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ABSTRACT

This study examined the utility of using Item Response Theory (IRT) to assess the Lynn-Flynn

Effect (LFE), using data from two different studies. The first study used data from a simulation ex-

periment, where samples were generated that mimicked both real increases in cognitive abilities and

psychometric artifacts. The results indicated that IRT methods were more effective than methods

from Classical Test Theory (CTT) in distinguishing between a real increase in cognitive abilities and

pure psychometric artifacts. The second study used data from the Mathematics section of the Col-

lege Basic Academic Subjects Examination to demonstrate the use of IRT methods in assessing the

LFE. This second study showed that from 1996 to 2001 there was a reverse LFE in the examinees’

abilities, with ability decreasing approximately .222 standard deviations.
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Chapter 1

INTRODUCTION

The Lynn-Flynn Effect (LFE) (i.e., the continued rise of psychometric IQ test scores

over time) has been a source of consternation for those doing intelligence research since it

was discovered in the early 1980’s.1 The reason is that while psychometric IQ scores have

shown a steady increase for (at least) 70 years (since the 1940s) (Flynn, 1984; Lynn &

Hampson, 1986), there has not been an appreciable increase in academic achievement

(Hunt, 1995), physiological markers of cognitive ability (e.g., reaction time; Nettelbeck &

Wilson, 2004), or Spearman’s (1904) g (Must, Must, & Raudik, 2003; Rushton, 1999).

Moreover, when surveyed, teachers in Western countries do not perceive that that there is

general rise in student intelligence (Cocodia et al., 2003; Howard, 2001). In addition, while

it may seem plausible that the LFE would be greatest for “school-based” knowledge, such

as vocabulary tests, the opposite is true. It is the more abstract, nonverbal markers of

cognitive ability, such as the constructs measured by Raven’s Matrices, that show the

largest gains.

The vast majority, if not all, of the studies examining the LFE have used methods

derived from classical test theory (CTT), namely statistical comparisons of summed raw

scores or factor scores (e.g., the Wechsler FSIQ). This is unfortunate as more modern

psychometric techniques, such as those derived from latent trait models (e.g., item

response theory [IRT]), are better able to provide data for the questions LFE scholars seek

to answer. For example, if intelligence is actually rising, then the latent trait of general

intelligence (Spearman, 1904) should show an increase. On the other hand, if the LFE is

simply due to the population becoming more test savvy, and not a real increase in

intelligence, then cognitive ability test items should show the same items functioning

differently across time rather than a change in a latent (cognitive) ability. Analysis using

CTT-derived methods are simply unable to answer these questions. (For a much more
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elaborate comparison between the CTT and IRT methods and results, see Embretson &

Reese, 2002).

Consequently, the purpose of this manuscript is to demonstrate the use of IRT

methods in determining if the increase in mean IQ scores across time (i.e., the LFE) is

due to an increase in intelligence, or if it is due to a psychometric artifact.2 First, this

manuscript will compare the efficacy of IRT and CTT models using purposefully

simulated data samples (i.e., data with known distribution parameters) that mimic both a

real rise in intelligence as well as artifacts that imitate a psychometric IQ rise. Then, this

manuscript will demonstrate the use of IRT in assessing the existence of the LFE using

cohort data from the College Basic Academic Subjects Examination (CBASE).

This manuscript’s literature review will first give a brief review of the literature

concerning the LFE. As this paper is not particulary concerned with possible theories to

explain the LFE, per se, the review of the LFE will be somewhat cursory, although

extensive enough to both explain and validate the LFE. Next, attention will shift to giving

a brief overview of CTT, then show how properties of IRT can better answer questions

pertinent to the LFE. Last, the review will define various methods for detecting

differential item functioning (defined later) as well as define test equating—both of which

are necessary precursors before one can delve further into the LFE via IRT methods.
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Chapter 2

LITERATURE REVIEW

Lynn-Flynn Effect

The purpose of the section is merely to introduce the Lynn-Flynn Effect (LFE).3

While representative, it in no way is intended to be exhaustive, as other sources have

already provided such a service (e.g., Flynn, 1987; Lynn, 1997; Neisser, 1998). The goal is

to familiarize those who do not know much about the LFE as well as expand upon the

underlying motivation for the current manuscript.

Defined, the LFE is the continued rise of psychometric IQ test scores

(approximately .3 IQ points/year), an effect seen in many parts of the world, although at

greatly varying rates.

. . . great care is taken to ensure that the standardization samples of [IQ] tests
are representative of the total population. Therefore, if the same group of
subjects does better on an old test than a new one, the obvious explanation is
that old norms are easier to exceed than more recent ones, which is to say that
older standardization samples did not perform as well on IQ tests as more
recent samples. (Flynn, 1983, p. 655)

The LFE is named after British differential psychologist Richard Lynn and New

Zealand political scientist James R. Flynn, who independently re-discovered the effect in

the early 1980’s. Richard Lynn (Lynn, 1982; Lynn & Hampson, 1986) published data

about the effect in Great Britain and Japan, while James Flynn (1983, 1984, 1999)

published data about it in the United States.

Since the original studies were published, the eponymous LFE has been studied in

many different populations (even including those with cognitive disorders; Bolen,

Aichinger, Hall, & Webster, 1995; Sanborn, Truscott, Phelps, & McDougal, 2003; Truscott

& Frank, 2001), both in developed nations and undeveloped countries (Daley, Whaley,

Sigman, Espinosa, & Neumann, 2003; Rushton & Jensen, 2003; Sundet, Barlaug, &
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Torjussen, 2004) (see Table 1 for a sample of studies). In the 20+ years research has been

done in this field, the findings have been enigmatic. While multiple sources have found

that psychometric IQ has been rising, general intelligence (g ; Spearman, 1904) has not

increased (Jensen, 1998; Kane & Oakland, 2000; Must et al., 2003), nor have reaction

times (an endophenotype of intelligence; Jensen, 1998) decreased (Nettelbeck & Wilson,

2004), although head size, another endophenotype of intelligence, has increased (Storfer,

1999). In addition, although LFE appears to effect the entire range of the IQ distribution,

there does appear to be a definite concentration among those at lower end (Colom,

Lluis-Font, & Andres-Pueyo, 2005; Teasdale & Owen, 1989). Another aspect of the LFE

that has puzzled researchers is that although there are mean increases in average

psychometric IQ scores, ethnic group differences on the same IQ tests have not diminished

(Murray, 1999; Jensen, 1998; Rushton, 1999, 2003). In fact, the one standard deviation

difference between Black and White test takers is as pervasive today as it ever was

(Rushton & Jensen, 2003, 2005; but also see Ceci, Rosenblum, & Kumpf, 1998).

Attempts to explain the various findings involved in the LFE has lead scholars down

many different avenues of inquiry. Some, such as Lynn (1989, 1990), and Eysenck and

Schoenthaler (1997) posit that massive environmental changes, such as changes in

available nutrition have, at least in part, been responsible for the IQ increase. Lynn

(1990), writing on the LFE in Japan, said that it

can be easily explained as almost every factor known to influence IQ can be
brought into play. Since 1930, Japan has experienced massive urbanization, a
cultural revolution from feudal towards western attitudes, the decline of
inbreeding and consanguineous marriages, huge advances in nutrition, life
expectancy and education. (p. 655)

Others, such as Blair, Gamsonb, Thornec, and Bakerd (2005), explain the mean IQ

increase as an artifact of educational curriculum changes, especially with math. Some

theorists go the other direction, and posit that the change in IQ scores is not due to an

environmental effect per se, but rather is a byproduct of an increase in heterosis

(outbreeding) (Mingroni, 2004). While others posit that LFE, while extant, is not too

much more than a psychometric artifact (Brand, 1996; Burt, 1952; Rodgers, 1999), or that
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perhaps the LFE no longer is even operative, at least in certain countries (Sundet et al.,

2004; Teasdale & Owen, in press).

The purpose of this paper is not to theorize about the many implications of the

LFE, or even why it exists; rather, its purpose is to show how IRT methods can be used to

better assess it. Consequently, it will be beneficial to examine the two designs researchers

currently use. The first method is to give the same test to two different samples that are

the same in (almost) all respects except the year of test administration, and then compare

the same derived score from each cohort. An example would be to give a group of 2nd

graders the Wechsler Intelligence Scale for Children (WISC) in 1990 and then, in 2000,

give another group of 2nd graders the same WISC test. The second way to assess the LFE

is to give the same sample two tests that were standardized at different times, and then

derive the same (or comparable) scores from them. An example would be if both the

Woodcock-Johnson-R and Woodcock-Johnson-III were given to the same group of college

students, at (approximately) the same time, and the same two index scores (e.g., General

Intellectual Ability) were compared.

While the two designs are appropriate, the current analysis methods are not. The

vast majority, if not all, of studies examining the LFE have used methods derived from

classical test theory (CTT), namely statistical comparisons (e.g., t-test, ANOVA) of

summed raw scores or factor scores (e.g., the Wechsler FSIQ). These methods do not

extract all the information within the data, a problem that more modern test theory (e.g.,

IRT) can rectify. For example, if intelligence is actually rising, then an amalgamated

full-scale score is not the best variable to assess. The reason is that the increase could be

due to a number of possibilities, such as a systemic increase in test “savvyness” either

evidenced by allowing the examinee to guess at a correct answer more often or by having

the same items lose their level of difficulty. IRT, on the other hand, can specifically assess

these properties for all the items on a given test, thus putting the researcher in a position

of being able to discern whether the population has become more test savvy without an

appreciable increase in intelligence, whether there has been an appreciable rise in

intelligence, or a host of other alternatives that analyses using CTT are simply unable to

answer.
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Models in Measurement

A measurement theory in psychology must provide a rationale for relating
behaviors to the psychological construct. (Embretson & Reese, 2002, p. 41)

Embretson and Reese (2002) write that psychological constructs (e.g., intelligence,

personality) are often thought of as latent (i.e., unobservable) variables that underlie

observable behavior. Measurements or, more specifically, item responses and test scores,

are “indicator[s] of a person’s standing on the latent variable, but it does not completely

define the latent variable” (p. 40). In other words, the scores on latent variables are

inferred, via some model, from some manifest behavior.

In psychology, a model is usually conceptualized in one of two ways. The first is

akin to a theory, whereby various variables are purported to impact other variables (e.g.,

Circumplex model of family systems; Olson, Russell, & Sprenkle, 1989). Not unrelated,

another definition of the word model is a mathematical one, whereby independent

variables are combined through various formulae to optimally predict dependent variables

(Lord & Novick, 1968). Embretson and Reese (2002) delineate three specific features that

define the mathematical model: (a) the model defines the scale for the dependent

variable(s), (b) the model specifies the independent variables, and (c) the model specifies

how the independent variables are combined numerically to predict the dependent

variables—these numerical combinations are the model’s parameters. In psychological and

educational measurement, there are two overlapping mathematical models: those from

classical test theory (CTT) and those from item response theory (IRT). This text will first

give an overview of CTT and then show how IRT extends CTT principles and why IRT

models are more appropriate for the study of the LFE.

Overview of Classical Test Theory

In a CTT model, the dependent variable is a given person’s observed test score, Xi,

while the independent variables are the person’s “true” score, Ti, and measurement error,

ε. The independent variables combine additively and directly (i.e., there are no other

coefficients attached) to produce the CTT model:
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Xi = Ti + ε (1)

where ε ∼ N(0, σ2
ε ). Consequently,

E[Xi] = Ti (2)

and

E[εi] = 0. (3)

In addition, there are some (weak) assumptions about this model:

COV[εi, Ti] = 0, (4a)

COV[Xi,Xj ]
i6=j

= 0, (4b)

and that one can build strictly parallel tests (Lord, 1980). While, (4a) and (4b) can be

disproved with certain data structures via path analysis, they generally hold.

From (1), it follows that Xi’s variance is made up of two parts:

VAR[Xi] = VAR[Ti + ε] = VAR[Ti] + VAR[ε]. (5)

Likewise, from (1) and its relationship properties, it follows that

COV [Xi, Ti] = V AR[Ti].
4 (6)

From (1), (5) & (6), test reliability, rxx, can now be defined as:

rxx = ρ
2
XiTi

≡ COV2[Xi, TI ]

VAR[Ti]VAR[Xi]
=

VAR[Ti]

VAR[Xi]
= 1 − VAR[ε]

VAR[Xi]
(7)

Thus, it is the true score, Ti, not the observed score, that is of real interest in CTT.

Unfortunately, Ti cannot be directly observed, but one can make inferences about it.5

Lord (1980) writes,

The true score [Ti] is a mathematical abstraction. A statistician doing an
analysis of variance components does not try to define the model parameters

7



as if they actually existed in the real world [e.g., can be directly measured]. A
statistical model is chosen, expressed in mathematical terms undefined in the
world . . . It is neither necessary nor appropriate to define a person’s true score
. . . by real world operational procedures. (pp. 6-7)

Fortunately, there is an alternative that allows for an observable result, using the

idea of a parallel test. By definition, two test forms, Xi and X
′
i, parallel if and only if,

E[Xi] = E[X ′
i ] = Ti (8a)

and

VAR[Xi] = V AR[X ′
i] (8b)

Consequently, the correlation between the two parallel tests, COR[Xi,X
′
i], is simply

COR[Xi,X
′
i] =

VAR[Ti]√
VAR[Xi] × VAR[X ′

i]
=

VAR[Ti]

Xi
= 1 − VAR[εi]

VAR[Xi]
= ρ

2
Xi,Ti

(9)

Obviously, the importance of (9) is that it is estimable from actual data.

Unfortunately, the time and expense involved in developing parallel forms of a test often

precludes it from being done. Instead, a test is usually divided into two sections, and the

two sections are considered parallel to each other. Of course, the two halves are not really

parallel, so their correlation needs a correction factor. Interestingly, both Brown (1910)

and Spearman (1910), independently, came up with this correction. So, for a test, Xi,

containing n items, split into 2 parts, V1 and V2, each containing n
2 items, the reliability

coefficient, is

COR[Xi,X
′
i ] =

2 ∗ COR[V1, V2]

1 + COR[V1, V2]
.
6 (10)

This conception of test reliability then brings up the question of how to split the

test. From probability theory, a test with n items, split into two groups of n/2 items

yields n!
2[(n

2
!)]2

different item permutations. One need not even look at the asymptote,

because as n approaches, say, 40, there are over 50 billion permutations, which then raises

the question of the optimal way to split the test. In studying this issue, Cronbach (1951)

derived an inequality that, in effect, set the average of all splits of a given test as the lower

8



bound for a test’s true reliability:

COR(Xi,X
′
i) ≥

n

n − 1
[1 −

∑n
1=1 V AR(Vi)

V AR(X)
] = α.

