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Blind deconvolution by means of the
Richardson–Lucy algorithm
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A blind deconvolution algorithm based on the Richardson–Lucy deconvolution algorithm is presented. Its
performance in the presence of noise is found to be superior to that of other blind deconvolution algorithms.
Results are presented and compared with results obtained from implementation of a Weiner filter blind
deconvolution algorithm. The algorithm is developed further to incorporate functional forms of the point-
spread function with unknown parameters. In the presence of noise the point-spread function can be
evaluated with 1.0% error, and the object can be reconstructed with a quality near that of the deconvolution
process with a known point-spread function.
1. INTRODUCTION
Blind deconvolution is the term given to an image-
restoration technique in which complete knowledge of
both the point-spread function (PSF) and the object are
not available. Ayers and Dainty1 proposed a scheme
that essentially generalized the Feinup phase retrieval
algorithm.2 The technique is iterative, and a priori
knowledge is limited to the nonnegativity of images. In
each iteration one obtains estimates of the object and the
PSF by simple inverse filtering. Davey et al.3 proposed
a similar scheme, but their algorithm assumed further
a priori knowledge, i.e., that the object support was
known. In their study a Weiner-type filter was used to
obtain estimates of the object and the PSF. This method
thus permitted better noise compensation.

In this paper a Weiner filter blind deconvolution algo-
rithm is implemented and is compared with a new al-
gorithm based on the Richardson–Lucy4,5 deconvolution.
The Richardson–Lucy algorithm has proved to be robust
in the presence of noise; therefore we thought that a blind
deconvolution algorithm based on this technique might
have advantages over the Ayers–Dainty and the Davey–
Lane–Bates algorithms. The results shown here con-
firm the high noise tolerance of our new algorithm.

To improve further the performance of this type of
algorithm, we incorporated extra a priori knowledge by
assuming a functional form for the PSF. It was thought
that this method would produce better results because the
number of unknowns is reduced from thousands of pixel
values to a small number of parameters that describe the
PSF. It is likely that blind deconvolution performed in
this manner would find use in many areas in which it
is not possible to know exactly how an optical system
is aberrated but which could be characterized by a few
free parameters. One example of such an application
is in telescopes in space, where unknown fluctuations
of mirrors, which are due to time-varying gravitational
fields, do not permit exact knowledge of the PSF.
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2. BLIND DECONVOLUTION BY THE
RICHARDSON–LUCY ALGORITHM
The Richardson–Lucy deconvolution algorithm has be-
come popular in the fields of astronomy and medical imag-
ing. Initially it was derived from Bayes’s theorem in
the early 1970’s by Richardson and Lucy.4,5 In the early
1980’s it was rederived by Shepp and Vardi6 as an al-
gorithm to solve positron emission tomography imaging
problems, in which Poissonian statistics are dominant.
Their method used a maximum-likelihood solution, which
was found by use of the expectation maximization algo-
rithm of Dempster et al.7 The reason for the popularity
of the Richardson–Lucy algorithm is its implementation
of maximum likelihood and its apparent ability to pro-
duce reconstructed images of good quality in the presence
of high noise levels. We therefore assumed that a blind
form of this algorithm would have the same characteris-
tics. A blind deconvolution algorithm similar to the one
shown here was also developed by Holmes8 by use of the
expectation maximization algorithm of Dempster et al.7

We begin with a brief review of the Richardson–Lucy
deconvolution method and then present the blind form
of the algorithm. The Richardson–Lucy algorithm was
developed from Bayes’s theorem. Because it relates con-
ditional probabilities the algorithm takes into account
statistical fluctuations in the signal and therefore has the
ability to reconstruct noisy images. Bayes’s theorem is
given by

P sx j yd ­
P s y j xdP sxdZ
P s y j xdP sxddx

, (1)

where P s y j xd is the conditional probability of an event
y, given event x. P sxd is the probability of an event x,
and P sx j yd is the inverse conditional probability, i.e., the
probability of event x, given event y. The probability
P sxd can be identified as the object distribution f sxd; the
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(a) (b)
Fig. 1. Blind deconvolution based on the Richardson–Lucy
algorithm.

