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By taking advantage of both the magnetic strength and 
the astounding simplicity of the magnetic properties of 
oriented rare earth cobalt material, new designs have 
been developed for a number of devices. In this article 
on multi pole magnets, special emphasis is put on quad
rupoles because of their frequent use and because the 
aperture fields achievable 1.2 1.4 T  are rather large. 
This paper also lays the foundation for future papers on:

a Linear arrays for use as “plasma buckets” or undula
tors for the production of synchrotron radiation.

b Structures for the production of solenoidal fields.

c Three dimensional structures such as helical undu
lators or multipoles.

Introduction
For some applications, the most important of the many 
advantages of permanent magnets is the fact that they 
can be made very small without reduction of magnetic 
field strength. In conventionally powered magnets, the 
current density in the coils is inversely proportional to 
the linear dimension, leading to insurmountable cooling 
problems and attendant reduction of field strength as 
size decreases.

We will discuss new designs that with the currently 
available oriented rare earth cobalt REC  material, pro
duce in some devices, fields that are as strong or 
stronger than those achievable with conventional mag
nets of any size. 

Thus, REC magnets will have a performance advantage 
over conventional magnets regardless of size, shifting 
the decision between the two to di erent areas, such as 
convenience of strength adjustment, price, etc. 

The advantage of REC is not only its strength, but also 
the simplicity of its magnetic properties. This simplicity 
makes REC systems easy to understand and to treat ana
lytically, which in turn leads directly to improved de
signs. For this reason, we devote some space to REC 

properties, and how they can be best described in the 
magnetostatic equations, despite the fact that these 
properties have been known by workers in the field 
since Strnat1 started the development of REC. 

For the sake of completeness, we include similarly the 
derivation of some theorems that are, at least in princi
ple, textbook material, but are used so infrequently that 
they cannot be expected to be at the fingertips of most 
readers. 

2. Basic Formulae, Notation
For three dimensional 3D  calculations, we use the 
standard Cartesian coordinates x, y, . Most of the two 
dimensional 2D  calculations are done with complex 
numbers that are identified by underlining the symbols. 

Specifically z is defined by z = x + iy =reiφ, with i2 = 1. 

The complex conjugate of a quantity is indicated by an 
asterisk. 

In a vacuum region, the two dimensional field compo
nents Bx, By or Hx, Hy  can be derived from either a sca
lar potential V or a vector potential that only needs to 
have a component A in the  direction: 

Bx =
A

y
=

V

x
1a  

By =
A

x
=

V

y
1b  

The relationships between the derivatives of A and V 
are the same as the Cauchy Riemann conditions of the 
real and imaginary part of an analytical function of the 

complex variable z , i.e., the complex potential 

F z( ) = A + iV is such a function, and if we use
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B = Bx + iBy to describe the two dimensional vector B, it 

follows from equation 1  that 

 

B* =
idF

dz
2  

is also an analytical function of z . The field at location

z0 , generated by a current filament, I, at location z , is 

given by 

 

B* z0( ) =
μ0I

2 i

1

z0 z
3  

The coe cients of the Taylor series expansion of F and 

B*  are in the customary fashion identified by the sub

script of the expansion of F : 

 

F z0( ) = an
n=1

z0
n

4a

 

B* z0( ) = bn
n=1

z0
n 1;bn = inan 4b

The same expansions, but with  < 0, will be used to 
describe fields in the region radially outside the mag
nets. MKS units are used throughout, with μo = 4  x 10 7 
V s A 1 m 1. 

3. Properties of REC 
3.1. The Manufacturing Process 

To get a rough understanding of the reasons for the 
REC properties described in section 3.2, we describe 
very briefly the major steps in one of the major manu
facturing processes used today to produce REC. For 
details, the reader is referred to the book by McCaig.2

After a molten mixture of roughly five atomic  parts 
cobalt to one atomic  part of some rare earth metal s  is 
solidified by rapid cooling, a crushing and milling proc
ess produces a powder that consists of particles with 
linear dimensions of the order of 5 μm. These grains are 
magnetically highly anisotropic, “wanting” to be polar
ized only along one crystalline direction. The powder is 
then exposed to a strong magnetic field and subjected to 
high pressure, causing the individual grains to physically 
rotate until their magnetically preferred axes are parallel 
to the applied field. These aligned blocks of material are 
then sintered, and machined or ground if necessary. Fi
nally the material is exposed to a very strong magnetic 
field in a direction parallel or antiparallel to the previ
ously established preferred direction, orienting practi
cally all alignable magnetic moments along the direction 

of magnetization, commonly called the easy axis. The 
property that makes REC so valuable is that this mag
netization is very strong, and that it can be changed in a 
substantial way only by applying a strong field in the 
direction opposite to the one used to magnetize the 
material. 

