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Introduction
I know of two standard references for the basic theory of Witt vectors: some exercises in Lang’s Algebra and
a section in Serre’s Local Fields. I recently decided to try to understand Witt vectors and started working
through the exercises in Lang. I soon decided that I would not be able to remember all the crazy formulas,
so I put away Lang and started trying to work it out on my own. These notes summarize my thoughts. It
may be that the only way really to understand Witt vectors is to work it out for yourself—surely, a certain
amount of staring at the formulas is necessary—and so these notes may be useless. Perhaps they are best
used as a guide to help you do the same work I did, and they may allow you to do it in less time than it
took me.

If you decide to read no further than this introduction, here are some things to remember: the basic
example of Witt vectors is

W (Fp) = Zp;

the identification is
a

def= (a0, a1, a2, . . .) ↔ χ(a0) + χ(a1)p + χ(a2)p2 + · · · ,

where χ: Fp −→ Zp is the Teichmüller character: χ(a) = a (the bar denoting reduction modulo p) and
χ(a)p = χ(a) (so that χ(a) ∈ {0} ∪ µp−1(Zp)). Unfortunately, the basic example is not quite interesting
enough to illustrate everything you want to do with Witt vectors, so you need the following generalization:

W (Fq) = Zp[µq−1],

where q is a power of p. The identification is given by

a
def= (a0, a1, a2, . . .) ↔ χ(a0) + χ(a1)p−1

p + χ(a2)p−2
p2 + · · · ,

where χ again denotes the Teichmüller character and a 7→ ap−1
is the inverse of the Frobenius automorphism

of Fq over Fp.
If you decide to read beyond this introduction, you will see why these formulas are the only ones which

can possibly work.

Notation
p denotes a prime number.
q = pd denotes a power of p.
Fq is the field with q elements; it is an extension of degree d over Fp = Z/pZ.
χ: Fq −→ Qp denotes the Teichmüller character, as above.

Main Idea
The basic idea of Witt vectors is to build Zp from Fp. In principle, it is possible to do this without knowing
about Zp, but this approach seems unmotivated to me. I will assume some knowledge of Zp (such as existence
of the Teichmüller character).

The basic idea is that a p-adic number (i.e., an element of Zp) is a power series in p, with coefficients
0, 1, . . ., p− 1:

a0 + a1p + a2p
2 + · · · .

Therefore it should be possible to identify a p-adic number with an infinite sequence

a = (a0, a1, a2, . . .) with an ∈ Fp.

The only trouble is how to define addition and multiplication: when you add p− 1 to itself, you should get
(p− 2)+1 · p and so forth. Unfortunately, I can think of no good way to do this. (Presumably, neither could
Witt.)
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Modified Main Idea
Of course, when you think of a p-adic number as a power series in p with coefficients in Fp, you really lift the
coefficients to Zp. The obvious way to do this is to lift them to 0, 1, . . ., p− 1. I was once told that another
good choice is to use the Teichmüller representatives. Recall: in Fp, every non-zero number is a (p − 1)th
root of 1; by Hensel’s lemma, for each a ∈ F×p there is a χ(a) ∈ Zp such that χ(a) is also a (p− 1)th root of
1 and χ(a) = a; also set χ(0) = 0; then χ(a) is called the Teichmüller representative of a and χ is called the
Teichmüller character. (One can include 0 with the others by noting that χ(a)p = χ(a) for all a.)

The idea now is to identify the infinite sequence

a = (a0, a1, a2, . . .) with an ∈ Fp

(the Witt vector a) with the p-adic number

χ(a0) + χ(a1)p + χ(a2)p2 + · · · .

The question is this: how should Witt vectors be added and multiplied so that this identification will respect
addition and multiplication? Let a and b be Witt vectors and let c be the Witt vector such that

∞∑
n=0

χ(cn)pn =
∞∑

n=0

χ(an)pn +
∞∑

n=0

χ(bn)pn.

This is equivalent to the sequence of congruences

χ(c0) ≡ χ(a0) + χ(b0) (mod p)

χ(c0) + χ(c1)p ≡ χ(a0) + χ(a1)p + χ(b0) + χ(b1)p (mod p2)

χ(c0) + χ(c1)p + χ(c2)p2 ≡ χ(a0) + χ(a1)p + χ(a2)p2 + χ(b0) + χ(b1)p + χ(b2)p2 (mod p3)
...

Obviously, the first congruence implies that c0 = a0 + b0. The second congruence becomes

χ(c1) ≡
χ(a0) + χ(b0)− χ(c0)

p
+ χ(a1) + χ(b1) (mod p).