conditional probability P s y j xd can be identified as the
PSF centered at x, i.e., gs y, xd; and the probability P s yd
can be identified as the degraded image or convolution
cs yd. This inverse relation permits the derivation of the
iterative algorithm

fi11sxd ­
Z gs y, xdcs yddyZ

gs y, zdfiszddz
fisxd , (2)

where i is the iteration number. If an isoplanatic condi-
tion exists, then Eq. (2) can be written in terms of con-
volutions:

fi11sxd ­

Ω∑
csxd

fisxd ≠ gsxd

∏
≠ gs2xd

æ
fisxd , (3)

where ≠ is the convolution operation. The PSF gsxd is
known, so one finds the object f sxd by iterating Eq. (3)
until convergence. An initial guess is required for the
object f0sxd to start the algorithm. Then, in subsequent
iterations, because of the form of the algorithm, large de-
viations in the guess from the true object are lost rapidly
in initial iterations, whereas detail is added more slowly
in subsequent iterations. Advantages of this algorithm
include a nonnegativity constraint if the initial guess
f0sxd $ 0. Also, energy is conserved as the iteration pro-
ceeds, which is easily seen by integration of both sides of
Eq. (2) over x.

In the blind form of this algorithm two of these deconvo-
lution steps are required. At the kth blind iteration it is
assumed that the object is known from the k 2 1 iteration.
The PSF gksxd is then calculated for a specified number
of Richardson–Lucy iterations, as in Eq. (4) below, where
the i index represents the Richardson–Lucy iteration.
This equation is essentially an inverse of Eq. (3), inas-
much as the object and the PSF have reverse roles, and it
calculates the PSF from the object. Then f ksxd is calcu-
lated for the same number of Richardson–Lucy iterations.
This is done with the PSF evaluated from the full itera-
tion of Eq. (4). In this case the iteration is performed in
the normal manner of Eq. (3), as shown in Eq. (5) below.
The degraded image is again given as csxd in both Eqs. (4)
and (5). The loop is repeated as required. One writes
gi11
ksxd ­

Ω∑
csxd

gi
ksxd ≠ f k21sxd

∏
≠ fk21s2xd

æ
gi

ksxd , (4)

fi11
ksxd ­

Ω∑
csxd

fi
ksxd ≠ gksxd

∏
≠ gks2xd

æ
fi

ksxd . (5)

The above equations are shown in one dimension;
the extension for two-dimensional images is straight-
forward. Initial guesses are made for the object f0

0sxd
and the PSF g0

0sxd, and an algorithm loop of the form
shown in Fig. 1 is performed. No positivity constraints
are required because the above equations always ensure
positivity. The algorithm is different from the Holmes8

algorithm, as only two Richardson–Lucy iterations are
performed within one blind iteration, one for an object
evaluation and one for the PSF evaluation. It was found
that the simulated images used did not perform well
with this type of iteration but that when the number
of Richardson–Lucy iterations within one blind itera-
tion was increased to approximately ten a much better
performance was obtained.

To test this algorithm against another blind deconvo-
lution algorithm for comparison of performance purposes
the Davey et al.3 blind deconvolution algorithm with a
Weiner filter was implemented. In the implementation
used here the support constraint used by Davey et al. was
not used because no support constraint was used for the
Richardson–Lucy blind deconvolution algorithm.

A convolution was created from a Gaussian to model
the PSF and a cross (the object); these can be seen in
Fig. 2. All the images are 64 3 64 pixels. Photon noise
was added to the image by generation of a random num-
ber lying on a Poisson distribution with the mean of the
pixel value of the noiseless image, and the numbers that
were generated for all the pixels then formed the noisy
image. It was found that, with this type of image and ap-
proximately 1.5% noise (where the percentage value is the
(c)
Fig. 2. (a) Simulated object, (b) Gaussian PSF, and (c) their
convolution with 1.5% Poissonian noise.
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(a)

(a)