3.2. THE B H  RELATIONSHIP OF REC 

The relationship between B  and H  in the direction 
parallel to the easy axis is schematically shown in figure 
1. The most important characteristics of the B H  
curve are the following: 

a It is, for all intents and purposes, a straight line over 
a very wide range, with a typical slope dB /dH μo = 
μ  = 1.04 1.08. The point where the slope becomes 
significantly larger depends on the details of the 
manufacturing process, but is usually well within the 
third quadrant, at H /Hc = 1.5 2. 

b The o set of the B H  curve from the origin, the 
remanent field Br is typically 0.8 0.95 T, with the 
coercive field μoHc about 4 8  less than Br.

c As long as one stays on the straight line part of the 
B H  curve, moving along the curve does not 
change this straight line. 

In the range of interest here, the relationship between 
B  and H  can be represented by: 

 
B = μ0μ H + Br 5a  

or, with y = 1/μ: 

 

H =
B

μ0
Hc 5b  

In the direction perpendicular to the easy axis, the rela
tionship between B  and H  is, to a very good approxi
mation, described by: 

B = μ0H + Br
H

HA

or, with

μ =
1

= 1+
Br

μ0HA

B = μ0μ H

6  

The high degree of anisotropy of good material mani
fests itself in the large values of the anisotropy field 
μoHA: typical values are 12 40 T, giving values of 1.02 to 
1.08 for μ  and equation 6  is usually valid up to several 
Tesla. 
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Aside from the REC material discussed so far, resin 
bonded REC material is also available, with qualitatively 
the same properties, but lower values of Br and Hc. Some 
of the oriented ferrites also have similar properties, but 
with Br  0.35 T and larger values  1.1  for the perme
abilities μ  and μ .

Br

B

H�0

Hc�0�

Figure 1 — B(H)-curve in the direction parallel to the easy 
axis.

The designs discussed in this paper can also be imple
mented with these materials; we always refer to REC 
magnets because it is the unique strength of the REC 
materials, combined with the other properties described 
in this section, that will open the door to new and excit
ing applications. 

3.3. Description of REC Properties in the 
Magnetostatic Equations

Equations 5a  and 6  can be combined into the vector 
equation: 

B = μ0μ *H + Br 7a

In this equation, Br is the vector with the magnitude of 
the remanent field Br in the direction of the easy axis, 
and μ * H = μ  H  +μ  H . Equations 5b  and 6  can be 
similarly combined into 

H =
*B

μ0
Hc 7b

If we derive H from a scalar potential, we have to satisfy 
div B = 0, yielding with equation 7a

div μ0μ *H( ) = = divBr 8a

If we derive B similarly from a vector potential, we get 
from equation 7b  and Amperes law

curl
*B

μ0

= j = curl  Hc 8b

The anisotropy of the material shows up in two di erent 
ways: in the inhomogeneous terms on the right sides of 
equations 8a, b , and in the slight anisotropy associated 
with the weak di erential permeability of REC. Because 
the permeabilities are so close to one, we assume, unless 
stated otherwise, that μ  = μ  = 1. This very good ap
proximation, together with the assumption of constant 
Hc and Br means that the material can be treated as vac
uum with either an imprinted charge density  div Br 
or an imprinted current density curl Hc. This in turn has 
the consequence that the fields produced by di erent 
pieces of REC superimpose linearly, and that they can 
be calculated with fairly little e ort when no soft mag
netic material is present. It should be noted that in the 
case of homogeneously magnetized material, i.e., Hc, Br 
= constant within the material, curl Hc and div Br are 
zero everywhere except at the surface, where one en
counters delta functions that signify the presence of 
current sheets or charge sheets. 

3.4 Calculation of Three Dimensional 3D  
Fields Produced by REC

In the absence of soft material, we derive the field at the 
location outside the material from a scalar potential, 

H r0( ) = grad  V 9

with V given by an integral over the volume of the mate
rial:

μ0V r0( ) =
1

4

r( )
r r0

dv 10

In the case of a homogeneously magnetized REC piece, 
one has a charge sheet at its surface. With equation 8a  
one therefore obtains in that case V from an integral 
over the surface of the material: 

V =
1

4

Hc • da

r r0
=
Hc

4

da

r r0
11

For our model, Br = μoHc has been used. A particularly 
appealing property of this formula is the fact that the 
integral is independent of Hc.

