the action (−1)x = −x and
(−1)y = −y on k[x, y]. We have that

k[x, y]k
∗

= k[x2, y2, xy] ∼= k[z1, z2, z3]/(z1z3 − z2
2)

Let Y = V(z1z3 − z2
2) ⊆ A3. We want a map A2 → Y . The map A(Y ) = A(X)G ↪→ A(X)

is

k[z1, z2, z3]/(z1z3 − z2
2) ↪→ k[x, y]

such that z1 7→ x2, z2 7→ y2 and z3 7→ xy. The associated quotient map A2 → Y is
(a, b) 7→ (a2, ab, b2).

8 Discrete Invariants

In this section we associate certain integers/polynomials to affine/projective varieties: the
dimension, the degree and the Hilbert polynomial. The dimension is a true invariant:
isomorphic varieties have the same dimension, which we prove later. The degree and Hilbert
polynomial are defined for projective varieties and they depend on the embedding into
projective space. For affine varieties they are defined as the degree/Hilbert polynomial of
the projective closure.

8.1 Dimension

Definition 8.1. (Geometric) The dimension of an affine (projective) variety X is the
maximal length n of a chain of irreducible affine (projective) subvarieties

∅ 6= X0 ( X1 ( . . . ( Xn ⊆ X.

The local dimension dimxX at x ∈ X is maximal length of a chain starting with X0 = {x}.

If X is not irreducible then Xn 6= X, and Xn is one of the maximal dimensional irreducible
components of X, so the dimesnion of X is equal to the dimension of its maximal dimen-
sional components. The local dimension at x is the dimension of the irreducible component
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containing x.

For example, if X = V(xy, xz) ⊂ A3 is the union of a plane and a line transverse to it,
then the local dimension at the points on the line (apart from the intersection point) is 1,
whereas it is 2 at the points on the plane.

Definition 8.2. (Algebraic) The dimension of an affine variety X is the maximal length
n of a chain of prime ideals in A(X):

{0} ⊆ I0 ( . . . ( In ( A(X)

The dimension of a projective variety is the maximal length of a chain of homogeneous
prime ideals Ij such that (x0, . . . , xn) * Ij

The affine and projective Nullstellensatz imply that the geometric and algebraic definitions
coincide. Note that {0} = I0 in a longest chain if and only if A(X) is reduced, that is,
X is irreducible. Otherwise A(X)/I0 is the coordinate ring of the maximal dimensional
irreducible component of X.

Lemma 8.3. If X,Y are irreducible affine (projective) varieties and X ( Y , then dimX <
dimY .

Proof. Comes from the definition: we can extend any chain ending in X with Y .

Theorem 8.4. dimPn = dimAn = n

We prove this theorem later using alternative definitions of dimension. We have a chain of
length n

∅ ⊂ A0 ⊂ . . . ⊂ An−1 ⊂ An,

so dimAn ≥ n. The other direction is more difficult.

Proposition 8.5. The affine irreducible variety X ⊆ An has dimension n−1 if and only
if X = V(f) for some irreducible f ∈ k[x1, . . . , xn].

Proof. First assume X is a n − 1-dimensional irreducible affine variety. I(X) 6= (0) so
I(X) contains some polynomial g 6= 0 say. Write g = g1 · · · gk as the product of irreducible
factors. Since X is irreducible, I(X) is prime, so gi ∈ I(X) for some i; write f = gi. So
(f) ⊆ I(X) and therefore X ⊆ V(f) ( An. SInce f is irreducible, V(f) is an irreducible
subvariety. From dimAn = n follows that dimV(f) ≤ n − 1. But V(f) and X are both
n − 1 dimensional irreducible varieties, and X ⊆ V(f), so by the above lemma we have
X = V(f).
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Conversely, if f ∈ k[x1, . . . , xn] is an irreducible polynomial then V(f) ⊆ An is an irreducible
subvariety of dimension n− 1. Indeed, since dimAn = n, we only have to prove that there
is no prime ideal J between (f) and (0). Assume J is such a prime ideal:

(0) ( J ( (f),

and let 0 6= g = fkh ∈ J be a generator in some generating set of J . Here k ≥ 1 and h is a
polynomial such that f does not divide h. Then h /∈ J and we have 2 cases: if fk /∈ J then
J is not prime ideal as hfk ∈ J ; if fk ∈ J then then since J is prime, it is radical so f ∈ J
a contradiction as J ( (f).

Note that the same proof works for the projective case (but with homogeneous polynomials).

8.2 Degree

Definition 8.6. The degree of a projective variety X ⊆ Pn is the maximal possible finite
number of intersections of X with a linear subvariety L ⊆ Pn, where dimL+ dimX = n.

Note that this maximum is "almost always" achieved. We say that for a generic linear
subvariety L, where dimL+ dimX = n this maximum is attained. Generic means that the
"bad" L’s (where the intersection has less points or higher dimensional) form a closed set
in the space of all linear subvarieties, that is, the corresponding Grassmannian.

Example. Take V(xz−y2) ⊆ P2, we prove the degree is 2. This is obvious if one considers
the general form of a line L = V(ax+ by + cz). If c 6= 0 these two will intersect away from
Hx = V(x), where we can set x = 1 and if b 6= 0 then we get y = −cz−a

b . Solutions are
z −

(−cz−a
b

)2
= 0, that is −c2z2 + (b2 − 2ca)z − a2 = 0. A generic line L in this case means

that b, c 6= 0 and this quadratic equation in z has 2 roots. That is, the discriminant of this
quadratic equation is nonzero: (b2 − 2ac)2 − 4a2c2 = b2(b2 − 4ac) 6= 0. In other words, the
bad L’s form a closed subset V(bc(b2 − 4ac)).

Recall that X = V(xz−y2) ⊆ P2 and that X ∼= P1 (via the Veronese embedding). However,
P1 has degree 1, and so this shows that the degree is not isomorphism invariant, it depends
on the embedding.

Definition. Degree of an affine variety X ⊂ U0 ⊂ Pn := Degree of its projective closure
X ⊂ Pn.

Theorem 8.7. Let F ∈ k[x0, . . . , xn] be a homogeneous polynomial with no repeated factors
of degree d. Then degV(F ) = d.
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Proof. Let L ⊆ Pn be an arbitrary line. Then X ∩ L = V(F |L) ⊆ L ∼= P1. By a
linear change of coordinates we can assume L = V(x2, . . . , xn) and x0, x1 are homogeneous
coordinates on L, then F |L is a degree d polynomial in x0, x1 (unless if F |L = 0 in which
case we can move L a little, this is a genericity condition). By the fundamental theorem of
algebra, this has at most d solutions (with multiplicity) and generically it has d solutions.
(and this is the other genericity condition: the discriminant is again, nonzero)

Theorem 8.8. (Weak form of Bezout’s Theorem) Let X,Y ⊆ Pn be subvarieties of pure
dimension such that dimX ∩ Y = dimX + dimY − n. Then

degX ∩ Y ≤ degX deg Y

8.3 The Hilbert Function for Projective Varieties

Recall that if X ⊆ Pn then S(X) = A(X̂) = ⊕d≥0S(X)m is a graded ring. The next
invariant we define encodes the graded pieces of S(X) and therefore it is not invariant under
isomorphism but depends on the embedding of the projective variety into a projective space.
It is, however, invariant under projective equivalence, that is, linear change of coordinates
on the ambient Pn.

Definition 8.9. The Hilbert function on X is defined as hX : N → N, hX(m) =
dimS(X)m as a k-vector space.

