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The classical framework on distributed inference considers a set of nodes taking

measurements and a fusion center making the final decision on the underlying

phenomenon, without dealing with the issue of transporting the measurements

to the fusion center. Such an approach introduces significant overhead in com-

munication. Communicating all the raw data for inference is not scalable: in

this case, the per-node average energy consumption and the total bandwidth

requirement become unbounded as the network grows.

We design scalable algorithms for two scenarios with guarantees for infer-

ence whose communication requirements and complexity are bounded even as

the network grows. This is achieved through distributed computation of a suffi-

cient statistic, which results in reduction of data dimensionality while ensuring

no loss in inference accuracy at the fusion center. The first scenario deals with

multihop routing and fusion of spatially correlated measurements, incorporated

through a Markov random field model. The second scenario deals with design

of medium-access control (MAC) with the aim of computing a sufficient statistic

for inference over a multiple access channel.
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Ē(Υn(Vn)) Avg. Energy Under Policy Υ . . . . . . . . . . . . . . . . 95
Υ
∗(Vn) Min. Energy Fusion Policy . . . . . . . . . . . . . . . . . 97
A Set of Lossless Fusion Policies . . . . . . . . . . . . . . . 97
λ Sensor Node Density . . . . . . . . . . . . . . . . . . . . . 99
Q1 Unit Area Square Around Origin . . . . . . . . . . . . . . 99
τ PDF for IID Node Placement . . . . . . . . . . . . . . . . 99
Pa Homogeneous Poisson Distribution with Intensity a . . 100
ζ(ν; MST) Scaling constant for ν-weighted MST Edges . . . . . . . . 102
Cg(Vn) Complete Graph Over Nodes Vn . . . . . . . . . . . . . . 106

xiii



CHAPTER 1

INTRODUCTION

We are living in an increasingly networked world with networks of varying

scales: the nodes in the network can comprise of billions of tiny devices, our

personal mobile gadgets, or even our friends. The nature of links is also varied;

they can be wireless, wire-line, or social links. There is rich interaction and infor-

mation flow between these networks - for instance, between the computer and

the social networks. So far, these different networks have been mostly studied

as independent entities.

Another feature of these networks is the massive scale of the data they gener-

ate. Analysis of such large data sets requires scalable algorithms whose compu-

tational complexity does not grow with data. Moreover, since data is generated

at a large number of nodes, the communication requirements of an algorithm is

a key parameter. Depending on the application, algorithms need to undertake

distributed computations at various nodes for communication requirements to

be scalable in the data size and in the number of nodes in the network.

Many network applications involve collaborative processing of network

data. For instance, in distributed statistical inference, the goal is to reach a de-

cision about some common underlying phenomenon. Examples include intru-

sion detection, anomaly detection, temperature field estimation, and so on. We

consider distributed inference where nodes communicate their data to a more

powerful decision node called the fusion center, which then makes the final de-

cision. We explicitly model the costs and constraints (e.g., energy, bandwidth)

posed by the communication network to move data to the fusion center for in-

ference.
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If the nodes were to communicate all their raw data to the fusion centers,

then such a scheme has a high communication cost, and is not scalable in the

network size. However, if the end goal is inference, there is no need to commu-

nicate all the raw data; instead, we should compute and communicate a suffi-

cient statistic, a function of the raw data, which ensures that there is no loss in

inference accuracy at the fusion center. At the same time, the sufficient statistic

has dimensionality reduction resulting in savings of communication costs.

We look at two scenarios for distributed computation of the sufficient statis-

tic. In the first, we consider multi-hop routing with energy constraints, and

develop in-network processing schemes for inference. In the second, we con-

sider random access over a multiple access channel with energy and bandwidth

constraints, and develop channel-aided computation schemes. These schemes

are instances of cross-layer optimization, where we exploit the inference appli-

cation through the sufficient statistic to optimize routing and medium-access

control (MAC). Below, I present my thesis research on scalable algorithms for

distributed inference, based on the works in [1–9].

1.1 Multihop In-network Processing

Dependency graph is an effective model for describing relationships between

nodes in a network based on some attribute, and needs to be inferred from the

data generated by the nodes. For inference of the correct dependency graph

model, the sufficient statistic has a compact form based on local dependency

graph properties. In [1–3], we propose schemes for distributed computation of

the sufficient statistic by exploiting the dependency graph structure.
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Our scheme is scalable - it has strictly bounded average communication

costs, even as the network grows, for a wide range of dependency graph mod-

els. Intuitively, when the dependency graph has only short-range edges be-

tween nearby nodes, the computation of the sufficient statistic can be under-

taken locally with low communication costs. We provide a precise definition

of such local dependency graphs based the concept of graph stabilization using

the recent results on random geometric graphs. Such local dependency graphs

occur in many scenarios - for example, the dependency between the location-

based search queries and internet users; users near a particular location are

more likely to query about that location than the ones further away. Another

example is a sensor network measuring temperature of a field where nearby

sensors tend to record similar temperatures.

We also provide a closed-form expression for average communication cost

for inference under our scheme, and it has a nice representation in terms of the

dependency graph, signal attenuation model and node placement. We use the

expression to design efficient node placement strategies with low communica-

tion costs in [4]. We also address the related issue of selecting informative nodes

for inference (sub-sampling) in [6] to further reduce the communication costs.

1.2 Medium-Access Control

We consider medium-access control (MAC) schemes for communication be-

tween the nodes in a network and the fusion center in [7–9]; the end goal is

inference about a common underlying phenomenon measured by the nodes.

Traditionally, MAC schemes allocate transmission from different nodes to or-
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thogonal channels (such as in time or frequency) to avoid interference. Instead,

we propose a MAC scheme where nodes may interfere with one another, yet

achieve good inference accuracy in the end. We allocate orthogonal channels to

data levels: all nodes reaching the same local decision use the same orthogonal

channel to transmit, if they decide to do so. This is an instance of channel-aided

computation where we use the multiple access channel to compute a noisy his-

togram or the type of the local decisions, which serves as the sufficient statistic

for inference. The bandwidth requirement of this scheme is independent of the

number of transmitting nodes, and is hence, scalable for large networks.

The extent to which interference aids inference depends on the nature of the

multiple-access channel. Coherent channels add energy of the interfering sig-

nals more efficiently than canceling channels, and we quantify this behavior of

the fading channels through a compact parameter, called the channel coherence

index.

If the channel is canceling, then in our scheme, transmissions on indepen-

dent orthogonal channels are more likely in order to avoid any interference. On

the other hand, if the channel is coherent, simultaneous transmissions are more

likely in our scheme. More specifically, we establish that for low coherence-

index channels, our scheme has a finite optimal rate which maximizes inference

performance. A sharp contrast is the extreme case when the channel is fully

coherent (no random fading). In this case, we prove that the optimal rate is

unbounded, which means that there should be simultaneous transmissions, in

order to exploit the channel coherency.

Hence, our scheme adapts medium-access control based on the channel con-

ditions to maximize inference performance, and it outperforms the classical or-
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thogonal transmission scheme in terms of inference accuracy and bandwidth

efficiency under the same energy budget.

1.3 Related Work on In-network Processing for Inference

The seminal work of Gupta and Kumar [10] on the capacity of wireless net-

works has stimulated extensive studies covering a broad range of networking

problems with different performance metrics. See also [11]. Here, we limit our-

selves to the related works on energy consumption and data fusion for statistical

inference.

Results on scaling laws for energy consumption are limited. In [12], energy

scaling laws for multihop wireless networks (without any data fusion) are de-

rived under different routing strategies. The issue of node placement for de-

sirable energy scaling has been considered in [13, 14], where it is argued that

uniform node placement, routinely considered in the literature, has poor en-

ergy performance when there is no data fusion. It is interesting to note that, for

fusion networks, uniform sensor distribution is in fact optimal among a general

class of distributions. See Chapter 5.

Energy-efficient data fusion has received a great deal of attention over the

past decade. See a few recent surveys in [15,16]. It has been recognized that sen-

sor observations tend to be correlated, and that correlations should be exploited

through data fusion. One line of approach is the use of distributed compres-

sion with the aim of reconstructing all the measurements at the fusion center.

Examples of such approaches can be found in [17–19].
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While sending data from all sensors to the fusion center is certainly sufficient

to ensure optimal inference, it is not necessary. More relevant to our work on

in-network processing for inference is the idea of data aggregation, e.g., [20–22].

Finding aggregation policies for correlated data, however, is nontrivial; it de-

pends on the specific applications for which the sensor network is designed.

Perhaps a more precise notion of aggregation is in-network function compu-

tation where certain functions are computed by passing intermediate values

among nodes [23–26]. However, these works are mostly concerned with com-

puting symmetric functions such as the sum function, which in general, do not

satisfy the constraint of optimal statistical inference at the fusion center.

In the context of statistical inference using wireless sensor networks, the idea

of aggregation and in-network processing has been explored by several authors.

See [27–33]. Most relevant to our work are [27–31, 34] where the Markovian

correlation structures of sensor measurements are exploited explicitly. These

results mostly deal with one-dimensional node placements, and do not deal

with randomly placed nodes or energy scaling laws.

We also consider sub-sampling of the sensor field to achieve tradeoff be-

tween fusion costs and quality of inference in Chapter 4. Sensor selection algo-

rithms have been considered in a variety of contexts, such as for control [35], for

target tracking [36], multimedia streams [37], fixed number selection [38], region

selection [39], for information maximization [40], in dynamical systems [41, 42],

and so on. However, to the best of our knowledge, the problem of optimal node

selection (e.g., see survey [43]) has not been considered in conjunction with in-

network fusion before. Indeed in single-hop networks, there is no need for data

fusion. But most large networks are multi-hop, and routing costs are substan-
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tially reduced through fusion at intermediate nodes, as seen in simulations in

Section 4.4. Many works on node selection assume perfect sensing of a region

(e.g., [39]). In contrast, our result in Chapter 4 explicitly models correlated im-

precise measurements via a Markov random field, and is the basis for selecting

“informative” sensors for inference.

In Chapter 6, we tackle the related issue of performance of sensor networks,

in terms of inference accuracy in large networks. When inference accuracy de-

cays exponentially with the sample size, the rate of decay is given by the error

exponent. In Chapter 6, we derive error exponents for hypothesis testing of

Markov random fields. In this context, we list some related work. The large-

deviation analysis for the test of simple hypotheses with general distributions

exists [44, 45], but closed-form expressions are possible only for certain cases.

such an analysis for homogeneous Gauss-Markov random fields on lattices have

been considered by Sung et al in [31, 46]. However, their techniques are not

easily generalized to arbitrarily placed nodes with spatially-dependent fields,

considered here. In [47], an expression for the Kullback-Leibler (KL) divergence

rate is derived when the two distributions are Markov chains of arbitrary order,

which is a special case of the formulation here.

The scaling laws for energy consumption and inference accuracy derived in

this thesis rely heavily on several results on the law of large numbers for ge-

ometric random graphs. We have extensively borrowed the formulations and

techniques of Penrose and Yukich [48,49]. See Appendix 5.A for a brief descrip-

tion and [50–52] for detailed expositions of these ideas.
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1.4 Related Work on MAC Design for Statistical Inference

In Chapter 8, we investigate the design of medium access schemes for statis-

tical inference over fading multiple access channel. In this context, the earlier

results on classical distributed detection [53–55]. assume perfect channels be-

tween sensors and the fusion center. In the context of power and bandwidth-

constrained wireless sensor networks, Chamberland and Veeravalli used large-

deviation techniques for the optimal design of local quantization rules [56, 57].

See also Aldosari and Moura [58]. We too use large-deviation techniques, but for

the design of multi-access communications. Distributed detection in the pres-

ence of channel fading is considered in [59,60], where each user has a dedicated

channel to the fusion center.

The problem of distributed detection on multi-access channels are more re-

cent [61–64]. The transmission scheme used is the so-called type-based multiple

access (TBMA) proposed independently by Mergen and Tong [61,64] and by Liu

and Sayeed [62]. The positive result of TBMA is that when there is no fading,

the asymptotic performance of TBMA (as the number of sensors approaches

infinity) is same as that when the fusion center has direct access to sensor obser-

vations. The negative result, however, is that when the channel has zero-mean

fading, TBMA fails to be consistent for a single data collection. Furthermore,

these results apply only for a fixed number of sensor. In [9], we proposed type-

based random access (TBRA) as a multi-access scheme for non-zero mean fading

channels, incorporating random number of sensors. We used large-deviation

approaches and compared the detection error exponents of TBRA and TBMA

for non-zero mean fading channels.
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The TBRA used here in Chapter 8 differs from the other existing approaches

in several significant aspects. TBRA allows the fading channels to have zero

mean and detectors to be non-coherent. This scenario is relevant since it may be

difficult to estimate a large number of fading coefficients at the receiver. Also, it

may be difficult to synchronize transmissions among geographically distributed

nodes to achieve phase coherency at the receiver. By having the expected num-

ber of transmissions ρ go to infinity, the exponential decay of error probabili-

ties is achieved. Under the formulation of this chapter, the large-deviation ap-

proaches considered in [9, 61, 62, 64] are not applicable.

1.5 Organization of Thesis

The thesis is organized as follows: in Chapter 2, we introduce spatial data cor-

relation model of Markov random field. In Chapter 3, we exploit this model

to analyze fusion schemes for optimal inference with minimum routing cost.

In Chapter 4, we allow fusion schemes to incorporate sub-sampling to achieve

optimal cost-performance tradeoff for inference. In Chapter 5, we build on the

results of Chapter 3 and derive energy scaling laws for optimal inference in ran-

dom networks. In Chapter 6, we provide inference accuracy scaling laws in

random networks (error-exponent analysis). In Chapter 7, we unify the results

of Chapters 5 and 6 to obtain optimal node density for energy-constrained in-

ference in random networks. In Chapter 8, we consider a different problem on

medium access design for statistical inference. Chapter 9 concludes the thesis

and proposes some extensions to be pursued in future.
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CHAPTER 2

SPATIAL DATA CORRELATION MODEL

In many realistic scenarios the sensor measurements are correlated, and our

framework takes this into account. Examples of correlated signals include tem-

perature and humidity sensors, and magnetometric sensors tracking a moving

vehicle. Acoustic data are rich in spatial correlations due to the presence of

echoes caused by multipath reflections. We use a Markov random field (MRF)

model which incorporates correlation in terms of a graph, known as the depen-

dency graph. The model for spatial data correlation crucially affects in-network

processing and fusion policies. Various assumptions on correlation have been

made in the literature. Before we describe the actual MRF model, we describe

some spatial correlation models considered in the literature.

2.1 Literature on Spatial Correlation Models

Joint-Gaussian distributions and distance-based correlation function are widely

assumed in the literature due to their simplicity [65–68]. Alternatively,

diffusion-based [69] and joint-entropy based models [70] have also been em-

ployed. The use of remote-sensing data, proposed in [71], may not meet the res-

olution requirements. The model proposed in [72] is a special case of a Markov

random field (MRF).

Markov random fields, as a class of parametric models for spatial data, were

introduced by Besag [73, 74], and were known as conditional auto-regressions

in his works. Prior to these works, Hammersley and Clifford formulated their

now famous theorem on the equivalence of MRF to a Gibbs field [75]. However,
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the manuscript was never published, and a sketch of the original proof can be

found in [76], along with further discussion on the historical aspects of research

on MRF.

The use of the MRF model for spatial data in sensor networks is relatively

new (e.g., [77]), although it is widely used in image processing [78] and geo-

statistics [79]. This could be due to the complexity of the model for arbitrarily-

placed nodes. We will see that the use of a Markov random field model leads to

the formation of “clusters” that are based on the statistical dependence, rather

than other considerations such as residual energy [80,81]. The notion of cluster-

ing has been used extensively in sensor networks, where nodes send their data

to one member of the cluster, which then processes and forwards to the destina-

tion. However, here, the issues are complicated by the fact that measurements

processed in these statistical “clusters” have to be further aggregated rather than

simply being forwarded to the destination.

In general, spatial signals are acausal in contrast to causal temporal signals.

In the literature, the two are usually distinguished by referring to acausal signals

as random fields and to causal signals as random processes. An example of

exploiting correlation in a causal propagation setting can be found in [27, 82].

We assume that all the sensors know the Markov random field model. In

practice, the dependency structure and the model parameters of the Markov

random field model can be estimated by incorporating a training phase. The

seminal work of Chow and Liu in [83] considers the problem of approximating

an unknown distribution from its samples using a procedure for learning the

tree model that maximizes the likelihood of the training samples among the set

of all possible tree models . Recently, learning graphical models from data sam-
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ples specifically for binary hypothesis testing has been considered in [84]. Their

procedure learns each hypothesis model from both sets of training samples.

In this chapter, we employ the Markov random field model for spatial cor-

relation, taking into account only its graphical dependency structure; but no

parametric correlation function is assumed. Moreover, any general random

field without special properties can be represented as a MRF with a complete

dependency graph (called saturated models [85]).

2.2 Definition and Properties of MRF

An undirected graph G is a tuple G = (v, EG), where v is the vertex set and EG= {

(i, j)} is the edge set. We allow graphs to have multiple or parallel edges, but

no loops. The neighborhood function nbd(i;G) of a node i is the set of all other

nodes having an edge with it in G. Let Deg(i) denote the degree of node i. A

subgraph induced by v′ ⊂ v on G is denoted by G(v′), and a complete subgraph

or a clique has edges between any two nodes in v′. A maximal clique is one that

is not contained in any other clique. Throughout this chapter, a clique refers to

a maximal clique, unless otherwise mentioned. For a directed graph (digraph),

we denote the edges (arcs) by < i, j >, where the direction is from i to j, and node

j belongs to the set of immediate successors of i, and i is in the set of immediate

predecessor of j. The above graph functions are extended to sets, for example,

(i, A) denotes the set of edges between i and members of A. For sets A and B, let

A \ B = {i : i ∈ A, i < B} and let |A| denote cardinality of a set A. For a matrix A,

A(i, j) is the element in the ith row and jth column and |A| its determinant.

The MRF falls under the framework of acausal graphical models and satisfies
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conditional-independence properties, based on an undirected graph known as

the dependency graph and is defined below.

Definition 1 (Markov Random Field) Let Yv= [Yi, i ∈ v]T denote the random vec-

tor of measurements at positions given by set v. Yv is a Markov random field with an

(undirected) dependency graph G = (v, EG), if ∀ i ∈ v,

Yi ⊥ Yv\{i,nbd(i)}|Ynbd(i), (2.1)

where ⊥ denotes conditional independence.

In words, the above definition states that the value at any node, given the values

at its neighbors, is conditionally independent of the rest of the network.

Example: One Dimensional MRF

A simple example is the first order auto-regressive (AR-1) process, given by

Yt = At−1Yt−1 + ǫt−1, Yt−1 ⊥ ǫt−1, ∀t ∈ v = {1, . . . , n}. (2.2)

Since Yt is conditionally independent of the past, given the measurement Yt−1,

we write

Yt ⊥ Y1,...,t−2|Yt−1, 2 < t ≤ n.

Y1 YnYt−1 Yt Yt+1

Figure 2.1: Linear dependency graph for first-order AR process.
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Similarly, we can write

Yt+2,...,n ⊥ Yt|Yt+1, 1 ≤ t < n.

This implies that

Yt ⊥ Yv\{t−1,t,t+1}|{Yt−1,Yt+1}, ∀t = 2, . . . , n−1, Y1 ⊥ Yv\{1,2}|Y2, Yn ⊥ Yv\{n,n−1}|Yn−1.

Hence, we have the dependency graph with neighborhood function

nbd(t) = {t − 1, t + 1}, for t , 1, n, nbd(1) = 2, nbd(n) = n − 1.

In other words, the dependency graph is a linear chain, as shown in Fig.2.1.

Hence, the conditional independence relations of the AR-1 process have a sim-

ple graphical representation which is not apparent in (2.2). However, the de-

pendency graph does not capture all the information of the AR-1 process, in

particular, that the process is causal. On the other hand, the dependency graph

can be used to model more general acausal dependencies, typically found in

spatial random fields.

Properties of a general MRF

For a Markov random field, in fact, three types of Markov properties can be

defined:

1. Local Markov Property: Yi ⊥⊥ Yv\(i∪nbd(i))|Ynbd(i), ∀i ∈ v.

2. Global Markov Property: YA ⊥⊥ YB|YC, where A, B, C are disjoint sets. A,

B are non-empty and C separates A, B. See Fig.2.2.

3. Pairwise Markov Property: Yi ⊥⊥ Y j|Yv\{i, j} ⇐⇒ (i, j) < E
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B

C

A

Figure 2.2: Global Markov Property: YA ⊥⊥ YB|YC.

In definition 1, we have used the local Markov property. We can immediately

see that the global Markov property implies the local Markov property, since

we can set

A = {i}, B = v \ {i,nbd(i)},C = nbd(i).

Similarly, the global Markov property implies the pairwise Markov property,

since we can set

A = {i}, B = { j},C = v \ {i, j}, ∀(i, j) < EG.

The three properties can be shown to be equivalent under the positivity condi-

tion [85]. The positivity condition is as follows: for all A ⊂ v with samples yA,

yv\A such that f (yA), f (yv\A) > 0, the conditional is also positive

f (yA|yv\A) > 0,

where f is the density function. An equivalent condition for positivity is

( f (yv) = 0)⇒ ( f (yi) = 0), ∀i ∈ v.
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An example that does not satisfy positivity is the fully correlated case: Y1 =

Y2 . . . = Yn. In this case, the joint likelihood is zero whenever all the samples are

not equal, but the marginal likelihood is not necessarily zero.

The Hammersley-Clifford theorem [76] states that for a MRF Yv with depen-

dency graph G = (v, EG), the joint pdf f , under the positivity condition, can be

expressed as

− log f (Yv|G(v)) =
∑

c∈C
ψc(Yc), (2.3)

where C is a collection of (maximal) cliques in G, the functions ψc, known as

clique potentials, are real valued, non-negative and not zero everywhere on the

support of Yc. Thus, the tuple Ξ = {G,C, ψ} specifies the MRF in (2.3). We

assume that the normalization constant is already incorporated in the potential

functions, in order to ensure that we have a valid pdf. For general potentials,

finding the normalizing constant (called the partition function) is NP-hard, but

approximate algorithms have been proposed in [86].

From (2.3), we see that the complexity of the likelihood function is vastly

reduced for sparse dependency graphs; here, the conditional-independence re-

lations in (2.1) results in the factorization of the joint likelihood into a product

of components, each of which depends on a small set of variables. This form is

already exploited by distributed algorithms such as belief propagation [87] for

local inference of hidden measurements. In this chapter, we exploit the MRF

model for a global inference problem, explained in Section 2.3.

In this chapter, we assume that the number of cliques |C| of the MRF is poly-

nomial in the number of nodes. This is satisfied by many graph families such as
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(b) × : Non-zero potential matrix elements.

Figure 2.3: Fill pattern of potential matrix is same as the dependency graph.

bounded-degree graphs [88]. Note that in (2.3), the set of cliques C contains only

those cliques with non-zero potentials. For example, for independent measure-

ments, C is the vertex set, and we have the likelihood function as a weighted

sum function,

− log f (Yv) = −
∑

i∈v
log fi(Yi), Yv ∼

∏

i∈v
fi,

where fi is the marginal pdf of Yi. Besag’s auto-model [74] is a special MRF with

only pairwise dependencies, and hence, the clique set C is the set of edges EG.

This leads to a simplified expression for the likelihood function,

− log f (Yv; {G, EG, ψ}) =
∑

(i, j)∈EG

ψi, j(Yi,Y j). (2.4)

Multi-parameter exponential family of conditional probabilities can be used to

define such pairwise Markov random fields [89]. An example of Besag’s model

is the Ising Model, which was first introduced to study phase transition in fer-

romagnetic materials.
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Gauss-Markov Random Field

The Gauss-Markov Random Field (GMRF) has some special properties. In this

case, (2.3) is equivalent to (2.4), since the likelihood function of Yn ∼ N(0,Σ) is

given by

log f (Yv; A) =
1

2

(−n log 2π + log |A| +
∑

i∈v
A(i, i)Y2

i +

∑

i, j∈v
A(i, j)YiY j

)

, (2.5)

where A:=Σ−1 is the inverse of the covariance matrix. For a given dependency

graph G = (v, EG), the GMRF should also satisfy (2.4). Hence, comparing the

two equations (2.4) and (2.5), we have

A(i, j) = 0 ⇐⇒ (i, j) < EG.

Hence, there is a one-to-one correspondence between the non-zero elements of

A and the dependency graph edges EG, and is illustrated in Fig.2.3. Since A

is associated with the potentials, it is called the potential matrix. Hence, for the

Gaussian distribution, we only need the edges of the dependency graph and

not the higher-order cliques. Moreover, for the Gaussian case, the edge poten-

tial ψi, j(Yi,Y j) in (2.4) reduces to the sum of squares and cross-products of the

measurements, weighted by the coefficients of the potential matrix A. When the

dependency graph is acyclic, we can additionally obtain a closed form for the

elements of the potential matrix A, in terms of the elements of the covariance

matrix Σ.

Fact 1 (GMRF with Acyclic Dependency Graph) The coefficients of the potential

matrix A:=Σ−1, with zero mean and covariance matrix Σ and acyclic dependency graph

G = (v, EG), are
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A(i, i) =
1

Σ(i, i)

(

1 +
∑

j∈nbd(i)

Σ(i, j)2

Σ(i, i)Σ( j, j) − Σ(i, j)2

)

, (2.6)

A(i, j) =



























−Σ(i, j)

Σ(i, i)Σ( j, j) − Σ(i, j)2
if (i, j) ∈ EG,

0 o.w.

(2.7)

The determinant of the potential matrix of A is given by

|A| = 1

|Σ| =
∏

i∈v Σ(i, i)Deg(i)−1

∏

(i, j)∈EG
i< j

[Σ(i, i)Σ( j, j) − Σ(i, j)2]
. (2.8)

Proof: See Appendix 2.A. �

In fact, for any MRF with acyclic dependency graph G, the joint pdf fYv
can

be expressed in terms of marginals at nodes fYi
and pairwise joint pdfs fYi,Y j

as

fYv
(yv) =

∏

i∈v
fYi

(yi)
∏

(i, j)∈EG

fYi,Y j
(yi, y j)

fYi
(yi) fY j

(y j)
. (2.9)

See [90] for details.

2.3 Statistical Inference of Markov Random Fields

The problem of distributed detection considers a set of sensors, one of them des-

ignated as the fusion center or the decision node, and all the sensor observations

are ultimately routed (in some form) to it. This setup is relevant when we need
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to make a global decision on the phenomenon (contrasting to local inference al-

gorithms such as belief propagation). We consider the binary hypothesis-testing

problem with two given hypotheses, the null hypothesisH0 and the alternative

H1. We limit ourselves to only simple hypothesis testing, i.e., the probability

measures under both the hypotheses are known to all the sensors.

In statistical theory, a sufficient statistic is a well-behaved function of the data,

which is as informative as the raw data for inference. Formally, a function T (Y)

is said to be a sufficient statistic for model Pθ, if conditioned on T (Y), Y ∼ Pθ

does not depend on θ. It is said to be minimal if it is a function of every other

sufficient statistic for Pθ [91]. A minimal sufficient statistic for inference rep-

resents the maximum possible reduction in dimensionality of the raw data,

without destroying information about the underlying phenomenon [91]. The

log-likelihood ratio (LLR) is the minimal sufficient statistic for hypothesis test-

ing [92]. Let f (Yv;H j) be the pdf of the measurements YV under hypothesis j.

The optimal decision rule at the fusion center is a threshold test based on the

log-likelihood ratio (LLR), denoted by L(Yv),

L(Yv):= log
f (Yv;H0)

f (Yv;H1)
. (2.10)

The result is also true for the M-ary hypothesis testing problem, where the LLR

vector
[

log
f (Yv;H0)

f (Yv;H1)
, . . . , log

f (Yv;H0)

f (Yv;HM−1)

]T

is minimally sufficient.
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Form of Log-Likelihood Ratio for MRF

In this chapter, we assume that the measurement samples are drawn from distri-

butions specified by distinct Markov random fields, defined on the same node

set. In particular, we consider

H0 : Ξ0 = {G0(v),C0, ψ0} vs. H1 : Ξ1 = {G1(v),C1, ψ1}. (2.11)

From (2.3) and (2.10), the LLR is given by the difference of the respective clique

potentials,

L(Yv) =
∑

a∈C1

ψ1,a(Ya) −
∑

b∈C0

ψ0,b(Yb). (2.12)

It is easily seen that the LLR can be expressed as the sum of potentials of an

“effective” Markov random field Ξ = {G,C, φ} specified as follows: the effective

dependency graph G = (v, EG), has the edge set EG = EG0
∪ EG1

; the effective

clique set is C= C0 ∪ C1, with only the resulting maximal cliques retained; the

effective potential functions φc are given by

φc(Yc):=
∑

a∈C1,a⊂c

ψ1(Ya) −
∑

b∈C0,b⊂c

ψ0(Yb), ∀ c ∈ C. (2.13)

Therefore, the LLR has a succinct form, which will be used in the rest of this

chapter,
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L(YVn
;Ξ) =

∑

c∈C
φc(Yc). (2.14)

In order to quantify inference performance, we consider the Neyman-Pearson

criterion [91], where for a fixed false-alarm probability (type-I error), the detec-

tor at the fusion center is optimal in terms of the type-II error probability PM.

2.A Proofs

Proof of Theorem 1

Using the expression AΣ = I, we have the following identities:

A(i, i) +
∑

j∈nbd(i)

A(i, j)
Σ(i, j)

Σ(i, i)
=

1

Σ(i, i)
, (2.15)

A(i, i) + A(i, j)
Σ( j, j)

Σ(i, j)
+

∑

k∈nbd(i)
k, j

A(i, k)
Σ( j, k)

Σ(i, j)

= 0, ∀ j ∈ nbd(i), (2.16)

where (2.15) is obtained by the sum-product of ith row and ith column of A and

Σ. Similarly, (2.16) is obtained by sum-product of ith row of A and jth column of

Σ and dividing by Σ(i, j). In (2.16), by acyclicity for k ∈ nbd(i) and k , j, we have

j / k. From MRF assumption, we have

Σ( j, k)

Σ(i, j)
=
Σ(i, k)

Σ(i, i)
, ∀ j, k ∈ nbd(i), k , j.

22



Subtracting (38) from (37), only the terms with A(i, j) survive and hence, we

obtain A(i, j). Substituting all the A(i, j)’s in (2.15), we obtain A(i, i). Hence, all

the coefficients of potential matrix A are given by (2.7).

Let |A(n)| be the determinant of the potential matrix of n nodes. Assume n > 1,

since we have |A(1)| = Σ(1, 1)−1. The determinant of the potential matrix is the

product of determinants of the connected components. We therefore consider

only one component G′(v′, E′) ⊆ G. Assume G′ has at least one edge, otherwise

we have for diagonal matrix |A(n)| =∏i∈v′ Σ(i, i)−1. Since G′ is acyclic, it has a leaf,

i.e., there is some vertex a with degree 1. Let b be its only neighbor. We assume

the vertices have been ordered v′ = {V1, . . . ,Vn} so that Vn−1 = b,Vn = a. Then A(n)

has the following form

A(n)
=











































































· · · · · · 0

...
...

...
...

...

· · · · · · 0

· · · · · A(n − 1, n − 1) A(n − 1, n)

0 · · · 0 A(n, n − 1) A(n, n)











































































,

where we have from (2.7),

A(n, n) =
Σ(n − 1, n − 1)

[Σ(n, n)Σ(n − 1, n − 1) − Σ(n, n − 1)2]
,

A(n − 1, n) =
−Σ(n, n − 1)

[Σ(n, n)Σ(n − 1, n − 1) − Σ(n, n − 1)2]
,

A(n − 1, n − 1) =
1

Σ(n − 1, n − 1)
− A(n − 1, n)

Σ(n, n − 1)

Σ(n − 1, n − 1)
+C,

where C represents contributions from nodes in v′\Vn i.e., with node Vn re-

moved, and having an edge with Vn−1. Multiplying the nth column by

A(n, n − 1)

A(n, n)
=
−Σ(n, n − 1)

Σ(n − 1, n − 1)
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and subtracting it from (n−1)th column and using the determinant rule, we have

|A(n)| =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

· · · · · · 0

...
...

...
...

...

· · · · · · 0

· · · · · A′(n − 1, n − 1) A(n − 1, n)

0 · · · 0 0 A(n, n)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (2.17)

where

A′(n − 1, n − 1) :=A(n − 1, n − 1)

+
Σ(n, n − 1)

Σ(n − 1, n − 1)
A(n, n − 1). (2.18)

Hence, we have

|A(n)| = A(n, n)|Mn|, for n > 1,

where Mn is the minor of A(n, n) in (2.17). Substituting in (2.18), we have A′(n −

1, n − 1) = C, where as noted before, C is the contributions from nodes in v′\Vn

and having an edge with Vn−1. This implies that A′(n − 1, n − 1) is the coefficient

in the potential matrix for the subgraph induced by v′\Vn. Since only Vn−1 has

an edge with Vn, coefficients of nodes other than Vn and Vn−1 are unaffected by

the removal of Vn. Hence, Mn is the potential matrix for the subgraph induced

by v′\Vn,

Mn = A(n−1).

Since v′\Vn is acyclic, a leaf is always present, rearrange the rows such that A(n−1)

has a leaf in the last two rows, i.e., it has the same structure as in (2.17). Remove
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a leaf in each step of the recursion, until all the edges are removed, then find the

determinant with the diagonal matrix consisting of the remaining nodes and we

obtain (2.8).
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CHAPTER 3

MINIMUM COST IN-NETWORK PROCESSING FOR OPTIMAL

INFERENCE

Routing in communication networks, both wireline and wireless, has been a

subject of extensive and in-depth study over the last few decades. It is a subject

that is fairly well understood. Its “state-of-the-art” status can be summarized

as follows; If a well-defined performance measure can be translated to a link

metric, then there are low-complexity, efficient, robust, fast-converging, and of-

ten distributed algorithms for finding the optimal routes. Note the important

distinction regarding the possibility of mapping the performance measure to a

link metric. For example, in the internet, if end-to-end latency is the perfor-

mance measure, then the link metric is delay over the link. Bellman-Ford-type

algorithms then perform very well and quickly discover the best routes [93].

By contrast, on the traditional circuit-switched voice telephone network, where

the performance measure is blocking probability, there is no known link metric

that captures the performance measure and, hence, up to this day we only have

heuristic routing algorithms for assigning routes to accepted calls.