The question now is this: we know that the above quotient is a (p-adic) integer; how can its reduction
(mod p) be expressed in terms of a0 and b0? After some thought, one realizes that the first congruence
implies

χ(c0) = χ(c0)p !≡
(
χ(a0) + χ(b0)

)p (mod p2)

= χ(a0)p + χ(b0)p + p
[
χ(a0)p−1χ(b0) +

p− 1
2

χ(a0)p−2χ(b0)2 + · · ·+ χ(a0)χ(b0)p−1
]

= χ(a0) + χ(b0) + p
[
χ(a0)p−1χ(b0) + · · ·+ χ(a0)χ(b0)p−1

]
,

according to the following

Lemma:
If x ≡ y (mod p) then xp ≡ yp (mod p2); more generally, if x ≡ y (mod pk) then xpr ≡ ypr

(mod pk+r)
(assuming k 6= 0). (Proof left to the reader.)

Therefore

c1 = χ(c1) = χ(a1) + χ(b1)−
[
χ(a0)

p−1
χ(b0) + · · ·+ χ(a0)χ(b0)

p−1
]

= a1 + b1 −
[
ap−1
0 b0 + · · ·+ a0b

p−1
0

]
.
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It takes considerably more work to derive the expression for c2. I encourage you to spend a few minutes
trying. If you do so, you will probably notice that you rarely use the fact that an, bn, and cn are Teichmüller
representatives (i.e., that an

p = an etc.). If you try not to use this fact, you find that you are analyzing the
congruences

χ(c0) ≡ χ(a0) + χ(b0) (mod p)

χ(c0)p + χ(c1)p ≡ χ(a0)p + χ(a1)p + χ(b0)p + χ(b1)p (mod p2)

χ(c0)p2
+ χ(c1)pp + χ(c2)p2 ≡ χ(a0)p2

+ χ(a1)pp + χ(a2)p2 + χ(b0)p2
+ χ(b1)pp + χ(b2)p2 (mod p3)

...

Furthermore, you rarely use the fact that you are working modulo a power of p. You begin to suspect the
existence of some universal formula...

Next Idea
Suppose that there are “universal formulas”

zn = αn(x0, . . . , xn, y0, . . . , yn)

(i.e., a sequence of polynomials α0, α1, α2, . . . with αn ∈ Z[x0, . . . , xn, y0, . . . , yn]) such that

z0 = x0 + y0;
zp
0 + z1p = xp

0 + x1p + yp
0 + y1p;

zp2

0 + z1p + z2p
2 = xp2

0 + x1p + x2p
2 + yp2

0 + y1p + y2p
2;

...
n∑

k=0

zk
pn−k

pk =
n∑

k=0

xk
pn−k

pk +
n∑

k=0

yk
pn−k

pk

...

Letting cn = αn(a0, . . . , an, b0, . . . , bn) in Fp, it would then follow that

∞∑
k=0

χ(ck)pk ≡
n∑

k=0

χ(ck)pk =
n∑

k=0

χ(ck)pn−k

pk

!≡
n∑

k=0

χ(ak)pn−k

pk +
n∑

k=0

χ(bk)pn−k

pk

=
n∑

k=0

χ(ak)pk +
n∑

k=0

χ(bk)pk

≡
∞∑

k=0

χ(ak)pk +
∞∑

k=0

χ(bk)pk (mod pn+1)

because

ck = αk(a0, . . . , ak, b0, . . . , bk)

χ(ck) ≡ c′k
def= αk

(
χ(a0), . . . , χ(ak), χ(b0), . . . , χ(bk)

)
(mod p)

χ(ck)pn−k

≡ (c′k)pn−k

(mod pn+1−k)

χ(ck)pn−k

pk ≡ (c′k)pn−k

pk (mod pn+1)
n∑

k=0

χ(ck)pn−k

pk ≡
n∑

k=0

(c′k)pn−k

pk =
n∑

k=0

χ(ak)pn−k

pk +
n∑

k=0

χ(bk)pn−k

pk (mod pn+1).
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Notation
For a Witt vector x = (x0, x1, x2, . . .), let

x(n) def= xpn

0 + xpn−1

1 p + · · ·+ xpn−k

k pk + · · ·+ xnpn.

Also, let
φ: Z[x0, x1, x2, . . . , y0, y1, y2, . . .] −→ Z[x0, x1, x2, . . . , y0, y1, y2, . . .]

α(x0, x1, x2, . . . , y0, y1, y2, . . .) 7→ α(xp
0, x

p
1, x

p
2, . . . , y

p
0 , yp

1 , yp
2 , . . .).