Recall that S(X) = k[x0, . . . , xn]/I(X) so

dimS(X)m = dim k[x0, . . . , xn]− dim I(X)m =

(
m+ n
n

)
− dim I(X)m.

Example. 1. hPn(m) =

(
m+ n
n

)
= (m+n)!

m!n!

2. Plane curve V(F ) ⊆ P2 where F is of degree d. If m ≥ d then I(X)m is the set of all
the homogeneous polynomials of degree m, such that F divides them. This set is in
turn in bijection with polynomials of degree m− d. Hence for m ≥ d we have that

hX(m) =

(
m+ 2

2

)
−
(
m− d+ 2

2

)
= dm− (d− 1)(d− 2)

2
+ 1 (*)

Recall from the Algebraic Curves course the degree genus formula where (d−1)(d−2)
2 is

the genus of the curve. This gives that hX(m) = (∗) = dm− g + 1.

Theorem 8.10. If X ⊆ Pn a projective variety, hX its Hilbert function, then
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1. There exists a pX ∈ k[x] and m0 such that for all m ≥ m0, hX(m) = pX(m). This
pX is called the Hilbert polynomial of X. (depends on the embedding!)

2. Every coefficient of the Hilbert polynomial is a discrete invariant associated to X.
More specifically, we have

(a) deg pX = dimX

(b) The leading term is degX
(dimX)!m

dimX

In fact, the Hilbert polynomial gives "all discrete data"; fix this, and then see how varieties
can vary.

Definition 8.11. A flat family of varieties is π : X → B, where X ⊆ Pn, a surjective
morphism of projective varieties (B can be quasi-projective and π a morphism of quasi-
projective varieties, see next sec ion), such that the fibres π−1(b) := Xb all have the same
Hilbert polynomial.

Example. • Let φ : Pn → P1 such that [x] 7→ [f0(x) : f1(x)], where f0, f1 are homo-
geneous polynomials of the same degree such that af0 − bf1 6= 0 for all a, b ∈ k such
that (a, b) 6= (0, 0). We then have that φ−1[a : b] = {x ∈ Pn : bf0(x)− af1(x) = 0} =
V(bf0 − af1), which is a hypersurface of degree d. These have the same Hilbert poly-
nomial (exercise).

• The blow-up map B0P2 → P2 of A2 at the point {[0 : 0 : 1]} is an example of a non
flat family (for details see Chapter 13) This is the map

P1 × A2 ⊂ V(xt− yz)→ A2

([x : y], (t : u)) 7→ [t : u]

The fibre π−1([t, u]) = {([x : xt/u], (t, u))} is a point when u 6= 0 but the fibre over
(0, 0) is π−1(0, 0) = P1 × {(0, 0)} ' P1. The dimension, that is the dimension of the
Hilbert polynomial jumps at the origin.

9 Quasi-Projective Varieties

Goal: Define a category which contains both affine and projective varieties, but also open
subsets of these like GL(n, k), k∗ = A \ {0} and A2 \ {(0, 0)}.

Definition 9.1. A quasi-projective variety X ⊂ Pn is a locally closed subset of projective
space in the Zariski topology, that is X = U ∩ Z is the intersection of a Zariski closed Z
and a Zariski open U in Pn.
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The above definition includes the following

• Affine varieties are quasi-projective: if X ⊆ An ' U0 ⊂ Pn, then the projective closure
X ⊂ Pn is a closed subset and X = X ∩ U0.

• Projective varieties are quasi-projective: for X ⊂ Pn we have X = X ∩ Pn.
• Things that are neither affine nor projective: open subsets of the above two, for example
A2 \{0, 0} = U0 \{0, 0} = U0∩U ∩P2 where A2 = U0 ⊂ P2 and U = P2 \V(x1, . . . , xn)
are open subsets of P2.

We define morphisms as locally polynomial maps as usual. We will see an other (equivalent)
definition later.

Definition 9.2. Let X ⊆ Pn and Y ⊆ Pm be quasi-projective varieties, then the map
F : X → Y is a morphism if it is locally polynomial, that is, for any p ∈ X there exists an
open subset Up ⊆ X such that p ∈ U , and there exist homogeneous polynomials F0, . . . , Fm
of the same degree such that

F |U (p) = [F0(p) : . . . : Fm(p)]

It is clear that if X,Y are projective, then this definition is the same as before.
If X ⊂ An = U0 ⊂ Pn, Y ⊂ Am = U0 ⊂ Pm are affine, and f : X → Y, f(x) =
(f1(x), . . . , fm(x)) is a polynomial map (morphism of affine varieties), let d = maxi deg(fi)
denote the maximal degree. Then on U0 f is the same as the homogeneous map

[x0 : x1 : . . . xn] 7→ [xd0 : xd0f1(x1/x0, . . . , xn/x0) : . . . : xd0fn(x1/x0, . . . , xn/x0)].

So f is a morphism of quasi-projective varieties. This means that a morphism of affine
varieties in the old sense is a morphism of quasi-projective varieties, and therefore if X ⊂ An
is isomorphic with Y ⊂ Am in the old sense (that is, there is an invertible polynomial
bijection between the two ) then they are isomorphic as quasi-projective varieties too. The
reverse of this does not hold: V(xy − 1) ⊂ A2 and A1 \ {0} are isomorphic as quasi-
projective varieties, but there is no polynomial invertible bijection between them as the
following example shows:

Example. Let X = A1 \ {0}. X ⊂ A1 = U1 ⊂ P1 via the embedding t 7→ [t : 1].
Let Y = V(xy − 1) ⊆ A2 = U2 ⊂ P2 via (x, y) 7→ [x : y : 1]. Define F : X → Y by
[a : b] 7→ [a2 : b2 : ab], so on U1, F is given by [t : 1] 7→ [t2 : 1 : t] = [t : 1/t : 1] ∈ Y .
Geometrically, this morphism takes a line missing the point 0 to a hyperbola, taking the
positive part of the line to the positive part of the hyperbola.
Its inverse [x : y : z] 7→ [x : z] is well defined on Y , as Y ⊆ U2 and [t : 1/t : 1] 7→ [t : 1].
Hence, X ∼= Y as quasi projective varieties. But there is no invertible polynomial map
X → Y , so these are not isomorphic affine varieties in our old sense.
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Definition 9.3. A quasi projective variety is affine if it is isomorphic as a quasi projective
variety to a Zariski closed subset of some affine space.

This is an extension of the category of affine varieties. For projective varieties we don’t
get an extension: any quasi-projective morphisms X → Y between the projective varieties
X,Y are by definition locally polynomial, which agrees with our first definition of morphism
between projective varieties.

9.1 A Basis for the Zariski Topology

Manifolds locally look like Euclidean spaces. Quasi-projective varieties are locally affine
spaces in a similar manner as we show below.

Proposition 9.4. Let X be an affine algebraic variety and f ∈ A(X), then U := X\V(f)

is an affine variety and A(U) = A(X)
[

1
f

]
.

Here A(X)
[

1
f

]
= { pfn : p ∈ A(X), n ∈ N} is the ring of Laurent polynomials in f . This is

the localisation A(X)f of A(X) at the multiplicatively closed subset {1, f, f2, . . .}, see the
next section.
Proof. We have f ∈ A(X) = k[x1, . . . , xn]/I(X). Let f̃ be a representative for f , such
that f̃ ∈ k[x1, . . . , xn]. Let I

f̃
= (I(X), xn+1f̃ − 1) ⊆ k[x1, . . . , xn+1], and let W = V(I

f̃
) ⊆

An+1. Define a map

F : U →W, (a1, . . . , an) 7→ (a1, . . . , an, 1/f̃(a1, . . . , an)

and its inverse is the projection

F−1 : W → U, (a1, . . . , an+1) 7→ (a1, . . . , an).