At this point it is also important to note that the routing problem, being

basically a discrete optimization task, has always a default solution that consists

of the exhaustive search over the finite number of possible routes. The only

reason this solution is unattractive is the prohibitive complexity of this search

as the network size increases.

Another example of successful mapping of a performance measure to a link

metric that allows the use of efficient algorithms is energy consumption in a

wireless network. The energy consumption on a single link is then the right met-
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ric. That link energy consumption, depending on the assumptions on the net-

work operation, consists of the transmission energy (proportional to the trans-

mission power needed to reach the destination at a given rate and bit-error-rate

target for chosen modulation and coding schemes, as well as to the channel at-

tenuation), the energy expended for reception at the receiving end of the link,

and, finally, the residual energy at the battery of the node at that end.

What all routing problems to date share is the traditional IP paradigm of

store-and forward, which treats the source packets as “sacrosanct” monoliths

that must be carried through the network intact until they are received at the

destination node. Already, the idea of network coding has shown how it is

possible to improve performance if this paradigm is reconsidered [94]. In this

chapter we will examine a different issue that arises in specialized routing that

shows equally well the inadequacy of traditional packet forwarding.

Our focus will be the case of wireless sensor networks. The unique charac-

teristic of such networks is that the performance measure is typically associated

with the “mission” of the network. For example, if the sensor network is de-

ployed for the purpose of detecting the presence of a target, then the objective is

to maximize the probability of correct detection, subject to the usual constraint

o the false alarm rate. In other words, the mission of the network is statistical

inference. Thus, the collected measurement data at the source sensors need not

be forwarded to the fusion center (i.e. the ultimate destination node) in their

entirety. Of course, such complete forwarding remains an option (just as the ex-

haustive search over all possible routes was an option in ordinary routing). But

it is an inefficient option that is highly undesirable in networks that must also

prolong their lifetime as much as possible.
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In this chapter we aim at a comprehensive presentation of this new aspect

of wireless sensor networking and at a unified study of routing, inference, and

energy consumption. Inherent in this presentation is the notion of combinatorial

optimization (which remains the underpinning element of the routing task) and

of spatial information modeling (which defines the information dependencies

in the data the sensor nodes gather).

3.1 Network and Cost Model

We assume the presence of a medium-access control (MAC) that eliminates colli-

sions or interferences among the nodes. The network is connected, i.e., commu-

nication is feasible via a multi-hop route between any two nodes in the network.

We assume that communication is bidirectional. We consider the unicast mode

of routing, where a packet from a node is routed to a single destination and the

intermediate nodes do not perform any processing or store the packet for future

use.

In our formulation, the processing costs are assumed constant, thus ignored

in the optimization. Usually the routing costs reflect transmission energy, but it

could also represent, for example, delay, bandwidth, or a combination of these

considerations. We represent the routing of a real number by a packet. A routing

cost function is assumed to be known, and is denoted by Ei, j> 0 between i and

j. The metric closure on communication/network graph Ng, is defined as the

complete graph where the cost of each edge (i, j) in the metric closure is the

cost of the shortest path between i and j in Ng [95, p. 58]. Henceforth, we only

consider the metric closure of the communication graph, denoted by N̄g, and

denote the metric costs by ESP

i, j
. There is no loss of generality, since the edges of
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the metric closure can be replaced with the corresponding shortest paths. For

any graph Ng ⊂ N̄g, let E(Ng) denote the total cost of its links,

E(Ng):=
∑

e∈ENg

Ee, (3.1)

where Ee is the cost of the link e and ENg
is the set of links in Ng; if a link is

used m times, then ENg
contains m parallel links to incorporate the costs in our

formulation.

We assume that it is connected but not necessarily fully connected, and that

it contains the Euclidean minimum spanning tree over the node set vn and di-

rected towards the fusion center v1, denoted by DMST(vn; v1). Usually in the

literature, in order to incorporate the maximum power constraints at the nodes,

the network graph is assumed to be a disc graph with radius above the con-

nectivity threshold [11], but we do not limit to this model. Transmissions are

scheduled so as to not interfere with one other. Nodes are capable of adjusting

their transmission power depending on the location of the receiver.

A fusion policy Υ(vn) consists of a transmission schedule with the

transmitter-receiver pairs and the aggregation algorithm that allows a node to

combine its own and received values to produce a new communicating value.

We model a fusion policy Υ by a fusion-policy digraph, FΥ := (vn,
−→
EΥ), and

−→
EΥ

contains directed links. A directed1 link 〈i, j〉 denotes a direct transmission from

i to j and is required to be a member in the network graph Ng(vn) for trans-

missions to be feasible. If one node communicates with another node k times, k

direct links are present between these two nodes in the edge set
−→
EΥ of the fusion

1We denote a directed link by 〈i, j〉 and an undirected link by (i, j).
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Fusion center

Figure 3.1: Fusion policy digraph FΥ: each edge routes one real number.

policy Υ. Since we are only interested in characterizing the overall energy ex-

penditure, the order of transmissions is not important; we only need to consider

the associated cost with each link in
−→
EΥ and calculate the sum cost for Υ.

Nodes communicate in the form of packets. Each packet contains bits for at

most one (quantized) real variable and other overhead bits independent of the

network size. We assume that all real variables2 are quantized to K bits, and K

is independent of network size and is sufficiently large that quantization errors

can be ignored.

In our formulation all real numbers are quantized with sufficiently high pre-

cision to ignore the quantization error and all nodes function as both sensors

and routers. Quantization is indeed an important issue for detection and com-

munication. However, even in the classical distributed setup, optimal quanti-

zation is not tractable for the correlated case. The recent works on this topic

consider conditionally i.i.d. measurements with a fixed network topology of

bounded-height tree [96] or a tandem network [97].

2In principle, the raw and aggregated data may require different amount of energy for com-
munication, and can be incorporated into our framework.
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Figure 3.2: Fusion policy DFMRF for inference at fusion center.

3.2 Formulation of Minimum Cost Fusion

By optimal routing for inference, we mean the fusion scheme that minimizes the

total costs of routing under the constraint that the likelihood function in (2.14)

is delivered to the fusion center.

E(Υ∗(vn)) = inf
Υ∈FG

∑

i∈vn

Ei(Υ(vn)), (3.2)

where FG is the set of valid data-fusion policies

FG:={Υ : LG(yvn
) computable at the fusion center}.

Recall the succinct form of LLR in (2.14),

L(Yv;Ξ) =
∑

c∈C
φc(Yc). (3.3)

Hence, the LLR consists of the sum of the clique potential functions φ and is

amenable to localized processing within the cliques of the Markov random field.

Hence, we propose a hierarchical order of processing the LLR. See Fig.3.2. In

the first stage, raw data are forwarded to compute all the potential functions
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at various nodes in the network. In the second stage, the computed values are

summed up and delivered to the fusion center.

For the first stage of LLR computation, each clique potential function φc is

assigned a unique computation site, known as the processor for clique c, de-

noted by Proc(c). Once the processor for clique c is assigned, measurement Yi of

each clique member i ⊂ c (other than the processor) is routed to Proc(c) along

a path of feasible communication links. Since we are considering unicast mode

of communication, the minimum cost is along the shortest path represented by

the link < i,Proc(c) >∈ N̄g with cost ESP(i,Proc(c)), where N̄g is the metric closure

of the communication graph. The set of all links used by a fusion scheme in

the first stage of computation to forward raw data to the processors is called the

forwarding subgraph, denoted by FG,

FG:={< i,Proc(c) >: i ⊂ c, i , Proc(c), c ∈ C}.

In the second stage of LLR computation, all the computed potential func-

tions are summed up to obtain the LLR which is then delivered to the fusion

center. The set of links used by a fusion scheme in the second stage of LLR com-

putation to sum up the computed potential values is known as the aggregation

subgraph, denoted by AG. The tuple with the forwarding and aggregation sub-

graphs of a fusion scheme Υ is referred to as the fusion digraph, FΥ:={FGΥ,AGΥ}.

A schematic of a fusion scheme is shown in Fig.3.2. The total routing costs of a

fusion scheme is given by

E(FΥ) = E(FGΥ) + E(AGΥ).

Hence, any fusion scheme Υ in our setup is specified by a processor-assignment

mapping ProcΥ and a fusion digraph FΥ = {FGΥ,AGΥ}, and we represent the
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scheme by the tuple Υ:={Proc,FG,AG}. Note that we do not explicitly specify

the sequence in which data is transported and processed by a fusion scheme;

we impose constraints to ensure that such a feasible sequence exists.

We first need the constraint that the scheme delivers the LLR to the fusion

center

AggVal(v1;Υ) = L(Yv;Ξ), (3.4)

where AggVal(i;Υ) is the value at node i at the end of fusion.

3.2.1 Local Processor Assignment

We now make the following additional assumption which simplifies the fusion

scheme: each clique potential function φc is assigned a “local” processor, which

is one of the clique members,

Proc(c) ⊂ c, ∀ c ∈ C. (3.5)

The local processor assignment also implies that local knowledge of potential

function parameters is sufficient, i.e., each sensor i only needs to know the po-

tential functions φc of the cliques c to which it belongs, and hence, the storage

requirement at the sensors is considerably reduced. In practice, the potential

function parameters are sent to the nodes by the fusion center after empiri-

cally estimating the joint-pdf of the measurements. Through this, the nodes
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Figure 3.3: Inputs to the problem of minimum cost fusion for inference.

also implicitly receive information about their clique memberships. Hence, lo-

cal processor assignment can also reduce the communication overhead during

the learning stage. Localized processing can be especially efficient when the

dependency graph of the Markov random field is a proximity graph, where

edges are based on local point configuration [98]. We now formally define the

minimum-cost fusion scheme Υ∗ which minimizes the total routing costs

Υ
∗:= arg min

Υ

E(FΥ), (3.6)

subject to the constraints in (3.4) and (3.5). Hence, the problem of minimum

cost fusion takes the metric closure of communication graph and the maximal

cliques of the dependency graph as inputs and provides a processor assignment

and fusion digraph as outputs. An example of the problem of minimum cost

fusion is illustrated in Fig.3.3, with the communication graph in Fig.3.3a and

the path graph as the dependency graph in Fig.3.3c, which are independent of

one another. The resulting metric closure of communication graph in Fig.3.3b

and cliques of dependency graph are taken as the inputs for the problem of

minimum cost fusion.
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Figure 3.4: Cut set S separating set of processors and fusion center.

3.2.2 0-1 Integer Programming Formulation

We now write a 0-1 integer program whose optimal solution provides the mini-

mum cost fusion scheme in (3.6) for computing the LLR and delivering it to the

fusion center v1. We can map any valid fusion digraph F = {FG,AG} and the

processor assignment mapping Proc to variables y and z, defined as

z( j, c):=I[Proc(c) == j], y(i, j):=I[< i, j >∈ AG],

where I is the indicator function. Once the processor assignment is fixed, the set

of shortest paths from clique members to the processors minimizes the routing

costs in the forwarding subgraph. Hence, we can set the forwarding subgraph

as

FG← {< i, j >: I(
∑

c:i⊂c

z( j, c) ≥ 1)},

where we ensure that every node i forwards its measurement to node j, when-

ever j is the processor of cliques c that contain node i along the link in the metric

closure (which has the same cost as the shortest path). Hence, the total routing

costs of the fusion digraph can be expressed as,

E(F ) = E(FG) + E(AG) =
1

2

∑

i, j∈v
[I(
∑

c:i⊂c

z( j, c) ≥ 1) + y(i, j)]ESP(i, j),
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where the factor of 1
2

ensures that each edge is counted only once. We now write

a constraint equivalent to the local processor constraint in (3.8) and ensuring

that at least one processor is selected,

∑

j⊂c

z( j, c) ≥ 1, ∀c ∈ C.

We now need a constraint on the aggregation subgraph to ensure that the sum of

the potential functions is delivered to the fusion center, and hence, the constraint

in (3.4) is satisfied. To this end, we define that A separates B if A ∩ B , ∅ and

A∩B , B. We consider all sets s ⊂ v separating the union of the set of processors

and the fusion center. A cut edge of set s is one that has exactly one endpoint in

s. As illustrated in Fig.3.4, since all the values at the processors contained within

s can be summed up to a single packet, for the information to flow out of s (or

into s), at least one cut edge of s is needed. Hence, we write the constraint that

∑

i∈s, j<s
y(i, j) ≥ 1,∀s ⊂ v separating {

⋃

c∈C
Proc(c)

⋃

v1}.

We now have the integer program,

1

2
min

y,z

∑

i, j∈v
[I(
∑

c:i⊂c

z( j, c) ≥ 1) + y(i, j)]ESP(i, j) (IP-1), (3.7)

s.t.
∑

j⊂c

z( j, c) ≥ 1, ∀c ∈ C, let Proc(c):={ j : z( j, c) = 1}, (3.8)

∑

i∈s, j<s
y(i, j) ≥ 1,∀s ⊂ v separating {

⋃

c∈C
Proc(c)

⋃

v1}, (3.9)

y(i, j), z( j, c) ∈ {0, 1}. (3.10)

Hence, the optimal solutions to (3.6) and (3.7) are the same.
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3.3 Special Case: IID Measurements

In the special case when the measurements are i.i.d. conditioned on either hy-

pothesis, the log-likelihood ratio (LLR) in (2.10) is the sum of the log-likelihoods

of individual sensor measurementsi.e.,

L(Yv) =
∑

vi∈v
L(Yvi

), Yvi

i.i.d.∼ H0 orH1. (3.11)

Theorem 1 (Lower bound on minimum energy expenditure) The following re-

sults hold:

1. the energy cost for the optimal fusion policy Υ∗ in (3.2) satisfies

E(Υ∗(vn)) ≥ E(MST(vn)):=
∑

e∈Eθi Nsmst(λ)(vn)

|e|ν, (3.12)

2. the lower bound (3.12) is achieved (i.e., equality holds) when the observations

are independent under both hypotheses. In this case, the optimal fusion policy

Υ
∗ aggregates data along DMST(vn; v1), the directed minimum spanning tree,

with all the edges directed toward the fusion center v1. Hence, the optimal fusion

digraph FΥ∗ is the DMST(vn; v1).

Proof: We first prove part 2), for which we consider the case when observa-

tions are independent, and the log-likelihood ratio is given by

LG(yvn
) =
∑

i∈vn

Li(yi), Li(yi):= log
f1,i(yi)

f0,i(yi)
,
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where fk,i is the marginal pdf at node i under Hk. Consider MST(vn), whose

links minimize
∑

e∈Tree(vn)

|e|ν. It is easy to check that at the fusion center, the log-

likelihood ratio can be computed using the following aggregation policy along

the DMST(vn; v1) as illustrated in Fig.3.5: each node i computes the aggregated

variable qi(yvn
) from its predecessor and sends it to its immediate successor. The

variable qi is given by the summation

qi(yvn
):=
∑

j∈Np(i)

q j(yvn
) + Li(yi), (3.13)

where Np(i) is the set of immediate predecessors of i in DMST(vn; v1).

To show part 1), we note that any data-fusion policy must have each node

transmit at least once and that the transmission must ultimately reach the fusion

center. This implies that the fusion digraph must be connected with the fusion

center and the DMST with edge-weight |e|ν minimizes the total energy under

the above constraints. Hence, we have (3.12). �

Note that the above lower bound in (3.12) is achievable when the measure-

ments are independent under both hypotheses. It is interesting to note that data

correlations, in general, increase the energy consumption under the constraint

of optimal inference performance since the log-likelihood ratio in (3.3) cannot

be decomposed fully in terms of the individual node measurements.

3.3.1 Data Fusion for Markov Random Fields (DFMRF) Scheme

We first propose a simple heuristic (DFMRF), based on the minimum spanning

tree. Here, we separate the design of processor selection and aggregation tree.

We arbitrarily assign a clique member as the clique processor and then exploit
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Figure 3.5: The optimal fusion graph DMST for independent observations.

the fact that it is feasible to compute the sum of the potentials along the MST. Of

course, here only the processors have useful information in the form of potential

functions and the other nodes just forward the aggregated information. This

heuristic is simple to implement since there are efficient distributed algorithms

for finding the MST [99, 100].

We specify the DFMRF scheme in Fig.3.6. For a clique c, the processor is

assigned arbitrarily to the clique member with the lowest index (line 3). Other

suitable factors such as residual energy can instead be used for the assignment.

The shortest-path routes from other members of c to the processor are added

to the forwarding subgraph FG (line 5), and the raw data is routed along these

links to enable the computation of the clique potentials. Note that the construc-

tion of the FG can be implemented in a localized manner whenever the depen-

dency graph is local (e.g., k nearest-neighbor graph, disk graph). The aggrega-

tion subgraph AG is DMST(v), the minimum spanning tree, directed towards

the fusion center (line 9) and potentials are added hierarchically along AG.

We now quantify the performance of the DFMRF scheme for a special sce-

nario that allows us to utilize the lower-bound in Theorem 1.
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Require: v = {v1, . . . , vn}, v1: Fusion center, C = {c0, . . . , c|C|−1}: maximal cliques of
MRF, DMST(v): Minimum spanning tree, direct toward v1

1: SP(i, j)= (Directed) shortest path from i to j

2: for j← 0, |C| − 1 do
3: Proc(c j)← minvi∈c j

vi ⊲ Arbitrary processor assignment
4: if |c j| > 1 then
5: Add ESP(c j \ Proc(c j),Proc(c j)) to FG
6: end if
7: end for
8: AG← DMST(v), Υ← {Proc,FG,AG}
9: return Υ

Figure 3.6: Data fusion for Markov random fields (DFMRF) policy.

Theorem 2 (Approximation) For the case when the routing costs are Euclidean and

the dependency graph is a subgraph of the Euclidean MST (e.g., 1-nearest neighbor

graph), the DFMRF scheme has an approximation ratio of 2.

Proof: The MST in the lower bound (Theorem 1) is Euclidean, since the trans-

mission costs are Euclidean. Since the dependency graph is a subgraph of the

Euclidean MST, all the links in DFMRF are contained in the Euclidean MST.

Hence, we have the approximation ratio of 2. To show that the bound is tight,

we note that the case of extended equilateral triangles on the Euclidean plane

achieves this bound. �

In Chapter 5, we generalize the above result to any stabilizing Euclidean de-

pendency graph and provide approximation guarantees for random node sets

with the number of nodes n→ ∞.

40



Require: v = {v1, . . . , vn}, v1: Fusion center, C = {c0, . . . , c|C|−1}: maximal cliques of
MRF,

1: Ng= Metric closure of comm. graph, ESP = Link costs in N̄g,
2: ST(G,L) = δ-approx. Steiner tree on G, terminal set L
3: G′, vc ←Map-All(N̄g;ESP,C)

4: DST = ST(G′, vc ∪ v1) and directed towards v1

5: Υ← RevMap-All(DST; vc, v,C)

6: return Υ

Figure 3.7: δ-approximate fusion policy Υ (AggApprox).

3.4 Steiner Tree Reduction

In this section, we show that optimal fusion has a Steiner-tree reduction un-

der local processing constraints. We specify the graph transformations required

for such a reduction and finally obtain a valid fusion scheme with processor

assignment and fusion digraph. We also show that the Steiner-tree reduction

is approximation factor preserving. This implies that any approximation algo-

rithm for Steiner tree provides the same ratio for minimum cost fusion.

3.4.1 Simplified Integer Program

We first note that if the processor assignment is already predetermined and not

part of the routing cost optimization, then we can easily characterize the optimal

solution. In practice, a predetermined processor assignment might be enforced

by considering other factors such as processing capabilities or residual energies

of different nodes. In this case, the forwarding subgraph is also predetermined

by the shortest paths to the processors. The optimal aggregation subgraph is

the Steiner tree with the set of processors and the fusion center, as the terminals.

This is because the sum of the potential function values at the processors is
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computed optimally along the Steiner tree.

We next consider a modified cost optimization problem, where we ignore

the routing costs of the forwarding subgraph, incurred in transporting the raw

measurements to a processor. In [2, Lemma 3], we show that the minimum cost

aggregation subgraph is the group Steiner tree [101], with nodes in each clique

of the Markov random field forming a group.

The presence of processor assignment in cost optimization in (3.7) makes

the problem harder than the above versions. It influences the costs of both the

forwarding and aggregation subgraphs in a fusion scheme. It is not immediately

clear that there is a Steiner tree reduction for (3.7). In fact, if we directly relax

the integers to y, z ≥ 0 in (3.7), the program is non-linear. We now use the local

processor assignment constraint in (3.8) to write an equivalent integer program

with a linear relaxation. Let z∗ be the optimal solution to (3.7). We have

∑

i, j∈v
I(
∑

c:i⊂c

z∗( j, c) ≥ 1)ESP(i, j) =
∑

i, j∈v
I(
∑

c:i, j⊂c

z∗( j, c) ≥ 1)ESP(i, j),

=

∑

i, j∈v

∑

c:i, j⊂c

z∗( j, c)ESP(i, j),

=

∑

c∈C
|c|>1

∑

i, j⊂c

z∗( j, c)ESP(i, j), (3.14)

where the first equality is from local processor assignment constraint, the sec-

ond equality is due to the fact that we need to assign only one processor and

that there is a unique maximal clique c, if it exists, containing both i and j. Note

that if the local assignment constraint is removed, then j might be assigned as

the processor to many cliques c and hence, the equality does not hold. Inter-

changing the sums in the last equality is possible since the terms are non-zero
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1: function MAP-ALL(N̄g(v);ESP,C)
2: nbd(v; G) = Neighborhood of v in G

3: Initialize G′ ← N̄g, vc ← ∅,
4: for j← 0, |C| − 1 do ⊲ Let vn and C be ordered
5: if |c j| > 1 then
6: vc ← vn+ j, Add new node vn+ j to G′,
7: for all vi ⊂ c j do
8: Add node vi to nbd(vn+ j; G′)
9: ESP(vn, vi; G′)← ∑

vk⊂c j,k,i

ESP(vi, vk; N̄g)

10: end for
11: else
12: vc ← vi, for vi ⊂ c j ⊲ For trivial cliques
13: end if
14: end for
15: return G′, vc

16: end function

Figure 3.8: Map-All(N̄g;ESP,C) adds virtual nodes for each non-trivial clique.

when there is a clique c containing both i and j, and this implies that |c| > 1.

Hence, we can now write an equivalent IP for minimum cost fusion under local

processor assignment

min
y,z

[
∑

c∈C
|c|>1

∑

i, j⊂c

z( j, c)ESP(i, j) +
∑

i, j∈v
y(i, j)ESP(i, j)] (IP-2), (3.15)

subject to the same constraints (3.8)-(3.10). Upon relaxation of the integer con-

straints, IP-2 is a linear program.

We now show that a Steiner tree on the transformed communication graph

is the optimal solution to IP-2 in (3.15). To this end, we define an operation

Map-All(N̄g) in Fig.3.8 which involves adding new virtual clique-representative

nodes vc for each non-trivial clique (|c| > 1) and adding edges between vc and
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function REVMAP-ALL(G′; vc, v,C)
Ns(i; G), Np(i; G) = Imm. successor, predecessor of i

Initialize G ← G′

for all v j ∈ vc do
if j > n then

k ← j − n,
Proc(ck)← Ns(v j; G′), for ck ∈ C,
v j ← ck \ Proc(ck), Replace < v j,Proc(ck) > in G with edges <

v j,Proc(ck) >, mark them
if Np(v j; G) , ∅ then Replace < Np(v j), v j > in G with edges

< Np(v j),Proc(ck) >

end if
else

Proc(cl)← v j, for v j ⊂ cl ⊲ For trivial cliques
end if

end for
FG←Marked edges of G, AG← G \ FG
Υ← {Proc,FG,AG}

return Υ
end function

Figure 3.9: RevMap-All(G; vc, v,C) maps tree G to fusion scheme Υ.

all the members of clique c with costs,

ESP(vc, j):=
∑

i⊂c

ESP(i, j), ∀ j ⊂ c.

The above cost represents the cost incurred in the forwarding subgraph upon

assigning a node j as the processor for clique c. Let the set of all added clique

representative vertices be v′. Hence, IP-2 in (3.15) is now equivalent to

1

2
min

y,z

∑

vc∈v′, j∈v
z( j, c)ESP(vc, j) +

∑

i, j∈v
y(i, j)ESP(i, j),

subject to the same constraints (3.8)-(3.10). For the final step, we define the set

of nodes v′′ to account for trivial cliques

v′′:={i : i ∈ v, i ⊂ c, for some c ∈ C, |c| = 1}.

The set of clique representative nodes is vc:=v′ ∪ v′′, the set of newly added

virtual nodes and the trivial cliques. We now write the equivalent IP which is
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Figure 3.10: Example 1: Minimum cost fusion for chain dependency graph.

the Steiner tree with the set of clique representatives vc and the fusion center v1

as the terminals,

1

2
min

x

∑

i, j∈v
x(i, j)ESP(i, j), (3.16)

s.t.
∑

i∈s, j<s
x(i, j) ≥ 1,∀s ⊂ v ∪ v′ separating {vc ∪ v1}, x(i, j) ∈ {0, 1}.(3.17)

The equivalence holds since in the above Steiner tree, each clique representative

node vc ∈ v′ has to be connected to at least one clique member and hence, the lo-

cal processor assignment constraint in (3.8) is satisfied, and the constraint (3.17)

which ensures that all the terminals v′ ∪ v1 are connected implies that all the

processors and the fusion center are connected and hence, the constraint in (3.9)

is satisfied. Hence, the optimal solution to minimum cost routing for inference

is a Steiner tree on the transformed graph Map-All(N̄g).

In order to obtain the fusion scheme, we need another transformation after

finding the Steiner tree in (3.16) on the transformed graph Map-All(N̄g). We first

direct the Steiner tree towards the fusion center, denoted by DST. The reverse

mapping RevMap-All(DST) in Fig.3.9 assigns the unique immediate successor
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of every clique-representative node vc in DST as the processor of the clique c.

The edges from the representative nodes in DST are replaced by links in the

metric closure from other clique members to the processor and added to the

forwarding subgraph of the fusion scheme. All other edges, not belonging to

representative nodes in DST, are assigned as the aggregation subgraph.

In the above discussion, we have shown that the optimal solution is a

Steiner tree involving transformations Map-All and RevMap-All, summarized

in Fig.3.7. We now prove in addition that the above Steiner-tree reduction is

approximation-factor preserving. To this end, we state the conditions under

which the reduction preserves the approximation ratio [102, A.3.1].

Definition 2 (Approximation-factor preserving reduction) LetΠ1 andΠ2 be two

minimization problems, with opt tradeoff
Πi

denoting the values of their optimal solu-

tions. An approximation factor preserving reduction from Π1 to Π2 consists of two

polynomial time algorithms, f and g, such that,

• for any instance I1 of Π1, I2 = f (I1) is an instance of Π2 such that

opt tradeoff
Π2

(I2) ≤ opt tradeoff
Π1

(I1). (3.18)

• for any solution t of I2, s = g(I1, t) is a solution of I1 such that

obj
Π1

(I1, s) ≤ obj
Π2

(I2, t). (3.19)

We now note that AggApprox results in a feasible fusion and runs in polynomial

time since there are polynomial number of cliques. For any feasible solution to
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Figure 3.11: Example 2: Minimum cost fusion for given dependency graph.

Steiner tree, replacement of links in line 9 of RevMap-All in Fig.3.9 reduces the

sum cost, and hence, (3.19) holds.

The approximation-ratio preserving Steiner tree reduction implies that any

approximation algorithm for Steiner tree provides the same approximation ratio

for minimum cost fusion, when applied with the above transformations. Since

currently the best known ratio for Steiner tree is 1.55, it is also the best possible

approximation for minimum cost fusion for inference.

3.4.2 Examples

We now illustrate the optimal fusion scheme through Steiner-tree reduction for

simple examples of a chain dependency graph in Fig.3.10, where the link com-

munication costs and the metric closure are implicit and not shown. For this

simple example, we can intuitively see that the optimal scheme first forwards

raw data in the direction of fusion center. Upon computing the potential func-

tions at the processors, the values are added along the chain, starting with the
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farthest processor. In Fig.3.10c, this optimal fusion scheme with forwarding

and aggregation subgraphs is shown along with the values transported along

the links. We now illustrate that the Steiner tree with transformations provides

the same optimal solution. In Fig.3.10a, the expanded communication graph

Map-All(N̄g) is shown with added clique-representative nodes and edges. The

added edges represent the costs in the forwarding subgraph on choosing a node

as a processor. In Fig.3.10b, the optimal Steiner tree on the expanded graph is

shown with the clique representative nodes and the fusion center as terminals.

Using RevMap-All, the Steiner tree is mapped to a fusion scheme by first direct-

ing the tree towards the fusion center, and then, assigning the immediate suc-

cessor of clique representative nodes as processors. Hence, the member closer

to the fusion center is chosen as the processor in this example. The edges from

clique representative nodes are replaced with forwarding subgraph edges, and

we can see that the costs are conserved. The remaining edges in the Steiner tree

form the aggregation subgraph. Hence, the RevMap-All operation provides the

optimal fusion scheme shown in Fig.3.10c. A similar Steiner tree solution is

obtained for another example in Fig.3.11 and in this case, the optimal scheme

reduces to shortest-path routing policy.

3.5 Simulation Results

We now plot some simulation results in Fig.3.12 under uniform random place-

ment of nodes and conduct 500 independent simulation runs. We fix a constant

node density and consider routing cost on link as (i, j) ∝ dist(i, j)2. We see that

savings due to aggregation are considerable compared to shortest-path routing

for k-nearest neighbor graphs (k-NNG), at low values of k. These graphs are
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probably the best candidates, after the independent data case, for in-network

processing of the likelihood function. We also observe that there is direct cor-

respondence between the number of cliques and the routing cost for fusion.

Hence, it appears that the number of cliques is a good measure for judging the

effectiveness of in-network processing. The gap between the heuristics and the

lower bound, represents the overhead arising due to correlation. A dense de-

pendency graph has high routing costs due to the complexity of its likelihood

function. This is unlike the case of compression with the aim of routing all the

raw data to a destination, where a dense dependency graph (more correlation)

implies redundancy and hence, reduction in routing costs.

The use of localized processing constraint and unicast mode of communica-

tion are crucial to obtaining the above Steiner-tree reduction. They lead to the

separation of costs of routing raw measurements (in the forwarding subgraph)

to compute different potential functions. On the other hand, in the absence of

these constraints, the edge costs in the forwarding graph are no longer indepen-

dent, and finding the optimal scheme requires the use of hyper-edges. However,

once a scheme is designed under the unicast setup, the broadcast nature of the

wireless medium could be exploited to further reduce costs by broadcasting raw

data from each node to all its processors.

We have so far considered minimum cost routing for optimal inference. A

relaxation of this problem is where we only select a subset of measurements for

routing and fusion, and we aim to achieve optimal tradeoff between routing

costs and end detection performance. This problem requires first the character-

ization of the detection performance, and one possibility is to use the detection

error exponent, which is the asymptotic rate of exponential decay of error prob-
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Figure 3.12: Simulation results for k nearest-neighbor dependency graphs.

ability. It will be interesting to explore if this problem has reduction to well

known optimization problems, as it turned out in the case of optimal inference

with local processing.

3.6 Extension to M-ary Hypothesis Testing

The problem of binary simple hypothesis testing is extended in a different direc-

tion by considering M > 2 number of hypotheses. This is known as the M-ary

hypothesis-testing problem. In this case, the LLR vector, denoted by L(Yv) with

respect toH0 is defined as

L(Yv):= log
[ f (Yv;H0)

f (Yv;H1)
, . . . ,

f (Yv;H0)

f (Yv;HM−1)

]T
. (3.20)

The above LLR vector is the minimal sufficient statistic for M-ary hypothesis

testing [92].

Given that the measurements Yv are drawn from distinct Markov random
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fields under each hypothesis Hi, let Ξi
= {Gi(v),Ci, φi} be the effective MRF be-

tweenH0 andHi, defined for the binary hypothesis in (3.3). The LLR vector has

the form

L(Yv) = [
∑

c∈C1

φ1,c(Yc), . . . ,
∑

c∈CM−1

φM−1,c(Yc)]
T . (3.21)

We can now apply the Steiner-tree reduction independently for each dimension

of the LLR vector to obtain M − 1 fusion schemes, each computing the function

independent of the other. However, this can be wasteful since the forwarded

raw measurements can be used to compute many functions simultaneously, i.e.,

by assigning common processors. To this end, we now define the combined

clique set C:= ∪M−1
i=1
Ci, with only the resulting maximal cliques retained. We

assume that |C| is polynomial in the number of vertices. We slightly relax the

localized processing constraint, in that it is only with respect to cliques in C,

i.e., we assume that the processor for any clique c in C is a member of c. On

the other hand, for sub-cliques c′ ⊂ c, for c′ ∈ Ci for some i = 1, . . . ,M − 1, the

processor can lie outside c′ but still should belong to c. In the lemma below, we

prove a simple result that unique processor assignment reduces routing costs of

raw-data forwarding.

Lemma 1 (Unique Processor Assignment) Given a clique c ∈ C and cliques c′ ⊂ c,

for c′ ∈ Ci for some i = 1, . . . ,M − 1, assigning a unique processor for all the cliques c′

minimizes the routing cost of forwarding raw measurements.

Proof: See Appendix 3.B. �

We first consider a special case of M-ary hypothesis testing
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Hi : Yv are independent for i = 0,M − 2, and

HM−1 : MRF Ξ = {G,C, φ}. (3.22)

Hence, the LLR vector in (3.20) is now of the form

L(Yv) = [
∑

i∈v
w1,iYi,. . .,

∑

i∈v
wM−2,iYi,

∑

c∈C
φc(Yc)]

T . (3.23)

In the lemma below, we establish the structure of optimal fusion scheme that

delivers the above LLR vector to the fusion center.

Lemma 2 (M-ary Hypothesis : special case) For the special case of M-ary simple

hypothesis testing in 3.22, the optimal fusion scheme is only dependent on Υ∗, the opti-

mal scheme has the same aggregation subgraphs for computing different components of

the LLR vector in (3.23).