7 (11)

If the all the test splits result in the same Ti, the the lower bound sign is replaced with an

equal sign.8

Since the focus of CTT is the true score and its reliability, item properties are not

part of the theory, and must be developed rather post-hoc. As tests are usually made up

items, Yi, CTT allows for the following item properties, assuming X =
∑n

i=1 Yi:

VAR[X] =
∑

i

∑

j

VAR[Yi]VAR[Yj]COR[Yi, Yj ] (12)

where COR[Yi, Yj ] is the correlation between items i and j. From probability theory:

E[X] =
n∑

i=1

πi (13)

where πi is the probability of correctly responding to item i.

The variance for a given item is

VAR[Yi] = πi(1 − πi) (14)

which eventually leads to the coefficient alpha being:

α =
n

n − 1
(1 −

∑n
i=1 VAR[Yi]∑

i

∑
j

√
VAR[Yi]

√
VAR[Yj ]COR[Yi, Yj ]

). (15)

For more detail on CTT, see chapter 1 of Lord (1980), as well as Crocker and Algina

(1986), Nunnally and Bernstein (1994), and Osterlind (2005).

Problems with CTT

Embretson and Reese (2002) cite some shortcomings with the CTT model. First,

the observed score (Xi) is test dependent; that is, it applies only to items on a specific test

(or a parallel form of the test). Consequently the parameters obtained from this model are

9



test dependent. Second, even though the CTT model has two independent variables (i.e.,

true score and error) that are independent of each other for given examinee, they are only

separable at the population level. Third, the CTT model does not link the properties of

specific items with behaviors. Fourth, since item properties are not specified in the model,

they must be justified outside the model, usually by denoting their impact on test

information, such as reliability.

Lord (1980), too, had criticisms of CTT, writing that it makes no assumptions

about item properties that are beyond the control of the psychometrician. Further, CTT

does not allow prediction of item responses unless the items were previously administered

to very similar individuals, a serious problem Lord (1980) writes about as follows:

we need to be able to predict the statistical and psychometric properties of any
test that we may build when administered to any target group of examinees.
We need to describe the items by item parameters and the examinees by
examinee parameters in such a way that we we can predict probabilistically
the response of any examinee to any item, even if similar examinees have

never taken similar items before. (p. 11, emphasis added)

Both Embretson and Reese (2002) and Lord (1980) suggest that IRT can help

overcome many of these various problems.

Nandakumar and Ackerman (2004) write that the advantages of IRT are associated

with the strong models it uses to characterize examinees’ performance on tests, as opposed

to CTT, where the theories are “tautologies and not testable” (p. 93). Likewise, Camilli

and Shepard (1994) write

Item response theory has several advantages over classical measurement theory
. . . . First, IRT estimates of item parameters . . . are less confounded with
sample characteristics than are those of classical measurement theory. Second,
the statistical properties of items can be described in a more precise manner,
and consequently, when a test item functions differently in two groups, the
differences can be described more precisely. Third, the statistical properties of
items can be more readily graphed with the IRT approach, which speeds and
broadens understanding of items showing DIF [Differential Item Functioning].
(p. 47, emphasis in original)
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Item Response Theory

Brief History

IRT can trace its roots to Lord and Novick’s (1968) classic treatise, where Birnbaum

(1968) wrote four chapters on it, although it does have a prehistory before Birnbaum’s

treatment (see Baker, 1992). Like CTT, IRT is concerned with the measurement of

theoretical constructs (e.g., ability) that have no concrete reality (Thissen & Orlando,

2001). Consequently, the theoretical constructs have to be measured by analogy with

something that is directly measured.

Binet and Simon (1905) first used age as a concrete indicator of the theoretical

concept of cognitive development, and hence birthed “modern” psychometrics by trying to

measure children’s mental age. Their central idea was that there are a number of tasks

that a child at a given chronological age can do, and more mature children (i.e., higher in

mental age) can do more of these tasks, and vice versa with less mature children. Put

another way, each task has an age associated with it where one can expect proficiency, and

by observing whether children are ahead or behind this expected proficiency, one can infer

something about mental age.

Although not doing work specifically in IRT, Thurstone (1925) developed scaling

techniques to improve the measurement of mental age that would later become a central

core of IRT. He wrote,

We assume the distribution of intelligence of children of any given age group to
be approximately normal. Since test-intelligence [e.g., ability ] is indicated by
the correctness of answers to questions, it is legitimate to designate the points
on the scale of test-intelligence by means of the questions as landmarks. Each

test question is located at a point on the scale so chosen that the percentage of

the distribution to the right of that point is equal to the percentage of right

answers to the test question for children of that specified age . . . If we know the
percentage of children of different ages who can answer each question, it is
possible to locate the questions on an absolute scale, and it is also possible to
locate the means of successive age groups on the same absolute scale. (pp.
436-37, emphasis original)

Obviously, his seminal idea was that test items and examinee ability could be defined on

the same scale—in stark contrast to what is done in CTT.
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Another idea from Thurstone’s (1925) item-ability relationship is that when items

are plotted as a function of age, the proportion of a given age group’s correct responses for

a given item should have a cumulative normal distribution (i.e., normal ogive):

F (xi;βi, αi, θj) =
1√
2π

∫ z

−∞

e

z2

2 dz (16)

where z = αi(θ − βi), βi is the difficulty of an item (i.e., the point where 50% of a given

group respond correctly), and αi is the ith item’s discrimination (i.e., the rate of change of

the ogive as a function of θ). The ogive is sometimes called an item characteristic curve

(ICC). Because this manuscript deals solely with binary items, ogive and ICC can be used

interchangeably. For a geometric example of an normal ogive, see Figure 1.

Each ICC has two major characteristics. The first is the point at which there is a

50-50 chance of responding correctly to the given item. This is called the item’s location,

and is conceptually the same thing as the difficulty, β, parameter. The second

characteristic is the rate of change in the slope, which is conceptually identical to the

item’s discrimination, α.

Thissen and Orlando (2001) write that although approximating item-response data

by normal models was “intuitively satisfying,” the early work in IRT was imprecise about

what was normally distributed and what was not, nor was it precise about which variables

should be fixed and which variables should be stochastic. Lord and Novick (1968) and

Birnbaum (1968) helped clarify these issues, as will be explicated in the following section.

In the 1960’s, a second “metaphor” appeared using IRT, namely, the work done

with dose-response curves in bioassay research. Drug research, especially with non-human

subjects, often had binary outcomes to measure: e.g., did the subject die with a given

dose of a drug ? (Thissen & Orlando, 2001) Consequently drug researchers often used

normal ogives as a way to measure the point as which one expects the subjects to have a

50-50 chance of dying, or the β parameter. What made this line of research so attractive

to psychometricians was the high quality of statistical research behind the dose-response

curves, which could easily be transported into an IRT context. One major idea IRT

transported from the bioassay research was the approximation of the normal ogive by a
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logistic response model, which many drug researchers advocated over the normal model.

The use of the logistic model came into prominence in IRT when Allen Birnbaum (1968)

wrote his seminal chapters. In them, he, too, advocated the use of the logistic model over

that of a normal ogive for computational reasons. For more detail of the translation of

work in biometrics to IRT, see Chapter 1 of Baker (1992).

Birnbaum (1968) noted that the difference in area between the logistic model

(defined below) and the normal cdf [cumulative distribution function, F (·)] with mean of

zero and standard deviation 1.7 was less than 0.01, and concluded that

We may view the logistic form for an item characteristic curve as a
mathematically convenient, close approximation to the classical normal form,
introduced to help solve or to avoid some mathematical or theoretical
problems that arise with the normal model. Or we may view it as the form of
a test model that is of equal intrinsic interest and of very similar mathematical
form. (pp. 399-400)

Consequently, by side-stepping the use of the normal ogive, it means that there is no

integration, which can save much computational time. The 1.7 SD that Birnbaum (1968)

wrote distinguishes the logistic model from the standard normal can be placed back into

the logistic IRT model to give it a shape closer to the normal ogive:

f(xi;κκκi, θj) =
1

1 + e
−1.7ai(θj−bi)

. (17)

This is the extent of IRT history needed for this text. For more elaborate histories,

see Baker (1992) and Bock (2003).

Overview

Item response theory is “model-based measurement in which trait level estimates

depend on both persons’ responses and on the properties of the items that were

administered” (Embretson & Reese, 2002 p. 13). More specifically, IRT models specify

how an individual’s trait level and an item’s properties are related to how a person

responds to that given item.

In contrast to CTT, IRT begins with (strong) assumptions about the model. First,

the ICC is monotonically increasing (although not strictly so), and, second, that there is
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local independence between the test items. The (non-strict) monotonic increasing

assumption simply holds that for every k ≥ k
′

k 6=k′

in the domain of the IRT function f(·), the

range of f(·) is as follows: f(k) ≥ f(k′). The local independence assumption holds that

the items of a given test are independent, given the model parameters. More formally,

items are locally independent when the probability of response to one item, i, is

independent of the outcome of any other item, i
′, controlling for the examinee’s latent

ability and the item parameters. It can be written as

P (xi = 1|θj) = P (xi = 1|θj ,Xk,Xl, . . .) (i 6= k, l, · · · ) (18)

where θj is person j’s ability (defined later) and Xi is the ith item on a test.9 This

definition assumes unidimensionality in θ, but that need not be the case. If the test

measured more than one dimension, then θj needs to be replaced with a vector of values

(i.e., θj ⇒
j=1,2...,m

ΘΘΘj).

If the local independence assumption holds, then the number of parameters used for

the model is its dimensionality. Nandakumar and Ackerman (2004) write, “local

independence and dimensionality assumptions are intertwined. One can only statistically

test either of the assumptions assuming the other” (p. 93). Further, they write that many

tests in the achievement genre are intended to be unidimensional, but this is something,

“given test data, we need to empirically determine” (p. 94).

As a side note, it is often difficult, if not impossible, to develop a strictly

unidimensional test that measures academic achievement or cognitive abilities (Carroll,

1993). Nonetheless, decades of work in g theory has shown that tests that measure some

construct requiring cognitive ability, also measure general intelligence (Jensen, 1998).

Consequently, for the purposes of this manuscript, unidimensionality will follow

Nandakumar and Ackerman (2004): “In any test, it is not uncommon to find transient

abilities common to one or more items . . . In this sense, unidimensionality refers to the

dominant ability measured by the test” (p. 95).
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IRT Models

Lord (1980) writes that IRT starts with a mathematical statement describing how a

response to a given item depends on the test taker’s ability.10 The IRT model used in this

text is based on the cumulative logistic distribution, which is an non-complex, nonlinear

way to specify the probability of a given response. More explicitly, if xi is the response to

item i, then the probability that person j correctly responds to item i (assuming no

partial credit) is:

f(xi;κκκi, θj) =
1

1 + e
g(θj ,κκκi)

(19)

where g(θj ,κκκi) is a function of the item and examinee parameters (to be defined later) and

e is the natural log base (i.e., 2.71. . . ).

IRT is based on the item response function, f(xi;κκκi, θj), which maps the ability of

examinee j, as measured by the test containing item i, to the probability of a correct

answer of item i (Hambleton & Swaminathan, 1985). The geometric representation of the

IRT function is the item characteristic curve (ICC; see Figure 1). In the ICC, the abscissa

represents various levels of ability, θ, whereas the ordinate represents the probability of

getting item i correct, given the item parameters (κκκi).

The item response function describes the conditional probability of the correct

response to item i; more specifically, for a given ability level (i.e., θ = θj), f(xi;κκκi, θj) is

the probability of a correct response, and its range is [0, 1].

An alternative parametrization uses a normal ogive model. While normal ogive

models will contain the same number of parameters as the corresponding logistic model, a

different function is used to obtain the ICC.11 Here, the probability of success is given by

the cumulative distribution function (CDF), which means “the normal ogive model gives

the ICC as the proportion of cases below a certain standard score [zij = αi(θj − βi)]”

(Embretson & Reese, 2002, p. 76), as follows:

P (xi = 1) =

∫ zij

−∞

(2π)−
1
2 exp(

−z
2

2
) dz (20)

where π is the geometric constant 3.14. . . In this parametrization, the standard score (zij)
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contains the IRT model parameters.

If one plots the ICCs from both the logistic ogive and the normal ogive on the same

graph, one will find that they have the same inflection point (βi) for a given item, but

slopes will differ, with the logistic model having more spread. To make the two models the

same (or at least very similar), a constant needs to be multiplied to the item response

kernel (i.e., αi(θj − βi)). Haley (1952) showed that if the logistic IRT kernel is multiplied

by 1.7, the absolute difference between the normal ogive and the logistic ogive is less than

.01 across the full range of θ. Thus, for the logistic model, g(θj ,κκκi) needs to be multiplied

by 1.7 for it to be equivalent to the normal ogive model. For simplicity, this text will

define M ≡ 1.7 in its models.

Baker (1992) writes that the main property of the logistic model that makes it more

appealing than the normal ogive model is that its CDF is a closed form and, thus, can be

computed directly. In addition to the closed form, the logistic function is related to the

logarithm of the odds of getting the item correct. For a given item, for any θj, the

probability of a correct response is given by f(xi;κκκi, θj), which makes the probability of

an incorrect response 1 − f(xi;κκκi, θj). Define Pi(θj) ≡ f(xi;κκκi, θj) and

Qi(θj) ≡ 1 − f(xi;κκκi, θj), then

ln

[
Pi(θj)

Qi(θj)

]
= αi(θj = βi) = ζi + λiθj (21)

where ζi + λiθj is a linear regression line relating θj to the kernel of the IRT model (for

further detail, see Baker, 1992).

One major aspect of IRT models that distinguish them from CTT models is that in

IRT, “the item parameters are not dependent upon the ability level of the examinees

responding to the items” (Baker, 2001, p. 52, emphasis added). In practice, this means

that two groups who differ widely in ability, θ, can take the same test and the item

parameters, κκκi, will be the same (for a more in-depth explication of this property, see

Chapter 3 of Baker, 2001). For the purposes of this text, the key point about this group

invariance property of IRT is that the item parameters are properties of the item, not the

people responding. Moreover, the number of people at each level of θj does not affect the
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group invariance property.