For the case of continuously varying Hc we use, with 
K r  = 1/|r r0| the identity 

K

μ0

= K  div Hc = Hcgrad  K div KHc( ) 11b

Because Hc = 0 outside the material, 

div KHc( )dv = KHc • da = 0 11c

With grad K = r ro /|r ro|3 we obtain 
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V =
1

4

Hc • r r0( )

r r0
3 dv 12

3.5. Calculation of Two Dimensional 2D  
Fields Produced by REC

For a REC assembly that is su ciently long in the z
direction and whose magnetization vector Br has no  
component, the fields outside the material can, in the 
absence of soft steel, to a good approximation be de
scribed by: 

B* z0( ) =
μ0

2 i

j

z0 z
dxdy 13  

with

μ0 j =
Bry
x

Brx
y

14  

We have again used Br = μoHc 

It is shown in the Appendix that equation 13  can with
out restrictions on Br = Brx + i Bry, be written as 

B* z0( ) =
1

2

Br

zc z( )
2 dxdy 15  

This formula can be considered the 2D equivalent of 
equation 12 , because it expresses the field by an inte
gral that contains the magnetization itself, and not a 
combination of its spatial derivatives.

Equation 15  has a property that is highly significant for 
many applications: if two REC assemblies are identical, 
except that in the second system the easy axis is rotated 
everywhere by the angle +  relative to the easy axis ori
entation in first system, then the right hand side of 
equation 15  for the second system equals that of the 

first system, but is multiplied by ei . This allows us to 
state the Easy Axis Rotation Theore   If in a 2D, soft
steel free, REC system all easy axes are rotated by the 
angle + , then all magnetic fields outside the REC rotate 
by the angle  without a change in amplitude. Figure 2 
illustrates this theorem. The theorem is qualitatively 
easy to understand if one realizes that each volume ele
ment of REC produces a dipole field for which this 
theorem is valid for obvious reasons. 

For a homogeneously magnetized piece of REC, Br  can 

be taken outside the integral in equation 15 . Integrat
ing first over x, one obtains:

 

B* z0( ) =
Br

2

dy

z0 z
16a

Integration over y first yields 

 

B* z0( ) =
Br

2

dx

z0 z
16b

and equations 16a  and 16b  can be combined into

 

B* z0( ) =
Br

4 i

dz*

z0 z
16c

The last three equations are given because, depending 
on the geometrical shape of the REC piece, one of these 
integrals may be easier to evaluate than the others or the 
integral in equation 15 .

Equation 16b  and similarly equation 16a  can also be 
derived by using the current sheet model for a REC 
piece with its easy axis parallel to the x axis, and then 
invoking the easy axis rotation theorem.

Br

B

Br

Figure 2 — Effect of rotation of easy axes on magnetic field. 

 To calculate fields inside the material, the techniques 
developed in reference 3 can be used.3 We summarize 
here only the result for the case of a homogeneously 
magnetized piece of REC by first removing a circular 

cylinder of material around the pointz0 , anyone of the 

equations 16a c  can be used, with an integration path 
as shown in figure 3. Notice that the integrals over the 

straight lines cancel.  To obtain B* , one has to add the 

contributionBr / 2  caused by the removal of the cylin

der. To obtain μoH *  inside the material, one has to use 

μ0H
*
= B* Br

*
.
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Even though it is possible to write down explicitly the 
fields produced by the multipole magnets discussed be
low, it is more convenient, and gives more insight, to use 
the Taylor expansions introduced in equations 4a, b . To 
obtain the expansion coe cients, one has to use in 
equations 16a c .

1

z0 z
=

z0
n 1

znn=1

17a

and for use in equation 15 , one obtains by di erentia
tion of equation 17a : 

1

z0 z( )
2 =

nz0
n 1

zn+1n=1

18a

For a field expansion radially outside the magnet, one 
has to use 

1

z0 z
=

z0
n 1

znn=1

17b

and

1

z0 z( )
2 =

nz0
n 1

zn+1n=1

18b

4. REC Multipole Magnets 
4.1. Multipoles with Continuous 
Easy Axis Orientatio

To produce a strong 2N multipole magnet with good 
field quality, one wants to arrange the REC in such a way 

that in equation 4b , bn is large, and that all other bn
are as small as possible. Using equation 18a  in equation 
15 , we obtain 

bn =
n

2

Br

zn+1
da 19b

With Br = Bre
i ( ),  andz = rei , we get

bn =
n

2

Br exp i ( ) n +1( ){ }
rn+1

rdrd 19

From this equation follows directly that the largest pos
sible real bn  is obtained by choosing

( ) = N +1( ) 20

Equation 19  also shows the expected fact that a piece 
of REC contributes the more to the multipole strength 

the closer it is to the point z = 0. 