Proof: Let Proc be the processor assignment for computing the MRF Ξ and

let AGΥ be its aggregation subgraph. Now, since other dimensions of the LLR

vector have identical structure of a weighted sum function, there is no need

to assign processors for them and their aggregation graphs will be identical,

denoted by AG′. Now, AG′ is required to at least span Proc, the set of processors;

otherwise, it is not feasible to compute the sum function. Hence, the optimal

AG′ is given by the Steiner tree with Proc as the terminals, which is given by

AGΥ. �

Lemma 2 may not hold for a general M-ary hypothesis. However, in order

to obtain a similar simplified scheme for any M-ary hypothesis testing prob-
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lem, we impose the constraint of a unique processor assignment. This reduces

routing costs in general, since raw measurements are forwarded only once. This

also implies that the aggregation subgraph for computing each dimension of the

LLR vector is identical. This is because once the processors are assigned, the ag-

gregation subgraph is a Steiner tree over the processors. Hence, this constraint

simplifies the design of fusion scheme significantly and implies that even for

M-ary hypothesis, we are designing only one fusion scheme, instead of M − 1

schemes, one for each dimension. Hence, generalization from binary hypoth-

esis to M-ary hypothesis retains the approximability and adds no additional

complexity under these additional constraints. Also note that when M = 2, the

schemes are identical to those in section 3.2.

Theorem 3 (Steiner Reduction for M-ary hypothesis) The optimal fusion scheme

with localized processing constraints for testing M-ary hypothesis has an

approximation-factor preserving Steiner-tree reduction (AggApprox M) shown in

Fig.3.13.

Proof: Due to the local processing constraint, the optimal fusion scheme has

unique processor for a clique c ∈ C and identical aggregation subgraphs for

computing each dimension of the LLR vector. Such a scheme is given by (Ag-

gApprox M) if optimal Steiner tree is used. The cost of optimal Steiner tree in

this case is 1
M−1

times the cost of the resulting optimal fusion scheme. For other

approximations, the cost of Steiner tree on expanded graph is at least 1
M−1

cost

of the resulting fusion scheme on applying RevMap-All. Hence, the approxi-

mation factor is preserved. It runs in polynomial time since |C| is polynomial in

number of vertices. �
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Require: v = {v1, . . . , vn}, v1= Fusion center,
C = {c0, . . . , c|C|−1}= combined maximal clique set for M-ary hypothesis, M > 1

N̄g= Metric closure of comm. graph, ESP = Link costs in N̄g,
ST(G,L) = δ-approx. Steiner tree on G, terminal set L
G′, vc ←Map-All(N̄g; E

SP

M−1
,C)

DST = ST(G′, vc ∪ v1) and directed towards v1

{Proc,FG,AG} ← RevMap-All(DST; vc, v,C)

AG← AG with each edge replicated M − 2 times
return Υ← {Proc,FG,AG}

Figure 3.13: δ-approximate fusion Υ for M-ary hypothesis (AggApprox M).

3.7 Conclusion

In this chapter, we have presented an instance of cross-layer design where in-

formation from the application layer is used to reduce the routing costs for a

statistical inference application. We employ the machinery of approximation al-

gorithms to prove a Steiner tree reduction, enabling us to use any Steiner tree

approximation algorithm for minimum cost fusion. Our simulations show a

significant saving in cost due to in-network processing compared to routing

all the data to the fusion center for proximity-based sparse dependency graph

models. In the next chapter, we further reduce routing costs by allowing for

sub-sampling of the sensor field to achieve optimal tradeoff between routing

costs and the resulting quality of inference.

3.A Overview of Steiner Trees and Approximation Algorithms

In this section, we briefly define the Steiner tree and study its properties. These

will be employed to describe our results in the subsequent sections. The ma-

terial in this section is mainly from [102]. We first define the Steiner minimal
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tree [95, p. 148] below.

Definition 3 (Steiner tree) Let G(v) be an undirected graph with non-negative edge

weights. Given a set w ⊂ v of terminals, a Steiner tree (ST) is the tree T ⊂ G of

minimum total edge weight such that T includes all vertices in L.

Finding the Steiner tree is NP-hard and there has been extensive work on find-

ing approximation algorithms. A 0 − 1 integer program to find the Steiner tree

can be written as

min
y

1

2

∑

i, j∈v
y(i, j)ESP(i, j), (3.24)

s.t.
∑

i∈s, j<s
y(i, j) ≥ 1,∀S ⊂ V separating w, y(i, j) ∈ {0, 1}, (3.25)

where we say that A separates B if A ∩ B , ∅ and A ∩ B , B. This condition

ensures that all the terminals are connected, as illustrated in Fig.3.4.

Definition 4 (Approximation algorithm) Let Π be a minimization problem and let

δ : Z+ → Q+, with δ ≥ 1. An algorithm A is said to be a factor δ approximation

algorithm for Π, if on each instance I, A produces a feasible solution s for I, such that

for cost function E,

E(a) ≤ δ(|I|)opt tradeoff(I), (3.26)

and the running time of A is bounded by a fixed polynomial in |I|.
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Many approximation algorithms for finding the Steiner tree require the cost

function to be a metric. If the function is not a metric, its metric closure [95, p. 58]

is considered instead.

Definition 5 (Metric closure) Let ESP(i, j; Ng) denote the cost of the shortest path

from i to j on Ng. The metric closure on graph Ng, denoted by {Cg,ESP}, is defined

as the complete graph where the cost of each edge (i, j) is equal to ESP(i, j).

A simple MST heuristic approximates the Steiner tree over G and terminal set

L with the minimum spanning tree spanning the set L, over the metric closure of

G. The MST heuristic has an approximation bound of 2 [103]. The best known

approximation bound for Steiner tree on graphs is 1.55, derived in [104]. The

Steiner tree can be generalized to group Steiner tree, introduced by Reich and

Widmayer [101].

Definition 6 (Group Steiner tree) Let G be an undirected graph with non-negative

edge weights. Given groups of vertices gi ⊂ v of terminals, a group Steiner tree is the

tree T ⊂ G of minimum total edge weight such that T includes at least one vertex from

each group gi.

Since the group Steiner tree is a generalization of the Steiner tree, it is also

NP-hard. For a group Steiner tree, polylogarithmic (in the number of groups)

approximation algorithms have been proposed [105]. A series of polynomial-

time heuristics are described in [106] with worst-case ratio of O(|g|ǫ) for ǫ > 0.

The prize-collecting Steiner minimal tree (PCST) [107] is a generalization of the

Steiner tree, is defined as the tree rooted at a specified vertex v1 that minimizes

the sum of the costs of the edges in the tree plus the penalties of the vertices not

spanned by the tree. It is formally defined below.
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Definition 7 (PCST) Given an undirected graph G = (v, E), a root vertex v1 ∈ v,

nonnegative edge costs ESP
e ≥ 0, e ∈ E, and nonnegative vertex penalties πi > 0, i ∈ v,

the PCST is the tree T ∗ = (v∗, E∗) rooted at v1 such that

T ∗ = arg min
T=(v′,E′)

{
∑

e∈E′
ESP

e +

∑

i<v′
πi}. (3.27)

Note that in the PCST when we set the penalties for the set of terminals as infin-

ity and zero for other nodes, it reduces to a Steiner tree. The penalty associated

with a node represents forgone profits by not selecting it. To cast the fusion

schemes in terms of a Steiner tree or prize collecting Steiner tree problem, we

utilize some approximation-factor preserving reductions [102].

3.B Proof of Lemma 1

Assume the lemma is not true. Let c be a non-trivial clique in the combined

set C. This implies that c occurs in one of the effective MRF, say Ci for some i =

1, . . . ,M−1, since C is the union of all Ci with only maximal cliques retained. Let

Proc(c′) represent the processor assigned to compute the potential of some non-

trivial clique c′ ⊂ c and c′ ∈ Ξ j, the effective MRF Ξ j, for j = 1, . . . ,M − 1. By the

local processing constraint, we have Proc(c′) ⊂ c. This implies that ∩c′Proc(c′) is

either Proc(c) or an empty set. For the first case, since measurements from all

the nodes in c except Proc(c) have to be routed to Proc(c), routing costs in the

forwarding subgraph (FG) are reduced by replacing Proc(c′) with Proc(c) as the

sole processor for j = 1, . . . ,M − 1. This is because the new FG is contained in

the original FG. Even for the second case, the routing costs are reduced. This is
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because

∑

c′∈C j,c′⊂c,|c′ |>1

∑

k∈c′,k,Proc(c′)

ESP(k,Proc(c′))

=

∑

c′∈C j,c′⊂c,|c′ |>1,c′,c

∑

k∈c′,k,Proc(c′)

ESP(k,Proc(c′))

+

∑

k∈c,k,Proc(c)

ESP(k,Proc(c))

≥
∑

k∈c,k,Proc(c)

ESP(k,Proc(c)) (3.28)
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CHAPTER 4

COST-PERFORMANCE TRADEOFF FOR INFERENCE

This chapter considers selection of sensors to achieve optimal cost-

performance tradeoff for inference. The costs are incurred in routing and ag-

gregating the selected subset of sensor measurements, and the performance is

in terms of the probability of error in inferring the correct hypothesis at the fu-

sion center, given the aggregated data. The contributions are three fold. First,

we propose a formulation for optimal sensor selection and in-network fusion

known as the prize-collecting data fusion (PCDF). Second, we prove its reduction

to a known optimization problem for certain correlation structures. Third, for

general correlation, we propose two heuristics, and study their performance

through simulations.

When the sensor measurements are i.i.d. and the number of sensors goes to

infinity, PCDF reduces to an optimization problem known as the prize-collecting

Steiner tree (PCST) [107]. It is defined as the sub-tree rooted at a specified ver-

tex (fusion center in our case) that minimizes the sum of edge costs in the tree

plus the penalties of the nodes not spanned by it. For PCDF with i.i.d. data,

the node penalties are uniform, and given by the single-letter Kullback-Leibler

divergence (KLD).

For a special class of dependency graphs of Markov random field models,

a constrained form of PCDF asymptotically reduces to PCST on an augmented

graph, where the augmentation involves adding new nodes and edges to ac-

count for increase in aggregation costs due to the presence of correlation. In

general, finding the constrained PCDF is NP-hard and we resort to approxima-

tions via the PCST reduction. The approximation ratio ρ of any polynomial-time
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algorithm guarantees that its output is no worse than ρ times the optimal value.

We give an approximation algorithm where the approximation ratio depends

only on the number of “profitable” cliques in the dependency graph.

We then develop group selection heuristics for general correlation structures

based on the above approximation, viz., component selection and clique selec-

tion, and study their performance through simulations. It is observed that the

heuristics perform substantially better than the optimal selection scheme which

routes the selected measurements to the fusion center without any aggregation

at the intermediate nodes. Hence, our approach of incorporating aggregation

into the sensor selection formulation substantially reduces routing costs lead-

ing to efficient selection policies. We then study the influence of node topology

and observe that at sparse spatial dependencies, a clustered node placement

achieves better cost-performance tradeoff compared to a uniform placement.

These results have direct implications on designing good node placement strate-

gies for cost-performance tradeoff.

4.0.1 Problem Formulation

The goal of this chapter is to select an optimal sensor subset1 vs ⊂ v, given the

entire set v, and to incorporate in-network aggregation of the measurements Yvs

before delivery to the fusion center v1 ∈ v. It is not possible to quantify inference

performance under arbitrary aggregation. Hence, we limit ourselves to aggre-

gation schemes which guarantee the same inference performance as the central-

ized scheme, i.e., as if the fusion center had direct access to the selected measure-

ments Yvs
. In this case, there is no performance loss due to aggregation at the

1The unselected nodes can still function as routers and forward data.
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intermediate nodes. In statistical theory, a sufficient statistic is a well-behaved

function of the data, which is as informative as the raw data for inference [108].

Hence, a scheme which computes and delivers a sufficient statistic results in no

loss of inference performance due to aggregation.

We assume that the optimal Neyman-Pearson (NP) detector is used at the

fusion center, and that the inference performance is measured by the NP type-II

error probability PM. We are thus interested in subset selection vs ⊂ v and design

of aggregation scheme Υ(vs) delivering a sufficient statistic of its measurements

Yvs
such that optimal linear tradeoff is achieved between the total routing costs

E(Υ(vs)) and a penalty function π, based on the NP type-II error PM(vs),

opt tradeoff(v,E, γπ):=min
vs⊂v,Υ(vs)

[

E(Υ(vs)) + γπ(v \ vs)
]

, γ > 0 (4.1)

where v \ vs:={i : i ∈ v, i < vs} and π is given by

π(v \ vs):= log
PM(vs)

PM(v)
> 0, ∀vs ⊂ v. (4.2)

When we select all the sensors (vs = v), (4.2) evaluates to zero, and there is

no loss in performance since no measurement is dropped. On the other hand,

for a proper subset (vs ( v), we incur a loss in performance and hence, pay a

positive penalty in terms of the fraction of increase in error probability due to

non-selection of nodes in v \ vs. Since we collect prizes or penalties for nodes

not selected, and incorporate fusion over the selected data, we will henceforth

refer to the optimal solution in (4.1) as the prize-collecting data fusion (PCDF)

scheme.
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The parameter γ is known as the tradeoff factor, and is used to adjust the

relative importance of cost and performance. Note that the optimization in (4.1)

is the Lagrangian dual for the problem of finding the optimal fusion scheme

under a constraint on the inference performance or vice versa. Hence, once we

have an algorithm to find the (approximate) solution to (4.1), we can use it in

the constrained optimization problems. This aspect is however not studied in

this chapter, and we will limit to finding solutions to (4.1). Denote the objective

in (4.1) as

obj(vs,Υ(vs); v,E, γπ):=
[

E(Υ(vs)) + γπ(v \ vs)
]

, (4.3)

and the optimal node subset and fusion scheme by

[v∗,Υ∗(v∗)]:= arg min
vs⊂v,Υ(vs)

obj(v,E, γπ). (4.4)

When the tradeoff factor is sufficiently large (γ → ∞), the optimal tradeoff prob-

lem in (4.1) reduces to minimum cost fusion, considered in [2], where optimal

inference is required and hence, all the nodes are selected, and the goal is to

find the fusion scheme which minimizes the total routing costs while ensuring

delivery of a sufficient statistic to the fusion center. When the tradeoff factor is

sufficiently small (γ → 0), none of the nodes are selected.

lim
γ→0

v∗(v,E, γπ)→ ∅, lim
γ→∞

v∗(v,E, γπ)→ v.
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4.0.2 Preliminary Observations & Results

For binary hypothesis testing, the log-likelihood ratio (LLR) is minimally suffi-

cient and represents maximum reduction in dimensionality of raw data. It is

given by

L(Yvs
):= log

fvs
(Yvs

;H0)

fvs
(Yvs

;H1)
, (4.5)

where fvs
(Yvs

;H j) is the pdf of the measurements Yvs
under hypothesis H j.

Hence, the optimal aggregation scheme in (4.1), for a given node subset vs, is

a scheme Υ(vs) computing and delivering L(vs) to the fusion center with mini-

mum total cost E(Υ(vs)).

For the penalty function in (4.2), in general, the error probability PM does

not have a closed form, and hence, an analytical solution to (4.1) is not tractable.

We focus on the large-network scenario, where the error probability PM can be

approximated by the error exponent [108]. When the type-II error PM(v) decays

exponentially with the sample size |v|, for a fixed type-I error, the NP error ex-

ponent is given by

D:= − lim
|v|→∞

1

|v| log PM(v). (4.6)

We will see that we can replace the error probability PM in (4.2) by an expression

based on the error exponent in (4.6), and yet achieve optimality with respect to

(4.1), as the number of nodes goes to infinity.
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q1 = L(Y1) q2 = L(Y2)

q4 = L(Y4)

q3 = L(Y3) +
2
∑

i=1

qi

1
2

3

4

Fusion Center

Selected Node

Figure 4.1: Aggregation of i.i.d. measurements along the PCST.

4.1 IID Measurements

We now consider the case when all the sensor measurements are i.i.d. under

each hypothesis, Yi
i.i.d.∼ f (Y;H j), for j = 0, 1. We first solve a different optimiza-

tion problem based on (4.6) and then prove its asymptotic convergence to (4.1).

For i.i.d. data, from Stein’s Lemma [108, Thm. 12.8.1], the exponent D in

(4.6) is the Kullback-Leibler divergence (KLD)

D = D( f (Y1;H0)|| f (Y1;H1)):=

∫

y

log
f (y;H0)

f (y;H1)
f (y;H0)dy

We now consider a new penalty function which assigns uniform penalty to each

unselected node equal to the KLD D. Hence, if vs is the selected subset, the

penalty is given by

πiid(v \ vs):=[|v| − |vs|]D, (4.7)
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First, we establish that the optimal solution under the penalty function π in (4.2)

is the same as the optimal solution with penalty πiid, as the number of nodes

goes to infinity.

Theorem 4 (Asymptotic optimality of PCST for i.i.d. data) Under bounded link

costs, we have

lim
|v|→∞

opt tradeoff(v,E, γπ)

opt tradeoff(v,E, γπiid)
→ 1, ∀γ > 0. (4.8)

Proof: See Appendix 4.A. �

Hence, it suffices to solve the optimization with πiid instead of π for asymp-

totic networks, given by

opt tradeoff(v,E, γπiid):=min
vs⊂v,Υ(vs)

[

E(Υ(vs)) + γ[|v| − |vs|]D
]

. (4.9)

In order to incorporate in-network aggregation in (4.9), we need an explicit form

for L(Yvs
) since it needs to be computed by the fusion scheme. For i.i.d. data, it

is

L(Yvs
) =
∑

i∈vs

log
f (Yi;H0)

f (Yi;H1)
, ∀vs ⊂ v, (4.10)

which is a simple sum function in the selected nodes. In the theorem below,

we prove that the optimal solution to (4.9) is the prize-collecting Steiner tree

(PCST).
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Theorem 5 (Selection & aggregation of i.i.d. data) The optimal solution to (4.9)

is aggregation along the prize-collecting Steiner tree rooted at the fusion center v1, and

edges directed towards v1: each node i in the PCST computes and transmits qi to its

immediate successor, given by

qi = L(Yi) +
∑

j∈Np(i)

q j, (4.11)

where Np(i) is the set of immediate predecessors of i in the directed PCST.

Proof: The LLR sum function in (4.10) over a selected subset vs can be com-

puted along the edges of a tree spanning vs, rooted at and directed towards the

fusion center, and vs should be selected so as to achieve optimality in (4.9). By

definition, it is given by the PCST. �

Hence, the optimal aggregation for i.i.d. data is along the directed PCST. A

schematic of the scheme is shown in Fig.4.1. In general, finding the PCST is NP-

hard. In [107], an approximation algorithm for the PCST with approximation

ratio 2−(|v|−1)−1 for any node set v is proposed, and is referred to as the Goemans-

Williamson (GW) algorithm.

Theorem 5 establishes the optimality of PCST for the penalty function πiid

in (4.7). From Theorem 4, the PCST is also optimal for the penalty function

π in (4.2), when the network size goes to infinity. Hence, the PCDF in (4.1)

reduces to aggregation along the PCST for i.i.d data, as the network size goes to

infinity, and the GW-algorithm approximates the PCST with a proven guarantee

of 2 − (|v| − 1)−1.
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Figure 4.2: Computation of the log-likelihood ratio L(Yvs
) for vs ⊂ v.

4.2 Correlated Measurements: MRF Model

We now generalize the results to the case when the measurements are correlated

according to a Markov random field model. Several new challenges arise here.

First, the LLR is no longer a simple sum function as in the i.i.d. case in (4.10).

Hence, the structure of fusion schemes computing the LLR is not clear. Second,

the error exponent D is no longer the single-letter KLD as for i.i.d data, and

hence, the exponent-based penalty may not be separable in the nodes. Third,

nodes cannot be assigned uniform penalties as in the i.i.d. case, since they affect

inference performance differently in the presence of correlation.

With the above challenges, it is not tractable to solve the PCDF problem,

defined in (4.1). Instead, we solve (4.1) under an additional constraint that the

subsets vs considered are only those that span a sub-collection of cliques of the

dependency graph Cs ⊂ C, and is referred to as the constrained PCDF,

opt tradeoff clique(v,E, γπ):=min
vs⊂Cs⊂C
Υ(vs)

[

E(Υ(vs)) + γπ(v \ vs)
]

. (4.12)

In other words, the selection policy is coarser since it selects or rejects cliques

of nodes instead of individual ones. Since we are ruling out certain subsets for
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selection, we cannot guarantee optimality with respect to (4.1).

4.2.1 In-network Aggregation of LLR

In order to design a fusion scheme for computing the LLR, we use its explicit

characterization in (2.14) as,

L(Yv;Ξ) =
∑

c∈C
φc(Yc). (4.13)

based on the clique set C of the joint dependency graph, G(v):=G0(v) ∪ G1(v).

Comparing the above form with that for i.i.d data in (4.10), we see that correla-

tion increases the complexity of the L.

For any subset vs ⊂ v, its marginal LLR can also be expressed based on the

clique set C′ of its dependency graph G′(vs)

L(Yvs
) =
∑

c∈C′
φ′c(Yc), (4.14)

whereG′(vs):=G′0(vs)∪G′1(vs), andG′j(vs) is the dependency graph of the marginal

pdf fvs
(Yvs

;H j), for j = 0, 1. In general, G′(vs) is not a subgraph of G(v) and C′

is not contained in C. Hence, the structure of the marginal LLR and its fusion

scheme change with the selected set vs.

We now describe the structure of fusion schemes computing the LLR of a

given subset vs. See Fig.4.2. The issue of optimal selection of vs will be consid-

ered later. Given the dependency graph G′(vs), the computation is in two stages.
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First, the data Yc are forwarded from all the members of clique c ∈ C′ to com-

pute its potential φ′c(Yc) at an assigned processor, denoted by Proc(c). The set of

links used for such data forwarding in all the cliques form the forwarding graph

(FG).

In the second stage of LLR computation, all the clique potentials are summed

up and delivered to the fusion center, using a set of links referred to as the ag-

gregation subgraph (AG). The tuple with the forwarding and aggregation sub-

graphs of a fusion scheme is the fusion digraph, F :={FG,AG}, since it is the com-

plete set of links used by the fusion scheme. The total routing costs of the fusion

scheme is

E(F ) = E(FG) + E(AG). (4.15)

For finding the constrained PCDF in (4.12), we thus need to find a fusion scheme

which minimizes the sum of routing costs in the two stages of LLR computation.

4.2.2 Error Exponent & Penalty Function

Along the lines of our approach for i.i.d. data, in the constrained PCDF prob-

lem in (4.12), we replace the error-probability based penalty π with the error

exponentD for MRF hypothesis testing.

We now provide results for the error exponent D, which is then used to

define a penalty function πclq in (4.17) approximating the function π in (4.2),

based on the inference error probability.
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Theorem 6 (Error Exponent for MRF) When the sequence of normalized log-

likelihood ratio variables is uniformly integrable and converges in probability under

the null hypothesisH0, the error exponent in (4.6) is

D = p lim
n→∞

1

n

∑

c∈C
E(φc(Yc)|v;H0), (4.16)

where φc is the potential function for clique c, C is the MRF clique collection in (4.13)

and E is the expectation underH0.

Proof: We use the form of LLR in (4.13). See Appendix 4.A. �

Hence, the exponent is given by the limit of the normalized sum of functions

over the dependency cliques. We define a new penalty function πclq based on

the error exponent to be used in the optimization in (4.12), where the unselected

cliques are assigned penalty

πclq(C \ Cs):=
∑

c∈C\Cs

(

E(φc(Yc)|v;H0)
)+
, (4.17)

and use it instead of the original penalty function π in (4.2) based on the error

probability.

4.2.3 Special Case of MRF: Disjoint Cliques

We now provide approximation guarantees and convergence results for (4.12)

under a special class of dependency graphs. This in turn inspires the develop-

ment of a general class of heuristics for any dependency graph in Section 4.3.
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Figure 4.3: Clique selection and fusion via PCST reduction for binary cliques.

We consider the special case when all the cliques in the joint dependency graph

G(v) are disjoint. This can occur for instance, when nodes are placed according

to a cluster process and the dependency graph is given by a disk graph. See

Section 4.4. Here, the form of the LLR in (4.14) and the exponent in (4.16) are

simplified further.

For disjoint cliques, the dependency graph G′(vs) is a subgraph of G(v), for

any node subset vs spanning a sub-collection of cliques Cs ⊂ C, and hence,

L(Yvs
) =
∑

c∈Cs

φc(Yc). (4.18)

Hence, it is simpler to design fusion schemes in this case since the dependency

structure does not change for different nodes subsets, as long as the nodes span

a sub-collection of cliques.

For disjoint cliques, the penalty function for each clique in (4.17) simplifies

to the KLD of measurements in clique c ∈ C

πclq(c) = D( fc(Yc;H0)|| fc(Yc;H1)):=Dc. (4.19)
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Hence, if nodes in a clique c is not selected, then a penalty equal to its KLD Dc

is paid.

We now prove the asymptotic optimality of using the exponent-based

penalty function πclq in (4.19), instead of the original penalty function π in (4.2)

in (4.12).

Theorem 7 (Asymptotic Optimality) When the number of cliques grows with net-

work size (|C| → ∞, as |v| → ∞), and the link costs are bounded, we have

lim
|v|→∞

opt tradeoff clique(v,E, γπ)

opt tradeoff clique(v,E, γπclq)
= 1, ∀γ > 0. (4.20)

Proof: Along the lines of Theorem 4. See 4.A. �

Hence, using the penalty function πclq in (4.19) instead of π is suitable for

networks with large number of cliques. An example where this does not occur

is when the dependency graph is complete, and has a single clique. We therefor

need a sparse dependency graph to guarantee the asymptotic convergence of

the constrained PCDF in (4.12) to the optimal solution under penalty πclq. Along

the lines of our approach for the i.i.d. case, we now prove that under πclq, the

optimal solution reduces to a PCST.

Theorem 8 (PCST Reduction) opt tradeoff clique(v,E, γπclq) has an approximation-

ratio preserving PCST reduction.

Proof: By simplifying an integer program. See Appendix 4.A. �
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The above result implies that any approximation algorithm for the PCST

can be transformed to an approximation for opt tradeoff clique(v,E, γπclq), with

its approximation ratio preserved. One such instance, called the approximate

prize-collecting data fusion (Approx PCDF), is given in Fig.4.4. It builds an

approximate PCST on an augmented graph using the GW-algorithm [107].

The augmented graph is given by the function Map-Sub in Fig.4.5, where

for each non-trivial clique c (size greater than one) of the dependency graph, it

adds a virtual node vc and connects it to the nodes v ∈ v. The costs of new edges

reflect the cost of forwarding raw data to candidate processors to compute the

clique potentials in the first stage of LLR computation, which is not needed for

i.i.d. data. Hence, the routing costs are increased in the presence of correlation

due to additional complexity of the LLR.

The penalty of each virtual node vc is πclq(c) in (4.19) and the penalties of

all nodes v ∈ v are set to zero. After building the approximate PCST on the

augmented graph, the function RevMap-Sub in Fig.4.6 maps it to a valid output,

viz., the set of selected cliques and the fusion scheme to compute its LLR. An

example of the PCST reduction is shown in Fig.4.3.

As in the i.i.d. case, an approximate PCST is built on the augmented graph

using the GW-algorithm [107]. Since the augmented graph has |v| + |Cnt| num-

ber of nodes, where Cnt is the set of non-trivial cliques, the approximation ra-

tio of Approx PCDF(Map-Sub) with respect to opt tradeoff clique(v,E, γπclq) is

2 − (|v| + |Cnt| − 1)−1.

We now improve its approximation ratio based on some simple observations

regarding the GW-algorithm. Define the collection of profitable cliques Cp ⊂ C as

73



those generating a net “profit” after reducing their scaled KLD by the costs of

raw-data routing to any processor

Cp :={c : c ∈ C, |c| = 1 or |c| > 1 and

γDc ≥ min
i∈v

∑

vk⊂c j,k,i

ESP(vi, vk)}, (4.21)

and let Map-Sub′ be the modified version of Map-Sub which only adds virtual

nodes for non-trivial profitable cliques, i.e., c ∈ Cp, |c| > 1, instead of adding

for all non-trivial cliques, c ∈ Cnt, as done by Map-Sub. Below, we give the

improved approximation ratio.

Theorem 9 (Improved Approx. Ratio) On using the Map-Sub′ function, the ap-

proximation ratio for Approx PCDF with respect to opt tradeoff clique(v,E, γπclq) is

ρ(Approx PCDF(Map-Sub′)) = 2 − 1

max(|Cp| − I(v1 ∈ Cp), 1)
.

Proof: Only profitable cliques can be selected in the optimal solution. See

Appendix 4.A. �

Hence, the approximation ratio for Approx PCDF(Map-Sub′) depends only

on the number of profitable cliques |Cp|, which may be substantially smaller than

the size of the augmented graph |v| + |Cnt| leading to improved approximation

guarantees. In fact, when there are no profitable cliques (Cp = ∅), the algorithm

outputs the optimal solution (ρ = 1) of not selecting any of the nodes.

74



Require: v = {v1, . . . , vn} nodes, v1= Fusion center,
M = {c0, . . . , c|M|−1}= Candidate node groups
For Algo=Clique Selection, M = C is the clique set of G(v) and Π = πclq in
(4.17).
For Algo=Component Selection,M is the set of components of G(v) and Π =
π cmp in (4.22).
Ng= Metric closure of network, ESP = Link costs
Πm = Penalty of group m, γ = tradeoff factor
{G′, vm, π} ←Map-Sub(Ng;M,ESP,Π, γ)

PCST(G;ESP, π) = (Approx.) Prize-collecting Steiner tree on G using GW algo-
rithm with cost ESP, node penalty fn. π
DPCST = PCST(G′) directed towards v1

{Ms,Υ} ← RevMap-Sub(DPCST; vm, v,M,Algo)

return {Ms,Υ}

Figure 4.4: Approx PCDF(Map-Sub,Algo) selects groupsMs and policy Υ.

4.3 Node Selection Heuristics

The results in the previous section inspire the development of two heuristics

for a general dependency graph, viz., clique selection and component selection.

The Approx PCDF algorithm in the previous section, based on the PCST reduc-

tion, can be generalized as follows: form groups of nodes according to some

criterion as candidates for selection, and define a penalty function for not se-

lecting each group. Apply the PCST reduction as before by augmenting the

graph with virtual nodes for each group. Using the RevMap-Sub, the output is

a selected sub-collection of groups and a fusion scheme which computes a sum

function over the selected groups.

The desired output for cost-performance tradeoff is however not a fusion

scheme for computing a sum function, but for computing the marginal LLR of

the selected nodes. As we discussed in Section 4.2.2, the LLR structure (depen-

dency graph) changes with the selected node set in general. We now overcome

this hurdle by grouping nodes in such a manner that the LLR of any selected
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1: function MAP-SUB(Ng(v);M,ESP,Π, γ)
2: nbd(v; G) = Neighborhood of v in undirected G
3: G′ ← Ng, vm ← ∅, π(vi)← 0, ∀vi ∈ v

4: for j← 0 to |M| − 1 do ⊲ Let v andM be ordered
5: if |m j| > 1 then
6: vm ← vn+ j

7: Add new node vn+ j to G′

8: Assign penalty γπ(vn+ j)← γΠm j
,

9: for all vi ∈ v do
10: Add node vi to nbd(vn−1+ j; G′)
11: ESP(vn−1+ j, vi; G′)← ∑

vk⊂c j,k,i

ESP(vi, vk; Ng)

12: end for
13: else
14: Vm ← vi, π(vi)← γΠm j

, vi ⊂ m j ⊲ 1-groups
15: end if
16: end for
17: return {G′, vm, π}
18: end function

Figure 4.5: Map-Sub(Ng;M,ESP,Π, γ) adds nodes for each non-trivial group.

sub-collection of groups is indeed a sum function over those groups.

For general dependency graphs, such groups are given by the components

of the dependency graph, i.e., if all or none of the nodes belonging to each com-

ponent of the graph are selected, then the LLR of the selected subset is a simple

sum function over the selected components

L(Yvs
) =

∑

v⊂m,m∈M
L(Ym),

where m ∈ M is a component in the dependency graph. Moreover, we can

define penalty for each component by collecting the terms of the error exponent

in (4.16) consisting of all the cliques contained in it, given by

π cmp(m):=
∑

c⊂m,c∈C
E[φc(Yc);H0] = Dm, (4.22)
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1: function REVMAP-SUB(G′; vc, v,M,Algo)
2: Ns(v;G), Np(v;G) = Imm. successor, predecessor
3: < i, j >= Directed edge from i to j

4: Initialize G ← G′,Ms ← ∅
5: for all v j ∈ vc with Ns(v j; G′) , ∅ do
6: if j > n − 1 then
7: k ← j − n + 1,Ms ←Ms ∪ mk

8: Proc(mk)← Ns(v j; G′), for mk ∈ M,
9: v j ← ck \ Proc(mk), Delete < v j,Proc(mk) > in G, add <

v j,Proc(mk) >, mark them
10: if Np(v j; G) , ∅ then Replace < Np(v j), v j > in G with edges <
Np(v j),Proc(mk) >

11: end if
12: else
13: Proc(ml)← v j, for v j ⊂ ml,Ms ←Ms ∪ ml

14: end if
15: end for
16: FG←Marked edges of G, AG← G \ FG
17: Retain only one edge in FG if there are parallel links
18: Let v(Proc) be set of all processors
19: LetA ← nodes in v spanning the groupsMs

20: if Algo=Clique Selection then
21: Let C′ be clique set of G′(A)

22: for all c ∈ C′ \Ms do
23: Proc(c)← arg min

i∈v(Proc)

∑

j: j⊂c
< j,i><FG

ESP(i, j)

24: Add < j,Proc(c) >, j ⊂ c \ Proc(c) to FG if not already present
25: end for
26: Ms ← C′
27: end if
28: Υ← {Proc,FG,AG}
29: return {Ms,Υ}
30: end function

Figure 4.6: RevMap-Sub(G′; vc, v,M) selects groupsMs and policy Υ.

where Dm is the KLD of the component m, and the penalties of different com-

ponents are additive. We term such a policy considering different components

of the dependency graph as candidates for selection as the component selection

heuristic.
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Figure 4.7: Objective Value obj vs. Tradeoff Factor under Uniform Placement

Optimal cost-performance tradeoff is however not guaranteed for the com-

ponent selection heuristic since we may be severely limiting our choices of node

subsets for selection. For instance, if the graph has a single component, then the

heuristic reduces to a binary decision of selecting all or none of the nodes. We

now propose another heuristic which may perform better in such instances.

