Détecteurs SiPM

Nicoleta Dinu

Laboratory of Linear Accelerator, Orsay

Outline:

- Introduction on solid-state photon detectors
- SiPM physics and characteristics
- SiPM applications

Review of solid-state photon detectors

Working regimes of reversed biased diodes

- Geiger-mode operation
 - Can operate at single photon level

3

(few hundreds of photons)

Geiger-Mode Avalanche Photodiode

J.R. McIntire IEEE Trans. Elec. Dev. ED-13 (1966) 164

Binary device

- If one or more simultaneous photons fire the GM-APD, the output is anytime a standard signal: Q~C(V_{bias} - V_{BD})
- GM-APD does not give information on the light intensity

 $-\mathbf{V}_{\mathbf{bias}}$

Model of GM – APD & passive quenching

OFF condition

- No charge traversing the breakdown region
- S open
- C_D charged to V_{BIAS} > V_{BD}
 - $-i \sim 0$ through the circuit

• ON condition

- Avalanche discharge triggered by a carrier generated in the breakdown region (e.g. photon or thermal carrier)
- S closed
- C_D discharge to V_{BD} with a time constant $\tau_{discharge} = \mathbf{R_D} * \mathbf{C_D}$
- Current through circuit increases asymptotically to
 - $I_{latch} \sim (V_{BIAS} V_{BD})/(R_Q + R_D)$
- Diode voltage decreases from \boldsymbol{V}_{BIAS} to \boldsymbol{V}_{BD}

OFF condition

- S open
- C_D recharge again to V_{BIAS} with a time constant $R_O * C_D$ (much longer than $R_D * C_D$)
- ready for a new detection

What is a Silicon Photomultiplier (SiPM)?

- matrix of n cells connected in parallel (e.g. few hundreds /mm²) on a common Si substrate
- each cell = GM-APD in series with R_{auench}

Key personalities in this development: V. Golovin, Z. Sadygov

Quasi-analog device:

• If simultaneously photons fires different cells, the output is the sum of the standard signals: $Q^{\sim}\Sigma Q_i$ • SiPM gives information on light intensity

• Different producers give different names: SiPM, MRS-APD, SPM, MPPC...

Silicon Photomultiplier (SiPM)

Advantages

- \bigcirc high gain (10⁵-10⁶) with low voltage (<80V)
- \odot low power consumption (<75 μ W/mm²)
- ☺ fast (timing resolution ~ 50 ps RMS for single photons)
- \odot insensitive to magnetic field (tested up to 7 T)
- ☺ high photon detection efficiency (30-40% blue-green)
- © mechanically robust and compact

Possible drawbacks

- ⊖ high dark count rate (DCR)
 - early productions: ~100kHz 1MHz/mm² at T~25°C; th=0.5pe
 - today productions: ~20kHz at T~25°C; th=0.5pe
 - thermal carriers, cross-talk, after-pulses
- $\ensuremath{\textcircled{\odot}}$ temperature dependence
 - V_{BD} , signal shape, R_q , DCR , PDE

SiPM today (just few examples)

SiPM's of small area

Hamamatsu HPK S10362-11-025,050,100 1 X 1 mm²

SiPM's of large area

ZEKOTEK MAPD-3N 3 X 3 mm²

FBK - AdvanSiD ASD-SiPM4s 4 X 4 mm²

Hamamatsu HPK S10985-50C 4 X 4 mm²

KETEK PM3350 3 X 3 mm²

STMicroelectronics SPM35AN 3,5 X 3,5 mm²

Discrete SiPM arrays

Producer	Device ID	Picture	Total area (mm²)	SiPM area (mm²/channel)	Nr. channels	µcell size
Hamamatsu	S11064-025P S11064-050P		18 x 16.2	3x3	16(4x4)ch	25x25 μm 50x50 μm
Hamamatsu	C11206-0404DF	S S S S S S S S S S S S S S S S S S S		3x3	64(8x8) ch	
Hamamatsu	S11834-3388DF	64 mm	72x64.8	3x3	256(16x16)ch	
FBK AdvanSiD	ASD-SiPM4s-P-4x4T- 50 ASD-SiPM4s-P-4x4T- 69		8.2 x 8.2	4x4	16(4x4)ch	50x50 μm 69x69 μm
FBK AdvanSiD	SiPM tile		32.7x32.7	4x4	64(8x8) ch	
SensL	ArraySM-4P9 ArraySB-4P9 (blue sensitive)		46.3×47.8	3x3	144(12x12) ch (based on monolithic Array SM4)	35x35 μm 10

