
Energy-efficient Internet of Things Monitoring with Low-Capacity Devices

Rodrigo J. Carbajales, Marco Zennaro, Ermanno Pietrosemoli
T/ICT4D, Wireless Communications Laboratory

International Centre for Theoretical Physics (ICTP)
Trieste, Italy

{rcarbaja, mzennaro, ermanno}@ictp.it

Felix Freitag
Department of Computer Architecture
Universitat Politècnica de Catalunya

Barcelona, Spain
{felix}@ac.upc.edu

Abstract—The Internet of Things (IoT) allows users to gather
data from the physical environment. While sensors in public
spaces are already widely used, users are reluctant to deploy
sensors for shared data at their homes. The deployment of IoT
nodes at the users premises presents privacy issues regarding
who can access to their data once it is sent to the Cloud which
the users cannot control. In this paper we present an energy-
efficient and low cost solution for environmental monitoring at
the users home. Our system is builds completely on open source
components and is easy to reproduce. We leverage a community
network to store and control the access to the monitored data.
We tested our solution during several months on different low-
capacity single board computers (SBC) and it showed to be
stable. Our results suggest that this solution could become a
permanently running service in SBCs at the users homes.

Keywords-Internet of Things, Community Networks;

I. INTRODUCTION

The Internet of Things (IoT) allows users to gather data
from the physical environment. While sensors in public
spaces are already widely used, users are reluctant to deploy
sensors for shared data at their homes. Similar as public
sensors have helped to optimize city resource management
by reducing costs, there is a huge potential for services
in the users’ homes to assist in local decisions and ICT
management.

Several reasons explain this lack of users’ willingness
to participate: We first can see that privacy issues play an
important role. Many of today’s IoT application foresee the
sensors at the users home to send their data directly to the
cloud service offered by the commercial provider (often,
sensors and cloud service are offered by the same company),
where users can then access and visualize their data. The
users, however, are concerned about their lack of control on
their data once in the provider’s platform. Secondly, the cost
of commercial solutions may be another obstacle that has so
far hindered the massive take-up of the technically already
existing and mature offers. Monthly fees for data storage
and vendor-lockin are blocking further user engagement.

Technical solutions and application areas for local IoT
services have been identified within the area of Fog Com-
puting [9], where a small device close to the data obtaining
sensor carries out initial processing. Concrete solutions for
data transformations by devices at the users homes have

been proposed in [10]. In their work data from community
facilities was gathered and processed locally, resulting in
important traffic savings. A community context for cloud
computing has been shown in [3]. In this work, the trust
that exists within a community of users helped gather local
computing resources form participants on which distributed
services were run. In [2], it was pointed out in that resources
from many distributed nodes located on user premises cloud
host local services while being energy-efficient.

In this paper, we propose and analyze a solution for
energy-efficient and low cost solution environmental moni-
toring at the users homes. Our system is builds completely
on open source components and is easy to reproduce.
We leverage a community network to store and control
the access to the monitored data. We tested our solution
during several months on different low-capacity single board
computers (SBC) and it showed to be stable. Deploying
an open IoT infrastructure in a local context lets the users
manage the stored information, adding privacy and flexibility
to the users data management. From the obtained results,
we see our solution as a suitable candidate to become a
permanently running service in SBCs at the users homes.

II. PROPOSED SYSTEM

A. Overall scenario

We consider wireless environment sensors that are in-
stalled by users in places of their interest, e.g. offices,
houses, neighbourhood, with the purpose of assessing envi-
ronmental parameters. These sensors are connected though
Wifi with their LAN. They can thus transmit their data either
to devices located in the same LAN or through the router
to devices in other networks. On these devices, the data is
stored and can be further processed.

While our solution can be applied in general, we illustrate
in Figure 1 a concrete case of a community where we have
deployed our system. In this case of a community network,
the users build a network to interconnect with each other
through wireless links. While the interconnected nodes form
the backbone network, at the users’ home, local access points
(APs) are created to which the user’s devices are connected.
In our scenario, the environmental sensors (SCKs) connect
through Wifi to the AP. In addition, the SBCs also at the



Figure 1. IoT monitoring with low-capacity devices in community network

users homes connect to the AP. In additional, at some
locations more powerful resources like desktop PCs are
connected. We foresee in the SBCs to host the data gathering
platform, for instance ThingSpeak.

We note that an distinguishing feature of our scenario
is that each node in the community network has a range of
routable addresses (typically /27) available for local devices.
As a consequence, devices connected to other nodes can be
servers and can be reached. This is different to the typical
situation in DSL Internet connection of home users where
devices are behind NAT and no static public IP address is
assigned.