As in the previous section, we consider the cliques of the dependency graph

as the groups, i.e., candidates for selection, and the penalty function for each

clique in (4.17). This is referred to as the clique selection heuristic. However,

as noted, the output fusion scheme is not guaranteed to compute the marginal

LLR of the selected node set which is a requirement for inference. In Fig.4.6, we

add additional lines from (17) to (26) to ensure that the marginal LLR is indeed

computed. For each new clique in the marginal dependency graph, not present

in the dependency graph over all the nodes G(v), we ensure that its clique po-

tential is computed by adding edges from its members to a processor to the

forwarding subgraph (FG) of the fusion scheme. However, since new edges are

added, routing costs increase, and we can no longer provide optimality results

for the clique selection heuristic for a general MRF, as we did in the previous

section.
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Figure 4.9: Cost vs. Performance for Selected Set vs under Uniform Placement

The component and clique selection policies represent group selection of

nodes with aggregation for efficient cost-performance tradeoff. The component

selection heuristic can be viewed as coarse selection or rejection of nodes as a full

component, while the clique selection heuristic is more fine-grained, depending

on the graph. For graphs having very few components, and yet, a large number

of cliques, we expect the clique selection policy to have better cost-performance

tradeoff than component selection, since there are more candidates for selection.

On the other hand, for sparse graphs with large number of components, we ex-

pect the component selection policy to do better, and this is validated by our

simulations.
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Figure 4.10: Samples of i.i.d uniform placement and Matern cluster process.

4.4 Numerical Analysis

4.4.1 Simulation Environment

We assume that the sensor measurements are Gaussian under either hypothesis

with the same covariance matrix

Yv ∼ N(µi,Σv), underHi, i = 0, 1. (4.23)

This scenario arises when the sensors measure a deterministic signal with ad-

ditive (correlated) Gaussian noise under each hypothesis. The KLD D and the

type-II error probability PM have closed forms for Gaussian variables [91, 108].

We fix µ0 = 0,µ1 = 0.1I and the type-I error α = 0.2.

In our setup, n (expected) number of nodes are distributed in a square. We

consider two node placement distributions: uniform and Matern cluster pro-

cess2 [109]. See Fig.4.10. The routing cost between any two nodes i and j for

2Here, a parent Poisson process first generates points. A child Poisson process then generates
nodes in a disc around each point of the parent process.
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Figure 4.12: Component Selection for Gaussian data, 60 runs, γ = 140, n = 200

direct transmission is given by the power-weighted distance |i, j|ν. We present

the result when the set of feasible direct connections is the complete graph and

the path-loss ν = 2: similar trends were observed for any connected graph and

ν ∈ [2, 4].

4.4.2 Results: IID Measurements

We first consider the case when all the measurements are i.i.d. conditioned on

each hypothesis with unit variance (Σv = I). We compare the performance of

our fusion scheme Approx PCDF in Fig. 4.4 with the following simple schemes:
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Figure 4.13: Component Selection for Gaussian data, 60 runs, γ = 140, n = 200

choosing all the nodes and conducting fusion along the MST, choosing none of

the nodes (paying penalty for all the nodes), and additionally, optimal selection

with no aggregation, i.e., routing all the selected data to the fusion center via the

shortest path routes (SPR). It is given by the set of “profitable” nodes

vSPR

∗ (V,E, γπiid) = {i : i ∈ v, γD > ESP(i, v1)}, (4.24)

where ESP is the cost of shortest path. In Fig.4.7, we find that the tradeoff func-

tion obj in (4.3) for Approx PCDF is significantly better than those for the other

schemes. Hence, incorporating fusion into cost-performance tradeoff signifi-

cantly reduces the costs and achieves better tradeoff.

Fig.4.8 shows that more nodes are selected by Approx PCDF as the tradeoff

factor γ increases, since the penalty is given by γπ. In Fig.4.9, we plot the average

(per-node) routing cost for aggregation of selected measurements versus the

resulting error probability for Approx PCDF under different γ. We see that the

exponent-based approximation e−nD is close to the actual error probability PM.
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4.4.3 Results: Correlated Measurements

We employ the GMRF model in [110], where the dependency graph G(v) is a

disk graph3 with radius δ and the coefficients of the potential matrix Av:=Σ−1
v

are given by

Av(i, j) =











































1 −
∑

k:(i,k)∈G(v)

A(i, k), i = j,

−2(1 − |i, j|
δ

), j , i,dist(i, j) ≤ δ,

0, o.w. (4.25)

We find that the positive definiteness is ensured in the above model since A is

diagonally dominant. For Gaussian measurements, the maximum clique size

is two and higher order clique potentials are zero (see Chapter 2). Hence, the

clique selection heuristic in Fig.4.4 reduces to selection of the dependency edges,

and is called the edge selection policy.

We find that for the above model, the penalty for the entire node set given

by the KLD Dv does not change with the disc radius δ or the node placement.

However, the configuration of cliques and their KLD indeed depend on these

factors and influence the nature of selected set.

In Fig.4.11, we compare the component and edge selection heuristics under

uniform placement. We fix the disk radius δ = 1.2 and here, the disk graph is

connected (single component). We expect the edge selection heuristic to per-

form better since it has more choices here when compared to component se-

lection, which has to make a binary choice whether to select all or none of the

3A disk graph has edges between nodes within δ inter-node distance.
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nodes. We find that for γ shown in the figure, this indeed is the case; the edge

selection heuristic performs better and selects some nodes, while the compo-

nent selection heuristic selects none of the nodes thereby incurring high penalty

in terms of error probability.

In Fig.4.12 and Fig.4.13, we study the influence of node placement on our

heuristics, and consider uniform and Matern cluster process with component

selection heuristic. We observe that at low values of δ, the clustered process

is more efficient; here, more nodes are chosen, and the tradeoff function obj is

lower. However, as δ increases, the two processes have nearly the same per-

formance. As in the i.i.d. case, the exponent-based penalty π cmp is close to π,

based on the error probability in all the instances.

We can provide an intuitive explanation for the above behavior. At low de-

pendency (small values of the disk radius δ), clustering the nodes is more effi-

cient than uniform placement since it leads to significantly smaller number of

components, thereby providing more choices to the component selection heuris-

tic. Moreover, the routing costs within the components are also significantly

reduced upon clustering since nodes are nearer, and hence, more nodes are se-

lected leading to improved tradeoff. However, as δ increases, there are fewer

and larger components, leading to increased routing costs and fewer choices

for selection. Hence, the cluster process is a good node-placement strategy

for achieving efficient cost-performance tradeoff at sparse spatial dependencies,

and our heuristic has good performance in this regime.
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4.A Proofs

Proof of Theorem 4

It is easy to see that |v∗(v,E, γπ′′)| is monotonic in the tradeoff factor γ > 0, for

both penalty functions π′′ = π, πiid in (4) and (10). Hence, ∃γ1 such that ∀γ ≥ γ1,

we have

lim
|v|→∞

|v∗(v,E, γπ′′)|
|v| = 1,

for both functions π′′ = π, πiid. The actual value of γ1 indeed depends on the sys-

tem parameters. For γ ≥ γ1, the average penalty goes to zero for both functions

π′′ = π, πiid since almost all nodes are selected and all edge costs to be bounded.

Hence,

lim
|v|→∞

1

|v|opt tradeoff(v,E, γπ′′) = lim
|v|→∞

1

|v|E(Υ∗(v∗(v,E, π′′))) = lim
|v|→∞

1

|v|E(Υ∗(v)),

since each edge cost is assumed bounded. Hence, we have for

lim
|v|→∞

opt tradeoff(v,E, γπ)

opt tradeoff(v,E, γπiid)
= 1, ∀γ > γ1 > 0.

Now for a fixed m < 1, consider γ ≤ γ2(m) such that

lim sup
|v|→∞

|v∗(v,E, γπ′′|)
|v| = m < 1, π′′ = π, πiid.

Hence, we limit our search over a collection of sets Am:={vs : |vs |
|v| ≤ m} for the

optimal solution opt tradeoff(V,E, γπ′′) for both π′′ = π, πiid in this case. For i.i.d.

measurements, from the existence of exponent we have

[|v| − |vs|]D− ǫ ≤ log
PM(vs)

PM(v)
≤ [|v| − |vs|]D + ǫ, (4.26)
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Define new penalty functions

π±(v\vs):=[|v| − |vs|]
(D± δ

|v|
)

, ∀vs ∈ A

where δ(m):= lim sup
|v|→∞,vs∈Am

ǫ|v|
|v|−|vs | =

ǫ
1−m

< ∞.

For the same edge costs, a uniformly smaller penalty function for each node

subset results in a lower value of the optimal solution. Hence, we have

opt tradeoff(v,E, π−) ≤ opt tradeoff(v,E, π′′) ≤ opt tradeoff(v,E, π+),

for π′′ = π, πiid. We now claim that if all the edge costs are unique and satisfy

Ee , γD, then for some n0

opt tradeoff(v,E, π−) = opt tradeoff(v,E, π+), ∀|v| > n0. (4.27)

Note that if we substitute the penalty function π+ with π−, we uniformly

reduce the node penalties by 2δ
n

, where n = |v|. This implies that some nodes

from the optimal node set with penalty function π+ (abbreviated as v+∗ ) may be

potentially removed. We claim that none of the nodes are removed for all n > n0,

for some n0 when the edge costs are all unique and not equal to node penalty. In

this case, we can always find a small perturbation of the node penalty without

changing the optimal solution. For example, consider a leaf node in v+∗ , from

cardinality one test [111], if its edge Ee > γ(D − δ
n
), then it cannot be in v−∗ . But

since it is in v+∗ , we have

Ee ≤ γ(D + δ
n

).

Since we have assumed that Ee , γD, we can find some n0 such that for all n > n0

Ee ≤ γ(D± δ
n

).
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Hence, the leaf nodes are the same in v−∗ and v+∗ for n > n0. Similarly, we can

apply general cardinality tests in [111] such that for large n, the vertices in v+∗ are

not eliminated. Even in the case when some of the edge costs and node penalties

are non-unique, the change in the objective value goes to zero asymptotically.

Therefore,

lim
|v|→∞

opt tradeoff(v,E, π−)
opt tradeoff(v,E, π+) → 1, ∀γ ≤ γ2(m),m < 1.

By sandwich theorem, we have

lim
|v|→∞

opt tradeoff(v,E, π)

opt tradeoff(v,E, πiid)
→ 1, ∀γ ≤ γ2(m),m < 1.

Note that when m→ 1, γ2(m)→ γ1, and hence, we can make the gap between γ1

and γ2(m) arbitrarily small.

Proof of Theorem 6

When the sequence of normalized LLR converges in probability under null hy-

pothesis4 , the NP type-II error exponent under a fixed type-I error bound is [44,

Theorem 1]

D = p lim
|v|→∞

1

|v|L(YV), Yv ∼ H0, (4.28)

= p lim
|v|→∞

1

|v|E[L(Yv);H0], (4.29)

where p lim denotes convergence in probability. The reduction from (4.28) to

(4.29) holds when the sequence of the normalized LLR variables is uniformly

integrable [112, (16.21)]. Using the form of LLR for a MRF in (17),

4Random variables Xn converge in probability to X, if limn P[|Xn−X| ≥ ǫ] = 0, for each positive
ǫ. [112, p. 268].
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E[L(Yv);H0] =
∑

c∈C
E[φc(Yc);H0]. (4.30)

Proof of Theorem 7

As in proof of Theorem 2, for a sequence of node sets v with clique collection C

and another sequence of node subsets vs ( v with sub-collection Cs ( C, when

lim sup|v|→∞
|Cs |
|C| = 1, the result holds as in the i.i.d. case.

Assume that lim sup|v|→∞
|Cs |
|C| = m < 1. From Theorem 3,

∑

c∈C\Cs

Dc − ǫ ≤ log
PM(vs)

PM(v)
≤
∑

c∈C\Cs

Dc − ǫ,

for some ǫ > 0. Define new penalty functions

π±(C\Cs):=
∑

c∈C\Cs

Dc ±
δ

|C| ,

where δ:= ǫ
1−m

is finite since m < 1.

For the same edge costs, a uniformly smaller penalty function for each node

subset results in a lower value of the optimal solution. Hence, we have

opt tradeoff clique(v,E, π−) ≤ opt tradeoff clique(v,E, π′′)

≤ opt tradeoff clique(v,E, π+),

for π′′ = π, π cmp. Since the number of cliques grows as the number of nodes,

δ
|C| → 0 as |v| → ∞ and π− and π+ can be made close to one another. On lines of

the proof of Theorem 2, we can show that

lim
|v|→∞

opt tradeoff clique(v,E, π−)
opt tradeoff clique(v,E, π+) → 1.
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By sandwich theorem, we have

lim
|v|→∞

opt tradeoff clique(v,E, π)

opt tradeoff clique(v,E, π cmp)
→ 1.

Proof of Theorem 8

We now write a 0-1 integer program whose optimal solution provides the opti-

mal clique selection and fusion scheme in (11) for computing its marginal LLR

and delivering it to the fusion center v1.

As explained in Section 3.2.2, we can map any valid fusion digraph F =

{FG,AG} and the processor assignment mapping Proc to variables y and z, de-

fined as

z( j, c):=I[Proc(c) == j], y(i, j):=I[< i, j >∈ AG],

where I is the indicator function and, the total routing costs of the fusion di-

graph in (19) can be expressed as,

E(F ) =
1

2

∑

i, j∈v
[I(
∑

c:i⊂c

z( j, c) ≥ 1) + y(i, j)]ESP(i, j).

We now need to incorporate the inference performance into the integer pro-

gram. From (11), it is equivalent to imposing penalties for not selecting a set

of cliques X ⊂ C for processing and data fusion. This can happen in two ways,

viz., the clique may not be assigned a processor or the computed clique poten-

tial may not be aggregated and delivered to the fusion center. Hence, (11) is

equivalent to the following integer program:
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min
y,z,u

1

2

∑

i, j∈v
[I(
∑

c:i⊂c

z( j, c) ≥ 1) + y(i, j)]ESP(i, j)

+

∑

X⊂C
u(X)π(X) (IP-1), (4.31)

s.t. let Proc:={ j : z( j, c) = 1, for j ∈ v, c ∈ C}, (4.32)
∑

c:c∈s, j∈v
z( j, c) +

∑

X:X⊃s

u(X) ≥ 1,∀s ⊂ C, (4.33)

∑

i<s, j∈s
y(i, j) +

∑

X:X⊃A
A={c:Proc(c)∈s}

u(X) ≥ 1,∀s ⊂ v, s ∩ Proc , ∅, (4.34)

y, z,u ∈ {0, 1}, (4.35)

where π(X):=γ
∑

c∈X Dc.

For the case of clique selection, we have

∑

i, j∈v
I(
∑

c:i⊂c

z∗( j, c) ≥ 1)ESP(i, j) =
∑

i, j∈v

∑

c:i⊂c

z∗( j, c)ESP(i, j),

=

∑

c∈C
|c|>1

∑

i⊂c, j∈v
z∗( j, c)ESP(i, j),

where the two equalities hold since there is a unique clique c containing node i,

since c is a clique. Adding the constraint that |c| > 1 does not affect the optimal

solution. Hence, we have the equivalent IP,

min
y,z,u

1

2
[
∑

c∈C,|c|>1

∑

i⊂c, j∈v
z( j, c)ESP(i, j) +

∑

i, j∈v
y(i, j)ESP(i, j)]

+

∑

X⊂C
u(X)π(X) (IP-2) (4.36)
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We can now add new nodes vc and define new edge costs as

ESP(vc, j):=
∑

i⊂c

ESP(i, j), ∀ j ⊂ c,

and the new penalties are π′

π′(X) =
∑

c:vc∈Xor |c|=1,i∈X,i⊂c

γDc, ∀X ⊂ v ∪ v′

Hence, we have

min
y,z,u

1

2

[
∑

vc∈v′, j∈v
z( j, c)ESP(vc, j) +

∑

i, j∈v
y(i, j)ESP(i, j)

]

+

∑

X⊂v∪v′
π′(X)u(X) (IP-3), (4.37)

s.t. let Proc:={ j : z( j, c) = 1, for j ∈ v, vc ∈ v′},
∑

c:vc∈s, j∈v
z( j, c) +

∑

X:X⊃s

u(X) ≥ 1,∀s ⊂ v ∪ v′,

∑

i<s, j∈s
y(i, j) +

∑

X:X⊃s

u(X) ≥ 1,∀s ⊂ v ∪ v′, s ∩ Proc , ∅,

y, z,u ∈ {0, 1},

where the constraints are redefined since the penalty π′ is defined over the entire

set v ∪ v′. In the final step, we z and y as variables x and this turns out to be the

IP for the PCST.

min
x,u

∑

i, j∈v∪v′

1

2
x(i, j)ESP(i, j) +

∑

X⊂v∪v′
π′(X)u(X), (IP-4)

s.t.
∑

i<s, j∈s
x(i, j) +

∑

X:X⊃s

u(X) ≥ 1,∀s ⊂ v ∪ v′,

x,u ∈ {0, 1}.
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Proof of Theorem 9

We first show that the approximation factor of the GW-algorithm is only depen-

dent on the number of vertices with strictly positive penalty.

Lemma 3 (Approx. Factor of GW-Algorithm) Given node set v, root v1 and subset

v′ ⊂ v with all nodes with non-zero penalty, the GW-algorithm for PCST in [107] has

an approximation factor

2 − 1

max[|v′| − I(v1 ∈ v′), 1]
, (4.38)

where I is the indicator function.

Proof: The approximation factor is based on the upper bound on the number

of active nodes in any iteration of the algorithm in [107, Thm. 4.1]. Since only

nodes in v′ have non-zero penalties, the number of active cliques is at most |v′| in

any iteration. Moreover, the root v1 is set inactive by the algorithm and if v1 ∈ v′,

the number of active nodes is at most |v′| − 1. �

Hence, for Tradeoff Approx, only the nodes corresponding to the cliques

have non-zero penalties. This implies that the approximation ratio is improved

to

ρ(Tradeoff Approx(Map-Sub)) = 2 − (|C| − I(v1 ∈ C))−1, (4.39)

where the indicator function is over the event that the fusion center is a 1-clique.
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We can further improve the approximation ratio by modifying the function

Map-Sub by using the result below about the optimal solution.

Lemma 4 (Profitable Components) In the optimal solution opt tradeoff clique(v,E, πclq)

only the cliques in the sub-collection Cp ⊂ C are potentially selected, with Cp defined as

Cp :={c : c ∈ C, |c| = 1 or |c| > 1 and

γDc ≥ min
i∈v

∑

vk⊂c j,k,i

ESP(vi, vk)}. (4.40)

Proof: First note that all the selected clique representative nodes are leaves in

the PCST. This is because if a zero-penalty node is a leaf in the PCST, then the

cost is lowered by removing it. For a clique c < Cp, let vertex vc be its represen-

tative in the augmented network graph Map-Sub(Ng(v)) and say it is spanned in

PCST and connected to some node i. By construction of Map-Sub(N̄g), i ⊂ c. But

the value of the objective function of the PCST can be lowered by removing the

edge (vc, i), since the penalty is less than any edge cost

γDc < ESP(vc, i), ∀ i ∈ v, c < Cp.

Hence, vc < PCST for c < Cp. �

The above lemma implies that only cliques generating a net “profit” after

reducing their scaled KL-distance by the costs of raw-data routing to the pro-

cessor are candidates for optimal selection. This implies that there is no need to

add virtual nodes for non-profitable cliques in the augmented graph and hence,

approximation factor on using Map-Sub′ holds from Lemma 3 and 4.
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CHAPTER 5

ENERGY SCALING LAWS FOR OPTIMAL INFERENCE IN RANDOM

NETWORKS

We consider the problem of distributed statistical inference in a network

of randomly located sensors taking measurements and transporting the locally

processed data to a designated fusion center. The fusion center then makes an

inference about the underlying phenomenon based on the data collected from

all the sensors.

For statistical inference using wireless sensor networks, energy consumption

is an important design parameter. The transmission power required to reach

a receiver distance d away with a certain signal-to-noise ratio (SNR) scales in

the order of dν, where 2 ≤ ν ≤ 6 is the path loss [113]. Therefore, the cost of

moving data from sensor locations to the fusion center, either through direct

transmissions or through multihop forwarding, significantly affects the lifetime

of the network.

5.1 Scalable data fusion

We investigate the cost of data fusion for inference, and its scaling behavior with

the size of the network and the area of deployment. In particular, for a network

of n random sensors located at points Vn = {V1, · · · ,Vn} in R2, a fusion policy Υn

maps Vn to a set of scheduled transmissions and computations. The average

cost (e.g., energy) of a policy is given by
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Ē(Υn(Vn)):=
1

n

∑

i∈Vn

Ei(Υn(Vn)), (5.1)

where Ei(Υn(Vn)) is the cost at node i under policy Υn. The above average cost is

random, and we are interested in its scalability in random networks as n→ ∞.

Definition 8 (Scalable Policy) A sequence of policies Υ:=(Υn)n≥1 is scalable on aver-

age if

lim
n→∞
E(Ē(Υn(Vn))) = Ē∞(Υ) < ∞

where the expectation E is with respect to the random locations Vn, and Ē∞(Υ) is referred

to as the scaling constant. A sequence of policies Υn is weakly scalable if

p lim
n→∞
Ē(Υ(Vn))) = Ē∞(Υ) < ∞,

where p lim denotes convergence in probability. It is strongly scalable if the above

average energy converges almost surely and is L2 (mean-squared) scalable if the con-

vergence is in mean square.

Hence, a scalable fusion policy implies a finite average energy expenditure

even as the network size increases. We focus mostly on the L2 scalability of the

fusion policies, which implies weak and average scalability [112]. Further, we

are interested in lossless data-fusion policies which enable the fusion center to

perform optimal statistical inference with the best inference accuracy as if all the

raw sensor data were available.

To motivate this study, first consider two simple fusion policies: the direct

transmission policy (DT) in which all sensors transmit directly to the fusion

center (single hop), and the shortest-path (SP) policy, where each node forwards

95



its raw data to the fusion center using the shortest-path route without any data

combination at the intermediate nodes.

We assume, for now, that n sensor nodes are uniformly distributed in a

square of area n. It is perhaps not surprising that neither of the above two poli-

cies is scalable as n → ∞. For the DT policy1, intuitively, the average transmis-

sion range from the sensors to the fusion center scales as
√

n, thus Ē(DT(Vn))

scales as n
ν
2 . On the other hand, we expect the SP policy to have better scaling

since it chooses the best multi-hop path to forward data from each node to the

fusion center. However, even in this case, there is no finite scaling. Here, the av-

erage number of hops in the shortest path from a node to the fusion center scales

in the order of
√

n, and thus, Ē(SP(Vn)) scales in the order of
√

n. Rigorously es-

tablishing the scaling laws for these two non-scalable policies is not crucial at

this point since the same scaling laws can be easily established for regular net-

works when sensor nodes are on two-dimensional lattice points. See [114].

Are there scalable policies for data fusion? Among all the fusion policies not

performing data combination at the intermediate nodes, the shortest-path (SP)

policy minimizes the total energy. Thus, no scalable policy exists unless nodes

cooperatively combine their information, a process known as data aggregation.

Data aggregation, however, must be considered in conjunction with the perfor-

mance requirements of specific applications. In this chapter, we assume that

optimal statistical inference is performed at the fusion center as if all the raw

sensor data were available, and this places a constraint on data aggregation.

For instance, it rules out sub-sampling of the sensor field, considered in [6].

1The direct transmission policy may not even be feasible, depending on the maximum trans-
mission power constraints at the sensors.
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5.2 Summary of Scaling Results

In this chapter, we investigate the energy scaling laws of lossless fusion policies

which are allowed to perform data aggregation at the intermediate nodes, but

ensure that the fusion center achieves the same inference accuracy as if all the

raw observations were collected without any data combination. We assume that

the underlying binary hypotheses for the sensor measurements can be modeled

as Markov random fields (MRF).

For sensor locations Vn and possibly correlated sensor measurements, find-

ing the minimum energy fusion policy under the constraint of optimal inference

is given by

E(Υ∗(Vn)) = inf
Υ∈A

∑

i∈Vn

Ei(Υ(Vn)), (5.2)

where A is the set of valid lossless data-fusion policies

A:={Υ : optimal inference is achieved at the fusion center}.

In general, the above optimization is NP-hard [2], and hence, studying its en-

ergy scaling behavior directly is intractable. We establish upper and lower

bounds on the energy of this optimal policy Υ∗ and analyze the scaling be-

havior of these bounds. The lower bound is obtained via a policy conducting

fusion along the Euclidean minimum spanning tree (MST), which is shown to

be optimal when the sensor measurements are statistically independent under

both hypotheses. The upper bound on the optimal fusion policy is established

through a specific suboptimal fusion policy, referred to as Data Fusion over

Markov Random Fields (DFMRF). DFMRF becomes optimal when observations

are independent under either hypothesis, where it reduces to fusion along the

MST. For certain spatial dependencies among sensor measurements of practi-
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cal significance, such as the Euclidean 1-nearest neighbor graph, DFMRF has an

approximation ratio 2, i.e., its energy is no more than twice that of the optimal

fusion policy, independent of the size and configuration of the network.

We then proceed to establish a number of asymptotic properties of the

DFMRF policy in Section 5.4, including its energy scalability, its performance

bounds, and the approximation ratio with respect to the optimal fusion pol-

icy when the sensor measurements have dependencies described by a k-nearest

neighbor graph or a disc graph (continuum percolation). Applying techniques

developed in [49–51, 115], we provide a precise characterization of the scaling

bounds as a function of sensor density and sensor placement distribution. These

asymptotic bounds for DFMRF, in turn, imply that the optimal fusion policy is

also scalable. Hence, we use the DFMRF policy as a vehicle to establish scal-

ing laws for optimal fusion. Additionally, we use the energy scaling constants

to optimize the distribution of the sensor placements. For independent mea-

surements conditioned on each hypothesis, we show that the uniform distribu-

tion of the sensor nodes minimizes the asymptotic average energy consumption

over all i.i.d spatial placements when the path-loss exponent of transmission is

greater than two (ν > 2). For ν ∈ [0, 2), we show that the uniform distribution is,

in fact, the most expensive2 node configuration in terms of routing costs. We fur-

ther show that the optimality of the uniform node distribution applies for both

the lower and upper bounds on the average energy consumption of the optimal

fusion policy under Markov random field measurements with k-nearest neigh-

bor dependency graph or the disc dependency graph under certain conditions.

To the best of our knowledge, our results are the first to establish the energy

scalability of data fusion for certain correlation structures of the sensor measure-

2The path-loss exponent for wireless transmissions satisfies ν > 2.
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ments. The use of energy scaling laws for the design of efficient sensor place-

ment is new and has direct engineering implications. The fusion policy DFMRF

first appeared in [116], and is made precise here with detailed asymptotic analy-

sis using the weak law of large numbers (WLLN) for stabilizing Euclidean graph

functionals. One should not expect that scalable data fusion is always possi-

ble, and at the end of Section 5.4, we discuss examples of correlation structures

where scalable lossless data-fusion policy does not exist.

5.3 Random Fusion Network Model

5.3.1 Stochastic model of sensor locations

We assume that n sensor nodes (including the fusion center) are placed ran-

domly with sensor i located at Vi ∈ R2. By convention, the fusion center is

denoted by i = 1, and is located at V1 ∈ R2. We denote the set of locations of

the n sensors by Vn:={V1, . . . ,Vn}. For our scaling law analysis, we consider a

sequence of sensor populations placed in expanding square regions Q n
λ

of area

n
λ

and centered at the origin 0 ∈ R2, where we fix λ as the overall sensor density

and let the number of sensors n→ ∞.

To generate sensor locations Vi, first let Q1 := [− 1
2
, 1

2
]2 be the unit-area square3,

and Xi
i.i.d.∼ τ, 1 ≤ i ≤ n, be a set of n independent and identically distributed

(i.i.d.) random variables distributed on support Q1 according to τ. Here, τ is a

probability density function (pdf) on Q1 which is bounded away from zero and

infinity. We then generate Vi by scaling Xi accordingly: Vi =
√

n
λ
Xi ∈ Q n

λ
. A useful

3The results in this chapter hold for τ defined on any convex unit area.
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special case is the uniform distribution (τ ≡ 1). Let Pa be the homogeneous

Poisson distribution on R2 with intensity a > 0.

5.3.2 Random dependency graphs

We consider the statistical inference problem of simple binary hypothesis test-

ing, H0 vs. H1, on a pair of Markov random fields. Under regularity condi-

tions [117], a MRF is defined by its (undirected) dependency graph G and an

associated pdf f (· | G).

Under hypothesis Hk and sensor location set Vn = {V1, · · · ,Vn} generated ac-

cording to the stochastic model in Section 5.3.1, we assume that the dependency

graphGk := (Vn, Ek) models the correlation among the sensor observations. Note

that the node location set Vn under the two hypotheses are identical. Set Ek is

the set of edges of the dependency graph Gk, and it defines the correlations of

the sensor observations, as described in the next section.

We restrict our attention to proximity-based Euclidean dependency graphs.

In particular, we consider two classes of dependency graphs4: the (undirected)

k-nearest neighbor graph (k-NNG) and the disc graph, also known as the con-

tinuum percolation graph. We expect that our results extend to other locally-

defined dependency structures such as the Delaunay, Voronoi, the minimum

spanning tree, the sphere of influence and the Gabriel graphs. An important

property of the aforementioned graphs is a certain stabilization property (dis-

cussed in Appendix 5.A.) facilitating asymptotic scaling analysis.

4The k-nearest neighbor graph (k-NNG) has edges (i, j) if i is one of the top k nearest neigh-
bors of j or viceversa, and ties are arbitrarily broken. The disc graph has edges between any
two points within a certain specified Euclidean distance (radius).
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5.3.3 Cost Model

For node i to transmit data to node j which is distance |i, j| away, we assume

that node i spends energy5 γ|i, j|ν. Without loss of generality, we assume γ = 1.

Hence, given a fusion policy FΥ = (vn,
−→
EΥ) of network size n, the average energy

consumption is given by

Ē(Υ(vn)) =
1

n
E(Υ(vn)) =

1

n

∑

〈i, j〉∈−→EΥ

|i, j|ν, 2 ≤ ν ≤ 6. (5.3)

5.4 Energy Scaling Laws

We now establish the scaling laws for optimal and suboptimal fusion policies.

From the expression of average energy cost in (5.3), we see that the scaling laws

rely on the law of large numbers (LLN) for stabilizing graph functionals. An

overview of the LLN is provided in Appendix 5.A.

We recall some notations and definitions used in this section. Xi
i.i.d.∼ τ, where

τ is supported on B1, the unit square centered at the origin 0. The node location-

set is Vn:=
√

n
λ
(Xi)

n
i=1

and the limit is obtained by letting n→ ∞with fixed λ > 0.

5.4.1 Energy scaling for optimal fusion: independent case

We first provide the scaling result for the case when the measurements are in-

dependent under either hypothesis. From Theorem 1, the optimal fusion policy

minimizing the total energy consumption in (3.2) is given by aggregation along

5Since nodes only communicate a finite number of bits, we use energy instead of power as
the cost measure.
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the directed minimum spanning tree. Hence, the energy scaling is obtained by

the asymptotic analysis of the MST.

For the random node-location set Vn, the average energy consumption of the

optimal fusion policy for independent measurements is

Ē(Υ∗(Vn)) = Ē(MST(Vn)) =
1

n

∑

e∈Eθi Nsmst(λ)(Vn)

|e|ν. (5.4)

Let ζ(ν; MST) be the constant arising in the asymptotic analysis of the MST

edge lengths, given by

ζ(ν; MST):=E
[

∑

e∈E(0;Eθi Nsmst(λ)(P1∪{0}))

1

2
|e|ν
]

, (5.5)

where Pa is the homogeneous Poisson process of intensity a > 0, and

E(0; MST(P1∪{0})) denotes the set of edges incident to the origin in MST(P1∪{0}).

Hence, the above constant is half the expectation of the power-weighted edges

incident to the origin in the minimum spanning tree over a homogeneous unit

intensity Poisson process, and is discussed in Appendix 5.A in (5.30). Although

ζ(ν; MST) is not available in closed form, we evaluate it through simulations in

Section 5.5.

We now provide the scaling result for the optimal fusion policy when the

measurements are independent based on the LLN for the MST obtained in [49,

Thm 2.3(ii)].

Theorem 10 (Scaling for independent data [49]) When the sensor measurements
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are independent under each hypothesis, the limit of the average energy consumption of

the optimal fusion policy in (5.4) is given by

lim
n→∞
Ē(Υ∗(Vn))

L2

= λ−
ν
2 ζ(ν; MST)

∫

B1

τ(x)1− ν
2 dx. (5.6)

Hence, asymptotically the average energy consumption of optimal fusion is

a constant (independent of n) in the mean-square sense for independent mea-

surements. In contrast, forwarding all the raw data to the fusion center accord-

ing to the shortest-path (SP) policy has an unbounded average energy growing

in the order of
√

n. Hence, significant energy savings are achieved through data

fusion.

The scaling constant for average energy in (5.6) brings out the influence of

several factors on energy consumption. It is inversely proportional to the node

density λ. This is intuitive since placing the nodes with a higher density (i.e., in

a smaller area) decreases the average inter-node distances and hence, also the

energy consumption.

The node-placement pdf τ influences the asymptotic energy consumption

through the term
∫

B1

τ(x)1− ν
2 dx.

When the placement is uniform (τ ≡ 1), the above term evaluates to unity.

Hence, the scaling constant in (5.6) for uniform placement simplifies to

λ−
ν
2 ζ(ν; MST).

The next theorem shows that the energy under uniform node placement (τ ≡
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Figure 5.1: Ratio of energy under node pdf τ and uniform pdf.

1) optimizes the scaling limit in (5.6) when the path-loss exponent ν > 2. Also,

see Fig.5.1.

Theorem 11 (Minimum energy placement: independent case) For any pdf τ

supported on the unit square B1, we have

∫

B1

τ(x)1− ν
2 dx ≥ 1, ∀ ν > 2, (5.7)

∫

B1

τ(x)1− ν
2 dx ≤ 1, ∀ ν ∈ [0, 2). (5.8)

Proof: We have the Hölder inequality

‖f1 f2‖1 ≤ ‖f1‖p‖f2‖q, ∀p > 1, q =
p

p − 1
, (5.9)

where for any positive function f ,

‖f‖p:=
(

∫

B1

f (x)pdx
)

1
p
.
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When ν > 2, in (5.9), substitute f1(x) with τ(x)
1
p , f2(x) with τ(x)−

1
p , and p with

ν
ν−2
≥ 1 which ensures that p > 1, to obtain (5.7).