Inductive Step:
x(n) def= xpn

0 + xpn−1

1 p + · · ·+ xp
n−1p

n−1 + xnpn

= (xp
0)

pn−1
+ (xp

1)
pn−2

p + · · ·+ (xp
n−1)p

n−1 + xnpn

= φ
(
x(n−1)

)
+ xnpn,

so if z(n) = x(n) + y(n) for all n then

zn = xn + yn +
φ
(
x(n−1) + y(n−1)

)
−
[
zpn

0 + zpn−1

1 p + · · ·+ zn−1p
n−1
]

pn
;

φ
(
x(n−1) + y(n−1)

)
= φ

(
z(n−1)

)
=

n−1∑
k=0

φ
(
zpn−1−k

k pk
)

=
n−1∑
k=0

φ
(
zk

)pn−1−k

pk;

φ(zk) ≡ zk
p (mod p); φ(zk)pn−1−k

≡ zk
pn−k

(mod pn−k); φ(zk)pn−1−k

pk ≡ zk
pn−k

pk (mod pn);

φ
(
x(n−1) + y(n−1)

)
≡

n−1∑
k=0

φ
(
zk

)pn−k

pk (mod pn)

zn ∈ Z[x0, x1, . . . , xn, y0, y1, . . . , yn].

Conclusion
There are polynomials αn ∈ Z[x0, x1, . . . , xn, y0, y1, . . . , yn] (n = 0, 1, 2,. . . ) such that (∀n)α(n) = x(n) +y(n);
i.e.,

αpn

0 + αpn−1

1 p + · · ·+ αnpn = xpn

0 + xpn−1

1 p + · · ·+ xnpn + ypn

0 + ypn−1

1 p + · · ·+ ynpn.

It follows that if a0, a1,. . . ,b0, b1,. . .∈ Fp and cn = αn(a0, a1, . . . , an, b0, b1, . . . , bn) then

(∀n) χ(c0) + χ(c1)p + · · ·+ χ(cn)pn ≡

≡ χ(a0) + χ(a1)p + · · ·+ χ(an)pn + χ(b0) + χ(b1)p + · · ·+ χ(bn)pn (mod pn+1);
∞∑

k=0

χ(ck)pk =
∞∑

k=0

χ(ak)pk +
∞∑

k=0

χ(bk)pk.

Products
Now let

∞∑
k=0

χ(ck)pk =
∞∑

k=0

χ(ak)pk ·
∞∑

k=0

χ(bk)pk
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in Zp. Can we express cn in terms of a0, a1,. . . ,an, b0, b1,. . . ,bn? Guided by what we have already done, we
look for polynomials π0, π1,. . .with πn ∈ Z[x0, x1, . . . , xn, y0, y1, . . . , yn] such that π(n) = x(n)y(n). If such a
sequence exists and we let cn = πn(a0, a1, . . . , an, b0, b1, . . . , bn) then

(∀k) χ(ck) ≡ πk

(
χ(a0), χ(a1), . . . , χ(ak), χ(b0), χ(b1), . . . , χ(bk)

)
(mod p);

(∀k, n) χ(ck)pn−k

≡ πk

(
χ(a0), χ(a1), . . . , χ(ak), χ(b0), χ(b1), . . . , χ(bk)

)pn−k

(mod pn+1−k);

(∀k, n) χ(ck)pn−k

pk ≡ πk

(
χ(a0), χ(a1), . . . , χ(ak), χ(b0), χ(b1), . . . , χ(bk)

)pn−k

pk (mod pn+1);

(∀n)
∞∑

k=0

χ(ck)pk ≡
n∑

k=0

χ(ck)pk =
n∑

k=0

χ(ck)pn−k

pk ≡

≡
n∑

k=0

πk

(
χ(a0), χ(a1), . . . , χ(ak), χ(b0), χ(b1), . . . , χ(bk)

)pn−k

pk =

=
n∑

k=0

χ(ak)pn−k

pk ·
n∑

k=0

χ(bk)pn−k

pk =
n∑

k=0

χ(ak)pk ·
n∑

k=0

χ(bk)pk ≡

≡
∞∑

k=0

χ(ak)pk ·
∞∑

k=0

χ(bk)pk ≡ (mod pn+1).