Figure 3 — Integration path for calculation of field 
inside the REC material

If the space between the two circles z = r1 and z = r2 is 

filled. with REC, with Br a constant and φ  given by 

equation 20 , bn  = 0 for   N, giving for 

B* z0( ) =
z0

r1

N 1

Br
N

N 1
1

r1
r2

N 1

;  for  N 2

21a

B* z0( ) = Br ln
r1
r2

;  for  N = 1 21b

Inspection of the field for z  > r2, using equation 18b  

instead of equation 18a , shows that the field outside 
this multi pole magnet is exactly zero. 

The fact that “recipe” equation 20  leads to a perfect 
multipole is not surprising when one realizes that as a 
direct consequence of equation 20 , the current density 
j in equation 8b  inside the material has only the 
component jc = Hc N + 1  sin Nφ/r, with the current 

sheets at the inside and outside boundaries of the REC 
also being proportional to sin Nφ. 

Equations 21  were given for N = 1, 2 by Blewett4 in an 
unpublished report in 1965. However that report does 
not mention the anisotropy of the material, and conse
quently does not give the design recipe represented by 
equation 20 . 
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The multipole just discussed obviously produces the 
strongest and cleanest multi pole field possible within a 
circular aperture of a pure REC multi pole with a given 
amount of material. A study of the field inside the mate
rial shows that one can find closed curves that are per
pendicular to H everywhere. Replacing the material in
side such a closed curve by soft steel with very large 
permeability will reduce the amount of REC without 
significantly changing the field in the aperture. It is my 
subjective judgement that the potential savings are too 
small to be worth the resulting complication of con
struction in the case of strong multipoles, and this ave
nue has therefore not been pursued in the study of the 
segmented multipoles. 

Since the above mentioned steel contours can range into 
the aperture region, this approach can be used to design 
multipoles that have steel poles controlling the field in 
the aperture and use fairly little REC. However, with 
the exception of dipoles, those magnets have weaker 
pole tip fields than the pure REC multi poles. While it 
is my opinion that incorporation of steel into the design 
will not increase the upper limit of the achievable multi 
pole strength, given by equation 21a , I have no proof 
for this assessment. 

In order to satisfy equation 20 , we require strong mag
netic fields during the alignment process with a distribu
tion of local direction given by equation 20 . Since a 2D 
vacuum field satisfying that condition must behave like

B*  ~ 1 / N+1 in the region of interest, it is highly unlikely 

that one can produce REC with precisely the desired 
easy axis distribution, particularly for small magnets. 
Fortunately, the segmented magnet design discussed 
below has a performance very close to that of the ideal 
REC multipole. 

4.2. The Segmented Multipole Magne

To get a reasonable approximation to equation 20 , we 
segment the magnet into M geometrically identical 
pieces such that, ignoring the direction of the easy axes, 
the structure is invariant to rotation by the angle 2 /M 

about z = 0 . Throughout each piece, the easy axis 

points in the same direction, but that direction advances 
in the x y coordinate system  by N+1  2 /M from one 

piece to the next. This means that relative to a coordi
nate system fixed in the piece, the easy axis advances by 
N2 /M from one piece to the next. 

Using equations 17 , 16c  and 4b , bn produced by one 

such piece can be expressed for both positive and nega
tive  by 

 

bn = sgn n( )
Br

4 i

dz*

zn
22

If the contribution to bn  coming from a reference piece 

isCn , then the contribution from a piece rotated by  

relative to the reference piece is Cne
ix N+1( )e ix n+1( ) , 

where the first exponential factor comes from the rota
tion of the easy axis by N+1 , and the second factor 
from the integral in equation 22 . With  = 2 /M, we 
get for the whole assembly 

bn = Cn exp
i2 m N n( )

Mm=0

N 1

22b

If N /M is zero or a positive or negative integer, the 
sum equals M. If N /M is not an integer, the geomet
rical series is zero, yielding 

B* z0( ) = M Cn
v

z0
n 1;  n = N + vM 23  

Depending whether one wants to know the fields in the 
aperture region or outside the magnet, one takes the 
sum over either positive or negative . 