For ν ∈ [0, 2), in (5.9), substitute f1(x) with τ(x)
1
p , f2(x) with 1, p = 2

2−ν > 1 to

obtain (5.8). �

The above result implies that, in the context of i.i.d. node placements, it

is asymptotically energy-optimal to place the nodes uniformly when the path-

loss exponent ν > 2, which is the case for wireless transmissions. The intuitive

reason is as follows: without loss of generality, consider a clustered distribution

in the unit square, where nodes are more likely to be placed near the origin. The

MST over such a point set has many short edges, but a few very long edges,

since a few nodes are placed near the boundary with finite probability. On the

other hand, for uniform point sets, the edges of the MST are more likely to be

all of similar lengths. Since for energy consumption, we have power-weighted

edge-lengths with path-loss exponent ν > 2, long edges are penalized harshly,

leading to higher energy consumption for clustered placement when compared

with uniform node placement.

5.4.2 Energy scaling for optimal fusion: MRF case

We now evaluate the scaling laws for energy consumption of the DFMRF pol-

icy for a general Markov random field dependency among the sensor measure-

ments. The DFMRF aggregation policy involves the cliques of the dependency

graph which arise from correlation between the sensor measurements. The total

energy consumption of DFMRF for random sensor locations Vn is given by
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E(DFMRF(Vn)) =
∑

c∈C(Vn)

∑

i⊂c

ESP(i,Proc(c); Ng)

+ E(MST(Vn)), (5.10)

where ESP(i, j; Ng) denotes the energy consumption for the shortest path between

i and j using the links in the network graph Ng(Vn) (set of feasible links for direct

transmission).

We now additionally assume that the network graph Ng(Vn) is a local u-

energy spanner. In the literature [118], a graph Ng(Vn) is called a u-energy span-

ner, for some constant u > 0 called its energy stretch factor, when it satisfies

max
i, j∈Vn

ESP(i, j; Ng)

ESP(i, j; Cg)
≤ u, (5.11)

where Cg(Vn) denotes the complete graph on Vn. In other words, the energy

consumption between any two nodes is no worse than u-times the best possible

value, i.e., over the shortest path using links in the complete graph. Intuitively,

the u-spanning property ensures that the network graph possesses sufficient set

of communication links to ensure that the energy consumed in the forwarding

stage is bounded. Examples of energy u-spanners include the Gabriel graph6

(with stretch factor u = 1 when the path-loss exponent ν ≥ 2), the Yao graph,

and its variations [118]. In this chapter, we only require a weaker version of the

above property that asymptotically there is at most u-energy stretch between

the neighbors in the dependency graph

6The longest edge in Gabriel graph is O(
√

log n), the same order as that of the MST [119].
Hence, the maximum power required at a node to ensure u-energy spanning property is of the
same order as that needed for critical connectivity.
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lim sup
n→∞

max
(i, j)∈G(Vn)

ESP(i, j; Ng(Vn))

ESP(i, j; Cg(Vn))
≤ u. (5.12)

From (5.12), we have

E(FG(Vn)) ≤ u
∑

c∈C(Vn)

∑

i⊂c

ESP(i,Proc(c); Cg),

≤ u
∑

c∈C(Vn)

∑

i⊂c

|i,Proc(c)|ν, (5.13)

where we use the property that the multihop shortest-path route from each node

i to Proc(c) consumes no more energy than the direct one-hop transmission.

In the DFMRF policy, recall that the processors are members of the respective

cliques, i.e., Proc(c) ⊂ c, for each clique c in the dependency graph. Hence, in

(5.13), only the edges of the processors of all the cliques are included in the

summation. This is upper bounded by the sum of all the power-weighted edges

of the dependency graph G(Vn). Hence, we have

E(FG(Vn)) ≤ u
∑

e∈G(Vn)

|e|ν. (5.14)

From (5.10), for the total energy consumption of the DFMRF policy, we have the

upper bound,

E(DFMRF(Vn)) ≤ u
∑

e∈G(Vn)

|e|ν + E(MST(Vn)). (5.15)
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The above bound allows us to draw upon the general methods of asymptotic

analysis for graph functionals presented in [49, 120].

From (5.15), the DFMRF policy scales whenever the right-hand side of (5.14)

scales. By Theorem 10, the energy consumption for aggregation along the MST

scales. Hence, we only need to establish the scaling behavior of the first term in

(5.14).

We now prove scaling laws governing the energy consumption of DFMRF

and we also establish its asymptotic approximation ratio with respect to the

optimal fusion policy. This in turn also establishes the scaling behavior of the

optimal policy.

Theorem 12 (Scaling of DFMRF Policy) When the dependency graph G of the sen-

sor measurements is either the k-nearest neighbor or the disc graph, the average energy

of DFMRF policy satisfies

lim sup
n→∞

Ē(DFMRF(Vn))

a.s.

≤ lim sup
n→∞

(1

n

∑

e∈G(Vn)

u |e|ν + Ē(MST(Vn))
)

L2

=
u

2

∫

B1

E
[
∑

j:(0, j)∈G(Pλτ(x)∪{0})
|0, j|ν

]

τ(x)dx

+ λ−
ν
2 ζ(ν; MST)

∫

B1

τ(x)1− ν
2 dx. (5.16)

Proof: See Appendix 5.B. �

Hence, the above result establishes the scalability of the DFMRF policy. In

the theorem below, we use this result to prove the scalability of the optimal
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fusion policy and establish asymptotic upper and lower bounds on its average

energy.

Theorem 13 (Scaling of Optimal Policy) When the dependency graph G is either

the k-nearest neighbor or the disc graph, the limit of the average energy consumption of

the optimal policy Υ∗ in (3.2) satisfies the upper bound

lim sup
n→∞

Ē(Υ∗(Vn))
a.s.

≤ lim sup
n→∞

Ē(DFMRF(Vn)), (5.17)

where the right-hand side satisfies the upper bound in (5.16). Also, Υ∗ satisfies the lower

bound given by the MST

lim inf
n→∞

Ē(DFMRF(Vn))
a.s.

≥ lim inf
n→∞

Ē(Υ∗(Vn))

a.s.

≥ lim
n→∞
Ē(MST(Vn))

L2

= λ−
ν
2 ζ(ν; MST)

∫

B1

τ(x)1− ν
2 dx. (5.18)

Proof: From (3.12), the DFMRF and the optimal policy satisfy the lower bound

given by the MST. �

Hence, the limiting average energy consumption for both the DFMRF policy

and the optimal policy is strictly finite, and is bounded by (5.16) and (5.18).

These bounds also establish that the approximation ratio of the DFMRF policy

is asymptotically bounded by a constant, as stated below. Define the constant

ρ := ρ(u, λ, τ, ν), given by
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ρ:=1 +

u

∫

B1

1

2
E
[

∑

j:(0, j)∈G(Pλτ(x)∪{0})
|0, j|ν

]

τ(x)dx

λ−
ν
2 ζ(ν; MST)

∫

B1

τ(x)1− ν
2 dx

. (5.19)

Lemma 5 (Approximation Ratio for DFMRF) The approximation ratio of DFMRF

is given by

lim sup
n→∞

E(DFMRF(Vn))

E(Υ∗(Vn))

a.s.

≤ lim sup
n→∞

E(DFMRF(Vn))

E(MST(Vn))

L2

= ρ, (5.20)

where ρ is given by (5.19).

Proof: Combine Theorem 12 and Theorem 13. �

We further simplify the above results for the k-nearest neighbor dependency

graph in the corollary below by exploiting its scale invariance. The results are

expected to hold for other scale-invariant Euclidean stabilizing graphs as well.

The edges of a scale-invariant graph are invariant under a change of scale, or put

differently, G is scale invariant if scalar multiplication by any positive constant

α from G(Vn) to G(αVn) induces a graph isomorphism for all node sets Vn.

Along the lines of (5.5), let ζ(ν; k-NNG) be the constant arising in the asymp-

totic analysis of the k-NNG edge lengths, that is

ζ(ν; k-NNG):=E
[

∑

j:(0, j)∈k-NNG(P1∪{0})

1

2
|0, j|ν

]

. (5.21)
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Corollary 1 (k-NNG Dependency Graph) We obtain a simplification of Theorem

12 and 13 for average energy consumption, namely

lim sup
n→∞

Ē(Υ∗(Vn))
a.s.

≤ lim sup
n→∞

Ē(DFMRF(Vn))

a.s.

≤ lim sup
n→∞

(1

n

∑

e∈G(Vn)

u |e|ν + Ē(MST(Vn))
)

L2

= λ−
ν
2 [u ζ(ν; k-NNG) + ζ(ν; MST)]

∫

B1

τ(x)1− ν
2 dx. (5.22)

The approximation ratio of DFMRF satisfies

lim sup
n→∞

E(DFMRF(Vn))

E(Υ∗(Vn))

a.s.

≤ lim sup
n→∞

E(DFMRF(Vn))

E(MST(Vn))

L2

=

(

1 + u
ζ(ν; k-NNG)

ζ(ν; MST)

)

. (5.23)

Proof: This follows from [49, Thm 2.2]. �

Hence, the expressions for the energy scaling bounds and the approximation

ratio are further simplified when the dependency graph is the k-nearest neigh-

bor graph. A special case of this scaling result for the 1-nearest-neighbor depen-

dency under uniform node placement was proven in [4, Thm 2]. The constants

in (5.5) and (5.21) can be computed numerically.

It is interesting to note that the approximation factor for the k-NNG depen-

dency graph in (5.23) is independent of the node placement pdf τ and node

density λ. Hence, DFMRF has the same efficiency relative to the optimal policy

under different node placements. The results of Theorem 11 on the optimality
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of the uniform node placement are also applicable here, but for the lower and

upper bounds on energy consumption. We formally state it below.

Theorem 14 (Minimum energy bounds for k-NNG) Uniform node placement (τ ≡

1) minimizes the asymptotic lower and upper bounds on average energy consumption

in (5.18) and (5.22) for the optimal policy under the k-NNG dependency graph over all

i.i.d. node placement pdfs τ.

Proof: From Theorem 11 and (5.22). �

We also prove the optimality of uniform node-placement distribution under

the disc-dependency graph, but over a limited set of node placement pdfs τ.

Theorem 15 (Minimum energy bounds for disc graph) Uniform node placement

(τ ≡ 1) minimizes the asymptotic lower and upper bounds on the average energy con-

sumption in (5.18) and (5.22) for the optimal fusion policy under the disc dependency

graph over all i.i.d. node-placement pdfs τ satisfying the lower bound

τ(x) >
1

λ
, ∀x ∈ B1, (5.24)

where λ > 1 is the (fixed) node placement density.

Proof: We use the fact that for the disc graph G with a fixed radius, more

edges are added as we scale down the area. Hence, for Poisson processes with

intensities λ1 > λ2 > 0,

E
[
∑

j:(0, j)∈G(Pλ1
∪{0})
|0, j|ν

]

≥ E
[
∑

j:(0, j)∈G(Pλ2
∪{0})
|0, j|ν

]

[

λ2

λ1

]
ν
2

,
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where the right-hand side is obtained by merely rescaling the edges present

under the Poisson process at intensity λ2. Since, new edges are added under the

Poisson process at λ1, the above expression is an inequality, unlike the case of

k-NNG where the edge set is invariant under scaling. Substituting λ1 with λτ(x),

and λ2 by 1 under the condition that λτ(x) > 1, ∀x ∈ B1, we have

∫

B1

E
[
∑

j:(0, j)∈G(Pλτ(x)∪{0})
|0, j|ν

]

τ(x)dx

≥ λ−
ν
2E
[
∑

j:(0, j)∈G(P1∪{0})
|0, j|ν

]

∫

B1

τ(x)1− ν
2 dx,

≥ λ−
ν
2E
[
∑

j:(0, j)∈G(P1∪{0})
|0, j|ν

]

, ν > 2.

�

Hence, uniform node placement is optimal in terms of the energy scaling

bounds under the disc dependency graph if we restrict to pdfs τ satisfying

(5.24).

We have so far established the finite scaling of the average energy when the

dependency graph describing the correlations among the sensor observations

is either the k-NNG or the disc graph with finite radius. However, we cannot

expect finite energy scaling under any general dependency graph. For instance,

when the dependency graph is the complete graph, the log-likelihood ratio in

(3.3) is a function of only one clique containing all the nodes. In this case, the

optimal policy in (3.2) consists of a unique processor chosen optimally, to which

all the other nodes forward their raw data along shortest paths, and the proces-

sor then forwards the value of the computed log-likelihood ratio to the fusion

center. Hence, for the complete dependency graph, the optimal fusion policy
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Figure 5.2: Avg. energy, k-NNG dependency, τ ≡ 1, 500 runs, ν = 2.
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Figure 5.3: Approx. ratio, k-NNG dependency, τ ≡ 1, 500 runs, ν = 2.

reduces to a version of the shortest-path (SP) routing, where the average energy

consumption grows as
√

n and does not scale with n.

5.5 Numerical Illustrations

As described in Section 5.3.1, n nodes are placed in area n
λ

and one of them is

randomly chosen as the fusion center. We conduct 500 independent simulation

runs and average the results. We fix node density λ = 1. We plot results for

two cases of dependency graph, viz., the k-nearest neighbor graph and the disc

graph with a fixed radius δ.
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Figure 5.5: Disk Dependency graph, ν = 2, uniform (τ ≡ 1).

In Figs.5.2,5.3 and 5.4, we plot the simulation results for the k-nearest neigh-

bor dependency graph and uniform node placement. Recall in Corollary 1, we

established that the average energy consumption of the DFMRF policy in (5.22)

is finite and bounded for asymptotic networks under k-NNG dependency. On

the other hand, we predicted in Section 5.1 that the average energy under no

aggregation (SP policy) increases without bound with the network size. The

results in Fig.5.2 agree with our theory and we note that the convergence to

asymptotic values is quick, and occurs in networks with as little as 30 nodes.

We also see that the energy for DFMRF policy increases with the number of

neighbors k in the dependency graph since the graph has more edges leading to

computation of a more complex likelihood ratio by the DFMRF policy.
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Figure 5.7: Disk Dependency graph, radius δ, ν = 4.

We plot the approximation ratio of the DFMRF policy for k-NNG in (5.23)

against the number of nodes in Fig.5.3 and against the path-loss exponent ν in

Fig.5.4. As established by Corollary 1, the approximation ratio is a constant for

large networks, and we find a quick convergence to this value in Fig.5.3 as we

increase the network size. In Fig.5.4, we also find that the approximation ratio

is fairly insensitive with respect to the path-loss exponent ν.

In Fig.5.5, we plot the average energy consumption of DFMRF in (5.16) un-

der uniform node placement and the disc dependency graph with radius δ. The

average energy is bounded, as established by Theorem 12. As in the k-NNG

case, on increasing the network size, there is a quick convergence to the asymp-
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totic values. Moreover, as expected, energy consumption increases with the

radius δ of the disc graph since there are more edges. Note that the energy con-

sumption at δ = 0 and δ = 0.3 are nearly the same, since at δ = 0.3, the disc graph

is still very sparse, and hence, the energy consumed in the forwarding stage of

the likelihood-ratio computation is small.
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Figure 5.8: Sample realization of n = 190 points on unit square under pdf τ.

We now study the effect of i.i.d. node-placement pdf τ on the energy con-

sumption of both DFMRF policy and shortest-path policy with no data ag-

gregation. In Fig.5.6, Fig.5.7 and Fig.5.9, we consider a family of truncated-

exponential pdfs τa given by

τa(x) = ξa(x(1))ξa(x(2)), x ∈ R2, (5.25)

where, for some a,0, ξa is given by the truncated exponential

ξa(z):=























ae−a|z|

2(1 − e−
a
2 )
, if z ∈ [− 1

2
, 1

2
],

0, o.w. (5.26)

Note that as a→0, we obtain the uniform distribution in the limit (τ0 ≡ 1). A

positive a corresponds to clustering of the points with respect to the origin and
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viceversa. In Fig.5.8, a sample realization is shown for the cases a = ±5 and

a→0.
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Figure 5.9: Avg. energy for shortest-path routing. 500 runs and n = 190.

Intuitively, for shortest-path (SP) policy where there is no data aggregation,

the influence of node placement on the energy consumption is fairly straight-

forward. If we cluster the nodes close to one another, the average energy con-

sumption decreases. On the other hand, spreading the nodes out towards the

boundary increases the average energy. Indeed, we observe this behavior in

Fig.5.9, for the placement pdf τa defined above in (5.25) and (5.26). However,

as established in the previous sections, optimal node placement for the DFMRF

policy does not follow this simple intuition.

In Theorem 11, we established that the uniform node placement (τ0 ≡ 1)

minimizes the asymptotic average energy consumption of the optimal policy

(which turns out to be the DFMRF policy), when the path-loss exponent ν ≥

2. For ν ∈ [0, 2], the uniform distribution has the worst-case value. This is

verified in Fig.5.6, where for ν ∈ [1, 3], the uniform distribution initially has

high energy consumption but decreases as we increase the path-loss exponent

ν. We see that at threshold of around ν = 2.4, the uniform distribution starts
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having lower energy than the non-uniform placements (clustered and spread-

out), while according to Theorem 11, the threshold should be ν = 2. Moreover,

Theorem 11 also establishes that the clustered and spread-out distributions (a ±

5) have the same energy consumption since the expressions
∫

B1
τa(x)1− ν

2 dx for a =

5 and a = −5 are equal for τa given by (5.25) and (5.26), and this approximately

holds in Fig.5.6.

We now study the energy consumption of the DFMRF policy in Fig.5.7 un-

der the disc dependency graph and the node placements given in Fig.5.8. In

Fig.5.7, for path-loss exponent ν = 4, we find that the uniform node place-

ment (τ0 ≡ 1) performs significantly better than the non-uniform placements

for the entire range of the disc radius δ. Intuitively, this is because at large

path-loss exponent ν, communication over long edges consumes a lot of energy

and long edges occur with higher probability in non-uniform placements (both

clustered and spread-out) compared to the uniform placement. Hence, uniform

node placement is significantly energy-efficient under high path-loss exponent

of communication.

5.A Functionals on random points sets

In [48, 49, 121], Penrose and Yukich introduce the concept of stabilizing func-

tionals to establish weak laws of large numbers for functionals on graphs with

random vertex sets. As in this thesis, the vertex sets may be marked (sensor

measurements constituting one example of marks), but for simplicity of expo-

sition we work with unmarked vertices. We briefly describe the general weak

law of large numbers after introducing the necessary definitions.
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Figure 5.10: LLN for sum graph edges on uniform point sets (τ ≡ 1).

Graph functionals on a vertex set V are often represented as sums of spatially

dependent terms
∑

x∈V
ξ(x,V),

where V ⊂ R2 is locally finite (contains only finitely many points in any bounded

region), and the measurable function ξ, defined on all pairs (x,V), with x ∈ V,

represents the interaction of x with other points in V. We see that the functionals

corresponding to energy consumption can be cast in this framework.

When V is random, the range of spatial dependence of ξ at node x ∈ V is ran-

dom, and the purpose of stabilization is to quantify this range in a way useful for

asymptotic analysis. There are several similar notions of stabilization, but the

essence is captured by the notion of stabilization of ξ with respect to homoge-

neous Poisson points on R2, defined as follows. Recall that Pa is a homogeneous

Poisson point process with intensity a > 0.

We say that ξ is translation invariant if ξ(x,V) = ξ(x + z,V + z) for all z ∈ R2.

Let 0 denote the origin of R2 and let Br(x) denote the Euclidean ball centered

at x with radius r. A translation-invariant ξ is homogeneously stabilizing if for all
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intensities a > 0 there exists almost surely a finite random variable R := R(a)

such that

ξ(0, (Pa ∩ BR(0)) ∪A) = ξ(0,Pa ∩ BR(0))

for all locally finite A ⊂ R2 \ BR(0). Thus ξ stabilizes if the value of ξ at 0 is

unaffected by changes in point configurations outside BR(0).

ξ satisfies the moment condition of order p > 0 if

sup
n∈N

E[ξ(n
1
2 X1, n

1
2 {Xi}ni=1)p] < ∞. (5.27)

We use the following weak laws of large numbers throughout. Recall that Xi

are i.i.d. with density τ.

Theorem 16 (WLLN [49, 120]) Put q = 1 or q = 2. Let ξ be a homogeneously stabi-

lizing translation-invariant functional satisfying the moment condition (5.27) for some

p > q. Then

lim
n→∞

1

n

n
∑

i=1

ξ
(

√

n

λ
Xi,

√

n

λ
{X j}nj=1

)

=

∫

B1

E[ξ(0,Pλτ(x))]τ(x)dx in Lq. (5.28)

We interpret the right-hand side of the above equation as a weighted average

of the values of ξ on homogeneous Poisson point processes Pλτ(x). When ξ satis-

fies scaling such as E[ξ(0,Pa)] = a−αE[ξ(0,P1)], then the limit on the right-hand

side of (5.28) simplifies to
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λ−αE[ξ(0,P1)]

∫

B1

(τ(x))1−αdx in Lq, (5.29)

a limit appearing regularly in problems in Euclidean combinatorial optimiza-

tion. For uniform node placement (τ(x) ≡ 1), the expression in (5.28) reduces to

E[ξ(0,Pλ)], and the LLN result for this instance is pictorially depicted in Fig.5.10.

For example, if ξ(x,V) is one half the sum of the ν-power weighted edges

incident to x in the MST (or any scale-invariant stabilizing graph) on V, i.e.,

ξ(x,V):=
1

2

∑

e∈E(x,Eθi Nsmst(λ)(V))

|e|ν,

then substituting α with ν
2

in (5.29),

lim
n→∞

1

n

n
∑

i=1

ξ
(

√

n

λ
Xi,

√

n

λ
{Xi}ni=1

)

= λ−
ν
2 E[ξ(0, ¶1)]

∫

Q1

(τ(x))1− ν
2 dx

= λ−
ν
2 ζ(ν; MST)

∫

Q1

(τ(x))1− ν
2 dx, (5.30)

where ζ(ν; MST) is defined in (5.5).

5.B Proofs

Proof of Theorem 12

The energy consumption of DFMRF satisfies the inequality in (5.16). For the

MST we have the result in Theorem 10. We now use stabilizing functionals to
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show that

1

n

∑

e∈G(Vn)

|e|ν

converges in L2 to a constant. For all locally finite vertex sets X ⊂ R2 supporting

some dependency graph G(X) and for all x ∈ X, define the functional η(x,X) by

η(x,X):=
∑

y:(x,y)∈G(X)

|x, y|ν. (5.31)

Notice that
∑

x∈X η(x,X) = 2
∑

e∈G(X) |e|ν.

From [49, Thm 2.4], the sum of power-weighted edges of the k-nearest neigh-

bors graph is a stabilizing functional and satisfies the bounded-moments con-

dition (5.27). Hence, the limit in (5.28) holds when the dependency graph is the

k-NNG.

Finally, the sum of power-weighted edges of the continuum percolation

graph is a stabilizing functional which satisfies the bounded-moments condi-

tion (5.27), thus implying that the limit in (5.28) holds.

Indeed, η stabilizes with respect to ¶a, a ∈ (0,∞), since points distant from x

by more than the deterministic disc radius do not modify the value of η(x, ¶a).

Moreover, η satisfies the bounded moments condition (5.27) since each |x, y| is

bounded by the deterministic disc radius and the number of nodes in n
1
2 {Xi}ni=1

which are joined to n
1
2 X1 is a random variable with moments of all orders.
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CHAPTER 6

INFERENCE ACCURACY SCALING LAWS FOR RANDOM NETWORKS

We have so far analyzed energy consumption for achieving optimal infer-

ence at the fusion center. In this chapter, we derive laws for scaling of infer-

ence accuracy with the network size under random node placement. We con-

sider the Neyman-Pearson (NP) formulation, where the detector is optimal at a

fixed false-alarm probability. We focus on the large-network scenario, where the

number of observations goes to infinity. Under Neyman-Pearson formulation,

for any positive level of the false alarm or the type-I error probability, when the

mis-detection or the type-II error probability PM(n) of the NP detector decays

exponentially with the sample size n, we have the error exponent

D:= − lim
n→∞

1

n
log PM(n). (6.1)

In this chapter, we are interested in evaluating the error exponent in (6.1) for

random networks under MRF hypotheses.

Given the node locations Vn = vn, let Dvn
denote the Kullback-Leibler diver-

gence between the conditional pdfs f (yvn | G0(vn),H0) and f (yvn
| G1(vn),H1),

Dvn
:=

∫

yvn

log
f (yvn

|G0(vn),H0)

f (yvn
|G1(vn),H1)

f (yvn
|G0(vn),H0)dyvn

. (6.2)

In Section 6.2, we relate the error exponent D in (6.1) to the KL-divergence in
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(6.2).

6.0.1 Additional Assumptions on the Inference Model

A key modeling feature in this chapter is to incorporate the spatial dependence

of sensor measurements. This is achieved by explicitly specifying the influence

of (random) node locations on the MRF dependency graph and the conditional

distributions of the measurements given the node locations.

We restrict our attention to proximity-based local dependency graphs such

as the (undirected) (k-NNG) or the disk graph (also known as continuum per-

colation). An important localization property of these graphs is stabilization fa-

cilitating asymptotic scaling analysis.

We assume that a set of clique potentials ψm,c > 0 under either hypothesis

can be parameterized locally by the sensor locations of the clique members and

their l-hop neighbors, for some finite l, in a translation-invariant manner, i.e.,

ψm,c(yc; vn)=ψm,c(yc; vn + v), ∀c ∈ Cm, v ∈ R, (6.3)

ψm,c(yc; vn)=ψm,c(yc; {vi : nbdl
(i) ∈ c}), ∀c ∈ Cm, (6.4)

where nbdl is the set of all 0 to l-hop neighbors. Further conditions are imposed

for acyclic graphs in Section 6.1.1.
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6.1 Error Exponent as a Graph Functional

The spectrum of the log-likelihood ratio [44, 45] is defined as the distribution of

the normalized LLR evaluated under the null hypothesis

L(YVn
)

n
, [YVn

,Vn] underH0,

where L(YVn
) is given by (3.3). In [44, 45] it is proven1 that for Neyman-Pearson

detection under a fixed type-I error bound, the LLR spectrum can fully charac-

terize the type-II error exponent of the hypothesis-testing system, and is inde-

pendent of the type-I bound.

When LLR spectrum converges in probability to a constant D, the error ex-

ponentD of NP detection in (6.1) is [44]

D = p lim
n→∞

1

n
L(YVn

), [YVn
,Vn] underH0, (6.5)

where p lim denotes the limit in probability, assuming it exists.

When YVn
are i.i.d. conditioned under both H0 and H1, the result in (6.5)

reduces to Stein’s lemma [108, Theorem 12.8.1] and the limit in (6.5) is the node

Kullback-Leibler (KL) divergence, i.e., when YVi

i.i.d.∼ gk underHk,

D = DV1
:=

∫

y

log
g0(y)

g1(y)
g0(y)dy. (6.6)

In Section 6.2, we evaluate the error exponent for MRF hypotheses through

1The generalization to an exponential type-I error bound [44, 45] is not tractable since a
closed-form cumulative distribution of the LLR is needed.
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the limit in (6.5). Due to random node placement and spatial dependence of

the MRF hypotheses, the error exponent in (6.5) is the limit of a random-graph

functional, and we can appeal to the LLN for graph functionals [49].

6.1.1 Acyclic Dependency Graphs

We consider the case when the dependency graphs under either MRF hypoth-

esis G0 and G1 are acyclic and also stabilizing, such as the Euclidean 1-nearest

neighbor graph.

Given a fixed set of points vn, the joint pdf of MRF for an acyclic dependency

graph G(vn) admits a factorization [117]

f (yvn
) =
∏

i∈vn

fi(yi)
∏

(i, j)∈G(vn)
i< j

fi, j(yi, y j)

fi(yi) fi(y j)
, (6.7)

where fi are the node marginal pdfs and fi, j are the pairwise pdfs on the edges.

Recall that instead of fixed node locations, we have random locations Vn here,

and hence, we consider the conditional pdf f (yVn
|Hm,Gm(Vn)) under each hy-

pothesis Hm. From (6.7), for an acyclic dependency graph Gm(Vn), we can

specify the conditional pdf f (yVn
|Hm,Gm(Vn)) through the conditional node pdfs

fi(yi|Hm,Gm) and the conditional pairwise edge pdfs fi, j(yi, y j|Hm,Gm).

We consider here a special form of spatial dependence in (6.4) by having

identical node marginal pdfs for all node locations and edge marginal pdfs

which are dependent only on the respective edge lengths. Under hypothesis
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Hm, for m = 0, 1,

fi(yi | Gm,Hm) = gm(yi), i ∈ Vn, (6.8)

fi, j(yi, y j | Gm,Hm) = hm(yi, y j | Ri j), (i, j) ∈ Gm, (6.9)

where gm is the node pdf and hm is the pairwise pdf at the edges conditioned on

Ri j, the Euclidean length of edge (i, j).

By using (6.7), (6.8) and (6.9), we simplify (6.5) as

D = p lim
n→∞

1

n

[
∑

i∈Vn

log
g0(Yi)

g1(Yi)
+

∑

(i, j)∈G0

i< j

log
h0(Yi,Y j | Ri j)

g0(Yi)g0(Y j)

−
∑

(i, j)∈G1

i< j

log
h1(Yi,Y j | Ri j)

g1(Yi)g1(Y j)

]

, [YVn
,Vn] underH0, (6.10)

Note that the above expression is a graph functional, based on the edge lengths

of random graphs G0 and G1 with additional randomness from the conditional

distribution of the sensor measurements given the edge lengths.

6.2 Detection Error Exponent

In this section, we derive the error exponent for general MRF hypotheses.

6.2.1 Testing Against Independence

We first provide the closed-form error exponent for the special case when

the null hypothesis has i.i.d. measurements with no spatial dependence,

f (yvn
|G0(vn),H0) =

∏

i∈vn
g0(yi). Here, the dependency graph is trivial, G0 = ∅,
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and the error exponent in (6.10) simplifies as

D = p lim
n→∞

1

n

[

−
∑

(i, j)∈G1

i< j

log
h1(Yi,Y j | Ri j)

g1(Yi)g1(Y j)

+

∑

i∈Vn

log
g0(Yi)

g1(Yi)

]

, YVi

i.i.d.∼ g0,

√

λ
n
Vi

i.i.d.∼ τ. (6.11)

The above expression is a graph functional defined over a marked point process,

where the marks are the sensor measurements YVi
drawn i.i.d from the pdf g0.

We can now appeal directly to the LLN for marked point processes [49, Thm.

2.1] to simplify (6.11). Define a functional on the edge lengths

ξ1(ri j):=E
[

− log
h1(Yi,Y j)

g1(Yi)g1(Y j)

∣

∣

∣

∣

Ri j = ri j,H0

]

, (6.12)

= −
∫

yi

∫

y j

log
h1(yi, y j | Ri j = ri j)

g1(yi)g1(y j)
g0(yi)g0(y j)dy jdyi,

where the expectation is over the measurements conditioned on the node loca-

tions.

Recall from the moments condition in (5.27), ξ1 is said to satisfy moments

condition of order p > 0 if

sup
n∈N

E[
∑

j∈nbd(0), j∈Vn

ξ1(R0 j)
p] < ∞, (6.13)

where nbd(0) denotes the neighbors of the origin in G1 and the expectation is

over the node locations. We require that p = 1 or 2. In Section 6.3, we prove

that ξ1 satisfies the moment condition for the Gaussian distribution under some

simple constraints on the covariance matrix.

Recall that Pλ is the homogeneous Poisson distribution on R2 with density λ.

We now provide the result below.
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Lemma 6 (Testing Acyclicity Against Independence) When ξ1 satisfies the mo-

ments condition in (6.13), the error exponent for testing against independence has the

form

D = DV1
+

1

2

∫

B1

E
[

∑

j:(0, j)∈G1(Pλτ(x)∪{0})
ξ1(R0 j)

]

τ(x)dx, (6.14)

where DV1
is the node KL-divergence given by (6.6).

Proof: The first term follows from LLN for i.i.d variables. For the second term,

ξ1 is a stabilizing functional since it is a functional of edges of a stabilizing graph

G1 and bounded-moments condition in (6.13) holds. Hence, the LLN in [49]

guarantees L2 convergence to the above constant, which in turn implies conver-

gence in probability. �

Remark 1 When the node locations are uniform (τ(x) ≡ 1), the error exponent in (6.14)

simplifies as

D = DV1
+

1

2
E
[
∑

j:(0, j)∈G1(Pλ∪{0})
ξ1(R0 j)]. (6.15)

6.2.2 General Hypothesis Testing

In this section, we extend the results to any general distribution under the null

hypothesis. For such cases, we cannot directly use the LLN for marked point

process to evaluate (6.10), since the marks are required to be i.i.d. for the LLN

to hold.
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We now additionally assume uniform integrability [112, (16.21)] to convert the

functional on a marked point process in (6.5) to a functional on an unmarked

process. In Section 6.3, we show that the Gaussian distribution satisfies uniform

integrability.

Proposition 1 (Uniform Integrability) When the normalized spectrum, given by

the sequence { 1
n
L(YVn

)}n≥1 is uniformly integrable and converges in probability under

H0, the error exponent in (6.5) is the KL-divergence rate,

D = lim
n→∞

DVn

n
, (6.16)

= p lim
n→∞

1

n

[
∑

a∈C1

E(ψ1,a(Ya) | Vn,H0)

−
∑

b∈C0

E(ψ0,b(Yb) | Vn,H0) + log
Z1(Vn)

Z0(Vn)

]

, (6.17)

where DVn
is the KL-divergence in (6.2), ψi,c is potential of clique c ∈ Ci of the MRF

under hypothesisHi in (3.3).

Proof: D = lim
n→∞

DVn

n
= lim

n→∞

1

n
E[L(YVn

) | H0], (6.18)

= p lim
n→∞

1

n
E[L(YVn

) | Vn,H0]. (6.19)

Now evaluating the conditional expectation using the form of LLR for a MRF in

(3.3), we have the result.