Now F is not polynomial, so it is not a morphism of affine varieties. We claim that it is a
morphism of quasi-projective varieties. To see this we identify An with the standard affine
chart Un+1 in Pn : X ⊆ An = U0 ⊂ Pn via the embedding (a1, . . . , an) 7→ [1 : a1 : . . . : an].
Similarly, W ⊂ U0 ⊂ Pn+1 by the embedding (a1, . . . , an+1) 7→ [1 : a1 : . . . : an+1]. Now F
agrees everywhere on U with the morphism

F : Pn → Pn+1, [a0 : . . . : an] 7→ [a0f̃ : a1f̃ : . . . : anf̃ : adeg f̃+1
0 ]

Indeed, on U neither f̃ nor a0 is zero, and we can assume a0 = 1, then

[a0f̃ : a1f̃ : . . . : anf̃ : adeg f̃+1
0 ] = [f̃ : a1f̃ : . . . : anf̃ ] = [1 : a1 : . . . : an : 1/f̃ ]

The image of F is precisely W ⊂ U0 ⊂ Pn+1.
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The inverse is the projection

F
−1

: Un+2 → Pn, [a0 : . . . : an+1] 7→ [a0 : a1 : . . . : an]

is well-defined on U0 where a0 6= 0, and it identical to f−1 on W ⊂ U0 ⊂ Pn+1. Finally,

A(W ) =
k[x1, . . . , xn+1]

(I(X), xn+1f̃ − 1)
∼=
A(X)[xn+1]

(xn+1f − 1)
= A(X)

[
1

f

]

Definition. Let X be a topological space. A collection B = {Ui : i ∈ I} of open subsets
is a basis of the topology if any open subset in X is the union of elements in B.

Theorem 9.5. The affine open subsets of a quasi-projective variety form a basis. (Re-
call:open=open subset in the Zariski topology, affine=isomorphic as a quasi-projective variety
to an affine variety)

Proof. Embed X ⊆ Pn. First we show that X has a cover of affine open sets. It is enough
to show that this is true for each Xi = X∩Ui. But if X = Z∩U the intersection of a Zariski
closed Z and open U in Pn then Xi = X∩U ∩Ui ⊂ Ui = An. If U ∩Ui = An \V(G1, . . . , Gs)
and X = V(F1, . . . , Fr then

Xi = V(F1, . . . , Fr) \ V(G1, . . . , Gs)

Then

Xi ⊂
s⋃
j=1

(V(F1, . . . , Fr) \ V(Gj)),

which are the complements of the hypersurfaces defined by the restriction to Gj to the
closed set V(F1, . . . , Fr). This is an affine variety by Theorem 7.4. So every quasi projective
variety has a cover of affine open subsets.
Now, let U ⊂ X be an open subset. Then U is quasi-projective (any open subset of a quasi-
projective is quasi-projective), so applying statement we have just proved for U instead of
X we get that U is the union of affine opens.

10 Regular Functions

We have seen that quasi-projective varieties are locally affine, we can think of them as union
of affine varieties glued together, like manifolds are glued from Euclidean spaces. We have
already seen in the proof of Proposition 9.4 that, locally, quotients of polynomials can define
morphisms of quasi-projective varieties.
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Definition 10.1. (Regular functions on affine varieties) Let X be an affine variety, and
U ⊆ X an open subset. Then f : U → k is regular at p ∈ U if there exist g, h ∈ A(X)
with h(p) 6= 0 such that f = g/h in a neighbourhood of p, that is f |W = g/h|W for an open
p ∈W ⊂ U . We say that f is regular on U if f is regular on all p ∈ U .

Definition 10.2. (Regular functions on quasi-projective varieties) Let X be a quasi
projective variety, and U ⊆ X an open subset. Then f : U → k is regular at p ∈ X if there
exists an affine openW ⊆ U (that is a Zariski open subset which is affine as quasi-projective
variety) such that p ∈ W and f |W is regular at p. We say that f is regular on U if it is
regular at all p ∈ U .

Remark. An affine open subset of a quasi-projective variety is a Zariski open subset
which is affine as a quasi-projective variety. Don’t overmistify this! The complement of a
hypersurface is open affine by Proposition 9.4, and they form a basis in the Zariski topol-
ogy by Theorem 9.5, so we can always assume that our affine opens are complements of
hypersurfaces.

Definition 10.3. 1. The ring of functions regular on U is denoted by OX(U).

2. The ring of germs of regular functions at p ∈ X is denoted by OX,p, this is defined as

OX,p = {Pairs (f, U) : p ∈ U, f : U → k is regular at p} / ∼

where (f, U) ∼ (f ′, U ′) if and only if f |U∩U ′ = f ′|U∩U ′ .

Example. Let X = A2, U = A2 \ V(x). Take a f : U → k such that f(x, y) = y/x (slope
function). This is regular on U . In fact

OX(U) =

{
g(x, y)

xn
: n ≥ 0, g(x, y) ∈ k[x, y]

}
= A(X)[

1

x
]

which is A(U) by Proposition 9.4.

Theorem 10.4. Let X be an affine irreducible variety. Then OX(X) = A(X).

Proof. A(X) ⊆ OX(X) by definition. Indeed, for f ∈ A(X) f = f/1 everywhere on X.
To prove the opposite direction g ∈ OX(X). Then for all p ∈ X there exists a Up such that
p ∈ Up ⊆ X, an open subset, and hp, kp ∈ A(X) such that kp(p) 6= 0 and g = hp/kp on Up.
By Theorem 9.5 the affine open sets form a basis for the topology onX, namely, complements
of hypersurfaces form a basis. So shrink Up to be a complement of a hypersurface, that is
p ∈ UFp = X \ V(Fp).
Now X =

⋃
p∈X(X \ V(Fp)) = X \ (∩V(Fp)) = X \ V({Fp}). Since A(X) is Noetherian,

there exist finitely many F1, . . . , Fm such that V({Fp}) = V(F1, . . . , Fm). Thus, X =⋃m
i=1X \ V(Fi) and g|UFi

= hi/ki on UFi .
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On UFi ∩UFj we have hi/ki = hj/kj and so kjhi = kihj on UFi ∩UFj , which is a dense open
set, since X is irreducible. X = UFi ∩ UFj ⊆ V(kjhi − kihj) and so kjhi = kihj on X.
But V(k1, . . . , km) = ∅ as g ∈ OX(X) (indeed, for any p ∈ X there is a ki such that
ki(p) 6= 0), so by the Nullstellensatz, these polynomials generate A(X) (that is, A(X) =

(k1, . . . , km)). So 1 =
∑m

i=1 liki for some li ∈ A(X). Therefore, g|UFj
=
∑m

i=1 liki
hj
kj

on

UFj . But kihj = kjhi on X implies that g|UFj
=
∑m

i=1 likj
hi
kj

=
∑
lihi for all j. Thus

g =
∑m

i=1 lihi on X and g ∈ A(X).

Remark. Theorem 10.4 holds also for reducible varieties, but the proof is quite fiddly.
The problem is that the set UFi ∩ UFj may not be dense if X is reducible, so we don’t
necessarily have that hi/ki = hj/kj ⇒ kjhi = kihj .