To show that such polynomials exist, work by induction: π0 = x0y0, of course, and if π(n−1) = x(n−1)y(n−1)

then we can solve π(n) = x(n)y(n) for πn:

πpn

0 + πpn−1

1 p + · · ·+ πp
n−1p

n−1 + πnpn = π(n) = x(n)y(n) =

=
(
φ(x(n−1)) + xnpn

)(
φ(y(n−1)) + ynpn

)
= φ(x(n−1))φ(y(n−1)) +

(
φ(x(n−1))yn + xnφ(y(n−1)) + xnynpn

)
pn;

πn =
φ
(
x(n−1)y(n−1)

)
−
[
πpn

0 + πpn−1

1 p + · · ·+ πn−1p
n−1
]

pn
+ φ

(
x(n−1)

)
yn + xnφ

(
y(n−1)

)
+ xnynpn;

φ
(
x(n−1)y(n−1)

)
= φ

(
π(n−1)

)
= φ(π0)pn−1

+ · · ·+ φ(πn−1)ppn−1;

φ(πk) ≡ πk
p (mod p); φ(πk)pn−1−k

≡ πk
pn−k

(mod pn−k); φ(πk)pn−1−k

pk ≡ πk
pn−k

pk (mod pn);

πn ∈ Z[x0, x1, . . . , xn, y0, y1, . . . , yn].

Other Finite Fields
We can now describe Zp algebraically, starting from Fp: an element of Zp can be identified with a Witt
vector (infinite sequence) a = (a0, a1, a2, . . .) of elements of Fp; addition and multiplication are given by the
universal polynomials αn, πn (n = 0, 1, 2,. . . ):

a + b =
(
α0(a0, b0), α1(a0, a1, b0, b1), . . .

)
ab =

(
π0(a0, b0), π1(a0, a1, b0, b1), . . .

)
.

(Of course, we realize that a ↔
∑∞

k=0 χ(ak)pk ∈ Zp, etc.)
If we start with Fq (q = pf ), can we construct finite extensions of Zp by taking Witt vectors a =

(a0, a1, a2, . . .) with a ∈ Fq? Let χ: Fq −→ Zp[µq−1] denote the Teichmüller character. We can identify
a with χ(a0) + χ(a1)p + χ(a2)p2 + · · ·. This gives a bijection between Witt vectors and Zp[µq−1], but it
does not respect addition. Indeed, let c = a + b as Witt vectors. Then χ(co)p 6= χ(c0) (for some choices
of a0, b0, assuming q > p) so there is no reason to expect c0

p + c1p = a0
p + a1p + b0

p + b1p to imply

χ(c0) + χ(c1)p
?≡ χ(a0) + χ(a1)p + χ(b0) + χ(b1)p (mod p2). I do not actually have an example in which

this fails; consider this an exercise.
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The solution is to associate the Witt vector a = (a0, a1, a2, . . .) with

χ(a0) + χ(a1)p−1
p + χ(a2)p−2

p2 + · · · ∈ Zp[µq−1].

This makes sense: the Frobenius map α 7→ αp is an isomorphism on Fq abd on µq−1 (and extends to an
isomorphism of Zp[µq−1] or Qp[µq−1]) and α 7→ αp−1

is its inverse. (Of course, we could write χ
(
ak

p−k)
instead of χ(ak)p−k

.) It is easy to check that this bijection is also a homomorphism between the set of Witt
vectors over Fq and Zp[µq−1].

Generalizations and Applications
If A is any ring, let W (A) = Wp(A) be the ring of Witt vectors a = (a0, a1, a2, . . .) with an ∈ A and addition
and multiplication given by the universal polynomials αn, πn (n = 0, 1, 2,. . . ).

Lang gives a more general definition: for 1 ≤ N ∈ Z, he lets

X(N) def=
∑
d|N

dX
N/d
d .

(Actually, I am changing notation slightly.) In particular, if we replace N with pn and let d = pk, X(pn) =∑n
k=0 pkXpn−k

pk , so that if xn
def= Xpn then x(n) = X(pn). Using the fact that X1, X2,. . . can be recovered (as

polynomials with integral coefficients) from the coefficients of

fX(t) def=
∞∏

N=1

(
1−XN tN

) != exp

(
−

∞∑
N=1

1
N

X(N)tN

)
∈ Z[X1, X2, . . .] [[t]],

Lang shows that there are universal polynomials Z1, Z2,. . .∈ Z[X1, X2, . . . , Y1, Y2, . . .] such that Z(N) =
X(N) +Y (N); similarly for multiplication. The formulas for Witt vectors that I have derived follow by taking
xn = Xpn , etc.. Thus Wp(A) is a quotient of a ring of universal (i.e., independent of p) Witt vectors; I
will temporarily denote this ring W (A). (Lang mistakenly says that Wp(A) is a subring of W (A), not a
quotient. More precisely, ha claims that the set of Witt vectors (a1, a2, a3, . . .) ∈ W (A) for which aN = 0
unless N = pn forms a subring, which is clearly false.)