Monolithic SiPM arrays

Producer	Device ID	Picture	Effective area (mm²)	SiPM area/channel (mm²)	Nr. channels	µcell size
Hamamatsu	S10984-025P S10984-050P S10984-100P		1 x 4	1x1	4(1x4)ch	25x25 μm 50x50 μm 100 x 100 μm
Hamamatsu	S10985-025C S10985-050C S10985-100C		6 x 6	3x3	4(2x2)ch	25x25 μm 50x50 μm 100 x 100 μm
Hamamatsu	S11828-3344M		12 x 12	3x3	16(4x4)ch	50x50 µm
FBK AdvanSiD	ASD-SiPM1.5s-P- 8X8A		11.6 x 11.6	1.45x1.45	64(8x8)ch	50x50 µm
FBK AdvanSiD	ASD-SiPM3S-P- 4X4A		11.8 x 11.8	2.95x2.95	16(4x4)ch	50x50 µm
SensL	Array SM-4 Array SB-4 (blue sensitive)		12 x 12	3x3	16(4x4)ch	35x35 µm

SiPM characteristics @ room temperature - dark conditions -

SiPM DC characteristics

First test to verify the functionality of the device: breakdown voltage & overvoltage range

SiPM reverse IV characteristics

SiPM's of 1x1 mm² with different technologies of 2007 productions

SiPM forward IV characteristics

SiPM's of 1x1 mm² with different technologies of 2007 productions

~ hundreds of k Ω : FBK, SensL, HPK

Dynamic measurements in the dark

Thanks to all team: V. Puill, V. Chaumat, J.F. Vagnucci & C. Sylvia, C. Cheikali

SiPM's cell signal

Measured signals characteristics

- rise time: $\tau_{rise} \cong R_D C_D \sim 1-3$ ns (read-out chain should be taken into account)
- recovery time $\tau_{recovery} \cong R_Q C_D$ (influence the dead time and dynamic range):
 - $\bullet~\sim~$ tens of ns for FBK, HPK devices; up to 200ns for SensL devices

SiPM cell gain & capacitance

Defined as the charge developed in one cell by a primary charge carrier:

- \bullet G increases linearly with V_{bias} at a given V_{BD}
 - G: $5x10^5 5x10^6 \Rightarrow$ simple or no amplifier required
- The slope of the linear fit of G v.s. $\Delta V \Rightarrow$ cell diode capacitance
 - C_{pixel} : tens to hundreds of fF
- G and C_{pixel} increase with the cell geometrical dimensions
 - $C_{pixel} \sim \varepsilon_0 \varepsilon_r S/d$; S cell junction surface; d cell depletion thickness

SiPM noise

- Dark count rate
 - the main source of noise limiting the SiPM performances (e.g. single photon detection)
 - the number of false photon counts/s registered by the SiPM in the absence of the light
 - three main contributions:
 - <u>thermal/tunneling</u> charge carriers generation by thermal/ trap-assisted tunneling phenomena – *pulses looking the same as real photon pulses*
 - <u>afterpulses</u>
 - <u>optical cross-talk</u>
- carriers trapped during the avalanche discharging and then released triggering a new avalanche
- photo-generation during avalanche discharge (hot carrier luminescence phenomena)
- these photons can trigger an avalanche in an adjacent µcell

SiPM dark count rate

Piemonte & al., IEEE TNS, Vol. 54, Issue 1, 236-244

N. Dinu & al, NIM A 610 (2009) 423-426

- DCR linear dependence due to triggering probability $\propto \Delta V$ - non-linear at high ΔV due to cross-talk and after-pulses $\propto \Delta V^2$
- DCR scales with active surface

Critical issues:

- Quality of epitaxial layer
- Gettering techniques

SiPM characteristics @ room temperature - light conditions -

Light measurements – continuous or pulsed light

Thanks to all team: V. Puill, V. Chaumat, J.F. Vagnucci, C. Bazin

• Continuous light: PDE vs λ (350-800nm):

- low incident flux (~ 10⁷ incident photons /s/mm²) to avoid the SiPM saturation
- calibrated photodiodes (HPK S3590-18, UDT Instrument 221)
- the number of the photons recorded by the SiPM evaluated by two methods:
 - DC method & AC counting methods
- Pulsed light: PDE, timing resolution, non-linearity
 - the number of the incident photons evaluated with a PMT (HPK R614-00U)