The next few subsections will be devoted to defining the various IRT models.

One-Parameter Model (1PL). Rasch (1960/1980) first developed his 1PL IRT model

by specifying that a person should be characterized by degree of ability, ξ, and an item by

a degree of difficulty, δ, with both being greater than zero. In addition, he believed that

the probability of getting an item correct should be “a function of the ratio, ξ/δ, . . . the

simplest function I know of, which increases from 0 to 1 as ζ goes from 0 to ∞, is ζ
1+ζ

. If

we insert ζ = ξ
δ

we get . . . ξ
ξ+δ

” (Rasch, 1960/1980, pp. 74-75).

The current one-parameter model (1PL) (sometimes called the Rasch model) has

κκκ
′
i = [α, βi] which means the kernel becomes α(θj − βi), yielding the 1PL version of (19):

f(xi;κκκi, θj) =
1

1 + e
−αM(θj−βi)

, (22)

where α has no index because it is held to be the same across items.

Some authors describe the 1PL model as having no α parameter, or, equivalently,

having α = 1 for all items. Thissen and Orlando (2001) write that this is not technically

correct, as the Rasch IRT model simply requires the discrimination parameter to be the

same across items. It might be that αi = 1
∀ i

, but it can be another number.

Although not previously explicated, θj and βi are on the same metric, so the

difference between the two is a continuous measure that provides an index of how difficult

item i should be for person j.

Two-Parameter Model (2PL). The two-parameter model differs from its

one-parameter counterpart in that it allows the item discrimination parameter, αi, to vary

across items, yielding:

f(xi;κκκi, θj) =
1

1 + e
−αiM(θj−βi)

, (23)

where, obviously, κκκ
′
i = [αi, βi].

An item discrimination parameter is needed when the items of a given test do not

equally measure how a person relates to the test’s latent trait(s).12 In more practical

terms, it allows a test’s ICC’s slopes to vary as a function of the ability level θj.
13 It will
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reach a maximum when θj = βi.
14 Consequently, a given item can best distinguish

between examinees whose ability, θj, is close to βi.

Three-Parameter Model (3PL). The three parameter model adds an additional

parameter to the 2PL model. This extra parameter, γi, allows the ICC to have a lower

asymptote greater than 0 (i.e., allows the probability of success for the lowest group to be

> 0) , hence it is sometimes called a “guessing parameter.”15

It is modeled as follows:

f(xi;κκκi, θj) = γi + (1 − γi)
1

1 + e
−αiM(θj−βi)

.
16 (24)

Following Thissen and Orlando (2001), the derivation of the γi parameter is as

follows. The probability that a person responds correctly to a test item is influenced by γi,

the probability that an examinee responds correctly, even if he/she does not know the

answer. More formally, if ιi is some threshold that, if exceeded, results in a correct item

response, and Yi is the response process, then the answer to item i, ui, is:

ui =






1, if Yi ≥ ιi

1, if Yi < ιi, with probability γi

0, if Yi < ιi, with probability 1 − γi

Consequently, the probability of a correct response, P (Xi = 1), can be bifurcated

(excluding M):
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γiP (Yi < ιi|θ) + P (Yi ≥ ιi|θ)

= γi[1 − P (Yi ≥ ιi|θ)] + P (Yi ≥ ιi|θ)

= γi[1 − exp[αi(θj − βi)]

1 + exp[αi(θj − βi)]
] +

exp[αi(θsj − βi)]

1 + exp[αi(θj − βi)]

= γi − γi
exp[αi(θj − βi)]

1 + exp[αi(θj − βi)]
+

exp[αi(θj − βi)]

1 + exp[αi(θj − βi)]

= γi + (1 − γi)
exp[αi(θj − βi)]

1 + exp[αi(θj − βi)]

= γi + (1 − γi)
1

1 + exp[−αi(θj − βi)]
.

There are problems with including a γi parameter, primarily a non-conversion in

parameter estimation (Embretson & Reese, 2002). Thus, it is not uncommon to have γi be

restricted to be the same across q items, where q is upper bounded by the total number of

items on a test. Another problem with using a γi parameter is that item difficulty, βi,

takes on a different meaning. Specifically, while it still is the point of inflection, it no

longer is the trait level where the probability of success is .50 because it is shifted by γi .

To be more specific, it is now the probability of a correct answer at (1 + γi)/2. Likewise,

the discrimination parameter is conceptually the same, but its mathematical form changes

so that at θj = βi, the discrimination parameter is αi(1−γi)
4 .

It is important to notice that in (24) the value of γi is not a function of θj .

Consequently, the guessing parameter acts the same across all ability levels (i.e., the

highest and lowest level examinees have the same probability of of getting an item correct

by guessing). While in theory 0 ≤ γi ≤ 1, “in practice, values values greater than .35 are

not considered acceptable” (Baker, 2001, p. 28).

When choosing an IRT model (or any other mathematical model), one must be

cognizant of how close the model fits the actual data. There are multiple indices, each of

which have their own (un)desirable characteristics (e.g., Beguin & Glas, 2001; Fox & Glas,

2005; Orlando & Thissen, 2000). As model fit is not the purpose of this manuscript, the

reader is directed to Chapters 8 and 9 of Hambleton and Swaminathan (1985) for some
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(introductory) walktroughs and Chapter 8 of du Toit (2003) for a more technically

detailed presentation.

IRT Parameters.

Estimating Examinee and Item Parameters Estimating model parameters is the

most difficult part of nonlinear regression, as it usually involves an iterative procedure

that can only stop when some convergent criterion is met (Schabenberger & Pierce, 2002).

Fortunately, this manuscript need not concern itself with estimation procedures, per se.

Except for some Bayesian methods (du Toit, 2003; Mislevy, 1986), parameter estimation

is usually done via Maximum Likelihood (ML) estimation or some permutation of ML.

Because ML estimates are used, then, the IRT parameters have many desirable properties,

such as being unbiased, having minimum variance, being consistent, and being able to

compute the parameters’ (co)variance from the inverse of Fisher’s (1922) Information

function. Much more detail can be found in Baker (1992), Hambleton, Swaminathan, and

Rogers (1991) and Lord (1980). The reader is especially encouraged to read Baker and

Kim (2004) for derivations of much of the calculus involved in IRT parameter estimation.

The Ability Parameter (θ) Hambleton and Swaminathan (1985) write:

Ability . . . is the label that is used to describe what it is that the set of test
items measures . . . [it] can be broadly defined aptitude or achievement variable
. . . , a narrowly defined achivement variable . . . , or a personality variable. (p.
55)

Obviously, because θ is a latent construct, it cannot be directly measured, thus tests do

not measure it in a absolute sense, like a ruler measures length. Instead, what can be

determined is relative positions of individual test takers on the θ continuum, which makes

θ’s scale arbitrary, and only the differences among the θs that have meaning (i.e., they are

on an interval scale; Stevens, 1951).

The difficulty parameter (β) The β parameter represents the difficulty of an item,

and is on the same scale as θ. Visually, it is the point along the abscissa on Figure 1

where f(xi;κκκi, θj) = γi+1
2 . Camilli and Shepard (1994) write:
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1. The scale of θ is often equivalent to that of z scores–roughly 99.9% of all
scores lie between -4 and +4. However, items for a particular test are usually
written so that most of the [βs] fall within the range of about -1.5 to +1.5.
2. A high positive [β] parameter means that the item is difficult. A large
negative [β] parameter means the item is easy.
3. The [βs] are measured in the same units as the θs, which are usually
considered to approximate an interval scale. Any linear transformation . . . of
the [β] scale requires an identical transformation of the θ scale.
4. When [βs] are estimated separately for two groups of examinees, each of the
the two sets of [βs] has an arbitrary scale, and the sets are, therefore, not
directly comparable. However, the two sets of [βs] bear a linear relationship if
the assumptions of the most widely used IRT models are correct, and
consequently a simple linear transformation can be used to convert the [βs] of
one group to the scale of the other group for purposes of comparison. (p. 53)

The discrimination parameter (α) Hambleton and Swaminathan (1985) write

The intercept parameter is directly related to the concept of item difficulty [in
CTT]. Also, [it] functions in a similar way to an item discrimination index in
classical test theory. The difference between the probabilities of a correct
response at any two ability levels increases directly with the value of [α].
. . . The discriminating power of the item is considerably better with the higher
[α] value. (p. 28-29).

As was shown earlier, item discrimination is best at about β, and, consequently, it

deteriorates as θ diverges from β.

Unlike the β parameter, the scale units of α is not the same as those of the θ, so it

does not make sense to compare αs with βs. In fact, the scale of the α is the inverse of β.

Thus, if β is multiplicatively transformed by a constant, say β
∗ = k × β, then, the

transformation to α
∗ from α is α

∗ = α/k. (Baker & Kim, 2004).

Invariance and Arbitrary Nature of of Item Parameters

As already stated, the most most important feature of IRT, at least as it relates to

the LFE, is the invariance of item parameters across groups. While the concept was

mentioned briefly when explicating the properties of IRT, its importance dictates a more

comprehensive explication.

A valid interpretation of the item response function, f(xi;κκκi, θj), is as a regression

of item score on ability (Lord, 1980). As is common with other regression models, in IRT
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the regression function remains unchanged when the ability distribution, h(θj), changes.

More explicitly, the probability of answering question i correctly from someone at ability

level θj depends only on θj, not the number of people with ability θj , nor the number of

people at ability θj′

j 6=j′
.

Since the regression is invariant, its lower asymptote, its point of inflexion, and
the slope at this point all stay the same regardless of the distribution of ability
in the group tested. Thus [αi, βi], and [γi] are invariant item parameters.
(Lord, 1980, p. 34, emphasis added)

This property of IRT is in dire contrast to CTT, where the item parameters differ for each

group tested. As will be developed later, this invariance property is extremely valuable for

assessing the LFE, as, in theory, item parameters should not differ between samples, even

if the samples take the test, say, 10 years apart.

Another property of items in IRT models is that the scale for θ is arbitrary. More

specifically, adding the same constant to θj and βi does not change the item response

function, thus the origin of θ is arbitrary. Moreover, multiplying the same constant to θj

and βi and the inverse of the constant to αi keeps the kernel of the item response function

(i.e., αi(θj − βi)) unchanged, meaning the scale, and hence the choice of unit, for

measuring ability is arbitrary as well.17 While infinitely many options are available, the

most common way to scale θ is to give it a mean of 0 and a variance of 1.

Lord (1980) notes that item parameter invariance holds “only as long as the origin

and unit of the ability scale is fixed” (p. 36). This is of great importance to the analyses

in this manuscript because, if a given IRT parameter, κi, is determined for a given set of

items from one group, R, and then, independently, from another group, F , there is no

reason to expect κiR = κiF
∀i

, although they should be related to each other. This is the issue

of equating, and is given much more consideration in the so-named section below. The

next sections will develop methods to detect differential item functioning and, then, turn

to test equating.
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Detection of Changing IRT Parameters

To understand the LFE through IRT methods, one must first understand the two

fundamental, and interrelated, concepts in IRT: differential item functioning (DIF) and

item parameter drift (IPD).

Differential Item Functioning (DIF)

Camilli and Shepard (1994) write that DIF is a specific type of

multidimensionality.18 It occurs when an item measures a dimension in addition to the

primary ability and when groups significantly differ on the secondary ability.

Multidimensionality, itself, is not sufficient for DIF. If the groups do not differ in their

distributions for one (or more) secondary abilities, neither group gets a “boost” by the

presence of the secondary dimensions, and, hence, DIF doesn’t exist.

Hambleton et al. (1991) define DIF in simpler terms, stating

An item shows DIF if the item response function across different subgroups are
not identical. Conversely, an item does not show DIF if the item characteristic
functions across different subgroups are identical. (p. 110)

Lord (1980) first observed that the ICC of an IRT model is ideally suited to study

DIF. He wrote,

If each test item in a test had exactly the same item response function in every
group, then people at any given level θ of ability or skill would have exactly
the same chance of getting the item right, regardless of their group
membership. Such a test would be completely unbiased . . . If, on the other
hand, an item has a different item response function for one group than for
another, it is clear that the item is biased . . . it seems clear from all this that
item response theory is basic to the study of item bias. (pp. 212-213)

As has been discussed, the IRT model can be interpreted as the conditional

probability that person j correctly responds to an item, given his/her ability level, θj .

DIF, using IRT parametrization, then looks to see if the IRT model differs between two

groups, usually termed focal (F) and reference (R) groups.19 More specifically, Lord

(1980) wrote that DIF detection can be approached by computing the item parameter

estimates, κκκi, within each group, and then testing to see if the item parameters differed
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between the groups after correcting for the possibility that θ’s distribution might differ

between the groups.

Figure 2 shows an example of what what DIF might look like between the Focal and

Reference groups. In this figure, the ICC for group R is shifted to the left of the ICC for

group F , indicating this item is easier for individuals in group F . Mathematically, this

means that κκκiF 6= κκκiR , or, more specifically, βiF < βiR . DIF is not constrained to be

different in only one parameter, though, and it is conceptually possible to have an item be

different in all three parameters across both groups.

Camilli and Shepard (1994), write that DIF can fall into two different categories:

1. Uniform or consistent DIF: . . . consistent DIF occurs when the ICCs for
two groups are different and do not cross. There is a relative advantage for one
group over the entire ability range. This is necessarily the case when two ICCs
have the same [α] parameter.
2. Nonuniform or inconsistent DIF: . . . the ICCs for two groups are different
but cross at some point on the θ scale. Therefore, the DIF for and against a
given group balance or cancel each other out to some degree. Positive and
negative DIF may cancel entirely . . . depending on the particular pair of ICCs.
(p. 59)

For either case, Camilli and Shepard (1994) write that there are two related

approaches used to examine DIF using IRT parameters. The first focuses on the

measurement of DIF, and an index is used to convey the magnitude of the DIF. In the

second, a statistical test is used to measure the significance of DIF, and the central

question is “Are the ICCs for two groups the same in the population?” (p. 64). Although

they measure different aspects of DIF, both aspects are important, as they provide a

different view of the same phenomenon.

Before delving into various methods for detecting DIF, and as previously stated in

the text, if parameters for two groups, completing the same item, are analyzed separately,

there is no reason to believe that the parameters will be the same because of their

arbitrary scaling. Nonetheless, they should be linearly related to each other. (See the

section on test equating for more detail.)