Figure 4 shows the geometry for a trapezoidal reference 
piece that is bisected by the x axis and whose magneti

zation is characterized by Br . We allow discussion of a 

smaller than maximum possible angular size 2 /M  by 
making the angular size of the reference piece 2 /M. 

For >0, Cn is most easily obtained by using equation 

7a  in equation 6b . Using the latter Cn in equation 23  

gives: 

B* z0( ) = Br

z0
r1v=0

n 1
n

n 1
1

r1
r2

n 1

Kn

n = N +M

Kn = cos
n

M

sin
n

M
n

M

n

n 1
1

r1
r2

n 1

n=1

= ln
r2
r1

24a

For the geometry indicated by dashed lines in figure 4, 
i.e., for circular arcs of radii r1 r2 the inner and outer 

boundaries  Cn is most easily calculated with equations 

5  and 8a , and K  in equation 24a  has to be replaced 
by
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Kn =

sin
n +1( )
M

n +1( )
M

24b

It follows from equation 24  that for a given Br and for 
 = N > 1, there always exists an upper limit for the field 

strength at the magnet aperture, while for the dipole 
this upper limit is controlled in essence by the B H  
curve in the third quadrant.

�
M

��
M

X

Figure 4 — One piece of a segmented REC multipole. 

Comparison of equations 24  with equations 21  shows 
that the fundamental harmonic of the segmented multi
pole is smaller by a factor KN than the equivalent ideal 
REC multipole and that for  = 1 one comes close to the 
ideal strength if the number of REC pieces per period. 

M '
=
M

N
25

is equal to or larger than eight. 

In the somewhat unusual case that one elects to use a 
small value like 2 for M’, it follows in general from equa
tions 5  and 8a  and specifically, of course, from equa
tions 24a, b  that KN is largest not when  equals one, 
but for 

=
M

2 N +1( )
=

M '

2 1+ N 1( )
26  

provided this value is smaller than one. 

From equations 24a, b  we can extract the amplitude of 
the field due to the harmonic  = N+ M relative to the 
amplitude of the fundamental N. For the qualitatively 
representative case of trapezoidal REC pieces, we ob

tain from equation 24a  for that ratio Q  at z = r, 

and for  = 1 

Q v( ) =
r

r1

vM
N 1

n 1
cosvM

M

1 r1 / r2( )
n 1

1 r1 / r2( )
N 1 27  

For r = r1, the values for Q  are uncomfortably large. 
Fortunately in most applications the largest r/r1 of con
cern is, while close to one, still small enough so that the 
factor r/r1 vM reduces Q  to acceptable levels even for 
the most unfavorable case,  = 1. Should, however, Q 1  
be larger than acceptable, Q 1  can be made to vanish by 
choosing 

=
1

1+ N /M( )
= 1

1

1+M '( )
28  

For that value of , Q  becomes 

Q v( ) =
r

r1

vM
N 1

n 1
cosvM

M

x sin
v 1

1+M ' / sin1+M '

x 1
r1
r2

n 1

/1
r1
r2

N 1

29  

For reasonably large values of M, it is unlikely that the 
worst of these harmonics  = N + 2M  will ever cause 
any problems. 

The design represented by equation 28  means that one 
has a wedge shaped non magnetic space between adja
cent pieces of REC. While these gaps could be imple
mented by having appropriate notches in the magnet 
assembly fixture, an alternate method of making Q 1  = 0 
would be the use of a non magnetic spacer between ad
jacent REC pieces. For that kind of design it would be 
advantageous to have spacers of uniform thickness D. 
Referring to figure 5 for the definition of the symbols, 
application of equation 16a  and 17a  gives for the field 
in that case 

B* z0( ) = Br

z0
r1r=0

n 1
cos 0 cos

n 1
1

n 1( ) 0

x sin 0 + 1 n 1( )
r2 cos 2

r2 cos 1

n 1

sin 0 + 2 n 1( )

30a

with

D

r1
= 2cos 0 tan 0 tan 1( )

2 0 1( )
cos 0

30b
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tan 2 = tan 0

r1
r2

tan 0 tan 1( ) 30c

To eliminate the harmonic  = N + M in the case where 
the term proportional to r1/r2 n 1 in equation 30a  can 
be neglected, one has to satisfy 

1 =
0( )

n 1( )
= 0

M 1

N +M 1
31a  

giving, with equation 30b , 

D

r1
=

2N

N +M 1

/M

cos /M
31b  

Formulas for reference pieces with shapes other than 
trapezoids are easily derived following the same general 
procedure, but are not given here. From these expres
sions follows the general rule that the allowed harmon
ics  = N + M tend to be the smaller the better the 
inside REC boundary approximates a circle.