We can redefine morphisms of quasi-projective varieties as follows

Definition 10.5. F : X → Y is a morphism of quasi-projective varieties if for all p ∈ X
there exists open affine neighborhoods U of p and V of F (p) such that F (U) ⊆ V and F |U
is given by a collection of functions regular on U

By Theorem 10.4 this means that a morphism of quasi-projective varieties is locally poly-
nomial as we expected, and Definition 10.5 and 9.2 are the same. Note that Definition
10.4 does not depend on the embedding of the variety into projective space, this is a local
definition.
In the literature morphisms of quasi-projective varieties are also called regular maps, since
locally they are given by regular functions.

Definition 10.6. A morphism F : X → Y of quasi-projective varieties induces the
pull-back map F#

p : OY,F (p) → OX,p defined as F#
p (U, g) = (F−1(U), g ◦ F ).

Knowing F ]p for all p ∈ X determines F . This is an exercise on problem sheet 6.

Remark. The local nature of regular functions on a quasi-projective variety X can be
summarized as follows:

• For any open U ⊂ X we have a ring OX(U).

• If U1 ⊂ U2 then the restriction defines a ring homomorphism OX(U2)→ OX(U1).

• If f1 ∈ OX(U1), f2 ∈ OX(U2) agree on U1 ∩ U2 then they define a regular function
f ∈ OU1∪U2 , whose restriction to U1, U2 are f1, f2, resp.

A family of rings (or modules) with these properties is called a sheaf on X. A pair (X,O)
of a space with a sheaf of rings is called a ringed space. This particular sheaf OX is called
the structure sheaf.
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10.1 Localisation, local rings

Let R be a commutative, Noetherian ring with unit.

Definition 10.7. A subset S ⊆ R is multiplicatively closed if S ⊂ R \ {0} and
1. a, b ∈ S implies that ab ∈ S
2. 1 ∈ S

Example. 1. If R is an integral domain, then R \ {0} is multiplicatively closed.

2. If p ( R is a prime ideal, then R \ p is multiplicatively closed.

3. If f ∈ R is not nilpotent, then
{

1, f, f2, . . .
}
is multiplicatively closed.

Definition 10.8. RS−1 := (R× S)/ ∼ where (r, s) ∼ (r′, s′) if there exists a t ∈ S such
that t(rs′−r′s) = 0. Write (r, s) as r/s, and we can think of elements of RS−1 as quotients.

Example. Let R = k[x, y]/(xy), S =
{

1, x, x2, . . .
}
, then x(y ∗ 1 − 0 ∗ 1) = 0 so y/1 =

0/1 = 0. This is an example of the importance of t in the definition above.

Definition 10.9. Define addition and multiplication in RS−1 as follows:

r

s
+
r′

s′
=

rs′ + r′s

ss′

r

s

r′

s′
=

rr′

ss′

The following Lemma is a question on Sheet 3:

Lemma 10.10. RS−1 with the addition and multiplication just defined is a commutative
ring, with identify 1/1. The natural map R→ RS−1 such that r 7→ r/1 is a ring homomor-
phism, with kernel {r ∈ R : ∃s ∈ S, rs = 0}.

Example. 1. Let R be an integral domain. Then R(R \ {0})−1 = FR, the field of
fractions.

2. Let p ⊂ R a prime ideal, and define Rp = R(R \ p)−1 = {r/s : r ∈ R, s /∈ p}. This has
only one maximal ideal, namely {r/s : r ∈ p, s /∈ p}. We call rings with exactly one
maxinal ideals local rings, and Rp is the localisation of R at p.

3. For f ∈ R drfine Rf := R(
{

1, f, f2, . . .
}

)−1. Example: R = k[x, y]/(xy), f = x, then
y/1 = 0 in Rf so Rf = k[x, x−1].

Proposition 10.11. For X an affine variety and f ∈ A(X)

1. If Xf := X \ V(f), then OX(Xf ) = A(X)f
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2. If p ∈ X, let mp = {f ∈ A(X) : f(p) = 0}, which is a maximal and therefore prime
ideal of A(X). Then OX,p = A(X)mp .

Proof.

1. A(X)f = A(X)
[

1
f

]
= A(Xf ) by Proposition 7.4.

2. If (U, f) ∈ OX,p then f |U = g/h for g, h ∈ A(X) and h(p) 6= 0 which means that
h /∈ mp so f ∈ A(X)mp . Conversely, if f ∈ A(X)mp then f = g/h with h(p) 6= 0;
let U ⊆ X be an open set where h 6= 0, then (U, f) ∈ OX,p. These maps are clearly
inverses.

10.2 Homogeneous localisation

Definition. Let R = ⊕d≥0Rd be a graded ring, and S ⊂ R a multiplicatively closed
subset. The degree of an element r/s ∈ RS−1 is deg(r)− deg(s). Define

RS−1
0 = {r/s ∈ RS−1 : deg(r) = deg(s)},

the degree 0 part of the localised ring. This is a subring.

Notation: (Rp)0 = R(p), (Rf )0 = R(f).
Recall that for an affine variety X

OX,p = A(X)mp = A(X) [A(X) \mp]
−1

where mp = {f ∈ A(X) : f(p) = 0}.

Now, if X is a quasi-projective variety, we have two points of view

1. Take p ∈ X, then there exists a p ∈ U open affine, and OU,p = OX,p by the definition
of OX,p.

2. Embed X ⊆ Pn, take X ⊆ Pn its projective closure, then we have that S(X) is a
graded ring. If deg r = deg s, we then ask if r/s is regular at p ∈ X, and the ring of
these is the ring of regular functions at p?

Proposition 10.12. For X ⊆ Pn a quasi-projective variety, let X ⊆ Pn be its projective
closure and mp =

{
f ∈ S(X) : f(p) = 0

}
. Take U0 ⊆ Pn the standard affine chart as usual

and assume that p ∈ X lies on X0 := X ∩ U0, and define m̃p = {f ∈ A(X0) : f(p) = 0}.
Then

S(X)(mp) = A(X0)m̃p
= OX,p

44



Proof. From what we’ve seen so far, it is enough to show that S(X)(mp)
∼= A(X0)m̃p

.
Define a map S(X)(mp) → A(X0)m̃p

such that

f(x0, . . . , xn)

g(x0, . . . , xn)
7→ f(1, x1, . . . , xn)

g(1, x1, . . . , xn)

and a map A(X0)m̃p
→ S(X)(mp) such that

f(x1, . . . , xn)

g(x1, . . . , xn)
7→

f(x1x0 , . . . ,
xn
x0

)xd0

g(x1x0 , . . . ,
xn
x0

)xd0

where d = max(deg f, deg g). (this is also called homogenisation) Now the numerator and
the denominator have the same degree and are both polynomials. These maps are inverses
to each other, which gives that S(X)(mp)

∼= A(X0)mp .

11 Tangent Spaces and Smooth Points

Definition 11.1. For F ∈ k[x1, . . . , xn] and p = (p1, . . . , pn) ∈ An we define

dpF = dF |p(x− p) =
n∑
j=1

∂F

∂xj
(p)(xj − pj) ∈ k[x1, . . . , xn](1)

which is a linear form. This is the linear approximation to F (x) in a neighbourhood of p.

Definition 11.2. Let X ⊆ An an affine variety, and let p ∈ X. Suppose that I(X) =
(F1, . . . , Fr) with Fi ∈ k[x1, . . . , xn]. Then the tangent space to X at p is defined as
TpX = V(dpF1, . . . , dpFr) ⊆ An.

Note that the tangent space is a linear subvariety (cut out by linear forms) of An, as we
have expected. It does have a distinguished point, namely p, so let that be the origin and
think of it as a vector space, and identify it by kn. It can be proved (see the miniproject)
that TpX at a smooth point is the union of tangent lines at p, as we expect.