Hence, we have (6.17), which is a functional on an unmarked process. Since

the clique potential functions in (6.17) are parameterized by the node locations,

(6.17) is a functional over a random graph. Note that we do not need the depen-

dency graphs to be acyclic for the above result. We now specialize the above

result for acyclic dependency graphs.
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Lemma 7 (Acyclic Graphs) For acyclic graphs G0 and G1,

D =DV1
+ p lim

n→∞

1

n

[
∑

(i, j)∈G1\G0

i< j

ξ1(Ri j)

+

∑

(i, j)∈G0∩G1

i< j

ξ2(Ri j)
∑

(i, j)∈G0\G1

i< j

ξ3(Ri j)
]

, (6.20)

where DV1
and ξ1 are given by (6.6) and (6.12), and the edge functionals ξ2 and ξ3 are

defined as

ξ2(ri j):=E
[

log
h0(Yi,Y j|Ri j=ri j)

h1(Yi,Y j|Ri j=ri j)

∣

∣

∣

∣

Ri j=ri j,H0

]

−2DV1
(6.21)

ξ3(ri j):=I(Yi; Y j | Ri j= ri j,H0), (6.22)

where I(X; Y) is mutual information between X and Y and I(X; Y | Z = z) is mutual

information conditioned on Z = z.

Proof: From (6.10) and Proposition 1. �

We now provide the error exponent for MRF hypotheses.

Theorem 17 (Exponent For Stabilizing Acyclic Graphs) When ξi for i = 1, 2, 3

satisfy the bounded-moments condition in (6.13), the error exponent for stabilizing

acyclic dependency graphs is given by

D = DV1
+

1

2

3
∑

i=1

∫

B1

E



















∑

j:(0, j)∈Ei,τ(x)

ξi(R0 j)



















τ(x)dx, (6.23)

where E1,τ(x):=G1\G0(Pλτ(x)∪{0}), E2,τ(x):=G0∩G1(Pλτ(x)∪{0}), and E3,τ(x):=G0\G1(Pλτ(x)∪

{0}).
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Proof: Since G0 and G1 are stabilizing, its subgraphs with edges Ei,τ(x) for i =

1, 2, 3 can be shown to be stabilizing. The moments condition in (6.13) holds.

Hence, the LLN follows. �

Remark 2 When the node locations are uniform (τ(x) ≡ 1), the error exponent in (6.23)

simplifies as

D = DV1
+

1

2

3
∑

i=1

E
∑

j:(0, j)∈Ei,1

ξi(R0 j). (6.24)

6.3 Gaussian Distribution on Acyclic Graphs

In this section, we simplify the results of the previous section on acyclic graphs

when the distribution under each hypothesisHm is GaussianN(µm,Σm,vn
), given

the node locations Vn = vn. In this case, the MRF factorization in (2.3) leads

to a special relationship between the coefficients of the covariance matrix and

its inverse, called the potential matrix . Specifically, there is a one-to-one corre-

spondence between the non-zero elements of the potential matrix Σ−1
m,vn

and the

dependency graph edges Gm(vn). Moreover, for acyclic graphs Gm(vn), further

simplifications are possible [5, Thm. 1].

The additional constraints of spatial dependence for acyclic graphs in (6.8)

and (6.9) imply that under each hypothesis, the mean and the variance at all the

nodes are equal and that the correlation coefficient between any two neighbor-

ing nodes is only dependent on the inter-node distance, i.e., under hypothesis

Hm, for m = 0, 1, we have µm = µmI, Σm,vn
(i, i, ) = σ2

m, and for (i, j) ∈ Gm(vn), we
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have Σm,vn
(i, j) = ρm(Ri j)σ

2
m. Here, the correlation function ρm(·) < 1 is positive

and monotonically decreasing in the edge length, for each m = 0, 1.

Moreover, ρm(0) < 1, or the so-called nugget effect, according to geo-statistics

literature [122, 123]. It has been observed in mining applications, where the

micro-scale variation is assumed to be caused by the existence of small nuggets

of the enriched ore. Many other ecological phenomena such as soil bacteria pop-

ulation [124], aquatic population [125] etc. also exhibit this behavior. Note that

the presence of nugget effect has the same effect on correlation as imposing an

exclusion region on how near two nodes can be placed. However, for such an

exclusion constraint to hold, we need more complicated node placement distri-

butions than the uniform or Poisson assumption. Although such distributions

can be handled in principle, they are not analytically tractable. Some examples

of the correlation function are

ρm(R) = ρm(0)e−aR, ρ(R) =
ρm(0)

1 + Ra
, a ≥ 0, 0 ≤ ρm(0) < 1.

With the above assumptions, the covariance matrix under hypothesis Hm is

given by

Σm,vn
(i, j) =



























σ2
m > 0, i = j, (6.25a)

σ2
m

∏

(a,b)∈Path(i, j;Gm(vn))

ρm(Ra,b),o.w. (6.25b)

where Path(i, j;Gm(vn)) is the set of edges of the acyclic graph Gm(vn) belonging

to the unique path2 connecting the nodes i and j. It can be shown that Σm,vn
in

(6.25) is positive definite for any node configuration vn when ρm(·) < 1.

2
Σm,vn

(i, j) = 0 if no path exists between i and j in Gm.
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Under the above assumptions, we now provide closed-form expression for

the Gaussian error exponent. Recall that Path(0, j;G0) denotes the set of edges

in G0 connecting the origin 0 with some node j. Let ∆µ:=µ1 − µ0, K:=
σ2

1

σ2
0

.

Theorem 18 (Gaussian Error Exponent) For Gaussian distribution under each hy-

pothesis, the error exponent is given by (6.23), with the terms simplifying as

DV1
=

1

2

(

log(K) +
1

K
− 1 +

∆µ2

σ2
1

)

, (6.26)

ξ1(R0 j) =

ρ1(R0 j)[ρ1(R0 j) −
∏

(k,l)∈Path(0, j;G0(Pλτ(x)∪0))

ρ0(Rkl)]

[1 − ρ2
1
(R0 j)]K

+
log[1 − ρ2

1
(R0 j)]

2
, (6.27)

ξ2(R0 j) =
ρ1(R0 j)[ρ1(R0 j) − ρ0(R0 j)]

[1 − ρ2
1
(R0 j)]K

+
1

2
log

1 − ρ2
1
(R0 j)

1 − ρ2
0
(R0 j)

− ∆µ2ρ1(R0 j)

σ2
1
(1 + ρ1(R0 j))

, (6.28)

ξ3(R0 j) = −
log[1 − ρ2

0
(R0 j)]

2
. (6.29)

Proof: From [5, Thm. 1], we have the expressions for determinant and poten-

tial matrix coefficients for acyclic graphs, and we use them to simplify terms in

the error exponent.

The moments condition in (6.13) holds for ξm for m = 1, 2, 3 since the terms are

bounded for correlation functions ρk(Ri j) which are decreasing in edge lengths

and ρk(0) < 1.

A function an → a is said to be uniformly integrable over measure ν if

lim
α→∞

sup
n

∫

|an |≥α
|an|dν = 0. (6.30)
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For uniform integrability [112, (16.21)] of normalized spectrum, it is suffi-

cient to show that for any n > 0

lim
α→∞

∫

|yT (Σ
−1

0 −Σ
−1

1 )y|≥nα

1

n
|yT (Σ−1

0 − Σ−1
1 )y| exp [−yT

Σ
−1
0 y

2
]dy = 0

From positive definiteness, this reduces to showing

lim
α→∞

∫

|yT (Σ
−1

0 +Σ
−1

1 )y|≥α

|yT (Σ−1
0 + Σ

−1
1 )y| exp [−yT

Σ
−1
0 y

2
]dy = 0,

which is true. �

6.3.1 1-Nearest Neighbor Dependency

We now provide further simplifications when the dependency graphs are 1-

nearest neighbor graphs. The simplification arises from the fact that limits in

Theorem 18 can be further simplified for 1-nearest neighbor graph. For sim-

plicity assume that G1 underH1 is the 1-nearest neighbor graph while the mea-

surements are i.i.d are H0. We limit to uniform node placement (τ ≡ 1) in this

section. For this special case, the error exponent given by Theorem 18 simplifies

as

D = 1

2

[1

2
E

∑

X:X∈Pλ,
(0,X)∈1−NNG(X∪0)

f (ρ1(R0,X)) + log K +
1

K
− 1
]

, (6.31)

where

f (x):= log[1 − x2] +
2x2

K[1 − x2]
. (6.32)
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Biroots of
of directed 1-NNG

Directed 1-NNG

Undirected 1-NNG

Figure 6.1: Directed & undirected versions of nearest-neighbor graph.

The 1-NNG has a number of important properties. It is acyclic with a maxi-

mum3 node degree of 6 [127]. It turns out that we need to analyze the directed

1-NNG, in order to obtain the final form of the error exponent. We now mention

some of its special properties. The directed 1-NNG G′(v,E′) is defined by

E′ = {< i,nn(i) >, i ∈ v}, (6.33)

where nn denotes 1-nearest neighbor function. For a directed 1-NNG with at

least two nodes, each connected component contains exactly one 2-cycle. This is

known as the biroot of the component [127]. See Fig.6.1. Also note, the directed

1-NNG counts the edges from these biroots twice, while the undirected version

counts only once.

We therefore split the sum of edge functionals in (8.29), using the fact that

the directed 1-NNG counts the weights from biroots or mutual neighbors twice,

while the undirected version counts only once. See Fig.6.1. We therefore split

the sum of the edge functionals of the undirected 1-NNG as

3The node degree is finite for 1-NNG in any dimension and is called the kissing number [126].
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Figure 6.2: Error exponentD vs. ratio of variances K, node density λ = 1.

∑

e∈1−NNG(v)

f (ρ1(Re)) =
∑

e∈1−DNNG(v)

f (ρ1(Re))

− 1

2

∑

e∈1−MNNG(v)

f (ρ1(Re)), (6.34)

where 1−NNG(v), 1−DNNG and 1−MNNG ⊂ 1−DNNG are the undirected 1-

NNG, the directed 1-NNG, and edges between the biroots or the mutual neigh-

bors of the directed 1-NNG, respectively. Now, we evaluate the expectation for

the two terms separately, since expectation is linear. A similar approach is em-

ployed in [128].

We now provide an expression for the limit of the edge functional based on

the distribution of distances of the directed 1-NNG, which are related to hit-

ting or vacancy probabilities of the spatial point process, which are typically

exponential or gamma distributed, similar to their one-dimensional counter-

parts [129].

Lemma 8 (Expectation of Edge Functional) The expectation term of the edge func-

tional in (6.31) is given by
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1

2
E
∑

X:X∈Pλ,
(0,X)∈1−NNG(X∪0)

f (ρ1(R0,X)) = E f (ρ1(Z1)) − π

2ω
E f (ρ1(Z2)), (6.35)

where Z1 and Z2 are Rayleigh distributed with variances (2πλ)−1 and (2ωλ)−1, and ω is

given by

ω =
4π

3
+

√
3

2
≈ 5.06, (6.36)

and is the area of the union of two unit- radii circles with centers unit distant apart.

Proof : See Appendix 6.A.

In the theorem below, we obtain the final form of the error exponent.

Theorem 19 (Expression forD) For a GMRF with 1-NNG dependency and correla-

tion function ρ1 and nodes drawn from the binomial or the Poisson process with node

density λ and region area n
λ
, the error exponentD for Neyman-Pearson detection is

Dρ1
(K,M, λ) =

1

2

[

E f (ρ1(Z1),K) − π

2ω
E f (ρ1(Z2),K)

+ log K +
1

K
− 1
]

, (6.37)

where

f (x,K):= log[1 − x2] +
2x2

K[1 − x2]
. (6.38)
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Z1 and Z2 are Rayleigh distributed with second moments (2πλ)−1 and (2ωλ)−1.

The above theorem holds for any general correlation function. In (6.37),

except for the first two f -terms which capture the correlation structure of the

GMRF, the remaining terms represent the detection error exponent for two IID

Gaussian processes. In the corollary below, we specialize (6.37) to the case of

constant correlation. In this case, the two f -terms reduce to a single term.

Corollary 2 (Constant Correlation) For constant values of the correlation, the error

exponentD is independent of the node density λ and

1. for constant positive correlation or ρ1(Re) ≡ M < 1, ∀e ∈ E, we have

D(K,M) =
1

2

[

log K +
1

K
− 1

+ (1 − π

2ω
) f (M,K)

]

, (6.39)

where f and ω are given by (6.32) and (6.36).

2. for the independent case or ρ1(Re) ≡ 0, ∀e ∈ E, we have

D(K, 0) =
1

2

[

log K +
1

K
− 1
]

. (6.40)

In the above corollary, we verify that (6.39) reduces to (6.40), on substituting

M = 0. In (6.39), the effect of correlation can be easily analyzed through the sign

of the function f (M,K). Also,
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f (M,K)



















< 0, for K > 2
1−M2 , (6.41a)

> 0, for K < 2. (6.41b)

Therefore, at large variance-ratios, the presence of correlation hurts the asymp-

totic performance, when compared with the independent case. But the situa-

tion is reversed at low values of the variance ratio and the presence of correla-

tion helps in detection performance. In the next section, we will draw similar

conclusions when the correlation function is the exponential function through

numerical evaluations.

6.3.2 Numerical Results

In this section, we focus on a specific correlation function namely the

exponential-correlation function,

ρ1(R) = Me−aR, a > 0, 0 < M < 1. (6.42)

Using Theorem 19, we numerically evaluate D through Monte-Carlo runs. In

(6.37), the error exponent is an implicit function of the correlation coefficient a,

through the correlation function ρ1. For fixed values of K and M, we have

D(K,M, λ, a) = D(K,M, 1,
a√
λ

), (6.43)

which we obtain by changing the integration variable in the expectation term

in (6.37). Therefore, in terms of the error exponent, increasing the node density
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λ is equivalent to a lower correlation coefficient at unit density. Here, we plot

only the effects of correlation coefficient a and nugget M onD.

In Fig.6.2(a), we plot the error exponent at λ = 1 and M = 0.5, for different

values of correlation coefficient a. Note, the cases a = 0 and a → ∞ corre-

spond to (6.39) and (6.40). We notice that a more correlated GMRF or the one

with smaller a, has a higher exponent at low value of K, whereas the situation

is reversed at high K. Equivalently, increasing the node density λ improves the

exponent at low value of K, but not at high K. Also, when the variance ratio K is

large enough,D appears to increase linearly with K (in dB), and the correlation

coefficient a and nugget M appear to have little effect, as expected from The-

orem 19. In Fig.6.2(b), we plot the exponent at constant correlation coefficient

a = 0.5 for different values of the nugget M. Also note, M = 0 reduces to the

independent case. We notice a similar behavior as the correlation coefficient. A

higher value of M results in a higher exponent at low K, but not at high K.

6.A Proofs

Proof of Lemma 8

We use an approach similar to [128]. Let Bz(X) denote a circle of radius z, cen-

tered at X. We take expectation on both sides of (6.34) for graphs over all the

Poisson points X∪0. Let 1−NNG(v), 1−DNNG and 1−MNNG ⊂ 1−DNNG be

the undirected 1-nearest neighbor graph, the directed nearest-neighbor graph,

and edges between the biroots or the mutual neighbors of the directed 1-nearest

neighbor graph. See Fig.6.1.
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0 nn(0)

Z1

Figure 6.3: Event that the origin is a biroot in the directed 1-NNG.

E[
∑

X:X∈Pλ
(0,X)∈1−NNG(X)

f (ρ1(R0,X))]=E[
∑

X:X∈Pλ,
(0,X)∈1−DNNG(X)

f (ρ1(R0,X))]

−1

2
E[

∑

X:X∈Pλ
(0,X)∈1−MNNG(X)

f (ρ1(R0,X))]. (6.44)

The first term on the right-hand side in (6.44) simplifies as

E[
∑

X:X∈Pλ,
(0,X)∈1−DNNG(X)

f (ρ1(R0,X))] = E[ f (ρ1(Z1))], (6.45)

where Z1 is the unique directed nearest-neighbor distance of the origin with

points distributed according to Pλ, the Poisson point process of intensity λ on

ℜ2. The random variable Z1 is like a waiting time, and can be visualized as the

time taken for an inflating circle to first touch a point from the Poisson process.

We therefore have Z1 > z iff. Bz(0) does not contain any points from the Poisson

process, i.e.,
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P[Z1 > z] = P[∄X , 0 ∈ Bz(0) ∩ Pλ] = e−λπz2

. (6.46)

Therefore, Z1 is Rayleigh with second moment (2πλ)−1.

Similarly, for the second term, we need to find the PDF of the nearest-

neighbor distance of the origin when the origin is a biroot or a mutual nearest

neighbor. This event occurs when the union of the circles centered at origin and

its nearest neighbor contains no other Poisson point. See Fig.6.3. Let A be the

intersection of the events that the directed nearest-neighbor distance of origin

lies in the interval [z, z + dz] and the event that origin is a biroot

A := (Pλ ∩ (Bz(0) ∪ Bz(nn(0)))\{0,nn(0)} = ∅)

∩(Z1 ∈ [z, z + dz]). (6.47)

Its probability is given by,

P[A] = P(origin is biroot|Z1)P(Z1 ∈ [z, z + dz])

= e−(ω−π)λz2

2λπze−λπz2

dz (6.48)

= 2λπze−ωλz2

dz =
λ

ω
[2ωπze−ωλz2

dz] (6.49)

=
λ

ω
P(Z2 ∈ [z, z + dz]), (6.50)

where nn(0) is the nearest-neighbor of the origin and ω:=|B1(0)∪B1(1)| = 4π
3
+

√
3

2
,

the area of the union of circles unit distant apart and Z2 is a Rayleigh variable
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with variance (2πω)−1. Hence, the second term on the right-hand side in (6.44)

simplifies as

1

2
E[

∑

X:X∈Pλ
(0,X)∈1−MNNG(X)

f (ρ1(R0,X))] =
π

2ω
E[ f (ρ1(Z2))]. (6.51)

From (6.34, 6.46, 6.50), we obtain (6.35).
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CHAPTER 7

ENERGY-CONSTRAINED INFERENCE IN RANDOM NETWORKS

In this chapter, we consider the optimization of sensor density of a multi-

hop sensor network in the context of energy-constrained distributed detection.

For large sensor networks, it is unrealistic to optimize individual sensor loca-

tions. It is then natural to consider random deployment of sensors where the

sensor density becomes the key design parameter. Optimizing sensor density is

not only important for sensor deployment but also gives a simple decentralized

sensor transmission strategy by deciding to transmit under independent coin

flips.

To characterize the detection performance, we consider the Neyman-Pearson

(NP) error exponent D, discussed in the previous chapter. Our objective is to

find an optimal node density λ∗ that maximizes the detection error exponent

Dλ, under a constraint Ē on the average (per node) energy consumption Ē(λ),

when the number of nodes goes to infinity.

λ∗:= arg max
λ>0
Dλ subject to Ē(λ) ≤ Ē. (7.1)

We address the following questions: does an optimal node density exist?

And if so, what is its value? Is it one of the extremes, viz., zero or infinity?

This is an important question, since if the optimal node density is either zero or

infinity, then we can simply place the nodes in as small or large an observation

area as possible.

We use the Gaussian inference model with nearest-neighbor dependency
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Figure 7.1: Optimal node density vs. variance ratio K. See Theorem 21.

graph, discussed in the previous chapter in Section 6.3.1 with an additional as-

sumption that the correlation function under H1, given by ρ(r) is convex, and

employ the error exponent results, derived in Theorem 19. We limit to uniform

distribution for node placement in this chapter.

7.1 Overview of Results and Approach

Given a per-node energy budget for data fusion, we aim to find the sensor den-

sity that optimizes the detection performance. Assuming that all the nodes have

the same measurement variance σ2
j under each hypothesis H j, recall the vari-

ance ratio as

:=VarianceRatioo f TwoGaussianHypothesesK:=
σ2

1

σ2
0

. (7.2)

The main results demonstrate the presence of a threshold Kt effect on the vari-

ance ratio K. As shown in Figure 7.1, when K is below a threshold Kt, the op-

timal density is unbounded, and thus it is optimal to concentrate sensors near

the fusion center. Moreover, this result is independent of the energy constraint

implying that imposing an energy constraint does not degrade detection per-
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formance. On the other hand, when K is above the threshold Kt and no energy

constraint is imposed, the optimal density tends to zero (Fig. 7.1a), which in

practice, implies that it is optimal to disperse sensors in the largest possible

area. In this regime of K, imposing an energy constraint leads to a strictly finite

optimal density and we provide bounds on this optimal value (Fig. 7.1b).

We give a closed-form expression for the threshold Kt on the variance ratio

K which decides the behavior of the optimal density. The threshold Kt is inde-

pendent of the energy constraint. Moreover, somewhat surprisingly, it depends

on the correlation structure only through the limiting correlation of two sensors

as their separation distance vanishes.

We also investigate the use of an energy density constraint where the to-

tal energy consumption in a given area is constrained instead of the average

energy at each node. We show that an optimal node density under this formu-

lation exists, and is strictly finite for all values of the variance ratio K. This is in

sharp contrast to the threshold behavior under a per-node energy constraint. We

prove analytical bounds for the optimal density when the variance ratio K < 2.

This chapter is organized as follows. Results on optimal density are in sec-

tion 7.2 and numerical analysis in section 7.2.5. The energy-density formulation

is dealt in section 7.3. Section 7.4 concludes the chapter.

7.2 Optimal Node Density

Recall that our objective is to find an optimal node density λ∗ maximizing the

detection error exponent under a constraint on the average energy consumption
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of data fusion.

λ∗:= arg max
λ>0
Dλ subject to Ē(λ) ≤ Ē.

We have so far derived a closed-form expression for the error exponent Dλ

(short form for D(λ,K; ρ) in (7.8)) and bounds for optimal average energy con-

sumption Ē∗(λ). In this section, we exploit these expressions to derive the opti-

mal node density.

Before proceeding to the actual derivations, it is useful to consider a spe-

cial case, viz., when both the hypotheses have the same measurement variance

(K = (σ1

σ0
)2
= 1) and there is no energy constraint (Ē → ∞). Since there is no corre-

lation under H0, the two hypotheses can be distinguished only by the presence

of correlation under H1. Correlation is maximized when all the nodes are clus-

tered close to one another, since correlation decays with distance. Hence, the

optimal density should be infinite. We prove that this is indeed true and also

characterize the optimal density for general K and energy constraint Ē. To this

end, we first characterize the set of feasible node densities which can support

data fusion under the given energy constraint Ē.

7.2.1 Detection Error Exponent

In this section, we rewrite the error exponent derived in Theorem 19 in a more

convenient form, in terms of the variables and functions defined below.
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f1(x) := log[1 − x2], f2(x):=
2x2

[1 − x2]
, (7.3)

f (x,K) := f1(x) +
1

K
f2(x) (7.4)

hi(x; ρ) := fi(ρ(x)) − π

2ω
fi(ρ(

√

π

ω
x)), (7.5)

h(x,K; ρ) := h1(x; ρ) +
1

K
h2(x; ρ), (7.6)

where ρ(·) is the correlation function. Let Z denote the Rayleigh random variable

with variance (2π)−1 as in the previous chapter and recall that in (6.36) ω is the

area of the union of two unit- radii circles with centers unit distance apart, given

by

ω =
4π

3
+

√
3

2
≈ 5.06. (7.7)

Theorem 20 (Expression forD) For a GMRF on NNG with correlation function ρ,

with the nodes drawn from the binomial or the Poisson process with node density λ and

region area n
λ
, the error exponentD for Neyman-Pearson detection is

D(λ,K; ρ) =
1

2

[

Eλ h
(

Zλ−0.5,K; ρ
)

+ log K +
1

K
− 1
]

, (7.8)

where Eλ is the expectation over the random variable Z.

Proof: Note that
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D(λ,K; ρ) =
1

2

[

lim
n→∞

1

n

∑

e∈NNG

f (ρ(Re),K; ρ)

+ log K +
1

K
− 1
]

(7.9)

�

Note that in (7.8), the expectation term captures the correlation structure of

the GMRF and the remaining terms represent the detection error exponent for

two i.i.d. Gaussian processes with variance ratio K, i.e.,

D(λ,K; ρ) =
1

2
Eλ h
(

Zλ−0.5,K; ρ
)

+DIID(K), (7.10)

where DIID(K) the error exponent when the measurements are conditionally

i.i.d., and is given by

DIID(K) =
1

2

[

log K +
1

K
− 1
]

. (7.11)

Hence, the effect of correlation on the error exponent is quantified in a compact

form. It can be easily verified that the expectation term is zero, when ρ(0) = M =

0 (no correlation).

It is easy to see thatDIID(K) is independent of the node density λ. Hence, the

issue of optimal node density for error exponent arises only in the presence of

correlation. Moreover, intuitively, as we vary node density λ, the edge lengths

in the resulting NNG scale by the factor λ−0.5, on an average. Hence, we see that

this factor λ−0.5 appears in the expectation term in (7.10).
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7.2.2 Feasible Node Density Set

In order to incorporate the energy constraint Ē, we need to find a feasible set Λ

of node densities for minimum energy routing that satisfies the average energy

constraint Ē and delivers the LLR to the fusion center,

Λ(Ē):={λ : Ē∗(λ) ≤ Ē}. (7.12)

When the density goes to infinity, the optimal average energy consumption for

routing goes to zero

lim
λ→∞
Ē∗(λ) = 0.

This is derived from the bounds on Ē∗. Hence, the energy constraint Ē is sat-

isfied at infinite density or in other words, λ → ∞ ∈ Λ for Λ defined in (7.12).

Hence, whenever Λ is non-empty, it is of the form

Λ(Ē) = [λĒ,∞], (7.13)

where λĒ is defined as the minimum node density under the energy constraint Ē

at which it is feasible to perform data fusion. However, as discussed in Chapter

3, finding the minimum energy scheme is NP-hard. Hence, finding an expres-

sion for λĒ is analytically intractable. We instead provide bounds on λĒ.

We first consider feasible node density for DFMRF scheme. Recall from

Corollary 1 that the average energy consumption DFMRF under 1-NNG de-

pendency and uniform placement satisfies
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Figure 7.2: Error exponentD vs. variance ratio K.
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lim sup
n→∞

Ē(DFMRF(Vn))

≤ λ− ν2 [u ζ(ν; 1-NNG) + ζ(ν; MST)]. (7.14)

Hence, imposing the energy constraint Ē translates to a constraint on λ under

the DFMRF,

Ē(DFMRF(λ)) ≤ Ē ⇐⇒ λ ≥ λ1(Ē):=
( Ē

u ζ(ν; 1-NNG) + ζ(ν; MST)

)
2
ν
. (7.15)
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Similarly, we use scaling results for lower bound on optimal energy con-

sumption, given by the MST, derived in Theorem 10

lim
n→∞
Ē(MST(Vn)) = λ−

ν
2 ζ(ν; MST). (7.16)

Hence,

Ē(MST(λ)) ≤ Ē ⇐⇒ λ ≥ λ2(Ē):=
( Ē

ζ(ν; MST)

)
2
ν
. (7.17)

From the bounds on optimal energy, we have bounds on the feasible set of node

densities Λ for the minimum energy scheme,

{λ : λ ≥ λ2(Ē)} ⊂ Λ(Ē) ⊂ {λ : λ ≥ λ1(Ē)}. (7.18)

From the definition of λĒ in (7.13), we have

λ2(Ē) ≤ λĒ ≤ λ1(Ē). (7.19)

Hence, although we are unable to evaluate λĒ, we have bounds that are easily

evaluated.
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7.2.3 Infinite Node Density

We first analyze the error exponentD, when the node density λ goes to infinity.

This will provide insights for finding the optimal density. As λ→ ∞, we have

D(∞,K; ρ) = DIID(K) +
1

2
h(0,K,M),

where h(0,K; ρ) depends on ρ only through ρ(0) = M, and

h(0,K,M) = (1 − π

2ω
)
(

log[1 − M2] +
2M2

K[1 − M2]

)

. (7.20)

In the theorem below, we prove that the presence of correlation can either im-

prove or degrade the error exponent, depending on the variance ratio K. We

establish a threshold on K that determines the transition.

Lemma 9 (Behavior at Infinite Density (λ→ ∞)) At λ → ∞, the correlation term

h(0,K,M) in (7.20) is positive, if the variance ratio K is below a threshold value Kt(M),

h(0,K,M)



















≥ 0, for K < Kt(M), (7.21a)

< 0, for K > Kt(M). (7.21b)

For a fixed ρ(0) = M < 1, the threshold Kt(M) is

Kt(M) = − 1

log(1 − M2)

2M2

1 − M2
, (7.22)

and 2 < Kt(M) < 2
1−M2 .
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Proof: From (7.20) and (1 − π
2ω

) > 0. �

Hence, we obtain a somewhat surprising result that at infinite node density,

the effect of correlation on error exponent is different based on the variance

ratio K and is determined by a threshold Kt on K. For values of K below the

threshold Kt, the presence of correlation improves the error exponent in (7.21a).

On other hand, above the threshold Kt, the presence of correlation degrades

the error exponent in (7.21b). Moreover, at infinite density since the inter-node

distances go to zero, the correlation function is given by ρ(0) = M, and hence,

the threshold Kt in (7.21) is only a function of M.

Although the results in Lemma 9 are valid only at infinite density, we can uti-

lize them to compare with the other extreme scenario when the density λ→ 0. In

this case, the error exponent Dλ → DIID, i.e., the conditionally i.i.d. case. From

Lemma 9, we can conclude that below the threshold Kt, it is better to cluster the

nodes close to one another (λ → ∞) rather than place them as far as possible

(λ → 0). On the other hand, above the threshold, the opposite is true. Hence,

the results for infinite node density in Lemma 9 provide guidelines on the effect

of correlation on the error exponent. In the next section, we will generalize these

results to prove that the optimal node density displays a threshold behavior.

7.2.4 Threshold Behavior of Optimal Density

In this section, we provide the results for optimal density. From (7.13), we can

rewrite density optimization in (7.1) as
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λ∗ = arg max
λ≥λĒ

Dλ = arg max
λ≥λĒ

Eλ h
(

Zλ−0.5,K; ρ
)

, (7.23)

where for the last equality, we use the fact that DIID(K) is independent of λ in

(7.10).

To analyze the behavior of the expectation term in (7.23), we first focus on

the function f in (7.4) given by

f (x,K) = log(1 − x2) +
2

K

x2

1 − x2
, ∀x ∈ [0,M]. (7.24)

Since ρ(0) = M and ρ(∞) = 0, we have x ∈ [0,M]. In the lemma below, we

provide results on the behavior of f .

Lemma 10 (Behavior of f ) The function f (x,K) in (7.24) with M < 1 satisfies

arg max
x∈[0,M]

f (x,K) =















M, K < Kt, (7.25a)

0, o.w. (7.25b)

Proof: See Appendix 7.A. �

Hence, the function f (x,K) attains its maximum only at one of the bound-

ary points for x ∈ [0,M]. The particular boundary point is determined by a

threshold Kt on K, as seen in (7.25) and also Kt depends only on M, the limiting

correlation.
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Figure 7.4: Optimal density λ∗ decided by threshold Kt(M).

When the point sets are drawn from binomial or Poisson processes, and Re

are the edge-lengths of NNG , consider the edge functional

1

n

∑

e∈NNG

f (ρ(Re),K; ρ).

From (7.8) and (7.9), we have

lim
n→∞

1

n

∑

e∈Ed

f (ρ(Re),K; ρ) = E[h(Zλ−0.5,K; ρ)]. (7.26)

Hence, we can use the result on the maximum of function f in Lemma 10 to find

the corresponding optimal density maximizing the expectation term in (7.23). In

the theorem below, we provide such a result on the optimal density and show

that its behavior is determined only by the thresholds Kt and K′t on K.

Theorem 21 (Result on λ∗(K, Ē)) The optimal density in (7.23) that maximizes the

error exponent, under feasible average energy constraint Ē, is given by
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λ∗(K, Ē) = ∞, ∀K < Kt(M), (7.27)

where the threshold Kt is given by (7.22), and

λ∗(K, Ē) = λĒ < ∞, ∀K > K′t (M), (7.28)

where λĒ is defined in (7.13), and satisfies bounds in (7.19), and

K′t (M) =
2

1 − M2
> Kt(M), (7.29)

where M = ρ(0) < 1 is the correlation function as the inter-node distance goes to zero.

Also, when the energy constraint is infinite Ē → ∞, we have λĒ = 0, and the result in

(7.28) is improved to

λ∗(K,∞) = 0, ∀K > Kt(M). (7.30)

Proof: See Appendix 7.A. �

The above theorem states that when the variance ratio K is below the thresh-

old Kt, for any feasible energy constraint Ē, optimality is attained at infinite

density. On the other hand, above another threshold K′t > Kt, the minimum fea-

sible node density λĒ which supports data fusion under constraint Ē attains the

optimal value.
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In the special case, when there is infinite energy (Ē → ∞), we have λ1(Ē) =

λ2(Ē) = λĒ = 0. In this case, we prove that optimal value is zero even in the gap

region between the two thresholds Kt and K′t . Numerical investigation suggests

that under any finite energy constraint, the optimal density is λĒ even in the gap

region between the two thresholds Kt and K′t .

Also interestingly, the thresholds Kt and K′t depend on correlation ρ(R) only

through the limiting value ρ(0) = M. This is because of the behavior of the

function f , elucidated in Lemma 10. We also note that as M → 1, the thresholds

Kt,K
′
t → ∞. Hence, when we approach full correlation as the inter-node distance

goes to zero, the optimal node density tends towards infinity for all values of K.

7.2.5 Numerical Analysis

In this section, we plot the error exponent and optimal node density for a spe-

cific correlation function namely the exponential-correlation function,

ρ(R) = Me−aR, a > 0, 0 < M < 1. (7.31)

Using Theorem 20, we numerically evaluate D through Monte-Carlo runs. In

(7.8), the error exponent is an implicit function of the correlation coefficient a,

through the correlation function ρ. We plot the effects of correlation coefficient

a and limiting correlation M onD in Fig.7.2.

In Fig.7.2(a), we plot the error exponent at λ = 1 and M = 0.5, for different

values of correlation coefficient a. We notice that a more correlated GMRF or

160



the one with smaller a, has a higher exponent at low value of K, whereas the sit-

uation is reversed at high K. Also, when the variance ratio K is large enough,D

appears to increase linearly with K (in dB), and the correlation coefficient a and

the limiting correlation M appear to have little effect, as expected from Theorem

20. In Fig.7.2(b), we plot the exponent at constant correlation coefficient a = 0.5

for different values of the limiting correlation M. Also note, M = 0 reduces to

the independent case. We notice a similar behavior as the correlation coefficient

a in Fig.7.2(a). A higher value of M results in a higher exponent at low K, but

not at high K.