Magnitude of DIF.
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Area Indices The most visual expression of DIF is represented by the space between

the two ICCs, as shown by Figure 3. Obviously, then, items with larger area have larger

DIF. An easy way to measure the area is to use elementary (unidimensional) integration.

More explicitly, the area for ICCs that do not cross, sometimes called the signed area, is

∫ +∞

−∞

f(xiR ;κκκiR , θ) − f(xiF ;κκκiF , θ) dθ. (25)

When the focal group outperforms the reference group, the area will be negative. In the

instance where the ICCs do cross, (25) is slightly altered, and is renamed the unsigned

area, ∫ +∞

−∞

√
[f(xiR ;κκκiR , θ) − f(xiF ;κκκiF , θ)]2 dθ. (26)

When (26) is much larger than (25), this is an indication that the ICCs cross.

Raju (1990) later derived an exact expression for computing the between-ICC area

for the 1PL, 2PL, and (invariant γ across groups) 3PL models. The area for the 3PL is

Area = (1 − γ̂i) × Abs[
2(α̂Fi

− α̂Ri
)

(1.7)(α̂Fi
)(α̂Ri

)
ln[1 + e

(1.7)(bαFi
)(bαRi

)(bβFi
−bβRi

)bαFi
−bαRi ] − (β̂Fi

− β̂Ri
)]. (27)

To obtain the 2PL model, simple delete the (1 − γ̂i) term. For the 1PL model, it is simply

the absolute value of β̂Fi
− β̂Ri

.

Raju (1988) also developed the standard error for the derived area, and when the

area is divided by its standard error, it, approximately, is normally distributed; thus, a

standard normal table can give significance thresholds.

Significance of DIF.

Lord (1980) proposed the following test to detect DIF:

di =
β̂iF − β̂iR√

Var[β̂iF ] + Var[β̂iR ]
(28)

where di
n→∞∼ N(0, 1). In addition, he proposed that the same test could be run for αi.

20

Multivariately, Lord (1980) wrote that a general test of the joint difference between [αi, βi]
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for F and R is

D
2
i = vvv′iΣ

−1
i vvvi

21 (29)

where vvvi = [β̂iF − β̂iR , α̂iF − α̂iR ], Σ−1
i is the sampling (co)variance matrix of the

differences between item parameter estimates, and D
2
i ∼ χ

2
(2).
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General IRT-Likelihood Ratio (IRT-LR) Tests of significance using the IRT-LR

involve comparisons between the parameters in two nested models: the compact (κκκiC ) and

the augmented (κκκiA) models. As their names suggest, the augmented has all the

parameters of the compact one, in addition to the others that would be needed if DIF

existed (i.e., κκκiC ⊂ κκκiA). The goal, then, is to see if the parameters in κκκiA that are not in

κκκiC are equivalent to 000 (which serves as the null hypothesis in this test). The form of the

LR test is

G
2
df = 2 ln

[
Likelihood(fA)

Likelihood(fC)

]
(30)

where Likelihood [·] is the likelihood of the data, given the ML parameter estimates and

df is the difference in number of parameters between fA and fC (Thissen, Steinberg, &

Wainer, 1993). Of course, G
2
df ∼ χ

2
df under the null hypothesis and some very general

assumptions (Rao, 1973), so for any obtained value bigger than χ
2
df(α0), where α0 is the

probability of the Type I error, reject fC .

Although Thissen et al. (1993) give two uses for the G
2 statistic, only one need

concern this paper. They write,

to test DIF for item i, we compute the ML (Maximum Likelihood) estimates of
the parameters of the compact model (with no DIF for item i) and the
likelihood under that model, and the ML estimates and likelihood of the model
augmented by some parameters representing differences between the item i

parameters for the reference and focal groups. Then the likelihood ratio
statistic provides a test of the significance of DIF on [df ]. (p. 74)

Item Parameter Drift (IPD)

Thissen et al. (1993) write,

[In IPD studies] there are two (or more) groups of examinees, and the research
question is whether the item parameters, and therefore the trace lines [the
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ICCs] differ between or among the groups. The only real difference . . . is that
the drift question involves time, and . . . that the primary concern of the
analysis is with the item difficulty parameter. (p. 83)

Basically, the question that IPD studies seek to answer is if a given item has become

easier (or harder), more (or less) discriminating, and/or if the probability of a correct

answer due to guessing has changed over time. It is important to study because it

“threatens the validity of scores by introducing trait irrelevant differences over time,” and

failing to detect it disadvantages test takers as well as makes statements about trends in a

test questionable (Donoghue & Isham, 1998, p. 40).

Obviously, then, IPD is just a special type of DIF. Donoghue and Isham (1998)

write,

The problem of IPD is formally identical to that of DIF. Does the item
function the same in two sets of data? Whereas DIF analyses examine whether
items function differently in examinee subgroups . . . , IPD is particularly
relevant to time of testing, but the underlying question is the same. Thus, DIF

procedures may be used to assess IPD. (p. 33, emphasis added)

Donoghue and Isham (1998) compared various procedures to detect IPD. They

found three IRT-based procedures particularly useful in IPD detection: (a) Lord’s χ
2, with

γi constrained, which was developed earlier [see (28)]; (b) z(H), which is essentially the

same as a significance test for comparing the area between ICCs that Raju (1988, 1990)

developed; and (c) the Closed Interval Signed Area, constraining γ, an area measure

developed by Kim and Cohen (1991), very similar to the signed area in (25).

The key point to obtain from tests with items containing DIF (or drift) is that those

particular items are not measuring the same construct in the two populations; or, more

specifically, although they are measuring the same trait (i.e., the unidimensionality

assumption), they are not measuring it the same way.

Test Equating

As previously mentioned in the general text, if IRT parameters are estimated for

more than one group in separate analyses, they are not directly comparable, because the

scale of the θs (and βs) is arbitrary, although linearly related. Consequently, before the
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parameters are compared, they need a common metric. Finding a common metric is the

process of test equating. Hambleton et al. (1991) explain the process as follows:

Through [equating,] a correspondence between scores on X and Y is
established, and the score on test X is converted to the metric of test Y. Thus,
an examinee who obtains a score x on test X has a converted score y

∗ in test Y;
this score is comparable to the score y of an examinee taking test Y. (p. 123)23

In CTT, there are many assumptions that must be met before test scores can be

equated, but, using IRT, many of the problems are overcome as, by the invariance

property, “if the item response model fits the data, direct comparison of the ability

parameters of two examinees who take different tests is made possible” (Hambleton et al.,

1991, p. 125). More importantly for studying the LFE, though, IRT methods allow for

nonequivalent groups equating, which “has no counterpart in classical test

theory.”(Zimowski, 2003).

If, as much of the LFE contends, groups of individuals come from different ability

groups, then the individuals from the various groups can be placed on the same

underlying latent distribution via nonequivalent groups equating. This makes comparisons

especially easy, as, assuming the underlying latent distribution of intelligence is normal

(Burt, 1957; Jensen, 1998; but also see Burt, 1963), one can determine how many

standard deviations one group’s (average) cognitive ability is from another’s. The only

caveat, which will not affect LFE studies, is that either (a) there must be a subset of

common items in both forms, or (b) the same participants must take both forms of the

examination (Yu & Osborn Popp, 2005). With regard to the first, Zimowski (2003) writes

that these linking items should “have relatively high discriminating power, middle range

difficulty, and should be free of any appreciable DIF [or drift] effect.” In other words, they

need to measure the same underlying construct(s) the same way in both groups. With

regard to the second, more participants are better, preferably those spanning the entire

distribution of the latent trait, but especially the portion where most of the area resides.

The purpose of this text is not to explicate various methods for test equating. For

the interested reader, there are many sources available: Hambleton et al. (1991), pp.

136-144; Kolen and Brennan (1995), Chapter 6; Hambleton and Swaminathan (1985),
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Chapter 10; and Cook and Eignor (1991). For a particulary informative walk-through of

both item and person equating, see Yu and Osborn Popp (2005).
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Chapter 3

METHOD

The purpose of this study is to demonstrate the use of IRT methods in assessing the

LFE. More specifically, this text seeks to show how IRT methods can be used to determine

whether the increase in mean IQ scores across time (i.e., the LFE) is due to a co-occurring

increase in intelligence or if it is due to a psychometric artifact. To that end, this study

will assess the LFE in both simulated and real test scores via CTT and IRT methods.

Study 1

Data Generation.

Using the SAS macro IRTGEN (Whittaker, Fitzpatrick, Williams, & Dodd, 2003),

dichotomous data was generated according to the 3PL IRT model. An infinite amount of

item parameters distributions could be used to generate the items, but for this study the

item parameter distributions will be:

α = 1

β ∼ N(0, 1)

γ = .1

and examinee distribution :

θ ∼ N(0, 1).24

The particular parameters for this original group were chosen for both their innate

simplicity as well as the ease of interpretation when comparing to other item generations.

The sample size for this, and all other simulated samples, is 1000 and the number of

items will be 60, which is approximately the number of items analyzed on the CBASE in

the second data analysis. (For SAS code, see Appendix B).
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Comparison Samples As the time span for the two forms of the CBASE is

approximately six years, the following changes in item and trait levels for the simulated

data were used to evidence both a real increase in intelligence and psychometric artifacts

that mask themselves as the LFE over approximately six years.

Psychometric artifact: Increase in guessing. The purpose of this data

generation will be to produce an artificial increase in intelligence from the the original

sample. This will be produced by uniformly increasing the γ parameter to .15. The α, β,

and θ values will be the exact same as in the original sample.

Psychometric artifact: Decrease in difficulty. The purpose of this data

generation will be to produce an artificial increase in intelligence from the original sample.

This will be produced by decreasing the location parameter value for the β distribution to:

β ∼ N(−.1, 1). The α, γ, and θ values will be the exact same as in the original sample.

Psychometric artifact: Increase in guessing and decrease in difficulty.

The purpose of this data generation will be to produce an artificial increase in intelligence

from the the original sample by combining both an increase in guessing as well as a

decrease in (average) item difficulty. This will be produced by both uniformly increasing

the γ parameter value to .15 and decreasing the location parameter value for the β

distribution (i.e., β ∼ N(−.1, 1)). The α and θ values will be the exact same as in the

original sample.

Real rise in intelligence. The purpose of this data generation will be to mimic

the original sample, but with an actual increase in intelligence. This will be produced by

increasing the value of the location parameter for the distribution of θ .14 of a standard

deviation (i.e., θ ∼ N(.14, 1)). The item parameter values will be the exact same as in the

original sample. The reason .14 was used is that, assuming intelligence goes up .3̄ IQ

points a year (Flynn, 1984, 1987, 1999), this is the approximate increase in six years (i.e.,

(.14)(15)
3 ≈ 6).

Data Analysis.
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CTT Analysis The CTT analysis mimicked that normally done with peer-normed

tests. More specifically, the mean, µ0, and standard deviation, σ0, was obtained from the

first 1000 examinees taking the original simulated examination. Then, with the

subsequent comparison sample generations, each individual’s score was placed on the

original sample’s metric. The samples were then averaged to determine the overall mean

score increase (i.e., determine the size of the LFE).

IRT Analysis IRT allows for multiple types of analyses, the full scope of which are

beyond the purposes of this study. Since it is known, a priori, what items contain drift

and this study is not a study on methodology of drift analysis, the focus will be on using

IRT to obtain more accurate examinee scores. To that end, the situation is akin to that of

vertical test equating (See the Test Equating section in the literature review).

For vertical test equating there needs to be common items, without DIF/drift, in

each item subset. Consequently, the last five items from the original test simulation

replaced the last five items for the other test simulations, except the real increase in the

latent trait group, whose last five items were originally specified to be the same as those in

the original group. This allows for 60 items to remain for each test as well as ensures that

the real parameters for the equating items are (a) the exact same, and (b) a random

selection from the “parameter space” of items. All IRT analyses were carried out in

BILOG-MG (Zimowski, Muraki, Mislevy, & Bock, 1996). BILOG-MG estimates the item

parameters of 2PL and 3PL models using marginal maximum a posteriori estimation,

which allows a side-stepping of any possible Heywood cases (du Toit, 2003, pp. 601-602).

For examinee’s ability scores, BILOG-MG uses maximum likelihood estimation,

maximizing the likelihood function via the Newton-Raphson estimation procedure (du

Toit, 2003, pp. 606, 833-834).

Study 2

Data Generation.

Data came from the College Basic Academic Subjects Examination (CBASE;

Osterlind & Merz, 1990; Osterlind, Sheng, Juve, Beaujean, & Nagel, in preparation). The
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CBASE is a criterion-referenced achievement test that assesses an examinee’s knowledge

and skills in English, mathematics, science, and social studies. It is designed for college-age

students; thus, they make up the majority of the examinees in the data set. An extensive

review of the CBASE can be found in pp. 102-111 of Juve (2004). For this particular

investigation, in an attempt to control for heterogeneity of the data, only respondents who

took the examination as part of their teaching credentialing process were used.25

The CBASE data for this project came from the Mathematics domain because

Osterlind and Beaujean (2005) found that it had both the highest reliability estimates and

factor loadings on g of all the subjects (see Tables 2 and 3). In addition to the desirable

psychometric properties, to date, there has been no investigation of the LFE with CBASE

data, although the test has been administered for over 10 years (Osterlind & Merz, 1990;

Osterlind et al., in preparation). Moreover, while more verbal academic subjects such

reading and spelling have not shown evidence of the LFE, mathematic achievement tests

have (Scott, Bengston, & Gao, 1998). Thus, the mathematics section of the CBASE

appears to be a viable instrument to demonstrate the investigation of the LFE using IRT

methods.

The CBASE forms used were LK and LO. For the CBASE data available, they have

the largest time-span between them, being administered in 1996-1997 and 2000-2001,

respectively. The two forms have a relatively large subset of items in common, 16. For the

CBASE data available, form LK had 619 respondents, while form LO had over 5500.

Consequently, a random sample of 619 was selected from LO to give equal sample sizes for

both groups.

CTT Analysis.

The CTT analysis followed the same procedures as with the simulated data.

Namely, the mean and standard deviation was obtained for all examinees taking form LK,

then were used to create a standardized deviation score for form LM. The standardized

deviation scores were then averaged for form LM to assess the magnitude of the LFE.