Example. Let X = V(y2 − x3) ⊆ A2 be the cusp. Then X =
{

(t2, t3) : t ∈ k
}
. Then

dp(y
2 − x3) = −3x2|p(x − p1) + 2y|p(y − p2). So if p = (t2, t3) then d(t2,t3)(y

2 − x3) =
−3t4(x− t2) + 2t3(y− t3). We can see, that away from t = 0, this corresponds to "what you
would have thought". At t = 0, we have that d(0,0)(y

2 − x3) = 0 and T0X = V(0) = A2. So
the origin behaves badly, and we say that it is a singular point of X.
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Definition 11.3. We say that p ∈ X is smooth if dimTpX = dimpX, where dimpX is
the local dimension at p of X, that is the dimension of the irreducible component containing
X. If dimTpX > dimpX we say that p is a singular point.
(Recall the local dimension at p is defined as the maximal length of chains {p} ( X1 (
. . . ( Xm ⊂ X of irreducible varieties starting at p.)

Theorem 11.4. Let X ⊆ An be an irreducible affine variety of dimension d. Let I(X) =
(F1, . . . , Fr). Then Sing(X) is given by the vanishing in X of the (n− d)× (n− d) minors
of the Jacobian

(
∂Fi
∂xj

)
, and in particular is a closed subvariety.

Proof. Let p ∈ X. Then TpX = V(dpF1, . . . , dpFr) so, since dpF =
∑ ∂Fi

∂xj
(p)(xi − pi),

TpX is the kernel of

φp :

x1
...
xn

 7→

∂F1
∂x1
|p . . . ∂F1

∂xn
|p

...
...

∂Fr
∂x1
|p . . . ∂Fr

∂xn
|p


x1 − p1

...
xn − pn

 .

Therefore p ∈ Sing(X) ⇔ dimTpX = dim kerφp > d ⇔ dim ker(Jac(p)) > d ⇔ (n − d) ×
(n − d) minors vanish at p. These minors are polynomials, their vanishing set is a closed
subvariety.

Example. (same cusp as before) Let X = V(y2 − x3). We have that n = 2, d = 1. The
Jacobian of this is Jac(p) = (−3p2

1, 2p2) and (n − d) × (n − d) minors vanish ⇔ all entries
vanish, ie p = (0, 0).

Recall that for V = kn, a finite dimenensional vector space V ∗ = {L : V → k|L(λv+µw) =
λL(v) + µL(w)} denotes the dual vector space, the vector space of linear forms on V . A
linear map V → W induces a dual map W ∗ → V ∗ by f∗(L)(v) = L(f(v)). Choosing
an origin of An we have An ' kn and (An)∗ = k[x1, . . . , xn]1, the degree-one part of the
coordinate ring (using coordinates xi on An. )

Theorem 11.5. Let X be an affine variety and let p ∈ X and let mp = {f/g ∈ OX,p :
f(p) = 0} ⊆ OX,p be the maximal ideal of regular functions vanishing at p. Then

TpX ∼=
(
mp

m2
p

)∗
where ∗ denotes the dual vector space.

Proof. Fix an embedding X ⊆ An such that p = 0 ∈ X. Then d0F = Σn
i=1

∂F
∂xi

(0)xi is a
linear form on An. But An = V(0) = T0An by definition, so we have a map

d0 : k[x1, . . . , xn]→ (T0An)∗
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F 7→ d0F

of k-vector spaces which is linear: d0(λF + µG) = λd0(F ) + µd0(G). Restrict this map to
the maximal ideal M = {f ∈ k[x1, . . . , xn] : f(0) = 0} = (x1, . . . , xn) ⊂ k[x1, . . . , xn] to get

d0 : M → (T0An)∗

This map is surjective since dxi = xi, and {x1, . . . , xn} is a basis of (T0An)∗. The the kernel
of this map is M2, indeed,

d0F = 0⇔ ∂F

∂xi
(0) = 0 ∀i⇔ F = 0 or all monomials in F have order ≥ 2⇔ F ∈M2.

Hence M/M2 ∼= (T0An)∗.
Now we want to restrict this argument to X. Recall we fixed p = 0. The embedding
j : T0X ↪→ T0An induces a surjection j∗ : (T0An)∗ 'M/M2 → (T0X)∗, and composed with
d0 we get

j∗ ◦ d0 : M → (T0X)∗

The kernel of j∗◦d0 isM2+I(X) since f ∈ Ker(j∗◦d0)⇔ d0F |T0X = 0⇔ d0F ∈ I(T0X)⇔
d0F =

∑r
i=1 aid0Fi where I(X) = (F1, . . . , Fr) and ai ∈ k[x1, . . . , xn] ⇔ d0(F −

∑
aiFi) +∑n

i=1(d0ai)Fi(0) = d0(F −
∑
aiFi) = 0 ⇔ F −

∑
aiFi ∈M2 ⇔ F ∈ I(X) +M2.

Now let M = {f ∈ A(X) : f(p) = 0} = M/I(X). Note that I(X) is a sub(vector)space of
M as elements of I(X) vanish on X whereas elements of M vanish at 0, and therefore

(T0X)∗ ∼=
M

M2 + I(X)
∼=

M

M
2

The last step is localisation, we want to prove that M/M
2 ∼= m0/m

2
0. We use the fact that

if R is an integral domain then the map R ↪→ RS−1 sending r to r/1 is an embedding of R
into the localised ring RS−1. Apply this with R = A(X) which is integral domain as X is
irreducible:

A(X) ↪→ OX,0 = A(X)m0 f 7→ f/1

which restricts to
M ↪→ m0,M

2
↪→ m2

0

This induces an embedding
φ : M/M

2
↪→ m0/m

2
0

φ is also surjective: if f/g ∈ m0, let c := g(0), then φ(f/c) − f/g = f/c − f/g =
f(1/c − 1/g) ∈ m2

0 (since f ∈ m0, 1/c − 1/g ∈ m0) and so φ(f/c) = f/g ∈ m0/m
2
0 so

φ is surjective, and we get M/M
2 ' m0/m

2
0.
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The last theorem implies that the tangent space only depends on an open neighbourhood
of p in X, and is independent of embedding, choice of Fi’s, etc. So we may define

Definition 11.6. If X is a quasi-projective variety, p ∈ X, then let mp = {f/g ∈ OX,p :

f(p) = 0} be the maximal ideal of OX,p. Then TpX :=
(
mp

m2
p

)∗
.

In practice—since we know that the definition is the same on a neighbourhood of p ∈ X—we
choose U be an affine neighborhood of p and calculate TpU using the Jacobian.

We saw that a morphism F : X → Y of quasi-projective varieties induces F# : OY,F (p) →
OX,p. Restrict this map tomF (p), then g(F (p)) = 0 implies that F#

p g(p) = 0, so F#
p (mF (p)) ⊆

mp. Clearly F
#
p (m2

F (p)) ⊆ m
2
p too, so we have an induced map

mF (p)

m2
F (p)

→ mp

m2
p

Dualising reverses the directions defining(
mp

m2
p

)∗
→

(
mF (p)

m2
F (p)

)∗
,

a map TpX → TF (p)Y .

Definition 11.7. The differential of F at p, written dFp is this map dFp : TpX → TF (p)Y .

Caution! We defined both dpF and dFp, don’t mix these up!

12 Rational Maps and Birational Equivalence

Recall, that if R is an integral domain, then S = R \ {0} is a multiplicatively closed subset,
and RS−1 is a field, called the field of fractions of R.