0
1

2

�
M0 

= 

r1
r2

Spacer

Figure 5 — One piece of a segmented REC multipole with 
flat sheet spacer. 

To describe the fields radially  outside the multipole, we 

expand B*  in1 / z0 . By using equations 17b  and 18b  

instead of equations 17a  and 18a , we get instead of 
equations 24a, b : 

B* z0( ) = b n
v

z0
n 1

= Br

r2
z0v=1

n+1
n

n +1
1

r1
r2

n+1

K n

n = vM N

K n = cos n

M

sin
n

M
n

M

;  (Trapezoid)

32a

K n =

sin n 1( )
M

n 1( )
M

;  (circular  arcs) 32b

Equation 32a  is valid for z0 > r2 / cos /M( )  for 

the trapezoid, and for z0 > r2 for the circular arc case. 

Without going into details, it is clear that at these limits 

B z0( )  is somewhat smaller than it is at z0 = r1 . 

Since mi = M  N = N M’  1 , the field decays very rap

idly with increasing z0 provided that M is reasonably 

large. Shielding the space radially outside the multi pole 
against these fields will therefore be rarely necessary. We 
therefore give the expansion for the field perturbation 

caused by a circular steel shell with μ =  and z = R 

without derivation: 

BSteel
* z0( ) =

z0
n 1 b n( )

*

R2nv=1

;n = N + vM 33  

b n are the expansion coe cients of the unperturbed 

field in 1 / z0 as used in equation 32a . Notice that the 

fundamental  = N  is not a ected by the shield unless 
M has the exceptionally low value 2N. 

The results of this section show very clearly that the 
following properties are important for the design of a 
good segmented multipole magnet: 

1 The REC should be placed, with the largest possible 
volume filling factor, as closely to the “business” 
region as possible, “hugging” the aperture circle as 
well as possible. 

2 In order to produce strong fields of high quality, one 
should approximate equation 20  reasonably well, 
with M’ = 8 easy axis orientations per period being a 
good guide number. 

To arrive at a design, one has to combine these two es
sential requirements with considerations like availability, 
or ease of production, of REC pieces of various shapes; 
ease of assembly, etc. Trapezoidal segments, as discussed 
above, seem to be a good choice, but it is quite possible 
that assemblies of tightly packed small rods with circu
lar, hexagonal, or other, cross sections may be preferable 
under some circumstances. 
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4.3. The Segmented REC Quadrupol

Because of their special importance for accelerators, we 
discuss some details of quadrupoles, adding to the sum
maries published elsewhere 5,6 Since quadrupoles with 
trapezoidal segments are quite typical, we restrict the 
discussion to this specific class of magnets. 

From equation 24a  follows for the fundamental har

monic for  = 1: 

B* z0( ) =
z0
r1
Br2 1

r1
r2

K2

K2 = cos
2

M

sin 2 /M( )
2 /M

34

Table 1 shows that in order to get a strong quadrupole, 
one should choose M = 12 or 16. The gradients achiev
able with a 16 piece quadrupole are impressive, particu
larly when they are compared with those of conventional 
quadrupoles. For M = 16, r2/r1 = 4, which is still quite 
compact  and Br = 0.95 T which is commercially avail
able , one obtains an aperture field of 1.34 T. In contrast, 
a high quality conventional quadrupole is very di cult 
to make with more than 1 T at the aperture, and even 
that is possible only for fairly large aperture magnets. 
High aperture fields are of particular importance for 
linear accelerators with small apertures. For an aperture 
with r1 = 2 mm, it it possible to achieve a gradient B’ = 6 
T cm 1, and the diameter of such a quadrupole could be 
smaller than 2 cm. Clearly, it is impossible to achieve 
anything resembling this with conventional magnets and 
conventional REC quadrupole designs fall short of this 
gradient by at least a factor of 2.