Photon Detection Efficiency (1)

PDE of different SiPMs

SiPM jitter or timing resolution (1)

SiPM jitter or timing resolution (2)

SPTR – HPK devices

Detailed description of SPTR measurements and results: G. Collazuol,Pixel Workshop, FermiLab, 2008

SPTR – position dependence

Data include the system jitter (common offset, not subtracted)

Larger jitter if photo-conversion at the border of the cell

Due to:

1) slower avalanche front propagation

- lower E field at edges
- → cfr PDE vs position

SiPM response non-linearity

The SiPM output signal is proportional to the number of fired pixels as long as the number of photons (N_{photon}) times the photon detection efficiency PDE is smaller than the number of the pixels N_{total}

$$N_{firedcells} = N_{total} \cdot \left(1 - e^{-\frac{N_{photon} \cdot PDE}{N_{total}}}\right)$$

Symplified model: Stoykov, & al., JINST June, 2007

Main sources of non-linearity:

- finite number of pixels main contribution when $N_{photons} \sim O(N_{cells})$
- finite recovery time
- afterpulses, cross-talk
- drop of ∆V during the light pulse due to relevant signal current on external series resistance

Detailed model to estimate non-linearity corrections: T. van Dam & al., IEEE TNS 57 (2010) 2254

SiPM characteristics as a function of temperature

LAL set-up

Thanks to all team: J.F. Vagnucci, C. Bazin, C. Cheikali, C. Sylvia, V. Puill, V. Chaumat,

Fermilab set-up

Vertical column automatic filling with N₂

System of N₂ flow control

Cold finger

Test vacuum cube SiPM locations

Tubes connected to a vacuum pump

Box: read-out electronics

- T cryogenic control system Cryo.con + automatic flow control
- Keithley 2400 for SiPM bias
- CAEN digitizer calibration (Vbd vs T)
- Agilent Oscilloscope waveforms acquisition @ dV=const

Thanks to FermiLab team: Adam Para, Paul Rubinov, Kelly Hardin, Cary Kendziora, Carlos Ourivio Escobar

Zoom inside of cube

Temperature dependence of SiPM parameters

Few slides to be added

Arrays of SiPM & multi-channels read-out electronics

SiPM applications

- Calorimetry
- Cherenkov
- Medical
- Number of applications still growing....

Strengths

- Flexible design
- High gain
- Compact
- Fast
- High PDE \rightarrow still growing
- Insensitivity to magnetic fields
- Low cost

Weaknesses

- High dark rate @ room temp.
 - afterpulses & cross-talk
- Still "small" area
- Temperature dependence of some parameters
- Radiation damage

SiPM arrays & multichannels read-out electronics

SiPM monolithic array of 4x4 channels from FBK-irst glued and wire bonded to a PCB @ Pisa

Each channel: 1x1 mm² 625 cells, 40x40 μm²/cell

SiPM matrix (16 channels)connected to MAROC2 chip (Omega Pole)

4% uniformity

SiPM monolithic array of 4x4 channels from Hamamatsu Each channel: $3x3 \text{ mm}^{2}$, 3600 cells, $50x50 \mu \text{m}^2$ /cell

Details on read-out electronics: see slides 40-42, SIPMED application

SiPM @ medical applications

Requirements

- Compact & cheap
- Fast \rightarrow TOF-PET
- Insensitivity to magnetic field → PET/MRI

Applications

- Innovative detector systems
- Intra-operative probes, SPECT systems
- PET: Time-of-flight PET, PET/MRI

More details on PET applications: see G.Llosá, PhotoDet2012

SiPM @ intra-operative probes - SIPMED

- Aim of the project
 - Development of a very compact intra-operative gamma probe based on arrays of SiPM coupled to scintillator and multi-channels read-out electronics
- Teams
 - IMNC & LAL
 - Omega Pole
 - L'Hôpital Lariboisière

From POCI to SIPMED (1)

Figure II.1 : Représentation schématique de l'imageur POCI

10	
Hecam Sate	 ₽.

	Spatial resolution	Efficiency	Energy resolution	Active surface	Dimension	Weight
POCI	3.2 mm	290	32%	12.5 cm ²	h = 90 mm	1.2 kg
	(contact)	cps/MBq			φ95 mm	
TReCAM	1.8 mm	300	11.3%	25 cm ²	h = 117 mm	2 kg
	(contact)	cps/MBq			140 x 83 mm ²	

From POCI to SIPMED (2)

SIPMED camera characteristics

- Field of view 25 cm²
- Geometrical dimensions: 60x60x50 mm²
- Weight <1kg
- 256 read-out channels

Characteristics of SiPM arrays

Elementary module SIPMED

First electrical tests – very satisfactory Project under progress.....