Definition 12.1. IfX is affine and irreducible variety (hence A(X) is an integral domain)
then we call k(X) = A(X)(A(X) \ {0})−1 the function field of X. If X is an irreducible
quasi-projective variety, let U ⊂ X be an affine open subset and define function field as
k(X) := k(X ∩ U). This is independent of U .

As an exercise prove that the function field in the quasi-projective case is independent of
the chosen affine open U .
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Remark. 1. If f/g ∈ k(X) and g(p) 6= 0 then f/g is regular at p, so f/g ∈ OX,p.
Moreover f/g ∈ OX(Ug) where Ug = {p ∈ X : g(p) 6= 0}. So every element of k(X) is
regular on some open subset of X.

2. X is irreducible so A(X) is an integral domain, so for all open subset U ⊆ X, and for
all p ∈ X, we have that OX,p,OX(U) ⊆ k(X). Indeed, by Proposition 8.11 OX,p =
A(X)mp ↪→ (A(X)mp)A(x)µp = k(X) (localise all the remaining non-zero elements, and
recall that R→ RS−1 is injective if R is an integral domain.)

Definition 12.2. Let X be an irreducible quasi-projective variety. A rational map
f : X 99K Y is an equivalence class of pairs (U, γ), where ∅ 6= U ⊆ X is an open subset and
γ : U → Y is a morphism of quasi-projective varieties, and the representatives (U, γ) and
(V, η) are equivalent if and only if γ|U∩V = η|U∩V .

Remark. 1. The rational map is not necessarily defined everywhere on X, just on an
open subset.

2. If (U, γ) is a representative of a rational map from X to Y ⊆ An, then γ is given by
an n-tuple of functions in OX(U).

3. Conversely, if f1, . . . , fn ∈ k(X), then each is regular on a dense open subset. Let U
be the intersection of these, then U → An given by (f1, . . . , fn) is a morphism and so
this represents a rational map.

4. Rational maps from reducible varieties: This is the same as a rational map from each
irreducible component. So this is not something we work with in general. If X = ∪Xi

the union of irreducible components then k(X) := ⊕k(Xi) is a ring but not a field.

In short: rational maps=regular maps defined on some open subset.

Example. • Pn 99K Pn−1 such that [x0 : . . . : xn] 7→ [x0 : . . . : xn−1]. Not defined
at [0 : . . . : 0 : 1], so its not a regular map, but it is rational because it is defined on
U0 ∪ . . . ∪ Un−1.
• If f = g/h ∈ k(X) then f : X 99K A1, x 7→ f(x) is a rational map defined on
Uf = X \ V(h).

Composition of rational maps: If φ : X 99K Y and η : Y 99K Z are rational maps
and if there exists a (U, f) representing φ and a (V, g) representing η, then if f−1(V ) 6= ∅,
we can define the composition as (U ∩ f−1(V ), g ◦ f). So composition of rational maps is
not necessarily defined, for example the composition of the projection A2 → A2, (x1, x2) 7→
(x1, 0) and the rational map A2 99K A1, (x1, x2)→ x1/x2 is not defined.

Definition 12.3. A rational map F : X 99K Y is dominant if there exists a (U, γ)
representing F such that γ(U) = Y .

Note that composition of dominant rational maps is well-defined dominant rational map.
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Definition 12.4. (Birational equivalence) The quasi-projective varieties X and Y are
birationally equivalent if there is F : X 99K Y and G : Y 99K X such that G◦F |U = IdU
for any open U ⊂ X where G ◦F is defined, and F ◦G|V = IdV for any open V ⊂ Y where
G ◦ F is defined.

Example. • An is birational to Pn. See this by taking the maps (x1, . . . , xn) 7→ [x1 :
. . . : xn : 1], which is regular everywhere and also [x0 : . . . : xn] 7→ (x0/xn, . . . , xn−1/xn),
which is not defined if xn = 0, hence we take it to be defined on the open set
Un = Pn \ V(xn).

• More generally, if X ⊆ Pn is quasi-projective and irreducible, then X is birational to
X and also birational to Xi = X ∩ Ui for any i such that X * V(xi).

Question: Does the rational map F : X 99K Y induce a field homomorphism f ] : k(Y )→
k(X)? What is the categorical correspondence between homomorphism of function fields
and rational maps of quasi-projective varieties?
Recall from Problem Sheet 3, that A(Y ) ↪→ A(X) is injective if and only if F : X → Y is
dominant, that is F (X) = Y . (Nonzero) field homomorphisms are injective, since the kernel
is an ideal so must be 0. This will imply that homomorphisms of function fileds correspond
to dominant rational maps.

Theorem 12.5. Let X,Y be irreducible quasi-projective varieties. Then

1. Dominant rational maps F : X 99K Y induce k-linear field homomorphisms F# :
k(Y )→ k(X).

2. If φ : k(Y )→ k(X) is a k-linear field homomorphism, then it induces a unique domi-
nant rational map φ# : X 99K Y such that (φ#)# = φ.

3. If F : X 99K Y and G : Y 99K Z are dominant then G◦F is dominant and (G◦F )# =
F# ◦G#.

4. If ψ : k(Z) → k(Y ), φ : k(Y ) → k(X) are k-field homomorphisms then (φ ◦ ψ)# =
ψ# ◦ φ#.

5. X and Y are birationally equivalent if and only if k(X) is isomorphic to k(Y ).

We start with a lemma.

Lemma 12.6. If X,Y affine irreducible varieties then F : X 99K Y induces an F# :
A(Y )→ k(X) and this F# is injective if and only if F is dominant.

Proof. Let g ∈ A(Y ) such that g : Y → k is a polynomial map on Y , so the composition
g ◦ F : X 99K k is a rational map. We define this to be F#g ∈ k(X). Now let (U, f) be a
representative for F . Then F#g is defined on U and for g ∈ A(Y )
F#g = 0 ⇔ g(f(u)) = 0 for all u ∈ U ⇔ f(u) ∈ V(g) ⊆ Y for all u ∈ U ⇔ f(U) ⊆ V(g)
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Hence F# injective if and only if f(U) is dense for any U where F is defined.

Now we prove Theorem 12.5.
Proof. Proof of 1) If X,Y affine, F# : A(Y ) ↪→ k(X) by the lemma above. Extend
this to the field of fractions by defining F#(fg ) = F#f

F#g
to get a (nonzero) homomorphism

F# : k(Y )→ k(X).
If X,Y are quasi-projective, let (Ũ , f) be a representative for F so f : Ũ → Y is a morphism,
so there exists a U ⊆ Ũ affine, and V ⊆ Y affine, and an f : U → V a morphism of
affine varieties which is dominant. So we have f# : k(V ) → k(U) defined as above. But
k(V ) = k(Y ) and k(U) = k(X) by definition.
Proof of 2) Suppose first that X,Y are affine and Y ⊆ Am. Then we have A(Y ) ⊂ k(Y ) via
the map f 7→ f/1 as usual, so φ restricts to an injective homomorphism φ : A(Y )→ k(X).
Let g1, . . . gr be generators of the Noetherian ring A(Y ) and φ(gi) = hi

ki
∈ k(X) regular

on X \ V(ki). Then for any f ∈ A(Y ) the image φ(f) is regular on U = ∩ri=1(X \ V(ki),
that is φ(A(Y )) ⊂ OX(U). By shrinking to an affine open if needed, we can assume
that U is affine open in X, and then by Theorem 10.4 OX(U) = A(U) and we have an
injective homomorphism φ : A(Y ) → A(U), which by Theorem 5.12 induces a morphism
φ# : U → Y which is dominant by Lemma 12.6. This is by definition a dominant rational
map φ# : X 99K Y .
When X,Y are quasi-projective then we repeat the same with an affine open U ⊂ X and
affine open V ⊂ Y using that k(U) = k(X), k(V ) = k(Y ). We get a dominant rational map
φ# : U 99K V which represents a dominant rational map X 99K Y .
Proof of 3) Again, we restrict ourselves to affine X,Y, Z. Let (U,F |U ) represent F and
(V,G|V ) represent G, that is, U ⊂ X open affine, F |U : U → Y regular map and V ⊂ Y
open affine, G|V : V → Z regular map. Let Ũ ⊂ F−1(V ) be an open affine. Since the open
affines form a basis of the topology, such Ũ exists. So we have a composition