IRT Analysis.

For the IRT analysis, the item parameters were estimated via BILOG-MG
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(Zimowski et al., 1996) for all the items in the Mathematics domain. Then the 16 common

items across forms were compared for DIF/drift using two of the methods suggested by

Donoghue and Isham (1998): Lord’s χ
2 and the z(H), which assess the significance of area

between group ICCs (Raju, 1988, 1990). Any items not exhibiting DIF/drift were used as

anchor items, and the two forms of the test were equated, then the latent trait scores

compared.
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Chapter 4

RESULTS

The purpose of this study was to demonstrate the use of IRT methods in assessing

the LFE. More specifically, this text sought to show how IRT methods can be used to

determine whether the increase in mean IQ scores across time (i.e., the LFE) is due to a

co-occurring increase in intelligence or if it is due to a psychometric artifact. To that end,

this study assessed the LFE in both simulated and real test scores via CTT and IRT

methods.

Study 1

The first study involved data simulation. As detailed in the Method section, 1000

examinees were generated with an underlying standard normal trait distribution. These

examinees took three different simulated tests of 60 items each. The differences between

the tests were minor, and are detailed above. Next, 1000 different examines were

generated with a N(.14, 1) trait distribution and given the same simulated test as the

original group of 1000 examinees. This process was repeated 100 times. The item scores

were then analyzed via CTT and IRT methods.

CTT Analysis. For the CTT analysis, the answers for the first group of examinees

taking the original test were summed and the mean and standard deviation of the

summed scores were calculated.26 Next, for each of the other tests, the mean and

standard deviation of the initial sample (who took the original test) were used to generate

a standardized deviation score, and the average of this score was used as the indicator of

the magnitude of the “true score” increase.

The averaged values for each of the 100 iterations can be found in Table 4. At the

bottom of the table is the average “true score” increase for each of the four groups. As

can be seen from the table, the mean score for the true latent score increase (.135) is

practically indistinguishable from the group with only a (mean) decrease in the items’ β

parameters, as well as the group with only the γ parameter increased .05 units (.117 and
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.149, respectively).27 Thus, using CTT methods, a true increase in the latent trait

(intelligence) is indistinguishable from samples with no increase in the latent trait, but

with very minor perturbations in the item’s properties (i.e., psychometric artifacts).

IRT Analysis.

Since only two of the three psychometric artifact groups were indistinguishable from

the true increase in latent ability group, only those groups were compared in the IRT

analysis. The averaged values for each of the 100 iterations can be found in Table 5. At

the bottom of the table is the average latent variable increase for each of the three groups.

As can be seen from the table, the mean score for the true latent score increase (.101) is

very different from either of the psychometric artifact groups (.01 and .003,

respectively).28 Thus, using IRT methods, a true increase in the latent trait is

distinguishable from (very small) psychometric artifacts.

Of particular note, though, were two iterations that indicated the latent trait score

was higher in the psychometric artifact groups than in the true increase group (see

iterations marked with a + in Table 5). Moreover, there were some iterations whose

average latent trait score for the true increase group was substantially different from the

true value of the increase in the latent variable (see iterations marked with a * in Table 5).

The cause for these anomalies is unknown, and needs further investigation in future LFE

simulation studies.29

Study 2

The second study involved data from the College BASE examination (Osterlind et

al., in preparation). As detailed in the Method section, two forms of the CBASE were

used, form LK and form LO. Form LK was administered during 1996 and 1997, while

form LO was administered during 2001 and 2002. 619 respondents from both form LK

and form LO were used.

CTT Analysis.

Descriptive statistics for the CTT analysis are given in Table 6. As can be seen from

the table, there appears to be a reverse LFE, with a standardized increase of -0.178.
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As the use of IRT to assess the LFE is unaffected by the direction of the effect, the

same procedures outlined in the Method section to assess the LFE via IRT were used to

see if the (reverse) LFE is a psychometric artifact or a real change in the latent trait.

IRT Analysis.

For the IRT analysis, first the items were rearranged so that of the p total items, the

r items in common were first, then the p − r items left over were placed in order of

appearance on the CBASE examination. See Table 9 for item labels and orders.

For the 16 items common to both forms, DIF/drift analysis was run using

BILOG-MG to obtain initial parameter estimates, separately, for each form using a 3PL

model. The forms were then linked via ITERLINK (Stark, Chernyshenko, Chuah, Lee, &

Wadington, 2001), a program that also computes Lord’s (1980) χ
2 statistic for each item,

assessing both the α and β parameters.30 Using a Bonferroni adjusted α of .00313 (i.e.,

.05
16 ), none of the items exhibited DIF/drift, although two items (index numbers 8 & 12 in

Table 9) did when α was kept at .05.

To obtain the area statistics derived by (Raju, 1988, 1990), the (transformed) α and

β estimates obtained from the Lord’s (1980) χ
2 analysis were used, constraining all γs to

.001.31. The values are presented in Table 8, and, as with the analysis using Lord’s χ
2,

items 8 and 12 are the only ones with significantly different parameter values.

At this point, one could do another DIF/drift item analysis using IRT-LR (Thissen

et al., 1993) as it assesses for differences in the γ parameter, but looking at the values in

Table 7 there is no need to do so. The only possibly problematic item, with respect to the

γ parameter, is number 4, and it can be excluded from the set of linking items, as can the

items indexed as number 8 and 12, and still leave 13 items in the linking subset.

The last step is to vertically equate forms LO and LK of the CBASE. As three of

the common items of both forms showed slight DIF/drift, they will be excluded from the

linking subset and be treated as if they were not common across forms. When the data

was run in BILOG-MG, the mean standardized deviation for the θ on form LO was -0.222,

with a standard deviation of 1.129. Thus, it appeared that the value obtained from the

CTT analysis was an underestimate of the true latent score change.

37



Chapter 5

DISCUSSION

The purpose of this study was to demonstrate the use of IRT methods in assessing

the LFE. More specifically, this text demonstrated how IRT methods can be used to

determine whether the increase in mean IQ scores across time (i.e., the LFE) is due to a

co-occurring increase in intelligence or if it is due to a psychometric artifact. To that end,

this study assessed the LFE in both simulated and real test scores via CTT and IRT

methods, and, at least for the simulated items under the parameters used for this study,

showed IRT’s superiority in assessing the LFE.

To reiterate, the simulation study found that CTT methods could not distinguish

between a real change in underlying ability and when items (slightly) changed, but ability

stayed the same (see Tables 4 and 5). Interestingly, there were two iterations where IRT

methods indicated that latent ability in the groups with slight item parameter

perturbations was higher than the group with a true increase in latent ability, a

phenomenon that merits future inquiry. Still, for the vast majority of the iterations, IRT

methods were able to discriminate item perturbations from latent ability increase, a

finding without replicate with the CTT methods.

In the study of the CBASE Mathematics section, the study found that there were

only a few items that, possibly, exhibited DIF/drift. More importantly, it found that there

was a reverse LFE of the magnitude of .222 standard deviations, which, on the College

BASE metric (µ: 300, σ: 65), means that the average Mathematics ability decreased from

300 to approximately 286 from 1996 to 2001.32 This finding could be a product of the

sample used, as it was made up of education majors; more likely, though, it is indicative a

“newer” trend in cognitive abilities, namely a reverse LFE (Sundet et al., 2004; Teasdale

& Owen, in press; for a more historical perspective, see Lynn, 1997). It goes without

saying that this is in need of much more systematic investigation.
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Significance of Study

This particular study is a significant contribution to the LFE literature in two ways.

First, to the author’s knowledge, it is the first instance of using methods derived from IRT

to assess the LFE. Second, this study showed that under a given set of “true” parameters,

methods derived from CTT are impotent in discriminating between psychometric artifacts

and a real increase in the latent trait (i.e., cognitive ability). While other authors have

surmised that the LFE is merely a psychometric artifact (e.g., Brand, Freshwater, &

Dockrell, 1989; Brand, 1996; Rodgers, 1999), they have relied on analyses from CTT.

Combining the two major two findings of this dissertation, this then leads to the

conclusion that future research looking at the LFE needs to assess whether IRT-based

methods could/should be used analyze the data.

Limitations

As with any simulation study, only a small sample of the parameter domain can be

sampled, and this limitation holds for this study as well, especially as the α parameter was

not varied, and only one increase in the γ was used. Future studies need to directly

investigate the influence of the α parameter with respect to the LFE, as well as model

how various fluctuations in the γ parameter evidence themselves. In addition, given that

the CBASE portion of this study (Study 2) found a reverse LFE (i.e., a dysgenic trend;

Burt, 1952; Lynn, 1997), future simulation studies need to specifically model a decrease in

cognitive ability; particulary useful would be studies that model a decrease in cognitive

abilities, with both mean difficulty decreasing and guessing increasing to see if CTT

methods still evidence the LFE.

The simulation portion of this study used a forced choice response format. While it

is the format used in many cogntive ability tests (e.g., Raven’s Matrices), is not the

response format for all given cognitive abilities instruments (e.g., Wechsler scales). Thus,

free recall formats need investigation in the future, wherein there is no guessing modelled

in the response model. This study simulated its items under an underlying IRT model, as

used in IRTGEN (Whittaker et al., 2003). Future studies should address whether the

similar findings are obtained using items simulated from CTT models. Last, it would be
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beneficial to run similar simulation studies using more iterations, say 500 or 1000.

With regard to the CBASE study, the limitations were mentioned in the text,

namely that only a subset of items were used and only a select group of respondents’ data

was analyzed. Future studies with the CBASE should address whether the (reverse) LFE

is extant in the other domains. Likewise, it would be beneficial to examine other samples

who took the CBASE over multiple years.

Concerning the manuscript in general, the most significant limitation is that item

responses were modelled using the 3PL IRT model. While this model has found much

support in the literature, especially in the achievement and cognitive abilities domains, it

is not the only model available, and future studies could address simulation (and

subsequent analysis) of data using other models.

Implications & Future Research

Although this simulation study gave evidence as to the injudicious practice of using

CTT methods to assess the LFE, this finding should not be over interpreted. More

specifically, this finding gives no evidence as to whether the LFE (or its reverse) is

actually occurring or whether it really is a psychometric artifact. While the second study

using the CBASE data provides evidence for the former, more research is needed before

more definitive statements can be made, especially with respect to the effect’s direction.

What the simulation study did show, however, was that CTT methods appear to be

unable to distinguish between an actual change in underlying ability and a change in the

items that measure said ability, at least under certain conditions. When the effect is due

to a true underlying change in abilities, though, the two assessments should be similar, as

was found with the CBASE study.

Future studies will need to address the effect of IRT model parametrization on LFE

analysis. While this paper consistently used, and simulated data under, the 3PL model, it

is by no means the only one available (for examples, see du Toit, 2003; van der Linden &

Hambleton, 1997). In addition, the reason for the two anomalous simulation iterations,

where the IRT analysis indicated a psychometric artifact group’s latent average ability

was higher than the group with a true increase, needs further investigation. Moreover,
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although the DIF/drift tests used were the ones supported by the literature (Donoghue &

Isham, 1998), it might be beneficial to incorporate other measures in future analyses.

With the en masse distribution of personal computers and the user-friendly software

available, IRT analyses of LFE data is not much more difficult, or least not much more

time consuming, the the more traditional CTT analysis. Thus, it is hoped that IRT

analysis will begin to make its way into this field. Of course, the one caveat in using IRT

methods is that item-level data is needed instead of the more common summed and

standardized scores, but with some pre-planning, this should not be too difficult to collect.
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Endnotes

1For definitions, see Appendix A.

2Note. Sir Cyril Burt (1952) first hypothesized that the rise in psychometric IQ was
due to a psychometric artifact instead of a real increase in intelligence. At the time, work
in psychometrics had not developed enough to allow him to fully test the hypothesis, so he
had to use ancillary evidence to support his argument. Later, Brand, Freshwater, and
Dockrell (1989; cf. Brand, 1990, 1996) analyzed item data and concluded much as Burt
did, namely that the effect appears to be an artifact, but the methods are those arising
post-hoc from Classical Test Theory (for a critique, see Flynn, 1990)

3In other texts, this effect is sometimes referred to as simply the Flynn Effect. This is
(mainly) due to the fact the Herrnstein and Murray (1994) coined the term in their
widely-read book on the importance of IQ in determining life outcomes. In actuality, both
Richard Lynn and James Flynn deserve credit for the finding, as (Lynn, 1982) first
brought the effect to the world’s attention, even though the effect was seen over a
half-century earlier (Smith, 1942; Tuddenham, 1948). This text will follow the
recommendation made by Rushton (1997) and keep the effect entitled Lynn-Flynn Effect.

4

Proof.

COV[Xi, Ti] = COV[(Ti + ε), Ti]

= VAR[Ti] + COV[ε, Ti]

= VAR[Ti]

5Even though Ti is unobservable, as ε → 0, ↑ rxx
rxx∈[0,1]

so that, for a perfectly reliable

test (i.e., rxx = 1), Xi = Ti.

6One need not stop at just 1 bifurcation. The formula can be generalized to m

differnt splits, each having n
m

items. Becasue the focus of this paper is not CTT, no more
detail will be presented.

7In practice, this turns out to just divinding the sum of each item’s variance by the
test’s total varaiance. Then, take one minus this product and multiply by n

n−1 .

8The equivalency is sometimes called having τ -equivalent tests because the Greek
letter τ replaces Ti in the population-based formula.

9There is also a weaker local independence assumption; for more information, see pp.
94-95 of Nandakumar and Ackerman (2004).

10There are multiple other terms used to describe this parameter. While this makes
sense when dealing with such things as rating scales, it does not necessarily carry over into
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achievement and cognitive ability assessment. Consequently, this text will keep with
tradition and refer to it as the ability parameter.

11While the two functions are very similar, they are not the exact same, especially in
the asymptote. Nonetheless, Lord (1980) writes, ”The two models · · · [when corrected]
give very similar results for practical work” (p. 14).

12For a more philosophical treatise, see pages 90-91 of Thissen and Orlando (2001).

13Baker (2001) writes that, technically, αi is not the slope of the ICC, but rather αi

4 is
the slope at θj = βi. Nonetheless, αi ∝

αi

4 , so, conceptually, αi can be thought of as a close
approximation of the ICC slope at βi. In theory, −∞ ≤ αi ≤ ∞, but, in practice αi ≤ |3|.