M 4 8 12 16 20 24

K2 0.32 0.77 0.89 0.94 0.96 0.97

Figure 6 shows a schematic cross section of a 16 piece 
quadrupole, with the easy axis direction indicated in 
each piece. It follows from that diagram that one needs 
pieces with five di erent orientations of the easy axis 
relative to the trapezoidal shape to make this 16 piece 
quadrupole.

x

y

Figure 6 — Schematic cross section of a 
16-piece REC quadrupole. 

If one rotates all easy axes by 22.5° in the same direction, 
only four di erent pieces are required, which may be 
advantageous for the manufacturer. Since one has, in 
either case, a reasonably large number of pieces that are 
supposed to be identical, it may be advantageous to 
measure magnetization direction and magnitude for 
each piece, and then assemble the quadrupole in such a 
way that magnetization errors do the least harm to the 
field quality. For this reason, it may be a blessing in dis
guise that with present manufacturing techniques, the 
individual REC pieces are fairly small. This often forces 
the use of several layers of REC in the axial direction, 
increasing the number of pieces and therefore improv
ing the error canceling statistics. 

For a 16 piece quadrupole with r1/r2 = 0.25, the first un

desirable harmonic  = 18  field has, at z = r1, an ampli

tude that is approximately 6  of the fundamental see 
equation 27  for N = 2 . Eliminating that harmonic with 
a flat sheet of the thickness given by equation 31b , the 
first non vanishing harmonic is  = 34, with a relative 
amplitude of about 3  at the full aperture. The order of 
this harmonic is high  enough that no attempt has yet 
been made to also eliminate it. 

The fringe fields at the end of a segmented, quadrupole 
or other multipole  are fairly easily calculated by using 

the charge sheet model and equation 11 . If the cross 
sections of the REC pieces are trapezoidal, the charge 
sheets have rectangular cross sections and the integrals 
can be expressed by elementary transcendental func
tions, making the 3D field calculation rather easy. The 
relevant formulas are not reproduced here because the 

Nuclear Instruments and Methods 169 1980  pp. 1 10, doi:10.1016/0029 554X 80 90094 4 9



fringe fields of REC multipole magnets have some 
rather remarkable properties to be discussed in section 
I 4.4  that make fringe field calculations necessary in 
only very rare instances. 

Holsinger has built a prototype quadrupole with r1 = 1.1 
cm; r2 = 3 cm; M = 16; and consisting of three 16 piece 
layers in the axial direction. Comparisons were made 
between measurements of that magnet, computer runs 
of that magnet with PANDIRA,7 and the predictions 
made with the simple theory presented here. The results 
obtained with these procedures agreed very well with 
regard to the amplitude of the quadrupole field and the 
allowed higher harmonic  = 18. The only significant, 
but expected, discrepancy was the presence of the har
monics  = 6, 10, 14 in the computer model and the real 
magnet, while these harmonics do not exist in the sim

ple model that assumes μ   = μ  = 1. At z = r1 the ampli

tudes of these harmonics were, relative to the quadru
pole field, 0.2  for  = 6; 0.1  for  = 14; and <<0.1  
for  = 10. While these errors are so small that they are 
unlikely to cause problems in most applications, one can 
easily imagine methods to eliminate these harmonics, if 
necessary. If, for instance, one has a gap between adja
cent pieces for the elimination of  = 18, one would in
corporate movable thin strips of soft steel into these 
gaps to tune away these undesired harmonics. The real 
magnet also had an approximately 0.5  sextupole, as 
well as some other multi poles, present. Since the indi
vidual REC pieces were not measured, it is expected 
that these harmonics can be significantly reduced when 
this is done and properly taken into account in the as
sembly. Another obvious tuning method would be the 
removal or addition of small amounts of REC at appro
priate locations, but it is unlikely that such e orts will 
really be necessary. 

4.4 Important Practical Consequences of 
Applicability of Linear Superposition Principl

It is obvious that the linear superposition principle is of 
crucial importance not only for specific important theo
rems, like the easy axis rotation theorem or the selection 
rule for possible harmonics equation 24a , but to the 
whole mathematical description of REC magnets pre
sented here. However, there are some very important 
practical consequences of the linear superposition prin
ciple that are obtainable without any mathematical deri
vations. 

We consider first the following combination of two 
REC multipole magnets: one quadrupole is located, 
tightly fitting, inside the aperture region of another 
quadrupole. If each of these quadrupoles alone produces 
the same gradient, and both quadrupoles are rotated 
about the common axis by equal amounts in opposite 
directions, then the gradient in the aperture can be con

tinuously changed between zero and twice the strength 
of the individual quadrupole. By similarly pairing of two 
dissimilar multipoles, one can make combined function 
mag  nets. 