B. Smart Citizen Kit

The wireless sensor kit from SmartCitizen [6] was chosen.
It hosts with nine environmental sensors a variety of pos-
sibilities for measuring air quality. The Smart Citizen Kit
(SCK) is a project which provides low-cost hardware and
open source software. The embedded solution of the SCK
is an Arduino AtHeart [7] which is easy to program and
communicates with the computer over an USB interface. On
the software side, Arduino provides a number of libraries to
make programming the micro-controller easier. The simplest
of these are functions to control and read the I/O pins rather
than having to fiddle with the bus bit masks normally used
to interface with the micro-controller.

The kit is composed of two boards, the ambient board
with sensors and the Arduino data-processing board. The
Environment board as seen on figure 2 is equipped with the
following sensors:

• Amount of gases (CO & NO2)
• Temperature
• Sound level
• Humidity
• Light intensity

Figure 2. Smart Citizen Kit Environment Board

In addition, the Arduino data-processing board contains a
voltage regulator that allows it to be fed by a photovoltaic
panel, facilitating grid positioning. It is equipped with a WiFi
radio as seen on figure 4 that allows to upload data from the
sensors in real time to an on-line platform.

Once it is set up, the ambient board streams the mea-
surement values over the WiFi module of the Arduino
data-processing board. The devices low power consumption
allows for placing it on balconies and windowsills. Power
to the device can be provided by a battery, replenished by
solar panel or other voltage source. The SCK device can be
fitted with a 3D printed enclosure that makes it suitable to
be placed on the open air.

C. Single board computer

For this work, several SBCs were used. We tested our
solution to run on the Raspberry Pi (models A and B) and
BeagleBone Black and Alix. The main characteristics of the



Figure 3. SCK Arduino data-processing Board top.

Figure 4. SCK Arduino data-processing Board bottom

SBCs are shown in Table 1.
This low cost and compact solution hosted both Cloudy

and the TS server.

D. ThingSpeak data platform

The platform we use to gather the monitored data is
ThingSpeak (TS) [5]. It is a free open source IoT application

Table I
SBCS USED.MODEL, µPROCESSOR AND RAM MEMORY.

SBCs Beaglebone Raspberry Alix
Model Black A+ 3D2
µProc. 1GHz 700MHz 500MHz

ARM ARM AMD
Cortex A8 1176JZFS LX800

RAM 512MB 512MB 256MB

with an Application Programming Interface (API) designed
to store and retrieve data from sensors using HTTP over
the Internet or via a Local Area Network. Sensor logging
applications, location tracking applications, and a social
network of things with status updates can be created.

In addition to storing and retrieving numerical and al-
phanumerical data, the API allows for numerical data
processing such as time-scaling, averaging, summing, and
rounding. Each channel connected to a sensor supports data
entries of up to 8 data fields, including latitude, longitude,
elevation, and status. The channel feeds support JSON,
XML, and CSV formats for integration in a variety of
applications.

The TS on-line platform has some restrictions, like a
minimum time of 15 seconds to update measurement data
and it also requires a permanent Internet access, which is
not always guaranteed in community networks often built
with low cost and low reliability devices. Therefore, we
installed our own version of the TS server that does not
require an Internet connection, and also removing the 15
seconds limitation in upgrading time.

The TS source code is open-source and hosted on GitHub
by iobridge. It is built using Ruby on Rails and MySQL
database. TS can be installed on a powerful servers, a
normal desktop computers and, as we show, on single board
computer (SBC).

III. EXPERIMENTS

Several experiments were carried out to assess the perfor-
mance the proposed system. We first look at ease of usage
for data visualisation and stability of the system. Then we
study CPU usage of ThingSpeak in the SBC and finally we
measure the energy consumption of the SBCs.

A. Monitoring SCK data with ThingSpeak

ThingSpeak allows the user to display graphically in
channels via Web interface the gathered sensor data. The
user can configure a public or privat access to these channels.
It can be seen in Figure 5 that ThingSpeak shows correctly
in its graphical display the data received from the SCK,
corresponding to six different sensors. ThingSpeak in this
case was running in a Raspberry Pi. While the data shown
corresponds to zooming into a small time period, our ex-
periment in fact was run during several weeks. In this time,
the system showed to be stable and was permanently op-
erational. When comparing the values measured by several
SCK which were close to each other, we noticed however
that there were deviations between the measured values of
each. We attribute this fact to a lack of calibration of the
sensors.

B. Use of CPU in SBC running ThingSpeak

To measure the CPU usage of RPi by the TS server,
6 different situations were created. which varied the send



Figure 5. Example of ThingSpeak channel with sensors values

Table II
SCKS AND DATA SENDING PERIOD

num. of SCKs Sending period (sec)
1 20 s
2 20 s

10 20 s
1 1 s
2 1 s

10 1 s

period and the number of SCKs. Table II summarizes the
experimental values.