As a further footnote, if the items on a test are scored as correct = 1 and incorrect
= 0, then for any αi ≤ 0 the ICC implies that the probability of correctly answering a
given item decreases as ability increases. Or, to quote Baker (2001), “This tells you that
something is wrong with the item: Either it is poorly written or there is some
misinformation prevalent among the high ability students” (p. 33).

14

Proof.

f(xi;κκκi, θj) =
1

1 + e
−αiM(θj−βi)

, and is monotonically increasing from 0 to 1

∂f(·)
∂αi

=
M(θj − βi)e

−αiM(θj−βi)

(1 + e
−αiM(θj−βi))2

0 =
M(θj − βi)e

−αiM(θj−βi)

(1 + e
−αiM(θj−βi))2

=
M(θj − βi)

2 + e
−αiM(θj−βi) + e

αiM(θj−βi)
⇔ 0 = (θj − βi)

15Lord (1968) opines that γi should not be interpreted as a guessing parameter, but
rather the lower bound for the ICC. He is correct, but due to its common usage, γi will
continue to be entitled the guessing parameter in this manuscript.

16This parameterization is the same (after a little algebraic manipulation) as seen in
other books (e.g., Lord, 1980), namely:

f(xi;κκκi, θj) = γi +
1 − γi

1 + e
−αiM(θj−βi)

(31)

17

Proof 1.

f(xi;κκκi, θj) ∝ h(γi) + α(θ − βi)
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where h(γi) is the modification due to a guessing parameter.
Choose any δ ∈ R and add it to both θ and βi. The new item response function, f

(1)

is then

f
(1)(xi;κκκi, θj) ∝ h(γi) + α([δ + θ]− [δ + βi])

∝ h(γi) + α(δ + θ − δ − βi)

∝ h(γi) + α(δ − δ + θ − βi)

∝ h(γi) + α(0 + θ − βi)

= f(xi;κκκi, θj)

Proof 2. Let f(xi;κκκi, θj) be defined as in Proof 1. Choose any δ ∈ R and multiply it to
both θ and βi and multiply αi by δ

−1. The new item response function, f
(2), is then

f
(2)(xi;κκκi, θj) ∝ h(γi) + δ

−1
α([δ]θ − [δ]βi)

∝ h(γi) + δ
−1

α(δ[θ − βi])

∝ h(γi) + δ
−1

α(δ)(θ − βi)

∝ h(γi) + δ
−1(δ)α(θ − βi)

∝ h(γi) + 1 × α(θ − βi)

= f(xi;κκκi, θj)

18The study of DIF originally developed in response to the plethora of criticisms
targeted against standardized assessment, namely that it was biased against certain ethnic
groups (Holland & Wainer, 1993). The area of bias research, whether in psychometrics or
outside the field, tends to be highly political in nature, and need not concern this text.
For the purposes here, it is sufficient to say that DIF is necessary, but not sufficient, for
bias to exist (Camilli & Shepard, 1994).

19There are CTT parameterizations for DIF studies as well, but they need not
concern this manuscript. For more information on them, see Camilli and Shepard (1994)
and Holland and Wainer (1993).

20Lord (1980) did not consider the γi parameter, as he wrote they should be
constrained to be equal across groups.

21Thissen et al. (1993) cite problems with Lord’s procedure, as do Hambleton et al.
(1991); both authors, though, keep Lord’s (1980) definition of DIF.

22More specifically, ΣΣΣ−1 is computed as follows. The item information matrix is
computed for each group, then inverted. Finally, the (co)variance matrix of each group is
added, which yields the (co)variance matrix of the difference between the estimates.
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23Technically, using an IRT framework means that items, if they measure the same
ability, do not need equating, but rather a re-scaling. Nonetheless, due to the popularity
of the moniker equating, the terms are used interchangeably.

24Note. α will be constrained to be a constant, 1, for this study, as when it gets very
low or very high, it interacts with the β and γ parameters to produce (random) deviations
from the expected effects of altering those same parameters (Baker, 2001). Future studies
will need to address the impact of a random α parameter.

25The CBASE is used in some states as a proficiency examination for
teachers-in-training, whereby passing at a certain level is required before they can obtain
a teaching license. The CBASE is given for many other reasons, too; for more
information, see Osterlind et al. (in preparation).

26As the items were dichotomous, the summed score is simply the number correct
score.

27A planned contrast between the Xβ and Xθ groups was not significant (t=1.658,
df=396, p=.098), nor was a planned contrast between the Xγ and Xθ group (t=-.801,
df=396, p=.424). A planned contrast between the Xβ,γ group and the Xθ group was
significant (t=-7.123, df=396, p < .001).

28A planned contrast between the Xβ and Xθ groups was significant (t=13.655,
df=297, p <.000), as was a planned contrast between the Xγ and Xθ group (t=14.551,
df=297, p <.000).

29Note. All of the anomalous cases were checked to make sure the data was both
stored and imputed into BILOG-MG correctly. In addition, different models (e.g., 1PL,
2PL) were run for the data. Neither action produced any (significant) changes in the
estimates.

30The estimated values for the location and scale parameters are -.216487 and
1.043299, respectively. Thus to get form LO’s α and β parameters on LK’s “metric” use
the following relationships:

αLK =
αLO

A

, (32a)

βLK = AβLO + K (32b)

where K and A are the location and scale values, respectively.

31From Table 7 it can be seen that, with the possible exception of the item indexed as
number 4, no γ parameter is (much) different from this value.

32One could make the argument that since the mathematics tasks loaded so highly on
the g factor (see Table 2), that it was general intelligence that decreased over the time
period.
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Appendix A

DEFINITIONS

Classical Test Theory (CTT). Also known as true-score theory, it is the realm of

psychometrics concerned with modelling an examinee’s latent ability on an entire test.

Item procedures in CTT are post-hoc and heavily sample-dependent.

Item Response Theory (IRT). A modern extension of CTT, where the primary

concern is modelling item responses. Item procedures are built into the theory, thus are

independent of a given sample.

Examinee Ability (θ). The latent examinee variable in IRT that is equivalent to

the true score in CTT. Its domain is −∞ to +∞.

Item Difficulty (βi). The item location parameter in IRT models, expressed in θ

units, that indicates the point on the θ scale at which the probability of a correct response

is .50. Its domain is −∞ to +∞.

Item Discrimination (αi). The item scale parameter in IRT models, that indexes

the discrimination ability of an item. Its domain is −∞ to +∞.

Guessing parameter (γi). The lower asymptote value for an item where the

probability of answering an item correctly for low ability examinees does not reach 0. Its

domain is 0 to 1, but most values do not exceed .35.

Lynn-Flynn Effect. The observation, made by both Richard Lynn and James

Flynn, that psychometric IQ scores have increased over time, at least since the 1940s.
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Appendix B

COMPUTER CODE

SAS Code

Code for ith iteration of generating random Item Parameters and IRTGEN for all
populations: (a) α = 1; β ∼ N(0, 1); γ = .1; (b) α = 1; β ∼ N(−.1, 1); γ = .1; (c) α = 1;
β ∼ N(0, 1); γ = .15; and (d)α = 1; β ∼ N(−.1, 1); γ = .15. For the first four generations,
θ ∼ N(0, 1), and the for the fifth generation, θ ∼ N(.14, 1).

title ’i original’;

DATA original;

KEEP A B C;

do i=1 to 60;

A = 1;

B = NORMAL(0);

C = .1;

output;

end;

ODS HTML body=’C:\ ...\ i OriginalParameters.html’;

proc print;

run;

ODS HTML close;

%IRTGEN(MODEL=L3, DATA=original, OUT=oneoriginal, NI=60, NE=1000);

ODS HTML body=’C:\ ...\ i original.html’;

proc print;

run;

ODS HTML close;

quit;

LIBNAME mylib ’C:\ ...\ ParameterFiles’;

DATA mylib.THETA;

set oneoriginal;

keep THETA;

run;
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title ’i beta’;

DATA beta;

KEEP A B C;

do i=1 to 60;

A = 1;

B = NORMAL(0) - .1;

C = .1;

output;

end;

ODS HTML body=’C:\ ...\ i BetaParameters.html’;

proc print;

run;

ODS HTML close;

%include ’C:\ ...\ THETA’;

%IRTGENTheta(MODEL=L3, DATA=beta, OUT=onebeta, NI=60, NE=1000);

ODS HTML body=’C:\ ...\ i beta.html’;

proc print;

run;

ODS HTML close;

quit;

title ’i gamma’;

DATA gamma;

set original;

keep A B C;

C = .15;

ODS HTML body=’C:\ ...\ i GammaParameters.html’;

proc print;

run;

ODS HTML close;

%include ’C:\ ...\ THETA’;

%IRTGENTheta(MODEL=L3, DATA=gamma, OUT=onegamma, NI=60, NE=1000);

ODS HTML body=’C:\ ...\ i gamma.html’;

proc print;

run;

ODS HTML close;

quit;
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title ’i betagamma’;

DATA betagamma;

set beta;

KEEP A B C;

C = .15;

ODS HTML body=’C:\ ...\ i BetaGammaParameters.html’;

proc print;

run;

ODS HTML close;

%include ’C:\ ...\ THETA’;

%IRTGENTheta(MODEL=L3, DATA=betagamma, OUT=onebetagamma, NI=60, NE=1000);

ODS HTML body=’C:\ ...\ i betagamma.html’;

proc print;

run;

ODS HTML close;

quit;

title i thetaincrease’;

data thetaincrease;

set original;

keep A B C;

%include ’C: ... THETA.sas’;

%IRTGENTheta(MODEL=L3, DATA=thetaincrease, OUT=origthetain, NI=60,

NE=1000);

ODS HTML body=’C:\ ...\ i thetaincrease.html’;

proc print;

run;

ODS HTML close;

quit;
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SAS code for the THETA program; θ ∼ N(.14, 1)

DATA THETA;

keep THETA;

Do i=1 to 1000;

THETA=Normal(0)+.14;

OUTPUT;

END;

RUN;
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BILOG-MG Code

Lynn-Flynn Effect Program

>COMMENTS

Groups i and i
′.

>GLOBAL DFName = ’C: \ ...\ [filename].dat’,

NPARM=3, SAVE;

>SAVE SCORE=’output.SCO’; >LENGTH NITEMS=115;

>INPUT NTOT=115, NGROUPS=2, NIDCH=4;

>ITEMS INUM=(1(1)115);

>TEST TNAME=SIMUL;

>GROUP1 GNAME=’Original’, LENGTH=60, INUM=(1(1)60);

>GROUP2 GNAME=’comparison’, LENGTH=60, INUM=(56(1)115);

(4A1,I1,115A1)

>CALIB NQPT=51, NORMAL, CYCLE=30, TPRIOR, REFERENCE=1;

>SCORE METHOD=2, IDIST=3, NOPRINT, RSCTYPE=3;
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Program to obtain item parameters to get Lord’s χ
2 values (Note. Program

needs to be run separately for each CBASE form.

>COMMENTS

>GLOBAL DFName = ’C: \ ...\ [filename].dat’,

NPArm = 3,

LOGistic,

SAVe;

>SAVE CALib = ’Lord.CAL’,

PARm = ’Lord.PAR’,

COVariance = ’Lord1.COV’;

>LENGTH NITems = (16);

>INPUT NTOtal = 16,

NALt = 1000,

NIDchar = 4;

>ITEMS ;

>TEST1 TNAme = ’TEST0001’,

INUmber = (1(1)16);

(4A1, 16A1)

>CALIB ACCel = 1.0000;

>SCORE ;
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Table 1

Sample of Studies Examining the Lynn-Flynn Effect

Dates

(or time between)

Study Instrument(s) testing N Differences

(Bolen et al., 1995) 1 WISC-R (FSIQ) 2.5-3 years 61 5.20

WISC-III

(Bolen et al., 1995) 2 WISC-R (PIQ) 2.5-3 years 61 9.21

WISC-III

(Bolen et al., 1995) 3 WISC-R (VIQ) 2.5-3 years 61 7.95

WISC-III

(Kanaya, 2004) 1 WISC ∼ 3 years 436 3.92

WISC-R

(Kanaya, 2004) 2 WISC-R ∼ 3 years 598 6.15

WISC-III

(Must et al., 2003) Grade 3 IEA 1994/1999 522 2.42

(Must et al., 2003) Grade 8 IEA 1994/1999 522 4.4

(Sanborn et al., 2003) 1 WJ-R 8 weeks 40 2.031

WJ-III

(Sanborn et al., 2003) 2 WISC-R 3 years 169 8.561

WISC-III

(Daley et al., 2003) RCPM 1984/1998 C1: 118 4.5

” ” C2: 537

(Daley et al., 2003) 1 VMT ” ” ” ” 2.57

(Daley et al., 2003) 2 DS ” ” ” ” .39

Continued on next page
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Sample of Studies Examining the Lynn-Flynn Effect– continued from previous page

Dates

(or time between)

Study Instrument(s) testing N Differences

(Colom et al., 2005) PGT 1970/1999 C1: 459 9.73

” ” C2: 275

(Colom et al., 2005) PGT ” ” ” ” 6.54

(Colom et al., 2005) PGT ” ” ” ” 2.55

(Truscott & Frank, 2001) 1 WISC-R (FSIQ) ∼ 3 years 171 6.936

WISC-III

(Truscott & Frank, 2001) 2 WISC-R (VIQ) ∼ 3 years 171 6.266

WISC-III

(Truscott & Frank, 2001) 3 WISC-R (PIQ) ∼ 3 years 171 7.316

WISC-III

1. In original study, the authors split the analysis by IQ. As the LFE was evidenced across

all IQ levels, and there was no IQ × test interaction, only results for the complete

sample are given in the table.

2. In original study, the authors report subscale results as well, which all show the same pattern

as the summery scores in table.

3. These are IQ points, units on the PGT

4. Raw PGT points for the bottom 50%

5. Raw PGT points for the top 50%

6. These are the difference in mean IQ from the WISC-R to WISC-III.

Truscott and Frank (2001) uses a different metric in the article, but due to its non-common nature,

only IQ differences are presented here.