Ũ →F |Û V →G|V Z

of morphism of affine varieties, and (Ũ , G ◦ F |
Ũ

) represents the composition G ◦ F , and

(G ◦ F )(Ũ) = G(F (Ũ) ⊇ G(F (Ũ) = G(V ) = Y as F and G are dominant, so G ◦ F
is dominant. Again, using Theorem 5.12 we have (G|V ◦ F |Û )# = F |#

Û
◦ G|#V . But for

f/g ∈ k(Y ) = k(V )

F#(f/g) =
F |#

Ũ
(f)

F |#
Ũ

(g)

by part 1), and similarly for G#(f/g), so for f, g ∈ A(Y ) we have

(G|V ◦ F |Û )#(f/g) =
(G|V ◦ F |Û )#(f)

(G|V ◦ F |Û )#(g)
=

(F |#
Û
◦G|#V )(f)

(F |#
Û
◦G|#V )(g)

= (F |Û )# ◦G|#V )(f/g).

51



For quasi-projective varieties X,Y, Z choose upen affines and morphisms representing the
rational maps F,G and repeat the same argument.
Proof of 4) We saw in 2) that φ : k(Y ) → k(X) induces a morphism φ : A(Y ) → A(U)
for some U ⊂ X open, and φ# : U → Y is the corresponding morphism of affine varieties
coming from the equivalence of affine varieties and k-algebras. So there are open affines
U ⊂ X,V ⊂ Y,W ⊂ Z such that φ#, ψ#, (ψ ◦ φ)# are represented by morphisms between
these open affines, and (φ ◦ ψ)# = ψ# ◦ φ# follows from Theorem 5.12.
Proof of 5) Again, repeat the argument of Theorem 5.12. Assume X and Y are birational
via the rational maps F : X 99K Y,G : Y 99K X. Then F ◦ G|U = Id|U for some open
U ⊂ X, so Idk(X) = Id# = (F ◦ G)# = G# ◦ F# is the identity map k(X) → k(X), so
k(X) ' k(Y ). Conversely, if φ : k(Y ) → k(X) is an isomorphism then there is an inverse
homomorphism φ−1 : k(X) → k(Y ) and IdX = Id(k(X))# = (φ ◦ φ−1)# = φ−1

# ◦ φ#, so
φ# : X → Y has an inverse rational map, namely φ−1

# .

Definition 12.7. We say that the quasi-projective variety X is rational if it is birational
to An for some n.

Definition 12.8. If the rational map F : X 99K Y is defined on ∅ 6= U ⊂ X, define the
graph of F as

ΓF = {(x, f(x)) : x ∈ U)} ⊆ X × Y

This is independent of the choice of U .

Remark. X is birationally equivalent to ΓF .

13 Resolution of singularities: Blow-Ups

This is one of the most fundamental ideas in algebraic geometry. Blow ups are widely used
in all areas of geometry and topology.

13.1 The Blow-Up of An at the origin

Blowing up a variety at a point means that we replace the point with the projectivisation
of the tangent space at that point. We start with blowing up the affine space at the origin.
Define

B0An =
{

(x, l) ∈ An × Pn−1 : x ∈ l
}
⊆ An × Pn−1

=
{

((x1, . . . , xn), [y1 : . . . : yn]) ∈ An × Pn−1 : xiyj − xjyi = 0
}
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This is a closed subvariety of An × Pn−1. When p ∈ An is not the origin we shift the origin
to p by the transformation ρp : x 7→ x− p and define

BpAn = V((xi − pi)yj − (xj − pj)yi : 1 ≤ i, j ≤ n) ⊂ An × ¶n−1

Define π : BpAn → An by (x, l) 7→ x. This is a birational morphism, that is, a morphism
which has a rational inverse π−1 : An 99K B0An, x 7→ (x, [x]) for x 6= 0, so π defines an
isomorphism between B0An \ π−1(0) and An \ {0}.

Definition 13.1. The blowup of An at p is the birational morphism π : BpAn → An.

The fibres of π : B0An → An are

π−1(x) =

{
(x, [x]) if x 6= 0

{0} × Pn−1 if x = 0

So π is an isomorphism between B0An \ π−1(0) and An \ 0, but the origin is replaced with
Pn−1.

Definition 13.2. E = π−1(0) ⊂ B0An is called the exceptional divisor. Points on E
are in bijection with lines through p at An.

Note that the preimage of the punctured line L0 = {a1t, . . . ant : t 6= 0} through the
origin (ai 6= 0 for some i) is π−1(L0) = {(a1t, . . . , ant), [a1t : . . . : ant] : t 6= 0} =
{(a1t, . . . , ant), [a1 : . . . : an] : t 6= 0}, and therefore π−1(L0) = {(a1t, . . . , ant), [a1 : . . . :
an] : t ∈ k} is a line, corresponding to the point [a1 : . . . : an] on the exceptional divisor.

13.2 The Blow-Up of X ⊆ An at p ∈ X

Definition 13.3. Define the strict transform of X as

BpX = π−1(X \ {p}) ⊆ BpAn,

the closure of π−1(X \ {p}) in BpAn. The blowup of X at p is the projection map π|BpX :
BpX → X. The exceptional divisor is E = π−1(p) ⊂ BpX.

Note that π : BpX → X defines an isomorphism between BpX\E and X\{p}, and therefore
π is a birational morphism. The total preimage in BpAn

π−1(X) = E ∪BpX ⊂ BpAn

is called the total transform of X. It is the union of the exceptional divisor E = π−1(p)
in BpAn and the strict transform BpX.
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Example. Let X = V(y2− x3− x2) ⊆ A2. Blow up X at 0; to start, clearly we have that
B0X \ π−1(0) =

{
((x, y), [a : b]) : y2 − x3 − x2 = 0, xb = ya, (x, y) 6= (0, 0)

}
⊆ A2 × P2. To

find the points on the exceptional divisor π−1(0), let xn → 0 and yn → 0 on the curve X.
Now for xn 6= 0, we see that (

yn
xn

)2

− xn − 1 = 0 (1)

and so, as xn → 0 we see that
(
yn
xn

)2
→ 1. Thus the extra points in B0X are ((0, 0), [1 : 1])

and ((0, 0), [1 : −1]).
Now we want to describe B0X as a quasiprojective variety. B0X ⊆ A2 × P1. Assume that
((x, y), [0 : 1]) ∈ B0X then x = 0; but this implies y = 0 and this is a contradiction as
((0, 0), [0 : 1])) is not in the exceptional divisor, as seen above. Thus if Ua is the coordinate
patch

Ua := {[a : b] : a 6= 0} ⊂ P1

then

B0X ⊂ A2 × Ua ∼= A3

We make this identification, mapping ((x, y), [a : b]) to
(
x, y, ba

)
; so x, y, z = b/a are coordi-

nates on A2 × Ua.
On A2×Ua xb = ya transforms to y = xz, and we have the original y2−x3−x2. Substituting
this gives (xz)2 − x3 − x2, which decomposes, so

π−1(X) = V(y − xz, y2 − x3 − x2) = V(x, y) ∪ V(y − xz, z2 − x− 1)

. The first component is the exceptional divisor, and we get

B0X ∼= V(zx− y, z2 − x− 1)

Note, that via the projection to A2, B0X is isomorphic to the quadric plane curve V(z2 −
x− 1) ⊂ A2.