(b)
(b)
Fig. 3. Blind deconvolution by the Weiner filter algorithm.
Reconstructions of the object (left) and the PSF (right) with (a)
zero noise and (b) 1.5% noise.

standard deviation divided by the intensity at the bright-
est point in the image), good reconstructions could be ob-
tained. Figure 3 shows reconstructions by means of the
blind Weiner filter algorithm; Fig. 3(a) shows the noise-
less case, in which the images shown are the best-error
object (left) and the PSF (right) after 400 iterations. The
term best error refers to the least error between the origi-
nal convolution and the convolution of the reconstructed
object and the PSF. Figure 3(a) shows the case of 1.5%
noise; the reconstructions have deteriorated, but the cross
is still distinguishable. Noise levels much above this fig-
ure resulted in unrecognizable reconstructions.

The blind Richardson–Lucy algorithm performed far
better on the same image. In Fig. 4(a) images are shown
with 1.5% and 10.0% noise (left and right, respectively).
Figures 4(b) and 4(c) show reconstructions for both these
cases, respectively. It can immediately be seen that the
performance of this algorithm is far superior to the pre-
vious algorithm. Good reconstructions are obtained at
both noise levels. The algorithm was applied to many
other images for which Gaussian PSF’s were used, and it
was found that as long as the blurring of the PSF was not
too severe then reasonable reconstructions could gener-
ally be obtained, in some cases with noise levels as high
as 15%.

3. SEMIBLIND DECONVOLUTION
As mentioned in Section 1, further a priori information
could be incorporated by assuming knowledge of the form
of the PSF. In a real situation it may be known that
a telescope suffers from spherical aberration, but be-
cause of time-varying factors such as the changing gravi-
tational field that exists around a telescope in orbit the
extent of this aberration may not be known. This situ-
ation would reduce the number of unknown variables in
the deconvolution from perhaps thousands of pixel values
to one or two unknown constants. We have termed this
approach semiblind deconvolution.

A. Weiner Semiblind Algorithm
This algorithm used the blind deconvolution with a
Weiner filter as its basis. The only part of the algo-
rithm altered was the image-plane constraints on the
PSF. In the blind algorithm the constraint was just
nonnegativity. This constraint was replaced by a least-
squares-fitting procedure. Initially convolutions were
created with Gaussians, so Gaussians of varying widths
were compared with the evaluated PSF. The Gauss-
ian giving the least error in fitting was then chosen as
the PSF, and the next object guess was evaluated with
this PSF.

To illustrate how well this algorithm performed in the
absence of noise, Fig. 5 shows the reconstructions of the
object and the PSF at every iteration. In this particular
case the images are all 128 3 128 pixels. This algorithm
converged within three iterations and produced a perfect
reconstruction of the satellite object. When we tried to
(c)
Fig. 4. Blind deconvolution by the Richardson–Lucy algorithm.
(a) Convolutions with 1.5% (left) and 10.0% (right) noise. (b)
Reconstructions of the object (left) and the PSF (right) at the
1.5% noise level. (c) Reconstructions of the object (left) and the
PSF (right) at the 10.0% noise level.
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(a)

(b)

(c)
(d)
Fig. 5. Semiblind deconvolution by a Weiner filter-based algorithm. (a) True object (left), random starting guess of the object (center),
and noiseless convolution (right). (b) Object (left) and PSF (right) from the first iteration. (c) Object (left) and PSF (right) from the
second iteration. (d) Object (left) and PSF (right) from the third iteration.
reconstruct with noisy images, however, the algorithm
always converged on the delta-function solution, i.e., a
Gaussian of smallest possible width was evaluated as
the PSF. Even with noise values less than 0.1% the
algorithm performed poorly. We therefore tried using
the Richardson–Lucy algorithm.

B. Semiblind Deconvolution by the
Richardson–Lucy Algorithm
The semiblind form of the algorithm took as its basis
the blind algorithm. A number of blind iterations were
performed, and then a least-squares fit on the function
evaluated as the PSF was found. A PSF was then
created with the fitting parameters, and then another
series of blind iterations was performed, with this PSF
being used as the starting point. This procedure was
then repeated for a specified number of iterations. Ini-
tially, simple one-variable PSF forms were chosen, i.e.,
Gaussians of unknown width.