C1: Cohort 1; C2: Cohort 2;

Continued on next page
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Sample of Studies Examining the Lynn-Flynn Effect– continued from previous page

Dates

(or time between)

Study Instrument(s) testing N Differences

IEA: International Association for the Evaluation of Educational Achievement literacy evaluation

WJ: Woodcock Johnson Test of Cognitive Ability; WISC: Wechsler Intelligence Scale for Children

RCPM: Raven’s Colored Progressive Matrices; VMT Verbal Meaning Test; DS: Digit Span

PGT: Pressey’s Graphic Test; ng: not given.
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Table 2

Factor Loadings for the Mathematics Skills on form LM of the CBASE

Factor g SS S M E h
2

Order 1 2 2 2 2

Skill:

Geometrical calculations .711 -.046 -.023 .196 -.024 .547

2- & 3-Dimensional figures .687 -.060 -.031 .259 -.031 .545

Equations & Inequalities .658 -.114 -.058 .491 -.059 .694

Evaluating Expressions .636 -.098 -.050 .419 -.050 .595

Using Statistics .770 .015 .007 -.063 .008 .597

Properties & Notations .673 -.041 -.021 .176 -.021 .486

Practical Applications .736 .006 .003 .026 .003 .542

Note. Salient loadings of variables on common factors are shown in bold.

Factor Names: g : General Intelligence; SS: Social Studies; S: Science; M: Math; E: English;

h
2: Communality.

Taken from S. Osterlind & A. Beaujean (2005, April) Structural Integrity in

a Measure of General Education College Achievement. Paper presentation at the

annual meeting of the American Educational Research Association, Montréal, Canada.
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Table 3

Average Reliability Coefficients of the Math portion of form LM on the CBASE

Topic Grouping # items n α

Math Subject 56 29661 0.9002

General Mathematics Cluster 24 32245 0.7638

Practical Applications Skill 8 33046 0.6122

Properties & Notations Skill 8 33046 0.4578

Using Statistics Skill 8 33018 0.547

Algebra Cluster 16 31630 0.789

Evaluating Expressions Skill 8 32582 0.6833

Equations & Inequalities Skill 8 31983 0.6557

Geometry Cluster 16 30938 0.7946

2- & 3-Dimensional Figures Skill 8 31778 0.6773

Geometrical Calculations Skill 8 31204 0.6828

Taken from S. Osterlind & A. Beaujean (2005, April) Structural Integrity in a Measure of

General Education College Achievement. Paper presentation at the annual meeting of

the American Educational Research Association, Montréal, Canada.
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Table 4

Simulated Data Score Increases, using CTT Methods

Simulation θO θI Xβ σβ Xγ σγ Xβ,γ σβ,γ Xθ σθ

1 -0.023 0.076 -0.034 0.992 0.138 0.956 0.109 0.945 0.084 0.949

2 -0.002 0.161 0.005 1.000 0.164 0.941 0.157 0.968 0.175 0.997

3 0.013 0.104 0.072 0.971 0.151 0.960 0.225 0.936 0.094 0.994

4 -0.028 0.148 -0.009 0.989 0.144 0.922 0.128 0.942 0.175 1.010

5 -0.022 0.127 0.370 0.942 0.155 0.952 0.516 0.890 0.165 0.982

6 0.028 0.154 0.281 0.969 0.138 0.964 0.382 0.936 0.114 1.024

7 -0.044 0.101 -0.070 1.003 0.128 0.954 0.086 0.968 0.112 0.997

8 -0.006 0.139 -0.273 0.985 0.134 0.924 -0.112 0.942 0.128 1.006

9 -0.024 0.160 -0.112 0.992 0.126 0.947 0.035 0.927 0.159 0.964

10 0.060 0.155 0.247 1.016 0.132 0.930 0.378 0.955 0.090 0.960

11 0.035 0.156 0.017 0.993 0.119 0.963 0.135 0.940 0.114 1.010

12 0.013 0.160 -0.068 0.938 0.129 0.951 0.067 0.902 0.125 0.991

13 -0.025 0.155 0.097 0.982 0.120 0.960 0.248 0.955 0.155 0.986

14 -0.020 0.180 -0.201 1.036 0.150 0.938 -0.030 0.987 0.192 1.007

15 0.041 0.099 0.166 0.933 0.142 0.943 0.300 0.879 0.069 1.020

16 0.033 0.135 0.191 1.020 0.169 0.945 0.326 0.951 0.115 0.952

17 -0.002 0.140 0.432 1.026 0.198 0.931 0.531 0.973 0.164 1.016

18 -0.020 0.154 0.133 1.010 0.149 0.952 0.255 0.971 0.177 1.000

19 -0.019 0.128 0.180 1.026 0.180 0.949 0.319 0.985 0.146 1.108

20 -0.019 0.149 0.168 1.019 0.125 0.975 0.297 0.977 0.164 1.012

21 0.036 0.153 -0.110 1.006 0.145 0.954 0.047 0.952 0.116 1.007

22 0.001 0.186 0.118 0.968 0.135 0.967 0.249 0.926 0.175 1.024

Continued on next page
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Simulated Data Score Increases, using CTT Methods- continued from previous page

Simulation θO θI Xβ σβ Xγ σγ Xβ,γ σβ,γ Xθ σθ

23 -0.056 0.115 0.030 1.000 0.132 0.976 0.151 0.965 0.136 1.011

24 0.034 0.135 0.068 1.002 0.133 0.966 0.180 0.962 0.079 0.993

25 0.014 0.219 0.291 0.963 0.125 0.968 0.442 0.925 0.213 1.033

26 -0.058 0.072 0.250 1.044 0.180 0.959 0.379 0.999 0.135 1.001

27 0.004 0.161 0.029 1.031 0.143 0.941 0.132 0.993 0.149 0.969

28 0.038 0.146 0.078 1.007 0.139 0.953 0.211 0.954 0.105 0.988

29 -0.033 0.108 -0.046 0.982 0.125 0.967 0.082 0.943 0.133 0.982

30 0.010 0.101 0.253 1.015 0.160 0.956 0.398 0.958 0.079 1.016

31 0.011 0.086 0.031 1.036 0.146 0.958 0.181 0.977 0.080 1.017

32 -0.008 0.087 -0.091 1.021 0.140 0.956 0.051 0.964 0.098 1.009

33 0.030 0.168 0.080 0.987 0.163 0.949 0.206 0.930 0.133 0.989

34 0.004 0.148 0.115 0.949 0.166 0.966 0.248 0.908 0.136 1.036

35 0.014 0.126 -0.205 1.008 0.148 0.947 -0.106 0.984 0.116 0.984

36 0.008 0.162 0.202 1.021 0.135 0.952 0.347 0.947 0.155 1.012

37 0.040 0.139 0.070 0.999 0.155 0.949 0.221 0.973 0.084 0.988

38 0.000 0.152 -0.097 1.029 0.158 0.943 0.088 0.969 0.157 1.010

39 -0.030 0.140 0.006 1.069 0.148 0.964 0.135 1.022 0.138 1.015

40 0.025 0.143 0.008 0.973 0.130 0.943 0.157 0.932 0.112 1.009

41 -0.028 0.166 0.379 1.015 0.131 0.953 0.536 0.949 0.153 1.029

42 -0.019 0.065 0.201 0.993 0.148 0.961 0.342 0.958 0.078 0.941

43 0.014 0.149 0.182 0.982 0.151 0.962 0.318 0.928 0.130 1.060

44 0.025 0.148 0.158 0.957 0.154 0.946 0.272 0.919 0.118 0.974

45 -0.034 0.115 0.236 0.969 0.178 0.951 0.368 0.941 0.167 1.021

46 0.027 0.094 0.180 0.981 0.145 0.950 0.321 0.933 0.082 1.007

Continued on next page
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Simulated Data Score Increases, using CTT Methods- continued from previous page

Simulation θO θI Xβ σβ Xγ σγ Xβ,γ σβ,γ Xθ σθ

47 -0.012 0.200 -0.029 0.996 0.155 0.963 0.126 0.954 0.182 1.028

48 0.028 0.190 0.135 0.975 0.149 0.957 0.272 0.930 0.164 1.038

49 0.010 0.148 0.010 0.988 0.134 0.971 0.182 0.951 0.154 1.059

50 -0.029 0.093 -0.157 0.949 0.143 0.954 0.021 0.895 0.098 1.010

51 0.009 0.121 0.206 0.971 0.149 0.948 0.335 0.929 0.132 1.023

52 -0.027 0.151 0.282 1.048 0.201 0.964 0.438 0.986 0.193 1.002

53 0.067 0.141 -0.024 1.003 0.138 0.944 0.117 0.960 0.061 0.953

54 -0.019 0.166 0.428 0.991 0.155 0.953 0.551 0.945 0.175 0.995

55 -0.017 0.058 -0.013 0.993 0.136 0.954 0.144 0.945 0.043 0.997

56 -0.006 0.113 0.128 1.056 0.148 0.965 0.281 0.995 0.111 1.028

57 -0.042 0.143 0.033 1.039 0.160 0.938 0.193 0.981 0.156 0.957

58 -0.021 0.125 0.379 1.021 0.186 0.968 0.512 0.974 0.170 1.029

59 0.029 0.121 -0.177 1.056 0.150 0.959 -0.043 1.000 0.096 0.983

60 -0.069 0.141 0.195 0.982 0.147 0.992 0.333 0.939 0.214 1.005

61 0.077 0.144 0.061 0.984 0.122 0.955 0.206 0.940 0.066 0.967

62 0.030 0.172 0.308 1.019 0.144 0.969 0.449 0.962 0.137 1.004

63 -0.017 0.185 0.465 1.061 0.178 0.973 0.595 1.012 0.199 0.999

64 0.005 0.116 -0.026 1.022 0.115 0.959 0.106 0.963 0.102 0.992

65 -0.008 0.177 0.234 0.978 0.166 0.950 0.406 0.918 0.198 1.003

66 -0.045 0.130 0.275 1.029 0.151 0.972 0.400 0.970 0.139 0.994

67 -0.027 0.113 0.338 0.999 0.165 0.960 0.467 0.953 0.140 1.011

68 -0.028 0.116 0.150 0.996 0.166 0.951 0.291 0.946 0.148 0.995

69 0.021 0.106 0.106 0.964 0.151 0.939 0.257 0.931 0.103 1.032

70 -0.070 0.134 0.087 1.029 0.169 0.958 0.253 0.975 0.197 0.990

Continued on next page
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Simulated Data Score Increases, using CTT Methods- continued from previous page

Simulation θO θI Xβ σβ Xγ σγ Xβ,γ σβ,γ Xθ σθ

71 0.054 0.215 -0.218 1.003 0.156 0.969 -0.066 0.954 0.177 1.029

72 -0.015 0.185 0.127 1.026 0.174 0.941 0.266 1.001 0.217 0.989

73 0.016 0.068 0.176 0.995 0.125 0.956 0.289 0.927 0.047 1.024

74 -0.007 0.130 0.283 0.969 0.132 0.936 0.405 0.924 0.114 0.935

75 0.007 0.170 0.021 0.975 0.139 0.945 0.152 0.942 0.161 0.987

76 0.033 0.149 0.214 1.011 0.176 0.949 0.347 0.954 0.123 0.965

77 -0.063 0.123 0.027 0.955 0.142 0.929 0.142 0.904 0.173 0.956

78 0.015 0.139 0.164 0.974 0.131 0.969 0.288 0.920 0.127 1.002

79 -0.026 0.126 0.233 0.973 0.143 0.965 0.369 0.955 0.140 0.983

80 0.006 0.169 -0.010 1.053 0.141 0.950 0.157 0.980 0.138 0.973

81 0.047 0.143 0.040 1.022 0.148 0.972 0.199 0.977 0.089 0.975

82 -0.033 0.165 0.111 0.987 0.161 0.940 0.276 0.899 0.189 0.989

83 -0.028 0.130 0.060 0.985 0.137 0.953 0.198 0.941 0.163 1.000

84 0.048 0.209 0.241 0.917 0.127 0.971 0.351 0.882 0.143 1.049

85 -0.023 0.132 0.315 0.998 0.152 0.944 0.459 0.946 0.140 1.002

86 -0.021 0.170 0.085 0.987 0.145 0.958 0.240 0.943 0.186 0.992

87 0.008 0.140 0.388 0.999 0.155 0.943 0.514 0.945 0.130 1.014

88 0.025 0.117 0.059 0.965 0.160 0.951 0.212 0.890 0.096 1.016

89 0.008 0.117 0.050 1.014 0.151 0.940 0.184 0.979 0.114 0.980

90 -0.025 0.153 -0.042 0.994 0.115 0.945 0.129 0.940 0.158 1.002

91 0.012 0.105 -0.062 0.993 0.138 0.939 0.079 0.947 0.081 0.989

92 -0.024 0.113 0.006 0.992 0.166 0.924 0.163 0.944 0.136 1.028

93 0.014 0.152 0.322 1.005 0.171 0.940 0.454 0.952 0.144 1.030

94 0.002 0.213 -0.025 1.010 0.127 0.948 0.126 0.986 0.196 0.957

Continued on next page
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Simulated Data Score Increases, using CTT Methods- continued from previous page

Simulation θO θI Xβ σβ Xγ σγ Xβ,γ σβ,γ Xθ σθ

95 -0.004 0.140 -0.057 0.991 0.142 0.948 0.085 0.957 0.138 1.034

96 0.017 0.134 0.452 0.981 0.150 0.967 0.595 0.950 0.117 1.002

97 -0.006 0.087 0.006 1.042 0.143 0.934 0.166 0.989 0.094 1.007

98 -0.009 0.142 0.239 0.974 0.174 0.936 0.376 0.931 0.124 0.946

99 0.019 0.159 0.105 1.016 0.146 0.939 0.254 0.940 0.122 0.968

100 -0.044 0.148 0.147 1.044 0.141 0.957 0.298 0.986 0.183 1.011

mean <0.000 0.140 0.117 1.000 0.149 0.953 0.257 0.952 0.135 1.001

SD 0.030 0.033 0.160 0.029 0.017 0.013 0.155 0.028 0.039 0.028

θO: Average latent trait of initial sample of simulated examinees, E[θ] = 0;

θI Average latent trait of sample of simulated examinees with true latent trait increase, E[θ] = .14;

Xβ & σβ: Average and variation of standard score increase when original simulated sample took

test with (mean) decreased β values, respectively.

Xγ & σγ : Average and variation of standard score increase when original simulated sample took

test with increased γ values, respectively.

Xβ,γ & σβ,γ : Average and variation of standard score increase when original simulated sample

took test with both (mean) decreased β values and increased γ values, respectively.