Care has to be taken for these combinations of REC 
magnets, and in particular for combinations of conven
tional steel magnets with REC magnets, that the REC is 
not driven into the nonlinear part of the B H  curve. A 
combination of magnets that would be fairly immune 
from this danger is a multipole inside the homogeneous 
field of a coaxial solenoid, since in this case the solenoi
dal field is everywhere perpendicular to the easy axis. 

A di erent method to modify the e ective strength of a 
REC quadrupole would be to assemble it from quadru
poles of relatively short axial lengths whose quadrupole 
field orientations can be adjusted. While this would be 
fairly easy to do, such a scheme obviously modifies the 
optical properties of the system in a non trivial way, and 
this aspect of such a system is currently under 
investigation .8

Another important application of the superposition 
principle is the treatment of the fringe fields at the ends 
of multi pole magnets. We deal here with two distinctly 
di erent aspects of fringe fields that are both very sim
ple and important. 

First we consider a multipole of finite physical length L 
whose left end is cut o  in an arbitrary fashion, and 
whose right end is shaped such that the left end would 
fit it perfectly, without forming any gap. See figure 7 . 
Another way to express that geometry is to state that 
the length of REC along any line parallel to the axis is 
either L or zero. Keeping the left end of the multipole 
fixed in space, we first consider the field quantity G1 r, 
φ,  produced by a semi infinite multipole, with Go r, φ  

representing the 20 field deep inside where it does not 
depend on . 

Figure 7 — Geometry of specific finite length REC multipole

Then the field quantity G r, φ,  produced by a multi 

pole of length L is given by 

G r, , z( ) = G1 r, , z( ) G1 r, , z L( ) 35  
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If we now calculate the optically important 

G z( )dz 35b

it is easy to see that equation 35  leads to 

G r, , z( )dz = LG0 r,( ) 36

This equation says not only that the e ective length for 
the fundamental harmonic of interest equals the physi
cal length of the multi pole, but also that the integral 
over a field quantity vanishes if that field quantity is zero 
in the 2D cross section! 

Next, we consider the properties of the fringe fields 
produced by a semi infinite multipole, produced by cut
ting an infinite multipole by the x y plane at z = 0 see 
figure 8 , i.e., we look at the fringe field function G1  
for the specific case of the “square” end. If V1 r, φ,  is 

the scalar potential produced by the multipole located at 
>0, then the scalar potential produced by the multipole 

located at <0 must be V1 r, φ, . If Vo r, φ  is the scalar 

potential inside the infinitely long multipole, the follow
ing obviously must hold: 

V1 r, , z( ) +V1 r, , z( ) =V0 r,( ) 37

Applying the appropriate operator to this equation to 
get the field quantity G1 r, φ,  of interest, we get, if no 

derivative with respect to  is involved: 

G1 r, , z( ) +G1 r, , z( ) = G0 r,( ) = 2G1 r, ,0( )

38  

From this it follows that 

G1 r, , z( )dz =
z1

z1G0 r,( ) 39  

if 1 is su ciently large. This means that the e ective 
boundary is at  = 0, and that the fringe field integral 
over a field quantity vanishes if that quantity is zero in 
the 2D cross section. Notice that this statement is 
stronger than the one made above with respect to equa
tion 36  that required integration over the fringe fields 
of both ends.

0 z

Figure 8 — Fields at the end of a REC multipole

If the operator to obtain the field quantity of interest is 
proportional to /  z , we get instead of equation 38  

G1 r, , z( ) = 1( )
m
G1 r, , z( ) 40  

Integrating this G1 r, φ,  over the fringe field region 

gives zero when   2, but not necessarily when  = 1. 

Appendix 
Using equations 14  in equation 13 , one of the two in
tegrals that have to be evaluated in equation 13  is 

I1 =
1

2 i

Hcy / X

z0 x iy
dxdy  41

Carrying out the integration over x first, and integrating 
by parts, one obtains 

 

I1 =
1

2 i

Hcy

z0 z
dy

1

2 i

Hcy

z0 z( )
2dxdy 42

Included in the integration area is a thin strip of vacuum 
outside the REC. Hcy = 0 there, so that the line integral 
over y vanishes. Applying the same technique to the 
other integral necessary for the evaluation of the inte
gral in equation 13 , one obtains equation 15 . 
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