SiPM @ calorimetry

Requirements

- Insensitivity to magnetic fields
- Radiation hardness
- Mass production with uniform properties and low cost

Applications

- Future applications (ILC, PANDA at Fair)
 - High granularity
 - Compactness, low weight (PEBS)
- Upgrade of future experiments
 - Replacing current photo-detectors (CMS)
 - Increasing granularity

SiPM @ ILC HCAL

SIPM: tests with MePHI/PULSAR SIPM , HAMAMATSU MPPC

SiPM 1 mm^2 Readout of SiPMs by the

3 x 3 cm² plastic scintillator tile with embedded WLS fiber + SiPM SPIROC ASIC (Omega Pole)

41

216 tiles/layer (38 layers in total) ~8000 channels

CMS Outer Hadron Calorimeter (HO) upgrade

- Replace HO HPD (susceptible to discharge at intermediate B fields) with SiliconPhotoMultipliers (SiPM)
 - SiPM PDE >2x HPDs and gain a factor of 50 to 500 larger;
 - Compact and Vbias ${\sim}100V$ compared to ${\sim}10KV$ for HPDs;
 - Not affected by magnetic fields
- Scintillator/wavelengthshifting fiber.

Board with 18 MPPCs and Peltier on the back. Temp stabilization system.

• Components (2200 SIPMs, 160 SIPM Mounting Boards, 160 Control Boards) built and tested. Electronics will be complete by the end of 2012.

 The full HO SIPM system will be installed during the LHC LS1 shutdown in 2013.
A. Sharm

A. Sharma/Jim Freeman. FDFP 2012

SiPM @ Tokai-to-Kamioka

ND280 : off axis neutrino beam flux and SuperK backgrounds measurements

Two Fine Grain Detectors (FGDs):

fiber end mirrored with aluminum

	184em	System	Channels	Bad channels	Fraction
		ECAL (DSECAL)	22336 (3400)	35 (11)	0.16% (0.32%)
Pi-zero Tracker		SMRD	4016	7	0.17%
		POD	10400	7	0.07%
	192 bars	FGD	8448	20	0.24 %
		INGRID	10796	18	0.17 %
r of .	SiPM's used @ T2K -	Total	55996	87	0.16 %

SiPM @ Cherenkov detectors

Requirements

- Single photon detection
- High PDE
- Large area
- Low dark count rate
- Fast reponse

Advantages with respect to PMT

- Data analysis
 - Single photon resolution
 - High PDE
 - no known ageing
- For the construction
 - No need high voltage ($\sim 70 \text{ V vs kV}$)
 - More robust to light exposure

FACT – First G-APD Cherenkov Telescope

- First operation on the night of October 11, 2011 (full moon)
- Usually no operation of IACTs in full moon nights

1440 SiPM + light collecting cones

Conclusions

Additional slides

Avalanche triggering probability

GM. Collazuol, IPRD08

47

Avalanche triggering probability

IRST devices

Radiation damage

- Bulk damage due to Non Ionizing Energy Loss (NIEL) ← neutrons, protons
- Surface damage due to lonizing Energy Loss (IEL) $\leftarrow \gamma$ rays (accumulation of charge in the oxide (SiO2) and the Si/SiO2 interface)

Radiation damage effects on SiPM

1) Increase of dark count rate due to introduction of generation centers

Increase (ΔR_{pc}) of the dark rate: $\Delta R_{pc} \sim P_{o1} \alpha \Phi_{eq} \operatorname{Vol}_{eff} / q_{e}$ where $\alpha \sim 3 \times 10^{-17}$ A/cm is a typical value of the radiation damage parameter for low E hadrons and $\operatorname{Vol}_{eff} \sim \operatorname{Area}_{siPM} \times \varepsilon_{geom} \times W_{epi}$

NOTE:

The effect is the same as in normal junctions:

- independent of the substrate type
- dependent on particle type and energy (NIEL)
- proportional to fluence

2) Increase of after-pulse rate due to introduction of trapping centers

 \rightarrow loss of single cell resolution \rightarrow no photon counting capability

Radiation damage: neutrons (0.1-1 MeV)

IRST – single photon timing resolution (SPTR)

HPK – single photon timing resolution