13.3 Blowing up along an ideal

So far we have blown up an affine variety at one point only. We will introduce the notion
of blowing up along an ideal gradually in the following steps, summarising what we know
about blow-ups at a point first, and then the correspondence between this and blowing up
along an ideal.

1. Points p ∈ X are in bijection with maximal ideals mp ⊆ A(X), this is the Nullstellen-
satz.
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2. When p = 0 the origin, m0 = (x1, . . . , xn) ·A(X) ⊂ A(X) so the xi’s form a generating
set of the maximal ideal. We can think of the generators x1, . . . , xn as coordinates on
the tangent space TpX.

3. B0X = Γφ is the graph of the rational morphism φ : X 99K Pn−1, x 7→ [x].

4. We have a birational morphism, the projection B0X = Γφ → X. This is an isomor-
phism between B0X \ π−1(0) and X \ {0}.

We will copy this definition for any ideal I ⊂ A(X).

1. Take any ideal I ⊆ A(X), not necessarily radical ideal!

2. Choose F1, . . . , Fr generators for I.

3. Define the rational map F : X 99K Pr−1 such that x 7→ [F1(x) : . . . : Fr(x)]. This is
defined on X \ V(I). Let BIX = ΓF .

4. We have a birational morphism, the projection Γφ → X, and π is an isomorphism
between BIX \ π−1(X) and X \ V(I).

It is important to see (but we don’t prove here) that

• BIX is independent of the choice of generators of I.

• BIX does depend on the ideal I, not just on V(I). For example B(x2,y)A2 is singular
but B(x,y)A2 is smooth, but the vanishing set of these are the same, the origin.

This leads naturally to the following

Definition 13.4. For any ideal I ⊆ A(X), and set of generators I = (F1, . . . , Fr) define
BIX to be the graph ΓF of the rational map F : X 99K Pr−1, x 7→ [x] for x /∈ V(I). The
blowup of X at the ideal I is the projection map BIX → X, (x, [x]) 7→ x. The exceptional
divisor is defiend as E = π−1(V(I)) ⊂ BIX.
If Y ⊆ X is a closed subvariety, we define BYX to be BI(Y )X, the blow-up along the radical
ideal I(Y ).

The term divisor means a subvariety of codimension one in this context. Indeed, the codi-
mension of E in BIX is always 1.

13.4 Blowing Up General Quasi-Projective Varieties

Let X ⊆ Pn be a quasi-projective variety. Then X ⊆ Pn is projective, and S(X) is its
homogeneous coordinate ring.

Definition 13.5. If I ⊆ S(X) a homogeneous ideal, let F1, . . . , Fr be generators of the
same degree.(in the proof of Prop. 4.3 we have seen that there is such a generating set)
Define F : X 99K Pr−1, x 7→ [F1(x) : . . . : Fr(x)]. Then define BIX = ΓF ⊆ X × Pn−1

with map π : ΓF → X the natural projection and we define BIX = ΓF ∩ (X × Pn−1)
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with natural morphism to X. If Y ⊆ X is a closed subvariety, then BYX = BI(Y )X and
BYX = BYX ∩ (X × Pn−1).

13.5 Hironaka’s Desingularisation Theorem

In 1964 Hironaka proved a fundamental theorem stating that any quasi-projective variety
can be desingularized, i.e, birationally equivalent to a smooth projective variety. His work
was recognized with Fields medal in 1970.

Theorem 13.6. (Hironaka) Let k be a field of characteristic 0. If X is a quasi-projective
variety then there exists a smooth quasi-projective variety X̃, and a birational morphism
π : X̃ → X such that π induces an isomorphism between X̃ \π−1(Xsmooth and Xsmooth, and
if X is projective, then so is X̃.

Hironaka uses blow-ups to construct this smooth variety X̃. He proves that for an affine
variety X there exist an ideal (not necessarily radical ideal!) I ⊂ A(X), such that BIX
is smooth and V(I) = Sing(X), the singular locus of X and π defines the isomorphism
between BI(X) \ π−1V(I) and X \ V(I).

13.6 Classification of quasi-projective varieties

In an utopian world we would (will???) be able to describe all varieties up to isomorphism.
One ultimate goal of algebraic geometry is to produce a "dictionary of varieties", with a list
of all varieties.
However, this is hopelessly difficult, so intead of isomorphism classes first we can try to
descripe the birational classes, i.e classify varieties up to birational equivalence. By our
Theorem 12 this is the classification of finitely generated fields over k.
Due to Hironaka’s theorem there is a smooth representative of each birational equivalence
class, but unfortunately this is not unique. Is there a canonical representative (model) of
each birational class? This question engines research which motivated great results and has
provided a number of Fields medalists in algebraic geometry (Mumford 1974, Deligne 1978,
Mori 1990).
As a step towards this classification we prove the following

Theorem 13.7. Every irreducible variety is birational to a hypersurface (for a field of any
characteristic).

Recall that if X is an irreducible hypersurface then X = V(F ) ⊆ An, where F is irreducible.
Then Sing(X) = X ∩ V

(
∂F
∂x1

, . . . ∂F∂xn

)
. This cannot be all of X. (see mini-project). We

will use the following result in Galois theory, for the proof see Hulek’s book.
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Theorem 13.8. If K is the field of fractions of k[a1, . . . , an], then the extension K/k
can be decomposed as k ⊂ K0 ⊂ K, where K0 = k(y0, . . . , ym) is purely transcendental and
K = K0[ym+1]/(f) is algebraic and separable, where f is irreducible in K0[ym+1].

Now we prove Theorem 11.7.
Proof. Every irreducible variety is birationally equivalent to an affine, so we assume X
is affine. By the above theorem, k(X)/k decomposes as k(y1, . . . , ym) = k0 ⊂ k0[ym+1]/(f)
for some irreducible f ∈ k0[ym+1]. So f = yNm+1 +aN−1y

N−1
m+1 + . . .+a0 for some N ∈ N and

ai ∈ k0 = k(y1, . . . , ym).
We may multiply through the denominators of the ai (as elements of k(y1, . . . , ym) and get
f̃ = bNy

N
m+1 + bN−1y

N−1
m+1 + . . .+ b0, where bi ∈ k[y1, . . . , ym]. But now f̃ ∈ k[y1, . . . , ym+1].

Let Y = V(f̃) ⊆ Am+1. ThenA(X) = k[y1, . . . , ym+1]/(f̃) and f̃ is irreducible in k[y1, . . . , ym+1]
since f is irreducible in k0[ym+1]. So Y is an irreducible hypersurface and k(Y ) = k(y1, . . . , ym)[ym+1]/(f) =
k(X). Finally k(Y ) = k(X) and so X and Y are birational.

Remark. We have that Y is a hypersurface in Am+1 so dimY = m. Where did m come
from though? We started with a field k(X) = k(Y ) and we presented it as k(y1, . . . , ym)[ym+1]/(f)
so m is the transcendence degree of k(Y )/k.

Definition 13.9. (Dimension revisited) The dimension of a variety X is the transcedence
degree of k(X)/k.

The two definitions we have now are equivalent, but this requires a lot of commutative
algebra to prove.
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