In Fig.7.3, we fix the correlation coefficient a = 1 in (7.31), and plot the expec-

tations of functions h, h1 and h2 against λ−0.5. In Fig.7.3a and Fig.7.3b, the value

of K is below and above the threshold Kt. We observe that the behavior at λ = ∞

is different in the two plots. Note that the functions h1 and h2 are independent

of K, but K affects their scaling in h.

In Fig.7.4a and Fig.7.4b, we numerically evaluate the optimal λ∗(K, λĒ) for

different values of M and variance ratio K. It is convenient to plot the results in

terms of λ−0.5, since the optimal λ∗ is infinite when K is below the threshold Kt.

We observe the threshold behavior at Kt, as predicted in Theorem 21: when K <

Kt, we have λ∗ = ∞ and for K > Kt, in Fig.7.4a and Fig.7.4b, optimality is mostly

attained at the other extreme point λĒ. This is consistent with Theorem 21.

7.2.6 Sensitivity Analysis

In Theorem 21, we proved the result on the optimal density λ∗. In this section,

we analyze the extent to which the error exponent is dependent on λ. This
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enables us to gauge the usefulness of finding λ∗. To this end, we define

Γ(λ,K; ρ):=
E[Zλ−0.5,K; ρ]

2D(λ,K; ρ)
, (7.32)

which is the fraction of contribution coming from correlation to the error expo-

nent in (7.10), and hence, it is the part influenced by λ. Note, 0 ≤ Γ(λ,K; ρ) ≤ 1

and Γ(0,K; ρ) = 0.

Lemma 11 (Sensitivity ofDλ to λ) At K = 1, the fraction of contribution from cor-

relation to the error exponent Γ(λ,K; ρ) is maximum,

Γ(λ, 1; ρ) = 1, ∀ λ > 0. (7.33)

Also, in the large-K regime,

Γ(λ,K; ρ)→ 0, as K → ∞,∀ λ ∈ ℜ+. (7.34)

Hence, node density greatly influences detection performance at K = 1. Intu-

itively, this is because at K = 1, the two hypotheses can only be distinguished

through the presence of correlation underH1. We also see that it decays to zero

as K → ∞. Hence, the error exponent is insensitive to changes in density at high

K. In Fig.7.4c, we plot Γ(λ,K; ρ) as a function of K.
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7.3 Energy-density Constraint

We now analyze the optimal node density under a different formulation. In-

stead of having fixed number of nodes placed in varying areas under a given

constant node density, in this section, we fix areas of deployment A according

to a constant node density λ and then, let A → ∞. This means that we now

have the flexibility of placing few powerful nodes or many cheaper nodes in a

given area. On the other hand, earlier we had the option of choosing the area of

deployment for a fixed number of nodes.

Under this formulation, the processing energy Cp at each node needs to be

incorporated. We impose an energy density constraint κ

κ ≥ lim
E,A→∞

E
A
, (7.35)

where E is the total (routing + processing) energy consumption E in area A.

Hence, we impose a constraint on the energy consumption per unit area, instead

of a constraint on the average energy consumption per node, as in (7.1).

The error exponentDp

λ
with respect to total energy E is

Dp

λ
:= lim
E→∞
− 1

E log PM(E). (7.36)

The optimal density λp
∗ under the energy-density constraint is

λp
∗ :=max

λ∈ℜ+
Dp

λ
, (7.37)
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subject to the energy-density constraint κ in (7.35).

Note that the error exponent Dp

λ
with respect to the total energy E can be

expressed as

Dp

λ
=
Dλ

Ē(λ)
, (7.38)

whereDλ is the error exponent with respect to number of nodes and Ē(λ) is the

average energy per node, dealt in the previous sections. Similarly, the energy

density constraint simplifies to

κ ≥ lim
E,A→∞

E
A
≈ λ E⌊λA⌋ = λĒ(λ), λ ∈ ℜ+, (7.39)

since ⌊λA⌋ is the number of nodes and the approximation consists of ignoring the

integer requirement for the number of nodes. We again define Λ for this setup

to be the set of the feasible node densities under minimum energy routing

Λ:={λ : λĒ∗(λ) ≤ κ}. (7.40)

In the theorem below, we show the finiteness of λ∗p. We note that this result

is on lines of the results in [28] for a one dimensional GMRP.

Theorem 22 (Finite λp
∗ ) The optimal density λ

p
∗ in (7.37) exists whenever the set Λ

in (7.40) is non-empty and λ
p
∗ is additionally finite if the per-node processing energy

Cp > 0.
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Proof: Note that a compact set possesses a finite extremum point. To show

that Λ is a compact set, we first note that Λ is a closed set. To show the bounded

property, note that

λĒ(λ) ∼ λ[Cp + cλ−
ν
2 ]→ ∞, as λ→ ∞.

Hence, the constraint κ in (7.39) is violated as λ → ∞ and hence, ∞ cannot be in

Λ. Hence, Λ is closed and bounded, i.e., compact. This implies that λp
∗ ∈ Λ is

finite. �

In the above theorem, note that for the feasible set Λ to be non-empty, the

constraint κ has to be sufficiently large. In other words, we need a large enough

energy density κ to support energy consumption involved in processing and

routing of measurements.

We observe that there is no threshold effect when there is a energy-density

constraint and the optimal node density λp
∗ is always finite. This is in sharp con-

trast with the results in the previous section, where under the per-node energy

constraint, λ∗ can be unbounded depending on the regime of K. This is because

here, the energy-density constraint κ limits the energy consumption in a given

area thereby making infinite density infeasible. This implies that λp
∗ cannot be

unbounded. In the theorem below, we provide bounds for λp
∗ when the variance

ratio K < 2, based on the monotonicity of the error exponent in this regime.

Theorem 23 (Optimal λp
∗ ) Let λp

i
(κ) be the largest (positive real) root of the equation,

λCp + λ
1− ν

2 ci(ν) − κ = 0, for i = 1, 2. (7.41)

where c1(ν):=u ζ(ν; 1-NNG) + ζ(ν; MST) and c2(ν):=ζ(ν; MST) are the energy-scaling
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Figure 7.5: Error exponent vs. total energy. ν = 2,Cp = c1(2),M = 0.6.

constants. If the per-node processing energy Cp > 0, the variance ratio K < 2 and the

constraint κ is such that both λp

1
(κ) and λp

2
(κ) exist then the optimal λp

∗ satisfies

λ
p

2
(κ) ≤ λp

∗ ≤ λp

1
(κ). (7.42)

Proof: On the lines of the arguments in the previous section, it can be shown

thatDλ is increasing in λ for K < 2. Ē∗(λ) is decreasing in λ. Hence, the exponent

Dp

λ
in (7.36) is increasing in λ. From the energy-density constraint in (7.39) and

Theorem 22, the feasible set Λ is bounded. From the bounds on Ē∗(λ), if the

largest real roots of (7.41), for i = 1, 2, exist, then the maximum value in Λ is

bounded by these roots. �

Hence, in the above theorem, we obtain bounds on the optimal density λ
p
∗

under energy-density formulation. We prove this by first showing that the error

exponent Dp

λ
is increasing with λ when the variance ratio K < 2, as seen in Fig.

7.5. This implies that λp
∗ is the largest feasible density under constraint κ that

supports the energy consumption for data fusion. In the end, we provide the

bounds in (7.42) on this largest feasible density through the bounds for average

energy consumption Ēλ. Although we analytically prove the bounds in (7.42)
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only when the variance ratio K < 2, the behavior of the error exponent Dp

λ
in

Fig.7.5 suggests that the bound in (7.42) may be valid for all values of K.

7.4 Conclusions

The tradeoff between the energy consumption in data fusion and the resulting

detection performance at the fusion center is an important problem in the con-

text of sensor networks. In this chapter, we incorporated correlation between

the measurements through the Gauss-Markov random field model. We char-

acterized the density of node deployment that maximizes the detection error

exponent subject to a constraint on the average energy consumption. The mea-

surement variance is crucial in determining whether the optimal node density

is limited by the fusion energy constraint and displays a threshold behavior. We

derived the threshold analytically and verified it with simulations.

7.A Proofs

Proof of Lemma 10

Since ρ(0) = M and ρ(∞) = 0, we have x ∈ [0,M].

∂ f

∂x
=

2x

1 − x2

(−1 +
2

K(1 − x2)

)

.

Therefore, f has only one critical point in (0,M]. For K < 2, ∂ f

∂x
> 0 and for

K > K′t ,
∂ f

∂x
< 0, ∀x ∈ [0,M]. There are no critical points. For 2 < K < K′t , the

critical point is a minimum. Hence, maximum is attained at one of the boundary

167



points {0,M}. For K < Kt, it is at x = M = ρ(0) and hence,

f (ρ(Re),K) ≤ f (ρ(0),K; ρ), ∀Re ≥ 0.

Similarly, for K > Kt, we have

f (Re,K; ρ) ≤ f (∞,K; ρ) = 0, ∀Re ≥ 0.

Proof of Theorem 21

From Lemma 10, when K < Kt, ρ(0) = M attains the maximum of f (ρ(Re),K).

Hence, we have for Re ≥ 0,

1

n

∑

e∈Ed

f (ρ(Re),K; ρ) ≤ 1

n

∑

e∈Ed

f (ρ(0),K; ρ), ∀K < Kt.

Letting n→ ∞ on both sides, from (7.26)

E[h(Zλ−0.5,K; ρ)] ≤ h(0,K,M), ∀K < Kt.

Hence, the optimal density in this regime is given by

λ∗(K, Ē) = arg max
λ≥λĒ

E[h(Zλ−0.5,K; ρ)] = ∞ ∀K < Kt.

From Lemma 10, when K > Kt, ρ(∞) = 0 attains the maximum of f (ρ(Re),K). For

the case of infinite energy Ē → ∞, λĒ = λ2(Ē) = λ1(Ē) = 0. Hence,

λ∗(K,∞) = arg max
λ≥λĒ=0

E[h(Zλ−0.5,K; ρ)] = 0 ∀K > Kt.

For finite constraint Ē and K > K′t , f (ρ(Re),K) is increasing in Re. We have

Re = λ−0.5R′e, where R′e is the edge-length in unit area and is independent of
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λ. Hence, f (ρ(Re),K) is non-increasing in λ and the limit E[h(Zλ−0.5,K; ρ)] is also

non-increasing in λ. Hence,

λ∗(K, Ē) = arg max
λ≥λĒ

E[h(Zλ−0.5,K; ρ)] = λĒ ∀K > K′t .
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CHAPTER 8

MEDIUM ACCESS DESIGN FOR STATISTICAL INFERENCE

The design of large wireless-sensor networks (WSN) must deal with chal-

lenges beyond the optimization of the local and the global decision rules, as

is the case for classical distributed inference. Bandwidth has to be allocated

to accommodate a large number of sensor nodes; transmissions must be made

energy efficient to prolong network lifetime. Wireless transmissions make the

medium-access control a crucial component. To this end, well-known determin-

istic scheduling schemes such as the time-division multiple access (TDMA) may

not be appropriate; nodes may be sleeping, faulty, or placed in locations with

poor transmission conditions. It is thus desirable to consider MAC schemes in

the context of detection and estimation, that facilitate effective delivery of infor-

mation from a random number of nodes to the fusion center.

We consider the number of reporting sensors to be random. This may arise

in large-scale wireless sensor networks, where random access may be the pre-

ferred medium access, as it does not require any centralized scheduling. Ex-

amples of random access include the ALOHA scheme, where sensors decide

to transmit based on a simple coin-flip. Alternatively sensors may undertake

a more sophisticated scheme and decide to transmit only significant data. An-

other scenario is when the fusion center is a mobile-access point and travels to

different geographic locations, with nodes dispersed according to a point pro-

cess. In this chapter, we focus on the design of energy-optimal random-access

schemes for distributed detection and estimation.

We consider in this chapter the problem of distributed detection over a

wireless-fading channel via random access. We will not deal with the design
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Figure 8.1: Distributed detection over multi-access fading channel.

of local quantization rules, which is a challenging problem even for the classical

distributed detection. Our focus is on the communication (or the random ac-

cess) aspect of the distributed detection, which to our knowledge has not been

treated in the past.

We model the number of sensors involved in each transmission as random

with a certain average transmission rate λ. There are several reasons to consider

random access. The sensors may use a simple probabilistic wake-up strategy in

which a sensor decides to participate in transmission based on a simple coin-

flip. The sensor may also decide if a transmission is warranted according to its

measurement, transmitting only when the data is “significant” [130]. Yet an-

other possibility is that the fusion center is a mobile-access point, and it travels

to different regions of the field to collect data, in which case the number of sen-

sors involved in each collection is random.
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A schematic of our problem is illustrated in Fig.8.1 with detailed model def-

inition and assumptions given in section 8.1. The fusion center collects data in

multiple slots, each involving a random number of transmitting sensors. We

couple the so-called type-based multiple access (TBMA) [62, 64] with a simple

random access protocol analogous to the ALOHA. Referred to as the type-based

random access (TBRA), sensors transmit probabilistically using a set of orthog-

onal waveforms keyed to their measurements. Specifically, sensors with the

same data value will transmit (if they decide to do so) using the same wave-

form on a multi-access fading channel. The bandwidth requirement of TBMA

in the absence of fading, is proportional to the number of local quantization lev-

els, not to the number of sensors. The use of orthogonal waveforms eliminates

interference among users with different data values and makes it possible to

have coherent combining of transmissions in the absence of fading. We will see,

however, that simultaneous transmissions in fading is much more complicated,

and it may not always be desirable.

8.0.1 Summary of main results

Given the fixed local quantization rule and the available set of orthogonal wave-

forms for transmission, the design of TBRA reduces to the optimal choice of the

mean transmission rate λ. Intuitively, if λ is too small, not enough sensors trans-

mit, and performance suffers. On the other hand, if too many sensors transmit,

since they transmit on a multi-access channel, it is not obvious that the transmis-

sions will not interfere with each other, resulting in poor detection performance.

In searching for the optimal transmission rate λ∗, we use the detection error

exponent Mλ, a function of λ, to characterize performance. We first establish
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that given the expected number of transmissions ρ in l collections, ρ:=λl, the

detection error probability Pe decays exponentially in the form

Pe = e−ρMλ+o(ρ) (ρ→ ∞), (8.1)

where o(ρ)

ρ
→ 0 as ρ→ ∞.

The form of Mλ varies depending on the type of detectors (Bayesian or

Neyman-Pearson) and the fading characteristics of the multi-access channel.

Next, we characterize the behavior of the error exponent Mλ for different

cases. It turns out that Mλ crucially depends on the coherence index γ defined by

γ =
|E(H)|2
Cov(H)

, (8.2)

where H is the effective fading coefficient between a sensor and the fusion cen-

ter.1 Intuitively, higher γ leads to better SNR gain from simultaneous transmis-

sions at the fusion center.

Illustrated in Fig.8.2 are sketches of error exponents as functions of λ and γ.

The shapes of these curves will be justified by analytical and numerical results

in section 8.2 and section 8.4. We see that for low coherence indices, there exists

an optimal λ∗ for which the error exponent is maximized. This implies that there

is an optimal sensor-activation probability so that the average number of trans-

mitting sensors is optimal. The intuition is that for fading channels with zero-

mean (γ = 0), sensors transmitting simultaneously using the same waveform

tend to cancel each other (in the mean), which is the reason that TBMA schemes

involving a single data collection fail [61,62,64]. A sharp contrast is the extreme

1The dependencies of inference performance on the coherence index has been observed in
the past [64, 131].
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case when the channel is deterministic without fading (γ = ∞). We show that

there does not exist an optimal λ∗, which means that the optimal strategy is to

have simultaneous transmissions, in order to take advantage of the channel co-

herency. This chapter aims to provide insights into the optimal tradeoff, for the

case when the expected number of transmissions ρ goes to infinity.

We show the existence of an optimal average transmission rate λ∗ when the

channel-coherence index γ is small. We also provide the characterization of the

error exponent when λ is large. It is in fact the behavior of Mλ as λ → ∞ that

helps us to describe the shape of error exponent curve in Fig.8.2. By letting λ→

∞, we employ a version of the central limit theorem (CLT) involving a random

number of summands. The limiting distribution allows us to characterize M∞

analytically. For large transmission rates λ, Gaussian approximation can be used

to obtain estimates of the error exponent. Perhaps more importantly in practice,

the Gaussian approximation provides λ̃∗, an approximation to the optimal rate

λ∗.

Our numerical evaluation and simulations are also informative. We numer-

ically evaluate Mλ under different conditions to confirm our theory. We present

a performance comparison between TBRA and TDMA, under a fixed energy

constraint. The simulation confirms the analysis and our intuition: the two

schemes have different operation regimes for the zero-mean (γ = 0) multi-access

channels (if complexity is not part of the consideration). At low SNR, TBRA

performs considerably better than TDMA because of its optimal allocation of

transmissions over time and across sensors, to obtain a significant SNR gain.

At high SNR, on the other hand, SNR gain is not needed and the deterministic

scheduling of TDMA shows an advantage as it avoids the possibility of inter-
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Figure 8.2: Performance Mλ under transmission rate λ and coherence index γ.

fering transmissions due to random access. On the other hand, under large-γ

regime, TBRA performs better than TDMA for a wide range of SNR values, by

exploiting channel coherency.

In section 8.1, we explain the system model in detail and give the problem

statement. In section 8.2, we explain the receiver structure and present the ex-

pressions of the error exponent with respect to the expected number of trans-

missions. Both Neyman-Pearson and Bayesian detectors are considered. We

present a characterization of asymptotic behavior of error exponents when the

average number of transmissions goes to infinity. We also discuss the use of

Gaussian approximation to investigate behaviors of error exponents. In sec-

tion 8.4, we provide numerical evaluations of error exponents and simulation

results on the detection error probability where we compare TBRA with deter-

ministic TDMA scheduling. Conclusions and comments are made in section 8.5.
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8.1 Model and problem formulation

8.1.1 TBRA: Transceiver and sufficient statistics

We assume the global statistical model as simple binary hypotheses

H0 : θ = θ0 vs. H1 : θ = θ1.

As illustrated in Fig.8.1, the fusion center collects data in multiple time slots

indexed by i. In each collection, there are Ni sensors involved in the transmis-

sion, where Ni is a random variable with mean λ and probability-mass function

(PMF) g(n, λ):= Pr(Ni = n). We assume that the sequence Ni is IID.

In the ith data collection, a sensor involved in the transmission2, say sensor

k, has measurement Xi,k ∈ {1, · · · ,K} i.e., quantized to K levels. We assume that

the sensor data {Xi,k} are conditionally IID across time and sensors, given θ, with

PMF pθ(·). In vector notation we have,

Xi,k
i.i.d∼ pθ = (pθ(1), · · · , pθ(K)), θ ∈ {θ0, θ1}.

In the ith collection, sensor k encodes its measurement Xi,k to a certain wave-

form and transmits it over a multi-access fading channel. As in TBMA, a set of

K orthonormal waveforms {φm(t),m = 1, · · · ,K} are used, each corresponding to

a specific data value. Specifically, the baseband signal transmitted by sensor k

in collection i is given by

S i,k(t) =
√
EφXi,k

(t),

where E is the energy of the transmission.

2Without loss of generality, we will only consider those sensors involved in the transmission.
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The channel coefficients (H̃i,k ∈ C) are time-varying, IID across sensors and

time. We assume coarse synchronization in the sense that at the fusion center,

there is no inter-collection interference. Such synchronization can be derived by

letting fusion center transmit a synchronization beacon. It can also be accom-

plished by adding sufficient guard time between consecutive data collections.

For low rate applications, this assumption is reasonable.

The received complex-baseband signal after collecting l samples is given by

Yi(t) =

Ni
∑

k=1

H̃i,kS i,k(t − τi,k) +Wi(t), i = 1, · · · , l, (8.3)

where we assume that the channel-state information {H̃i,k} is not known at the

receiver. τi,k are the random delays for different sensor transmissions and the

noise Wi(t) is assumed to be complex white zero-mean Gaussian, with power

density σ2. We define the sensor signal-to-noise ratio by SNR:= E
σ2 .

Under the narrow-band signal assumption, the flat-fading approximation

which neglects the time dispersion in the signal is valid. Therefore, the de-

lay is only through the carrier phase i.e., S i,k(t − τi,k) ≈ S i,k(t) exp (− j2π fcτi,k),

where fc is the carrier frequency. Denoting the effective fading statistic by

Hi,k:=H̃i,k exp (− j2π fcτi,k) with mean µH:=E(Hi,k) and covariance σ2
H

:=Cov(Hi,k),

the received signal is thus given by

Yi(t) =

Ni
∑

k=1

Hi,kS i,k(t) +Wi(t), i = 1, · · · , l, (8.4)

where we assume that {Hi,k} are proper complex Gaussian, and are unknown at

the fusion center.
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Sufficient statistics {Yi} are generated from the bank of filters matched to the

orthogonal basis {φm(t)}. For the ith collection,

Yi :=
1√
E
[

〈

Yi(·), φ1(·)〉, · · · , 〈Yi(·), φK(·)〉
]

=

Ni
∑

k=1

Hi,keXi,k
+Wi, (8.5)

where
〈

Yi(·), φm(·)〉 is the output of the matched filter corresponding to φm(t), em

the unit vector with non-zero entry at the mth position, and Wi
i.i.d∼ Nc(0,

1
SNR

I).

To see the intuition behind the coherence index γ defined in (8.2), we explic-

itly write the mth entry of Yi = [Yi,1, · · · ,Yi,K]T

Yi,m =

Ni
∑

k=1

Hi,k1{Xi,k=m} +Wi,m, (8.6)

where 1A is the event-indicator function. The extreme case is when the channel

is deterministic with Hi,k ≡ 1 (γ → ∞). Transmissions from those sensors ob-

serving data value m add up coherently, and Yi,m is the number of sensors that

observe data level m (plus noise), which gives rise to notion of type-based trans-

mission3. On the other hand, when γ = 0, (µH = 0), the transmissions add up

non-coherently, and the mean of Yi contains no information of the model.

3Given Xi,k = xi,k, Ni = ni and the observation Yi = yi, in the absence of noise, the type of xi,k

is 1
ni

yi. [108, 132].

178



8.1.2 Spatio-temporal tradeoff and problem formulation

The design of TBRA reduces to finding the optimal-activation strategy that min-

imizes detection-error probability. For sensors that are activated probabilisti-

cally either by themselves or by the beacon from the fusion center, a TBRA

scheme reduces to finding the mean number of transmissions λ = E(Ni). To

this end, we need to connect λ with the detection error probability.

If the fusion center collects data using TBRA for l time slots, the expected

number of transmissions is ρ:=λl, which is also proportional to the total energy

consumption. Fixing ρ, there is a spatio-temporal tradeoff between the average

number of transmissions per slot and the total number of time slots. Should

energy be allocated mostly to simultaneous transmissions by making λ large?

Or should we rely on taking more data collections by choosing a large l. The

optimal design of TBRA is to achieve optimal tradeoff between λ and ł.

We will consider two types of detector: the Bayesian detector and the

Neyman-Pearson detector. The explicit characterizations of error probabilities

for these two cases are not tractable. We thus examine the case when the ex-

pected number of transmissions ρ is large. Let Pe(ρ, λ) be the detection-error

probability (either the miss-detection probability of the Neyman-Pearson detec-

tor or the average of the miss detection and the false-alarm probabilities in the

Bayesian setup). We will optimize TBRA through the error exponent

Mλ:= − lim
ρ→∞

1

ρ
log Pe(ρ, λ), (8.7)

which is equivalent to say that Pe(ρ, λ) decays exponentially with respect to ρ
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with rate Mλ, a function of λ, as in (8.1). The justification of exponential decay of

Pe will be given in section 8.2 using standard arguments involving the Cramér’s

theorem and the Stein’s lemma. Next, we optimize TBRA by seeking

λ∗ = arg sup
λ>0

Mλ. (8.8)

Although Mλ can be evaluated numerically for a given statistical model of hy-

potheses and fading, it is of theoretical and practical significance to establish

that λ∗ is finite and bounded. To this end, we need to characterize Mλ as λ → 0

and λ→ ∞.

8.2 Optimal type-based random access

The key step towards optimal TBRA is the characterization of detection er-

ror exponent defined in (8.7). The form of error exponent is well known in

the theory of large-deviation analysis [132]: the Chernoff information for the

Bayesian detector, and the Kullback-Leibler (KL) distance (relative entropy) for

the Neyman-Pearson detector. We first present the optimal detector and then

give the general characterizations of the error exponents with respect to the ex-

pected number of transmissions ρ. Next, we state a result on the existence of

optimal λ∗ that maximizes the error exponent. We then consider the limiting

case when λ→ ∞. The asymptotic analysis not only gives the key argument for

the existence of a finite optimal λ∗, but also provides a qualitative assessment of

the error exponents and a computationally tractable way of estimating λ∗.
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8.2.1 Optimal non-coherent detector

The optimal detector given the matched filter output {Yi} is the likelihood-ratio

detector under both the Bayesian and Neyman-Pearson settings. With the IID

assumption, the detector is given by

Tl =
1

l

l
∑

i=1

log
f1,λ(Yi)

f0,λ(Yi)
≷ τ. (8.9)

where fk,λ(y) is the PDF4 of Yi under hypothesis Hk, l is the number of data

collections and the threshold τ is chosen according to the prior for the Bayesian

detector or the false-alarm rate for the Neyman-Pearson detector.

The receiver only needs to compute the likelihood ratio in (8.9). In prac-

tice, the likelihood ratio may not have a closed-form expression5, and numerical

evaluation is necessary. However, since the receiver is non-coherent, it does not

have a RAKE structure. Therefore, the complexity of the receiver is not limited

by the number of simultaneous transmissions.

8.2.2 Detection-error exponents

In the following theorem, we give the expressions for the detection-error expo-

nents. These are direct applications of the Cramér’s theorem and the Stein’s

lemma with only a trivial modification that changes time index in the standard

setting to the expected number of transmissions ρ.

4We will assume that the likelihood function is well defined.
5For the special case of Poisson number of sensors with Gaussian fading, an infinite-sum

expression is available.
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Theorem 24 (Error exponents) Given expected number of transmissions ρ and mean

transmission rate λ, let PB
e(ρ, λ) be the average error probability of the Bayesian detector

under any prior, and PNP
e (ρ, λ) be the miss detection-error probability of the Neyman-

Pearson detector under any fixed size α. The error exponents for the two detectors are

given by

MNP(λ) := − lim
ρ→∞

1

ρ
log PNP

e (ρ, λ) =
1

λ
Dλ( f0|| f1), (8.10)

MB(λ) := − lim
ρ→∞

1

ρ
log PB

e(ρ, λ) =
1

λ
Cλ( f0, f1), (8.11)

where Dλ( f0|| f1) is the Kullback-Leibler distance and Cλ( f0, f1) the Chernoff information.

Proof: See [108, 132, p. 92-94] . �

While the above theorem provides the basis for investigating error expo-

nents, it says little about the behavior of error exponents as functions of λ, es-

pecially about whether there exists an optimal λ∗. The following theorem gives

the results for the two extreme cases: γ = 0 and γ = ∞.

Theorem 25 (Existence of optimal λ) Let λ be the mean transmission rate and let

fi,λ(y) be the PDF of the matched-filter output Y, under the hypothesisHi. Assume the

following:

1. for the Neyman-Pearson detection, PDF f0,λ and f1,λ are differentiable functions

of λ almost everywhere,

2. for the Bayesian detection, the above assumption and in addition, the optimizing

parameter ν∗ is differentiable in λ almost everywhere, given by,

ν∗(λ) = arg min
ν∈[0,1]

log

∫

y

f ν0,λ(y) f 1−ν
1,λ (y)dy. (8.12)
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In addition, assume that the PMF of N, g(n, λ) is differentiable in λ and satisfies the

following properties,

lim
λ→0

g(n, λ) = 1{n=0}, (8.13)

lim
λ→0

d

dλ
g(n, λ) = −a1{n=0} + a1{n=1}, a > 0, (8.14)

where 1A is the event-indicator function. The following results hold:

1. if the channel has zero-mean fading, i.e., γ = 0, then

lim
λ→0

MNP(λ) = lim
λ→∞

MNP(λ) = 0, (8.15)

lim
λ→0

MB(λ) = lim
λ→∞

MB(λ) = 0, (8.16)

which imply that there exist λNP
∗ , λ

B
∗ such that 0 < λNP

∗ , λ
B
∗ < ∞ and

sup
λ>0

MNP(λ) =
1

λNP
∗

D
(

f0,λNP
∗
|| f1,λNP

∗

)

, (8.17)

sup
λ>0

MB(λ) =
1

λB
∗
C
(

f0,λB
∗
|| f1,λB

∗

)

, (8.18)

2. if the channel is deterministic i.e., Cov(H) = 0 or γ = ∞, then there does not exist

a bounded optimal λ∗ that maximizes the error exponents. In particular,

MNP(λ) = Θ(λ), MB(λ) = Θ(λ), as λ→ ∞, (8.19)

where the notation Θ means that λ is an exponentially-tight bound6

Proof: The proof for the above theorem relies on the analysis of the extreme

cases under the regularity assumptions of the KL distance and the Chernoff

information. See Appendix 8.A. �

6
Θ(a(λ)) = {b(λ) : 0 ≤ c1a(λ) ≤ b(λ) ≤ c2a(λ),∀λ > λo} for some c1, c2, λo > 0.
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In the above theorem, the assumptions on the PMF of N (8.13) and (8.14)

imply that at low λ, there is utmost one transmission. Examples include Poisson

distribution and the binomial distribution B(n, p) for a fixed n with p→ 0.

The continuity assumption for the Neyman-Pearson detection is easily sat-

isfied for many well-behaved distributions. On the other hand, the assumption

for Bayesian detection in (8.12) is harder to satisfy in practice.

Theorem 25 establishes the general shape of Mλ as shown in Fig.8.2, for the

extreme values of coherence index, γ = 0 and γ = ∞. The role of γ in Mλ is

embedded in the KL distance or the Chernoff information through the PDFs

( fi,λ(y), i = 0, 1), which are typically continuous functions of γ. Therefore, one

can infer the behavior of Mλ for small and large γ.

8.2.3 Asymptotic distribution and Gaussian approximation

A key step in proving theorem 25 is the investigation of Mλ as λ → ∞. The

idea is to use the continuity argument coupled with a version of the central

limit theorem (CLT) to calculate the KL distance and the Chernoff information.

We elaborate this approach here for two reasons. First, the calculation of M∞

is needed in proving theorem 25; this is accomplished by the use of CLT. Sec-

ond, from a practical stand-point, the Gaussian approximation via CLT gives a

computationally tractable way to approximate the error exponent. This is es-

pecially useful when we try to find the optimal sensor activation rate λ∗. The

accuracy of such an approximation of course, depends on the specific distribu-

tions of the sensor measurements and the channel, and we will demonstrate its

performance in section 8.4.
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We shall focus in this section on the single collection model, and evaluate the

error exponents using the limiting distribution as λ → ∞. For ease of notation,

we drop the time index i in (8.5), and consider the model

Y =

N
∑

k=1

HkeXk
+W, (8.20)

where we have a random summand N, with PMF g(n, λ) and mean E(N) = λ.

Theorem 26 (Limiting distribution of Y) Assume that the effective channel gains

{Hk} are IID distributed with mean µH and covariance σ2
H, and that the number of

sensors N has PMF g(n, λ), with mean λ. Also, assume that N/λ converges to a constant

η > 0 in distribution, i.e.,

N

λ

d→ η, as λ→ ∞. (8.21)

When the PMF of sensor measurements pθ(m) > 0, ∀ m = {1, . . . ,K} and θ = {θ0, θ1},

the shifted and scaled matched-filter output Y satisfies the central limit theorem and has

the limiting complex-normal distribution according to

Y − ηλµHpθ√
ηλ

d→ Nc(0,Cov(H1eX1
)) as λ→ ∞. (8.22)

In addition, if N is Poisson, then each entry of vector Y is independently asymptot-

ically Gaussian, given by
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Y(m) − λµH pθ(m)

σH

√

λpθ(m)

d→ Nc(0, 1), as λ→ ∞, (8.23)

∀ m = 1, . . . ,K.

Proof : The proof of the above is an application of CLT with a random sum-

mand. We use the fact that η = 1 for Poisson. See Appendix 8.A for details.

�

Evaluating the covariance matrix in (8.22), we have

Cov(H1eX1
) = σ2

HDiag(pθ)

+ |µH |2(Diag(pθ) − pθp
T
θ ). (8.24)

However, the result for the Poisson distribution in (8.23) is stronger than for a

general PMF g(n, λ) in (8.22), since the asymptotic distribution is independent

across the quantization levels. This is due to the property of marking, which

implies that the number of sensors transmitting a particular data-level is inde-

pendently Poisson. Moreover, by (8.24), under zero-mean fading (µH = 0), the

asymptotic distribution is independent across the data-levels for any general

PMF g(n, λ). In this section, we assume that N is Poisson, for the ease of evalua-

tion of the exponents under the limiting distribution.

Since Y is asymptotically Gaussian, in the large-λ regime, the hypothesis-

testing problem can be cast as the testing of binary hypotheses with

H̃i : Y ∼ Nc(µi,Σi), i = 0, 1 (8.25)

µi = λµHpθi
, Σi = λσ

2
HDiag(pθi

) +
σ2

E I. (8.26)
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The effect of the channel coherency is more evident in the asymptotic distri-

bution. For any positive γ ( µH > 0), the mean of Y in (8.26) contains infor-

mation about the underlying hypothesis Hi. As λ increases, the two hypothe-

ses are more separated and the error probability decays exponentially. When

µH = 0 (γ = 0), on the other hand, the information is in the covariance, and

the error probability for a single-data collection converges to a constant value

as λ → ∞ [64]. However, as mentioned in section 8.2.2, in this chapter, we let

the expected number of transmissions ρ go to infinity. In this case, there is ex-

ponential decay of error probability, and we therefore need to characterize the

exponents.

We now characterize the error exponents, defined by (8.10) and (8.11), for

the Gaussian distribution. It turns out that the Gaussian Chernoff-information

C̃ and the Kullback-Leibler distance D̃ have closed-form expressions, enabling

us to evaluate the asymptotic limits of the true exponents.