There may be some applications of these “universal” Witt vectors, and of the power series fX(t); I
do not know. Lang also uses Witt vectors to develop the “Kummer theory” (Artin-Schreier theory?) of a
perfect field k of characteristic p, i.e., to describe the Abelian extensions of k of exponent a power of p.

Serre shows that for any Φ ∈ Z[X, Y ] there is a sequence of polynomials β0, β1, β2,. . .with βn ∈
Z[X0, X1, . . . , Xn, Y0, Y1, . . . , Yn] such that β(n) = Φ

(
X(n), Y (n)

)
. I proved the cases Φ(X, Y ) = X + Y and

Φ(X, Y ) = XY ; the general case follows from these two cases, or it can be deduced similarly. Serre gives a
more sophisticated proof, for which he has other applications in mind. Serre uses Witt vectors to study the
structure of complete discrete valuation rings.

Both Lang and Serre have good reasons to be concise. Perhaps the whole point of this rather leisurely
treatment is that if you want to understand Witt vectors, you should start with the idea of building Zp out
of Fp and see that you are forced to consider

x(n) def= xpn

0 + xpn−1

1 p + · · ·+ xpn−k

k pk + · · ·+ xnpn.

The more concise approach starts off “Let x(n) =. . . .”

The Maps F and V
Now that the basic examples have been hammered in, definitions like

F (a0, a1, a2, . . .) = (a0
p, a1

p, a2
p, . . .)

and
V (a0, a1, a2, . . .) = (0, a0, a1, a2, . . .)
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should present no difficulty. Since F is trivial on W (Fp) = Zp, look at the more interesting example of
W (Fq) = Zp[µq−1]. It is clear that F gives the Frobenius automorphism of Zp[µq−1]. At first glance it looks
as though V is multiplication by p, but a closer look shows that F◦V = V ◦F corresponds to multiplication
by p. In general, F is a ring automorphism and V is an additive homomorphism.

A More Sophisticated Point of View
I have been talking about “universal polynomials,” such as α0, α1,. . .∈ Z[x0, x1, . . . , y0, y1, . . .]. What this
means is that Z[x0, x1, . . .] is the universal example of a ring with an infinite sequence: given any ring A and
a sequence a = (a0, a1, a2, . . .) in A, there is one and only one homomorphism

Z[x0, x1, . . .] −→ A

such that (∀n) xn 7→ an. Similarly, Z[x0, x1, . . . , y0, y1, . . .] is the universal example of a ring with two infinite
sequences. (Yes, two infinite sequences can be “folded” into one sequence, and Z[x0, x1, . . . , y0, y1, . . .] ∼=
Z[x0, x1, . . .], but that is really beside the point.) Thus a “universal formula” α(n) = x(n) + y(n) in
Z[x0, x1, . . . , y0, y1, . . .] implies c(n) = a(n)+b(n) in any ring A, if we let cn

def= αn(a0, a1, . . . , an, b0, b1, . . . , bn).
Now W (A) is the set of infinite sequences a = (a0, a1, a2, . . .) in A, which is the same thing as the set

of ring homomorphisms Z[x0, x1, . . .] −→ A:

W (A) = Hom
(
Z[x0, x1, . . .], A

)
.

Thus the sophisticated way of saying that Z[x0, x1, . . .] is the universal example of a ring with an infinite
sequence is to say that Z[x0, x1, . . .] (with the sequence (x0, x1, x2, . . .)) represents the functor

A 7→ {infinite sequences in A}.

In this point of view, the sequence of “universal polynomials” α0, α1,. . .∈ Z[x0, x1, . . . , y0, y1, . . .] is a
homomorphism

Z[x0, x1, . . .] −→ Z[x0, x1, . . . , y0, y1, . . .].

Since
Z[x0, x1, . . . , y0, y1, . . .] = Z[x0, x1, . . .]⊗Z[x0, x1, . . .],

this gives, for any ring A, a map
W (A)×W (A) −→ W (A).

Thus Z[x0, x1, . . .] is a Hopf algebra and the functor it represents, A 7→ W (A), is a group functor. (There
are some verifications to be made here. They are exactly the ones you need to make to show that W (A) is
a group under addition.) In fact, A 7→ W (A) is something you do not see every day: it is a ring functor. It
follows that Spec Z[x0, x1, . . .] is a group-scheme (in fact, it is even a ring-scheme). It is affine and infinite-
dimensional.

You must be thinking: who was complaining about too-concise treatments?
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