In some cases the results for this algorithm showed
remarkable noise tolerance. In Fig. 6 results are shown
for semiblind deconvolution on a series of point sources.
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(a)

(a)
(b)
Fig. 6. Semiblind deconvolution by the Richardson–Lucy-based
algorithm. (a) Object (left) and convolution (right) with 20.0%
noise. (b) Reconstruction of the object (left) and the fitted Gauss-
ian PSF (right).
(a) (b)

(a)
(c)
Fig. 7. Comparison of Richardson–Lucy semiblind deconvolu-
tion with standard deconvolution algorithms. (a) Reconstruc-
tion by semiblind deconvolution with a 0.1-pixel step width. (b)
Reconstruction by Fourier regularization. (c) Reconstruction by
the Richardson–Lucy algorithm.

The image contained approximately 20.0% noise. The
reconstruction shown is good, considering the noise level.

The algorithm was also tried on the noisy image of the
cross used earlier for the pure blind deconvolution re-
search. Although the PSF was fitted in each iteration
with a Gaussian of the correct size, the results were not
good; in fact, the pure blind deconvolution results were
better. Therefore it was decided that a Gaussian fitting
process should be performed after the blind deconvolu-
tion and then a specified number of Richardson–Lucy it-
erations performed with the guessed Gaussian. The step
width in Gaussian fitting was obviously important: with
the step width of 1 pixel for the Gaussian radius at the
1ye height, the correct PSF width of 3 pixels was guessed.
(b)
Fig. 8. Many-variable semiblind deconvolution. (a) Object
(left) and PSF (right). (b) Convolution with 1.0% noise.
(b)
Fig. 9. Reconstructions of the image shown in Fig. 8. (a)
Richardson–Lucy deconvolution after 1000 iterations. (b)
Semiblind deconvolution after 15 iterations: object (left) and
PSF (right).
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(a) (b)
(a)

(b)
Fig. 10. Error graphs for the 1.0% noise image shown in Fig. 8.
(a) Fitting parameters A2, C1, C2 with iteration number. (b)
Percentage error in the PSF with iteration number.

At a step width of 0.1 pixel the Gaussian width obtained
was 3.2 pixels. The results for both cases are similar and
are shown in Fig. 7(a) for the 0.1-pixel case.

The results show that the slight error made in finding
the width of the Gaussian PSF does not make the re-
constructions significantly worse. This is probably due
to the high level of noise on the image, which results in
the loss of a large amount of information. To show the
impressiveness of these results straightforward deconvo-
lutions with a Weiner filter and the Richardson–Lucy al-
gorithm are shown in Figs. 7(b) and 7(c). It can be seen
that the semiblind deconvolution results are comparable
with the usual methods of deconvolution.

To extend this research to cases in which it may be
used in realistic situations, more than one fitting variable
may be needed to describe the PSF accurately. To test
this possibility, a simple PSF was created that had the
functional form

ysrd ­
X
k

∑
Akr2 exps1.0d

Ck
2 1 Bk

∏
exp

µ
2

r2

Ck
2

∂
, (6)
where r is the radius and the variables Ak, Bk, Ck were
given the values

A1 ­ 0.0, A2 ­ 0.1 ,

B1 ­ 1.0, B2 ­ 0.0 ,

C1 ­ 1.0, C2 ­ 5.0 .

Then the variables A2, C1, C2 were allowed to change
their values, so that the PSF was a Gaussian plus a
Gaussian times its radius squared. Incorrect values for
these variables were introduced into the program, and
a PSF was created. Then, as before, a blind deconvolu-
tion process evaluated a new object and a new PSF. A
PSF with the functional form given above and with free
variables A2, C1, C2 was fitted to the evaluated PSF by
a Levenberg–Marquardt9 nonlinear least-squares-fitting
routine. This routine returned new values for A2, C1,
C2, and the process was repeated for a specified number
of iterations.