Lemma 12 (Gaussian error exponents) Let σ2
H be the channel variance, γ the

channel-coherence index, SNR be the sensor SNR and ∆:=pθ0
(k) − pθ1

(k). Denote,

αk :=
λσ2

H SNR pθ0
(k) + 1

λσ2
H

SNR pθ1
(k) + 1

, ωk:=λγ∆ (8.27)

and let βk be the positive root of the quadratic equation7,

ωkαkβ
2
k + (αk − 1)βk − logαk − ωk = 0. (8.28)

7Exactly one positive root exists for the case when pθ0
(k) , pθ1

(k).
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The error exponents ẼNPD(λ) and ẼBD(λ) under the Neyman-Pearson and the Bayesian

settings, for the Gaussian distribution in (8.25), are given by

ẼNPD(λ) =
D̃λ,γ

λ
=

1

λ

K
∑

k=1

(

− logαk

+ (1 + ωk)(αk − 1)
)

, (8.29)

ẼBD(λ) =
C̃λ,γ

λ
=

1

λ

K
∑

k=1

(

− log βk + βk

+
(βk − 1)2αkωk

(αk − 1)
− 1
)

. (8.30)

Proof : The proof is derived using Kullback-Leibler distances for Gaussian

distributions. See Appendix 8.A. �

Given the closed-form expressions for the Gaussian error exponents ẼNPD(λ)

and ẼBD(λ), we can evaluate the various limits.

Theorem 27 (Limiting properties of error exponents) The Chernoff information

C̃λ,γ and the KL distance D̃λ,γ are monotonically increasing functions of the coherence

index γ, transmission rate λ and sensor SNR. For finite γ, the error exponents ẼNPD(λ)

and ẼBD(λ) converge to a finite limit, proportional to the coherence index γ, as λ → ∞

given by

lim
λ→∞

ẼNPD(λ) = γ

K
∑

k=1

∆

pθ1
(k)
, (8.31)

lim
λ→∞

ẼBD(λ) = γ

K
∑

k=1

(

√

pθ0
(k) −

√

pθ1
(k)
)2
. (8.32)
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Proof : We establish the monotonicity and evaluate the limits using expres-

sions in (8.29) and (8.30). Also note, (8.32) is a scaled version of Hellinger dis-

tance [133]. See Appendix 8.A.

We also investigate the case when the channel is perfectly coherent: µH = 1

and σH → 0, or γ → ∞.

Theorem 28 (Error exponent for perfectly coherent channels) In the absence of

fading, the error exponents of the NP and Bayesian detectors for the limiting distribu-

tion are given by

lim
γ→∞

ẼNPD(λ) = λSNR
K
∑

k=1

∆
2 (8.33)

lim
γ→∞

ẼBD(λ) =
λSNR

4

K
∑

k=1

∆
2 (8.34)

Proof : Substituting σH = 0, we derive the expressions by finding the KL

distance and Chernoff information between the distributions, Nc(λpθ0
, σ2) and

Nc(λpθ1
, σ2).

To contrast the perfectly coherent case, we examine the case when the chan-

nel is non-coherent, i.e., µH = 0 (γ = 0). Interestingly, the dependencies of

the Chernoff information and the KL distance on the transmission rate λ, the

sensor SNR, and the channel variance σ2
H can be summarized using a single

parameter—the average SNR at the receiver,

χ:=λσ2
HSNR. (8.35)
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Theorem 29 (Error exponents for non-coherent channels) For the non-coherent

channels (µH = 0), the Chernoff information C̃χ and the KL distance D̃χ are functions of

χ:=λσ2
HSNR, and have the following properties:

1. C̃χ and D̃χ are monotonically-increasing concave functions of χ.

2. As χ→ ∞, C̃χ and D̃χ converge to finite limits when pθi
(k) > 0 ∀i, k.

3. Normalized functions
C̃χ

χ
and

D̃χ

χ
have unique maxima, which are only functions

of pθ0
and pθ1

.

Proof : See Appendix 8.A.

The compact parameter χ provides additional insights and design options.

The optimal error exponents can be achieved with a combination of choices of

sensor activation and sensor SNR. At small SNR, for example, more sensors are

needed to obtain SNR gain. On the other hand, at high SNR, fewer sensors

transmit to avoid the non-coherent cancelation of the signals (on an average).

The optimal λ∗ is chosen so as to balance these opposing effects of the multi-

access fading channel.

The error exponents ẼNPD(λ) and ẼBD(λ) in (8.29) and (8.30) of the limiting

Gaussian distributions are good approximations for the true exponents at large

λ, due to the continuity property. We shall demonstrate this with a numerical

example below, which is a qualitative representation for the general case.
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8.3 Optimal TBRA for Parameter Estimation

8.3.1 Bayesian Cramér-Rao Bound

We define the performance metric for estimation as the normalized Bayesian

Cramér-Rao lower bound (BCRB) [134]. Given expected number of transmis-

sions ρ and mean transmission rate λ per data collection, let Θ̂ be a Bayesian

estimator. Under some regularity conditions [134, p. 72], we have

E(Θ̂ − Θ)2 ≥ 1
ρ

λ
E[Iλ(Θ)] + Aπ

, (8.36)

with equality iff conditional PDF of U, fU(θ|ul), is Gaussian; and Iλ(θ) is the Fisher

information of a single data collection of the sufficient statistic U, for a given θ

and Aπ only depends on the PDF of Θ i.e., π(·). To obtain design guidelines, we

define the normalized expected Fisher information, given by

Mλ:=
E[Iλ(Θ)]

λ
, (8.37)

where the expectation is taken over Θ. Maximizing the normalized Bayesian

information with respect to λ, gives the least BCRB. In general, the BCRB is not

achieved by the MMSE estimator. Note if we instead formulate θ as a determin-

istic parameter, then the optimal TBRA scheme would depend on θ. In addition

to the regularity conditions for the existence of BCRB, we assume that the PDF

fU(u|θ; λ) is differentiable up to second order (C2) in y, θ and λ.

Having defined the performance metric for estimation, the design of optimal
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Figure 8.3: Optimal transmission rate λ∗ under coherence index γ.

TBRA now reduces to finding an optimal transmission rate as before, with mean

number of transmissions ρ fixed,

λ∗:= arg sup
λ∈ℜ+

Mλ. (8.38)

The results of Theorems 25-29 also hold for estimation. See Appendix 8.A for

details. We now prove an additional result on the presence of a critical coher-

ence index which holds for parameter estimation.

8.3.2 Critical Coherence Index γ∗

In theorem 25, we have characterized the behavior of the metric Mλ,γ and

thereby the optimal transmission rate λ∗(γ), for extreme values of the coher-

ence index i.e., (γ = 0) and (γ = ∞). For finite positive γ, we expect smooth

transition between these extreme behaviors, especially for well-behaved distri-

butions. To study the nature of λ∗, it is crucial to characterize the slope of Mλ,

since a negative slope at large-λ implies that λ∗ is bounded. However, we can

only numerically evaluate Mλ for finite λ.
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If we impose an additional regularity condition that conditional PDF fλ(y|θ)

is continuously differentiable to second order, then the partial derivatives up to

the second derivative are continuous [135]. Therefore,

∂

∂λ
Mλ →

∂

∂λ
M̃λ, as λ→ ∞. (8.39)

This condition is satisfied by well-behaved distributions. For the Poisson-

Gaussian distribution, we can express the conditional PDF fλ(y|θ) as an infinite

sum. On evaluating the limits, we find that it satisfies (8.39).

Therefore, at large-λ, we can reasonably approximate the slope of the actual

metric by the slope of the Gaussian metric i.e.,

∂

∂λ
Mλ ≈

∂

∂λ
M̃λ. (8.40)

Rewriting the Gaussian performance metric,

M̃λ = 2λ SNRσ2
HE
[

K
∑

k=1

γ p′
Θ

(k)2

λσ2
H

SNR pΘ(k) + 1
+

K
∑

k=1

σ2
HSNR p′

Θ
(k)2

(λσ2
H

SNR pΘ(k) + 1)2

]

, (8.41)

we note that the two terms signify the opposing effects of coherence and can-

celation respectively. This is because at large values of λ, the first terms ap-

proaches a constant, proportional to γ; whereas the second term decays to zero.

Moreover, for all values of λ, the first term is increasing in λ and the second term
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is decreasing. Hence, if the first term dominates to such an extent that M̃λ is al-

ways increasing in λ, then the optimal λ∗ is infinite. If the first term dominates

for some value γ∗, then it dominates for all γ > γ∗. In the following theorem, we

establish such a critical coherence index γ∗; signifying transition between these

opposing effects.

Theorem 30 For the Gaussian metric M̃λ,γ given by (8.41), suppose the optimal trans-

mission rate λ̃∗(γ) is given by

λ̃∗(γ):= arg sup
λ∈ℜ+

M̃λ,γ. (8.42)

Then there exists a critical coherence index γ∗ such that

λ̃∗(γ) = ∞ ,∀γ > γ∗. (8.43)

Additionally for γ < γ∗, the metric M̃λ is unimodal.

The critical coherence index γ∗ given by,
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γ∗ = σ
2
HSNR. (8.44)

Proof : We evaluate the sign of derivative of M̃λ with respect to λ. See Appendix

8.A for details.

In the above theorem, we characterized the nature of optimal λ∗ for finite

positive γ. For well behaved distributions, the optimal λ∗(γ) is a continuous

function of γ (Fig.8.3). The critical coherence index γ∗ divides the channels into

two categories, viz.,

• coherent channels (γ > γ∗) : the optimal λ∗ is unbounded, which im-

plies that increasing the number of simultaneous transmissions always

improves the performance metric.

• canceling channels (γ < γ∗) : λ∗ is bounded and unique, which implies

that increasing the number of simultaneous transmissions beyond a point

degrades the performance metric.

Hence, for the canceling channels, we need to design sleeping strategies to limit

interference. On the other hand for coherent channels, the sensors simply need

to transmit simultaneously, in order to maximize performance.

8.4 Numerical results and simulations

In this section, we resort to numerical and simulation techniques to validate the

theories developed in this chapter. We consider binary quantized measurements
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with PMF

pθ0
= [0.7, 0.3], pθ1

= [0.3, 0.7].

For the Bayesian setting, we assume equally likely priors.

We assume that the channel fading is Gaussian8 Hi,k
i.i.d∼ N(µH, σ

2
H) with the

mean and the variance varying according to different simulation conditions.

The number of sensors involved in each transmission Ni is IID Poisson.

The error exponents are evaluated numerically (without using the Gaus-

sian approximation), and the detection-error probabilities are estimated using

Monte-Carlo simulations.

8.4.1 Evaluation of error exponents

Since the central limit theorem is applicable only in the large-λ regime, in order

to draw conclusions for finite λ we numerically evaluate the Chernoff informa-

tion and the Kullback-Leibler distance. We found that the Chernoff information

and Kullback-Leibler distance have similar shapes. Therefore, only the behavior

of Chernoff information is presented here.

Fig.8.6a and Fig.8.6b show the behavior of the actual error exponent Eλ vs.

λ, one (Fig.8.6a) with varying channel-coherence index γ for a fixed SNR, and

the other with varying SNR for γ = 0. The existence of optimal λ∗ is evident

for small γ. To see the similarity and difference between the actual Eλ and the

Gaussian approximated Ẽλ, we plot Ẽλ in Fig.8.7a. The curves in Fig.8.6b and

Fig.8.7a have similar shapes and share the same trend with respect to both λ

8For proper Gaussian variables, the real and imaginary parts are independent. Therefore, it
suffices to limit to real variables
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Figure 8.7: Gaussian approximation.

and SNR. The actual values of the error exponents are indeed different, with the

Gaussian approximation giving a more conservative estimate of the true error

exponent.

Fig.8.7b shows the actual optimal transmission rate λ∗ and the sub-optimal

rate λ̃∗ (obtained via optimizing the Gaussian error exponents in (8.29) and

(8.30)). The optimal λ̃∗ obtained from the Gaussian approximation appears to
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provide a reasonable approximation for the true λ∗. We observe that as SNR

decreases, the sub-optimal λ̃∗ approaches the true λ∗. This behavior is the result

of CLT, since the value of λ∗ increases as the SNR decreases. Moreover, even at

high SNR, the absolute error of approximation is fortunately quite small, since

the value of λ∗ decreases as the SNR increases.

8.4.2 Performance and discussion

We compare the TBRA scheme with the conventional TDMA scheme, in which

one sensor is scheduled to transmit in a data collection, with energy E. We fix the

expected number of transmissions ρ = lλ in the comparison. Our comparison is

fair since both TBRA and TDMA have the same total energy budget.

We run simulations with values specified in the beginning of the section 8.4.

We consider two regimes of γ and SNR, with four possible scenarios. For the

TBRA scheme, from section 8.4.1, the optimal performance is at λ∗. We also con-

sider the performance of TBRA under λ̃∗, obtained by Gaussian approximation.

We also include the TBRA scheme with λ = 1, which enables us to study the

random-access aspect of TBRA under different conditions.

Fig.8.8a and Fig.8.8b are simulations for non-zero mean fading channels. For

the case shown in Fig.8.8a, the optimal strategy is single-shot transmission (all

sensors transmitting simultaneously), since λ∗ > ρ, for the values of ρ used in

the simulation. We see that the optimal TBRA scheme performs better than

TDMA. However, for the TBRA scheme with λ = 1 the performance is similar to

TDMA. This suggests that the gain for TBRA comes mainly from coherence. In

Fig.8.8b, at high SNR, the optimal strategy is still single-shot transmission, due
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Figure 8.8: Error probability vs. transmission rate, non-zero mean fading.

to the high value of γ. This suggests that at large γ, the optimal strategy is to

have as many simultaneous transmissions as allowed by the network, in order

to exploit the channel coherency.

Fig.8.9a and Fig.8.9b are simulations under zero-mean fading. Fig.8.9a

shows that TBRA performs better than TDMA at low SNR. In Fig.8.9b, we see

that TDMA does slightly better at high SNR, under zero-mean fading.

We observe that there is not much performance gap between the optimal rate

λ∗ and sub-optimal λ̃∗, from Gaussian approximation. Also, we have ignored the

communication overheads involved in each data collection. This is significantly

higher for TDMA, since it has more data collections than TBRA, for a fixed ρ.

Some intuitions on the comparison of TBRA and TDMA are in order. At

large γ, the optimal rate λ∗ is also large. The gain from coherence suggests that

at large γ, TBRA will do better than TDMA for a wide range of SNR values.

Moreover, the total number of dimensions used by TBRA is just the number of

data levels K (for single-shot transmission), which is far less than the number
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Figure 8.9: Error probability vs. transmission rate, zero-mean fading.

of dimensions used by TDMA, given by Kρ. Thus, TBRA is also bandwidth

efficient at large γ.

Under the zero-mean fading, λ∗ is inversely proportional to the sensor SNR.

Therefore, at high SNR, λ∗ is small, in order to avoid canceling effects of zero-

mean fading (Fig.8.7b). However, there are still some collisions between the

transmissions, due to random access. In contrast, TDMA schedules exactly one

sensor to transmit. We therefore expect TDMA to do better at high SNR, under

zero-mean fading.

However, at low SNR, simultaneous transmissions counter noise more effec-

tively. Therefore, we expect TBRA to perform better than TDMA. Moreover, at

low SNR, TBRA has significantly lower number of data collections than TDMA

leading to a quicker detection at fusion center. Also, the total number of di-

mensions used by TBRA ( Kρ

λ∗
) is far less than the number of dimensions used by

TDMA (Kρ). Thus, at low SNR, TBRA is also bandwidth efficient under zero-

mean fading.
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8.4.3 Numerical Analysis for Parameter Estimation

The channel fading is proper complex Gaussian Hi,k
i.i.d∼ Nc(µH, σ

2
H) and number

of sensors involved in each transmission Ni is IID Poisson. Θ is drawn from

triangular distribution ∆(0.2, 0.8) with 0.2 and 0.8 as the end-points. We consider

the estimation of Bernoulli-distributed data at the sensors with Θ as the mean

i.e.,

pΘ = [Θ; 1 − Θ].

Since CLT is applicable only in large-λ regime, to draw conclusions for finite

λ, we numerically evaluated the expected Fisher information. Fig.8.4 shows the

plot of both true Mλ (without Gaussian approximation) and M̃λ (Gaussian ap-

proximation) for different values of coherence indices. We find that the true

Mλ and M̃λ from the Gaussian approximation have similar shapes and share

the same trend with respect to λ, γ and SNR. For larger values of γ, the Gaus-

sian approximation does not appear to be good and needs large values of λ to

converge. Fig.8.5 shows the accuracy of the Gaussian approximation in deter-

mining the optimal λ∗(γ) for different values of γ. We find the Gaussian estimate

to be quite close, especially at low values of γ, which are the practical cases of

interest.

8.5 Conclusions

In this chapter, we focus on the communication aspect—random access in

particular—of distributed detection and estimation for large sensor networks.

We employ TBRA which inherits most of the attractive features of TBMA, e.g.,
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the efficient bandwidth scaling and the asymptotic optimality under ideal chan-

nel conditions. The main advance of this work is the removal of the requirement

of channel coherency and the ability to handle random number of sensors, trans-

mitting simultaneously in a slot. By examining a number of extreme cases, we

are able to obtain a general characterization of the error exponents as illustrated

in Fig.8.2. From a practical stand-point, the approaches using the Gaussian ap-

proximation, presented in section 8.2.3, seem to give the correct insight into an

optimal design. Such a characterization is a valuable guide, as a network de-

signer pursues practical solutions.

We have left several important problems open. We have considered a spatio-

temporal allocation scheme under the total energy constraint. For applications

under other constraints (e.g., time), our formulation does not hold. We have not

dealt with the design of local quantization rule. Given that the large-deviation

analysis is used in this chapter, as well as in several related work [57, 58, 62]

dealing with different aspects of the problem a “cross-layer” optimization of

local quantization, communications and global inference should be of interest.

8.A Proofs

Proof of theorem 25

Let o(λ) represent a function such that o(λ)

λ
→ 0 as λ→ 0.

For the PMF of N, g(n, λ), applying Taylor’s expansion for λ near zero, we have

P(Ni = 1) = aλ + o(λ) and P(Ni > 1) = o(λ).
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Define the conditional PDF of matched filter output Yi under hypothesis Hk as

fk(·|N = 0):=w(·), fk(·|N = 1), :=hk(·) and fk(·|N > 1):=ck(·), where w(·) is the PDF

of White Gaussian noise. Marginalizing over N, we have the PDF of Yi under

hypothesisHk,

fk(·) = (1 − λa − o(λ))w(·)

+ (λa + o(λ))hk(·) + o(λ)ck(·). (8.45)

Error Exponents

Now we have the KL distance [108]

ENPD(λ) =
D( f0|| f1)

λ
=

1

λ

∫

y

f0(y) log
f0(y)

f1(y)
dy. (8.46)

Using (8.45) we have,

lim
λ→0

ENPD(λ) = a

∫

y

(

h0(y) − h1(y)
)

dy = 0.

For Chernoff information we have [108],

C = D( fν∗ || f0) = D( fν∗ || f1), (8.47)

fν(·) =
f ν
0
(·) f 1−ν

1
(·)

∫

y
f ν
0
(y) f 1−ν

1
(y)dy

.

Thus, we have, for k = 0, 1,
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lim
λ→0

D( fν|| fk)

λ
=

∫

y

νa
(

h0(y) + h1(y) − 2w(y)
)

dy = 0.

Therefore from (8.47), we have limλ→0 EBD(λ) = 0. For the case when λ → ∞, we

first show that the limit coincides with exponents of limiting distribution. From

assumption (1) stated in theorem 25, the integrand in (8.46) is differentiable with

respect to λ implying that the integral is differentiable [135]. This implies that

the limit in (8.46) exists as λ → ∞ and coincide with the Gaussian exponent.

Similar argument holds for (8.47). For expressions of Gaussian exponents for

γ = 0 and γ = ∞, refer Theorems 29 and 28. Although these theorems have

results for Poisson N, the exponents for any general PMF g(n, λ) coincide with

Poisson, for γ = 0. For γ = ∞, the claim can be easily shown for a general PMF

g(n, λ).

Parameter Estimation

Define the conditional PDF of the sufficient statistic U given N = 0, 1 and θ as

fU(u|N = 0,Θ = θ; λ) := w(u),

fU(u|N = 1,Θ = θ; λ) := hθ(u),

fU(u|N > 1,Θ = θ) := cθ(u),

where w(·) is the PDF of white-Gaussian noise, independent of θ. Marginalizing

over N, for small λ we have the PDF of U given θ as
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fU(u|θ; λ) = (1 − λ − o(λ))w(y) + (λ + o(λ))hθ(y) + o(λ)cθ(y).

Differentiating with respect to θ,

∂

∂θ
fU(u|θ; λ) = (λ + o(λ))

∂

∂θ
hθ(u) + o(λ)

∂

∂θ
cθ(u).

From the definition of Fisher information

Iλ(θ)

λ
=

1

λ

∫

u

( ∂

∂θ
log fU(u|θ; λ)

)2
fU(u|θ; λ)dy.

Since fU(u|θ; λ) is a differentiable function of λ and u, Mλ is continuous in λ [135].

Substituting for fU(u|θ; λ) and taking the limit,

lim
λ→0

Mλ = lim
λ→0
E

Iλ(Θ)

λ
= 0.

For the case when λ→ ∞, a limiting conditional distribution exists, by theo-

rem 26. Let Z:= Y√
λ
. Therefore, the sufficient statistic is U = Y√

λ3
=

Z
λ
. Let fZ(z|θ; λ)

be the conditional PDF of Z and Θ respectively.

Mλ =
E[IU

λ
(Θ)]

λ
,

=
E[IZ

λ (Θ)]

λ2
,
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where IZ
λ is the Fisher information of Z at a given λ. Let G ∼ Nc(0,Σθ), where

Σθ:=σ
2
HDiag(pθ). The Gaussian Fisher information is given by

IG(θ) = tr[Σ−1
θ

∂Σθ

∂θ
Σ
−1
θ

∂Σθ

∂θ
],

=

K
∑

i=1

p′2θ (i)

p2
θ
(i)
.

We define V as

V:=Z − µθ, µθ:=λµHpθ.

and let fV(v|θ; λ) be the PDF of V. From the local limit theorem for the densities

[136], with the assumption that E[Vk] < ∞, for some k ≥ 3, we have

lim
λ→∞

fV(z|θ; λ) = fG(z|θ).

Under the assumption of double differentiability of fZ with respect of λ, θ and z,

the partial derivatives are also continuous.

lim
λ→∞

∂

∂θ
fV(z|θ; λ) = lim

λ→∞
lim
h→0

fV(v|θ + h; λ) − fV(v|θ; λ)

h

=
∂

∂θ
fG(z|θ),

where the limits can be interchanged, since f is assumed to be continuous in

both λ and θ. Since the functions are continuous with respect to λ ∈ ℜ, the

limits and the expectations can also be interchanged. Therefore,
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lim
λ→∞

IV
λ (θ)→ IG(θ).

Similarly, the expectation with respect to θ is also continuous. Now, in order to

relate the Fisher information of V and Z, we have

∂

∂θ
log fZ(z|θ; λ) =

∂

∂θ
log fV(z − µθ|θ; λ)

=
∂

∂θ
log fV(v|θ; λ)

∣

∣

∣

∣

v=z−µθ

− ∂
∂v

log fV(v|θ; λ)
∣

∣

∣

∣

v=z−µθ

∂µT
θ

∂θ
.

Therefore,

IZ
λ (θ) = E[

∂

∂θ
log fZ(Z|θ; λ)]2

= IV
λ (θ) + E[

∂

∂v
log fV(V|θ; λ)

(∂µθ

∂θ

)T

]2

−2
∂µθ

∂θ
E[

∂

∂v
log fV(V|θ; λ)

∂

∂θ
log fV(V|θ; λ)].

The last term, under regularity conditions, is

E[
∂

∂v
log fV(V|θ; λ)

∂

∂θ
log fV(V|θ; λ)]

=

∫

v

∂

∂v
log fV(V|θ; λ)

∂

∂θ
fV(V|θ; λ)dv

=
∂

∂θ

∫

v

[
∂

∂v
log fV(V|θ; λ)] fV(V|θ; λ)dv

=
∂

∂θ

∫

v

∂

∂v
fV(V|θ; λ)dv

= fV(∞) − fV(−∞) = 0,
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where we assume that the density is zero at infinity. For the second term, we

have

lim
λ→∞
E[

∂

∂v
log fV(V|θ; λ)

(∂µθ

∂θ

)T

]2

= E[
∂

∂v
log fG(V|θ)

(∂µθ

∂θ

)T

]2,

= 2

k
∑

i=1

E[
V2

i

Σθ(i)2

(∂µθ(i)

∂θ

)2
],

= 2

k
∑

i=1

1

Σθ(i)

(∂µθ(i)

∂θ

)2
.

Therefore,

lim
λ→∞

Mλ = lim
λ→∞

E[IZ
λ (Θ)]

λ2
,

= lim
λ→∞

E[IG(Θ)]

λ2
+ 2γ

K
∑

i=1

E
[

p′
Θ

(i)2

pΘ(i)

]

,

= 2γ

K
∑

i=1

E
[

p′
Θ

(i)2

pΘ(i)

]

.

Proof of theorem 26

Recall the CLT with random number of summands [112, p. 369]. Let X1, X2, . . . ,

be IID random variables with mean 0 and variance σ2, and S n =

n
∑

i=1

Xi. For each

positive t, let νt be a random variable assuming positive integers as values; not

necessarily independent of Xn. Suppose, there exist positive constants at and η

such that at → ∞, νt

at

d→ η as t → ∞. Then
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S νt

σ
√
νt

d→ N(0, 1),
S νt

σ
√
ηat

d→ N(0, 1). (8.48)

In our case, parameter at corresponds to λ, νt to N. We have N
λ

d→ η > 0 and

1√
ηλ

W
p→ 0 as λ → ∞. By Slutsky’s theorem [112], W√

ηλ

d→ 0 as λ → ∞. Extending

the above to complex domain and to random vectors using multivariate central

limit theorem [112, p. 385] we obtain,

N
∑

k=1

(HkeXk
− µHpθ)

√
ηλ

d→ Nc(0,Cov(H1eX1
))

When N is Poisson, let N(m) be the number of sensors transmitting data level

m. Since N(m) is a thinning Poisson process [137, p. 317], N(m) is independent for

different data levels and

N(m) ∼ Poiss(λpθ(m)).

Therefore, the vector Y has independent entries. Applying the above mentioned

central limit theorem for random summands, to each entry of the vector we

obtained the needed result.

Proof of lemma 12

Let fi ∼ Nc(µi,Σi). The KL distance D( f0|| f1) is given by,
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D( f0|| f1) =

∑

k

(

log
Σ1(k, k)

Σ0(k, k)

+
(Σ0(k, k) + |µ0(k) − µ1(k)|2

Σ1(k, k)
− 1
)

)

.

Define density function fγ by,

fγ(y) =
f0(y)γ f1(y)1−γ

∫

f0(y)γ f1(y)1−γdy
.

The Chernoff information is given by [108],

C( f0, f1) = D( fγ∗ || f0) = D( fγ∗ || f1).

Solving the above equation yields the expression for Chernoff information. For

our setup we find expressions for µi and Σi.

Proof of lemma 27

(a) To prove the monotonicity of D̃λ,γ and C̃λ,γ with respect to λ and γ, we see

that

∂D̃

∂λ
=

M
∑

k=1

( ∂D̃

∂αk

∂αk

∂λ
+
∂D̃

∂ωk

∂ωk

∂λ

)

.

From the expressions of αk and ωk we find that
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∂D̃

∂αk

= (− 1

αk

+ 1 + ωk),
∂D̃

∂ωk

= αk − 1.

We see that ∆ < 0 implies αk < 1, ωk < 0, ∂αk

∂λ
< 0 and ∂ωk

∂λ
< 0. Similar results can

be obtained for αk > 1. Combining the above, ∂D̃
∂λ
> 0. Similarly we obtain

∂D̃

∂γ
=

∑

k

(αk − 1)λ∆ > 0

∂D̃

∂SNR
=

∑

k

( ∂D̃

∂αk

∂αk

∂SNR

)

> 0.

Similar results can be obtained for C̃λ,γ.

(b) As λ → ∞, αk →
pθ0 (k)

pθ1 (k)
and limλ→∞

ωk(αk−1)

λ
=

γ∆2

pθ1 (k)
. This gives the result for

ẼNPD(λ). As λ→ ∞, βk → 1√
αk

and hence the result for ẼBD(λ).

Proof of theorem 29

Define

f (x) ,
(− log x + x − 1

)

g(x) ,
log x

x − 1
, h(x, a, b) ,

xa + 1

xb + 1

For the zero-mean fading, we have

D =

M
∑

k=1

f (αk) αk = h(χ, pθ0
(k), pθ1

(k)),

C =

M
∑

k=1

f (βk) βk = g(αk).
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(a) Monotonicity : g′(x) < 0 and,

f ′(x)























< 0 x < 1,

≥ 0 o.w.

∂h

∂x
(x, a, b)























> 0 a > b

≤ 0 o.w

Combining the above results, we obtain C
′
χ > 0 Similarly, we obtain C

′′
χ < 0.

(b) Limits : We find C∞ by substituting, lim
χ→∞

αk =
pθ0 (k)

pθ1 (k)
and see that C∞ < ∞ for

pθi
(k) > 0 ∀i, k.

(c) Extremal Points: Let Mχ =
Cχ

χ
. Now, M′

χ = 0 implies

χC
′
χ = Cχ. (8.49)

We have M0 = 0 and M∞ = 0 and M is differentiable. This implies that solution

exists for (8.49). Let χ∗ be the solution. Then the double derivative at χ∗ is given

by

M
′′
χ∗ =

C
′′
χ∗

χ∗
< 0.

Therefore, χ∗ is the unique maximum. Similar results follow for Dχ.

Proof of theorem 30

The sign of the derivative is crucial in determining the bounded nature of opti-

mal λ̃. Differentiating (8.41) we obtain
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∂M̃

∂λ
= 2E

K
∑

k=1

( σ2
HSNRp′

Θ
(k)

(λσ2
H

SNRpΘ(k) + 1)

)2

( γ

σ2
H

SNR
−
λσ2

HSNRpΘ(k) − 1

λσ2
H

SNRpΘ(k) + 1

)

.

Therefore, the sign of the function inside the expectation is determined by

γ

σ2
H

SNR
−
λσ2

HSNRpΘ(k) − 1

λσ2
H

SNRpΘ(k) + 1
, k = 1, . . . ,K.

The term
λσ2

H
SNRpΘ(k)−1

λσ2
H
SNRpΘ(k)+1

is an increasing function of λ for λ > 0 and attains maxi-

mum of 1 as λ→ ∞. The value of γ at which the sign reverses is therefore given

by (8.44). This also implies the unimodality for γ < γ∗. �
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CHAPTER 9

OUTLOOK FOR THE FUTURE

In this thesis, we considered distributed schemes with scalable resource uti-

lization in terms of energy consumption and bandwidth requirement for trans-

missions towards achieving statistical inference. In Chapters 2-7, we consid-

ered routing schemes with in-network computation to fuse data as they are

routed towards the fusion center. In Chapter 8, we considered random-access

scheme with channel-aided computations to reduce energy and bandwidth re-

quirements of transmissions.

The central theme of this thesis is that it is neither sustainable nor scalable

to send all the data in the network to the fusion center; the key is to then

reduce communications through computational thinking [138]. Scalable algo-

rithms are particularly relevant in an era where data are readily available, net-

works are ubiquitous, and computation and communication are reaching new

speeds. Scalable algorithms have complexity and communication requirements

not growing rapidly with the ever-expanding data domains.

The results of this thesis are also a step towards a unified network the-

ory. While point-to-point communication has been completely characterized

by the Shannon capacity [108], its extension to networks has not been very

successful. Moreover, unlike the optimistic results of point-to-point links, the

network counterpart results have been so far discouraging. For instance, the

seminal work of Gupta and Kumar [10] states that the capacity of wireless net-

works scales as O(
√

n
log n

) for n nodes which has been further improved to O(
√

n)

in [139]. In other words, the capacity of the wireless networks do not scale well

with the number of nodes. The key to overcoming this capacity hurdle is then
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to incorporate computations instead of sending all the data, as demonstrated in

this thesis.

In terms of future work, a unified mathematical and a computational frame-

work for scalable information processing is needed. This involves (i) design of

scalable algorithms for statistical inference and learning of high dimensional

data (ii) data selection and in-network computation to achieve tradeoffs be-

tween communications costs, and the resulting accuracy of inference and learn-

ing.

9.1 Scalable Learning & Inference of High-Dimensional Data

In Chapter 5, we showed that scalable inference can be achieved through in-

network computation for a special scenario of binary hypothesis testing of

Markov dependency graphs. However, scalable inference is not always possi-

ble: we establish in Chapter 5 that stabilizing graphical models are scalable while

saturated models (with fully connected dependency graphs) are not. Hence, it

is crucial to establish necessary and sufficient conditions for scalable inference

based on the structure of graphical models and the communication cost func-

tions in the network.

Understanding scalability for other instances of inference and learning are

also of interest. Some specific problems are inference and tracking of dynam-

ically changing dependency graphs and network connections, designing scal-

able and consistent learning algorithms through dimensionality reduction [140]

and through estimation of the intrinsic data dimension [141, 142], thereby cir-

cumventing the “curse of dimensionality” encountered in large data sets. An-
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other extension is replacing the Markov graphical model considered in [1] with

the more general multi-resolution model [143], and investigating scalable algo-

rithms in such scenarios.

9.2 Cost-Performance Tradeoff for Inference & Learning

In Chapter 4, we considered data selection and fusion for binary hypothesis

testing by assigning the Kullback-Leibler divergence between the hypotheses as

the penalty function. In future, I plan to expand this framework to incorporate

more general forms of inference and learning, and this requires characterizing

penalty functions based on general inference and learning accuracies. Relevant

here, is the recent work on analysis of accuracy (error exponents) in learning

dependency graph structures [144]. Extensions towards designing efficient ap-

proximation algorithms for cost-performance tradeoff for general inference and

learning are of interest. An interesting specialization is when the data nodes

are in Euclidean space. Previously, efficient Steiner tree algorithms have been

designed for Euclidean costs [145], and we can similarly exploit the Euclidean

geometry to obtain efficient prize-collecting data fusion algorithms in future.

9.3 Relevance

A unified mathematical foundation to analyze scalable inference and learning

in large networks needs to be established, and this spans multiple areas such

as networking, communications, signal processing, machine learning, statistics,

approximation theory, and information theory. A theory towards scalable infer-
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ence and learning has a potential transformative effect on applications involv-

ing large complex networks such as smart energy grids, large social networks,

biological networks, and financial infrastructures [146, 147]. This will in turn

pave way towards fully exploiting the benefits of information revolution with

emphasis on knowledge than mere data.
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