Figure 6 shows the CPU consumption of the RPi with

TS. It can be seen in a sending period of 20s, the CPU
can cope and finish the processing of the data sent from a
different number of SCKs. When the sending period was
reduced to 1s, we can observe that the CPU is more heavily
used and CPU usage increases with the number of SCKs
sending data. It seems thus that for typical situations of 1
or 2 SCKs per home, the RPi works correctly, its resources
may be too constrained for being able to gather data from
many SCKs, as may be the situation of a deployment in a
neighbourhood.

C. Power consumption running TS.

In this experiment we aim at studying the energy con-
sumption of the RPi during the TS execution. Figure 7
shows the experimental setup where a Rapi is connected



Figure 6. CPU percentage.

to power supply. A multimeter is used for measuring the
current consumption.

Figure 8 shows the current used by the RPi during boot
and when the TS server is started. It can be observed
that the operations of the RPi are reflected in the current
consumption.

Figure 7. Measuring RPi power consumption and CPU percentage

The next experiments study the current consumption of
the RPi when sending one channel and ten channels of
data to the TS in the RPi every 20 seconds and every
second. Figures 9, 10, 11, 12 show the RPi measured current
consumption. It can be seen that the reception of data at
each sending period leads to an increase of the current
consumption. Comparing the scenario fo 1 and 10 channels,
we can observe that 10 channels are reflected by a higher
current consumption in the RPi.

Figure 8. Boot consumption on RPi.

Figure 9. 1ch20s.

Figure 10. 1ch1s.



Figure 11. 10ch20s.

Figure 12. 10ch1s.

IV. CONCLUSION

A system was presented aiming at citizens to conduct
IoT environmental monitoring with low-capacity devices in
home environments, and for posterior sharing of the mea-
sured data among a community. The system was built with
the Smart Citizen Kit (SCK) for measuring and sending the
data, and the Raspbberry Pi SBC for hosting the ThingSpeak
data platform.

The presented work showed advantages in energy con-
sumption and cost, while being performant and uses-friednly.
For this in the used SBCs a low electrical consumption was
measured during the experiments. Thus the electricity bill
of the users is kept low, allowing them to run this solution
in a 24/7 mode. The system showed to be stable while
it was run during several months in our experiments, and
the measured values are easily available to the user through
the ThinkSpeak Web interface. Regarding user friendliness,
the configuration of the SCK is well documented and
ThingSpeak channels can be configured with a few steps
by an average user. The proposed solution therefor seems
suitable for running as a permanent service in SBCs or home
gateways deployed at users homes.

The proposed system could easily be extended to integrat
and interact with more powerful resources for larger volumes
of data. While currently the SCK data is of small size and
send with moderate frequency, additional IoT sensors at
homes may produce larger volumes of data also send to
the SCB. Our next steps therefore will look at multiple data
processing services running in the user homes SCB, and
combining local storage with external cloud storage services.

ACKNOWLEDGEMENTS

This work is supported by European Community Frame-
work Programme 7 FIRE Initiative project CLOMMUNITY,
A Community Networking Cloud in a Box, FP7-317879.

REFERENCES

[1] Mineraud J., et al. ”Contemporary Internet of Things plat-
forms.” arXiv preprint arXiv:1501.07438 (2015).

[2] Freitag F., et al. ”A Look at Energy Efficient System Opportuni-
ties with Community Network Clouds”, in Workshop on Energy
Efficient Systems. EES 2014 at 2nd International Conference
on ICT for Sustainability (ICT4S), Stockholm, Sweden, August
27, 2014.

[3] Jimenez J., et al. ”Supporting cloud deployment in the Guifi.net
community network” Global Information Infrastructure Sym-
posium, 2013 , vol., no., pp.1,3, 28-31 Oct. 2013

[4] Telecommunications Network Open, Free and Neutral,
http://guifi.net (2015).

[5] The open data platform for the Internet of Things.
https://thingspeak.com (2015)

[6] Open source technology for citizens’ political participation in
smarter cities. https://smartcitizen.me (2015)

[7] Arduino AtHeart program based on Arduino technology.
http://www.arduino.cc/en/ArduinoAtHeart (2015)

[8] SGX Sensortech Limited. Gas sensor MICS-4514 data-
sheet. http://www.cdiweb.com/datasheets/e2v/0278-Datasheet-
MiCS-4514.pdf (2015)

[9] F. Bonomi et al. ”Fog Computing: A Platform for Internet
of Things and Analytics”, in Studies in Computational Intelli-
gence: Big Data and Internet of Things: A Roadmap for Smart
Environments, pp. 169-186, vol. 546, 2014.

[10] Kenji Yoi, Hirozumi Yamaguchi, Akihito Hiromori et al.
”Multi-dimensional Sensor Data Aggregator for Adaptive Net-
work Management in M2M Communications”. IFIP/IEEE In-
ternational Symposium on Integrated Network Management,
Ottawa, Canada, May 2015.