The simulated object and the PSF used to illustrate this
algorithm are shown in Fig. 8(a), and a 1.0% noise convo-
lution is shown in Fig. 8(b) (the object used was the cross
shown above). To compare the results of this semiblind
deconvolution algorithm a Richardson–Lucy deconvolu-
tion was performed with 1000 iterations with the known
PSF. The result of this process is shown in Fig. 9(a)
and can be compared with the results of 15 iterations of
the semiblind deconvolution algorithm shown in Fig. 9(b).
The results compare well.

In Fig. 10(a) the variation of the fitting parameters
A2, C1, C2 with iteration number are shown. The start-
ing values introduced into the program were A2 ­ 0.5,
C1 ­ 3.0, C2 ­ 7.0, giving a 74.0% error in the PSF. It
(c)
Fig. 11. Reconstructions of an image with 4.0% noise. (a) 4.0%
noise image. (b) Richardson–Lucy deconvolution after 1000
iterations. (c) Semiblind deconvolution after 15 iterations: ob-
ject (left) and PSF (right).
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can be seen that at this noise level the algorithm is con-
verging on the correct values. This convergence is high-
lighted by Fig. 10(b), which shows the percentage error
in the PSF with iteration number. This result is slightly
false because the true PSF will not be known in a real
situation, but the figure shows the convergent properties
of the algorithm, which do not occur in cases such as
the Ayers–Dainty, the blind Weiner, and the blind
Richardson–Lucy algorithms. In the case of the blind
Richardson–Lucy algorithm, the image shown in Fig. 8(b)
was used for comparison with the results of the semi-
blind algorithm. It was found that the algorithm did not
converge to the correct values for the fitting parameters,
and in fact the algorithm eventually diverged. The final
values for the fitting parameters from the semiblind al-
gorithm were A2 ­ 0.102, C1 ­ 1.06, C2 ­ 5.03, with an
overall error in the PSF evaluation of 1.09%.

At 2.0%, 3.0%, and 4.0% noise levels similar results
were obtained, and convergence was seen at the correct
values of the fitting variables. The results of the 4.0%
noise image are shown in Fig. 11. This figure shows the
Richardson–Lucy deconvolution after 1000 iterations and

(a)

(b)
Fig. 12. Error graphs for the 4.0% noise image. (a) Fitting
parameters A2, C1, C2 with iteration number. (b) Percentage
error in the PSF with iteration number.
(a)

(b)
Fig. 13. Error graphs for a 6.0% noise image. (a) Fitting pa-
rameters A2, C1, C2 with iteration number. (b) Percentage er-
ror in the PSF with iteration number.

the semiblind deconvolution after 15 iterations. Again
the results compare quite well. Figure 12 shows the
variation in the fitting parameters and the percentage
error in the PSF with iteration number. Again conver-
gence is evident. When the same image with 6.0% noise
was tried, the results were not so good. Figure 13 shows
the variation of fitting parameter and the percentage er-
ror in the PSF, and it can be seen that convergence is
reached after eight iterations and that the algorithm then
starts to diverge. It therefore appears that the algorithm
has a certain noise tolerance.

4. CONCLUSIONS
A blind deconvolution algorithm has been presented
here that is based on the Richardson–Lucy algorithm.
The algorithm presented is similar to that presented by
Holmes,8 but the implementation given here seems to
have a more stable performance on the images chosen.
The noise tolerance of the present algorithm is also far
better than that of algorithms such as the Ayers–Dainty1

and the Weiner filter algorithms, used for comparison
purposes in this paper.
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In many real situations it may be the case that some
knowledge of the PSF can be obtained. Therefore func-
tional forms for the PSF’s were chosen with a number of
unknown variables. It was found that accurate decon-
volutions of a quality near that of a deconvolution with
full knowledge of the PSF can be made. It is hoped that
this research can be extended to real images with PSF’s
containing unknown amounts of aberration, with the al-
gorithm evaluating both the aberration coefficients and
the object.
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