Xθ & σθ: Average and variation of standard score increase when simulated sample with increased

latent ability took original test, respectively.
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Table 5

Simulated Data Score Increases, using IRT Methods

(θO − θI)

Simulation θO θI Xβ σβ Xγ σγ Xθ σθ −Xθ

1 -0.023 0.076 -0.003 1.004 0.005 0.968 0.073 0.949 0.026

2 -0.002 0.161 -0.002 0.993 0.004 0.998 0.178 0.985 -0.015

3 0.013 0.104 -0.001 0.988 <0.00 0.975 0.05 0.94 0.041

4 -0.028 0.148 -0.001 0.999 <0.00 0.994 0.106 1.043 0.069

5 -0.022 0.127 0.013 0.986 0.006 0.984 0.145 0.929 0.003

6* 0.028 0.154 0.003 0.983 0.001 0.985 0.046 1.057 0.079

7 -0.044 0.101 -0.001 0.994 <0.00 0.987 0.121 1.015 0.024

8 -0.006 0.139 -0.011 1.01 0.002 0.989 0.167 1.041 -0.022

9 -0.024 0.16 -0.004 0.991 0.003 0.971 0.158 0.992 0.026

10 0.06 0.155 0.003 0.986 0.003 0.991 0.096 1.001 -0.001

11 0.035 0.156 0.001 1.004 0.001 0.995 0.09 1.058 0.031

12 0.013 0.16 -0.004 0.999 <0.00 0.967 0.118 0.979 0.029

13 -0.025 0.155 0.005 1.005 -0.002 0.987 0.12 0.972 0.059

14 -0.02 0.18 -0.006 0.996 -0.003 0.972 0.115 1.005 0.085

15 0.041 0.099 0.006 0.992 -0.002 0.968 0.041 1.029 0.016

16 0.033 0.135 0.001 0.995 0.007 0.959 0.17 0.929 -0.069

17 -0.002 0.14 0.005 1.005 -0.001 0.963 0.171 1.001 -0.029

18 -0.02 0.154 0.001 0.979 0.004 0.974 0.131 0.974 0.043

19* -0.019 0.128 0.006 1.011 0.008 0.99 0.067 1.12 0.08

20 -0.019 0.149 <0.00 1.003 <0.00 0.998 0.138 1.055 0.031

21 0.036 0.153 0.002 1.016 0.002 0.984 0.097 0.985 0.019

Continued on next page
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Simulated Data Score Increases, using IRT Methods- continued from previous page

(θO − θI)

Simulation θO θI Xβ σβ Xγ σγ Xθ σθ −Xθ

22 0.001 0.186 0.005 1.016 0.002 0.998 0.162 1.056 0.023

23 -0.056 0.115 -0.005 0.98 -0.002 0.985 0.059 1.056 0.112

24* 0.034 0.135 0.001 0.998 0.002 0.993 0.033 0.981 0.067

25 0.014 0.219 0.009 0.987 0.002 0.98 0.152 1.017 0.053

26 -0.058 0.072 0.008 0.967 0.003 0.972 0.053 1.02 0.077

27 0.004 0.161 -0.002 0.996 -0.001 0.987 0.100 0.972 0.057

28* 0.038 0.146 0.007 1.016 0.007 0.986 0.036 0.976 0.072

29 -0.033 0.108 0.001 1.002 0.004 0.993 0.103 0.997 0.038

30 0.01 0.101 0.006 1.002 -0.004 0.99 0.063 1.014 0.029

31 0.011 0.086 0.001 1.005 0.003 0.994 0.062 1.013 0.012

32 -0.008 0.087 -0.003 1.016 0.003 0.982 0.024 0.968 0.071

33* 0.03 0.168 0.006 1.008 0.005 0.988 0.087 0.98 0.052

34 0.004 0.148 0.006 1.005 0.005 0.99 0.145 1.008 -0.001

35* 0.014 0.126 -0.008 0.993 <0.00 0.991 0.044 0.947 0.068

36 0.008 0.162 0.005 0.994 0.007 0.984 0.131 1.051 0.023

37* 0.04 0.139 0.001 1.02 0.004 0.99 0.049 1.014 0.049

38 <0.00 0.152 -0.008 1.01 0.001 0.981 0.138 0.997 0.014

39 -0.03 0.14 <0.00 1.015 -0.002 0.994 0.182 1.000 -0.012

40 0.025 0.143 -0.001 0.985 0.001 0.973 0.092 0.983 0.026

41 -0.028 0.166 0.01 1.007 0.004 0.97 0.13 1.073 0.064

42 -0.019 0.165 0.007 0.993 0.005 0.988 0.145 0.916 -0.061

43* 0.014 0.149 0.001 0.983 0.004 0.97 0.037 1.042 0.098

44 0.025 0.148 0.003 0.978 -0.001 0.976 0.067 0.982 0.056

Continued on next page
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Simulated Data Score Increases, using IRT Methods- continued from previous page

(θO − θI)

Simulation θO θI Xβ σβ Xγ σγ Xθ σθ −Xθ

45 -0.034 0.115 0.006 1.021 0.001 0.984 0.112 1.081 0.037

46 0.027 0.094 <0.00 0.999 -0.001 0.974 0.035 0.967 0.031

47 -0.012 0.2 -0.006 1.002 0.001 0.981 0.171 1.068 0.041

48 0.028 0.19 -0.002 1.011 <0.00 0.971 0.157 1.063 0.005

49 0.01 0.148 0.006 1.009 0.003 1.002 0.107 1.164 0.031

50 -0.029 0.093 -0.002 1.004 <0.00 0.976 0.077 0.991 0.044

51 0.009 0.121 0.004 0.004 0.005 0.981 0.086 0.994 0.026

52 -0.027 0.151 -0.001 0.974 0.001 0.973 0.171 0.924 0.006

53+ 0.067 0.141 0.006 1.015 0.006 1.004 0.003 0.934 0.072

54 -0.019 0.166 0.015 0.984 0.004 0.962 0.151 0.966 0.033

55 -0.017 0.058 0.003 0.991 -0.002 0.988 0.052 1.005 0.024

56* -0.006 0.113 -0.006 0.986 0.001 0.971 0.029 1.009 0.091

57 -0.042 0.143 -0.001 1.024 0.002 0.989 0.141 0.944 0.045

58 -0.021 0.125 0.011 0.985 0.006 0.959 0.106 0.963 0.04

59 0.029 0.121 -0.005 1.026 0.003 1.008 0.049 1.039 0.043

60 -0.069 0.141 0.007 1.026 0.002 0.992 0.143 1.012 0.067

61* 0.077 0.144 0.004 1.012 0.001 1.006 0.018 0.965 0.049

62* 0.03 0.172 0.012 1.004 0.004 0.986 0.085 1.003 0.057

63 -0.017 0.185 0.006 0.978 -0.002 0.987 0.175 0.991 0.028

64* 0.005 0.116 <0.00 1.013 <0.00 0.976 0.053 0.978 0.058

65 -0.008 0.177 0.005 0.978 0.001 0.97 0.138 0.981 0.048

66 -0.045 0.13 <0.00 0.991 <0.00 1.003 0.116 0.955 0.06

67 -0.027 0.113 <0.00 0.972 -0.001 0.975 0.091 0.993 0.048

Continued on next page
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Simulated Data Score Increases, using IRT Methods- continued from previous page

(θO − θI)

Simulation θO θI Xβ σβ Xγ σγ Xθ σθ −Xθ

68* -0.028 0.116 0.004 1.007 -0.003 0.996 0.049 1.034 0.095

69 0.021 0.106 0.002 0.976 0.005 0.982 0.078 1.042 0.007

70 -0.07 0.134 0.006 0.999 0.001 0.971 0.153 0.987 0.051

71* 0.054 0.215 -0.01 1.008 0.002 0.984 0.086 1.053 0.076

72 -0.015 0.185 <0.00 1.003 -0.001 0.981 0.145 1.016 0.055

73 0.016 0.068 0.003 0.985 0.004 0.983 -0.013 1.013 0.066

74 -0.007 0.13 0.004 0.99 0.002 0.983 0.159 0.922 -0.022

75 0.007 0.17 -0.004 0.998 0.001 0.994 0.145 0.973 0.018

76 0.033 0.149 <0.00 0.995 -0.001 1.005 0.124 0.914 -0.008

77 -0.063 0.123 0.003 0.999 0.004 0.993 0.153 0.934 0.032

78 0.015 0.139 0.012 0.988 0.002 0.979 0.137 0.998 -0.014

79 -0.026 0.126 0.002 0.98 0.002 0.997 0.094 0.996 0.059

80* 0.006 0.169 -0.006 0.98 -0.004 0.971 0.102 0.962 0.062

81* 0.047 0.143 0.002 0.992 0.004 0.992 0.082 0.934 0.014

82 -0.033 0.165 0.005 1.019 0.007 0.987 0.123 0.995 0.076

83 -0.028 0.13 <0.00 0.994 0.001 0.988 0.129 1.021 0.029

84* 0.048 0.209 0.005 1.003 -0.001 0.977 0.089 0.967 0.071

85 -0.023 0.132 0.007 1.004 <0.00 0.982 0.083 0.95 0.073

86 -0.021 0.17 0.005 1.011 0.004 0.99 0.119 1.001 0.072

87 0.008 0.14 0.008 0.994 0.004 0.966 0.142 0.988 -0.01

88* 0.025 0.117 -0.002 0.985 0.004 0.994 0.036 0.972 0.055

89 0.008 0.117 -0.001 1.01 -0.009 0.982 0.121 0.921 -0.012

90 -0.025 0.153 0.001 1.001 <0.00 0.987 0.139 1.017 0.038

Continued on next page
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Simulated Data Score Increases, using IRT Methods- continued from previous page

(θO − θI)

Simulation θO θI Xβ σβ Xγ σγ Xθ σθ −Xθ

91 0.012 0.105 -0.005 0.997 -0.003 0.981 0.083 0.967 0.01

92 -0.024 0.113 -0.002 0.974 0.004 0.981 0.086 1.013 0.051

93+ 0.014 0.152 0.705 1.132 0.094 0.993 0.107 1.039 0.031

94* 0.002 0.213 -0.002 0.994 0.001 0.98 0.143 0.942 0.068

95* -0.004 0.14 -0.003 1.013 0.002 0.995 0.064 1.029 0.08

96 0.017 0.134 0.01 0.984 0.008 0.98 0.119 1.001 -0.002

97 -0.006 0.087 -0.008 0.967 -0.001 0.963 0.137 0.981 -0.044

98* -0.009 0.142 0.01 0.98 <0.00 0.968 0.07 0.958 0.081

99 0.019 0.159 0.001 0.989 -0.001 0.957 0.098 0.949 0.041

100 -0.044 0.148 0.003 1.005 0.001 0.99 0.136 1.005 0.056

Average <0.00 0.140 0.010 0.988 0.003 0.983 0.101 0.996 0.039

SD 0.030 0.033 0.070 0.101 0.010 0.011 0.045 0.0443 0.034

θO: Average latent trait of initial sample of simulated examinees, E[θ] = 0;

θI Average latent trait of sample of simulated examinees with true latent trait increase, E[θ] = .14;

Xβ & σβ: Average and variation of standard score increase when original simulated sample

took test with (mean) decreased β values, respectively.

Xγ & σγ : Average and variation of standard score increase when original simulated sample

took test with increased γ values, respectively.

Xθ & σθ: Average and variation of standard score increase when simulated sample with increased

latent ability took original test, respectively.

*: large discrepancy between θI and Xθ

Note. In all instances, Xθ > max(Xβ,Xγ), except where indicated by a (+).
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Table 6
Statistics for the CTT Analysis of the CBASE Data (n=619)

Form X σ XS σS

LK 36.214 10.219
LO 34.393 10.929 -0.178 1.069

Note. XS & σS: Average and variation of standard
score increase, respectively (LK is reference group).
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Table 7

Item Parameter Estimates for CBASE forms LK, LO, and Transformed LO

LK LO LO (Transformed)

index α β γ α β γ α β γ

1 1.078 -0.462 0.001 0.985 -0.557 0.001 0.944 -0.798 0.001

2 0.692 -0.986 0.001 0.803 -0.490 0.001 0.770 -0.727 0.001

3 0.892 -1.011 0.001 0.963 -0.693 0.001 0.923 -0.940 0.001

4 0.990 -0.262 0.001 1.509 0.174 0.029 1.446 -0.035 0.029

5 0.746 -1.203 0.001 1.106 -0.858 0.001 1.060 -1.111 0.001

6 1.035 -1.558 0.001 0.860 -1.460 0.001 0.824 -1.739 0.001

7 0.752 -0.375 0.001 0.743 -0.161 0.001 0.712 -0.385 0.001

8* 1.265 -0.859 0.001 1.212 -0.258 0.001 1.161 -0.485 0.001

9 0.771 -0.562 0.001 0.879 -0.177 0.002 0.842 -0.401 0.002

10 1.335 -0.709 0.001 1.422 -0.465 0.001 1.363 -0.701 0.001

11 1.346 -1.169 0.001 1.485 -1.084 0.001 1.423 -1.348 0.001

12* 1.161 -0.443 0.001 1.096 -0.613 0.002 1.051 -0.856 0.002

13 1.216 -1.109 0.001 1.244 -0.860 0.001 1.193 -1.114 0.001

14 1.281 -0.740 0.001 1.501 -0.440 0.002 1.438 -0.675 0.002

15 1.318 -0.847 0.001 1.223 -0.560 0.002 1.172 -0.800 0.002

16 1.140 0.136 0.001 0.928 0.301 0.001 0.890 0.098 0.001

Note. Items with an * exhibited DIF/drift at (non-adjusted) α = .05, using Lord’s (1980) χ
2.

Scaling Parameters: A (Scale): 1.043; K (Location): -0.216
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Table 8

Item Parameter Statistics and Area Indices

LK LO

—————— ——————

SE SE

index α β cov(α,β) α β cov(α,β) SA UA H

1 0.141 0.106 0.005 0.129 0.116 0.007 -0.335 0.335 -0.337

2 0.114 0.193 0.015 0.116 0.134 0.006 0.258 0.258 0.267

3 0.134 0.164 0.015 0.13 0.128 0.009 0.071 0.071 0.073

4 0.128 0.106 0.003 0.288 0.146 0.025 0.227 0.227 0.325

5 0.118 0.209 0.019 0.144 0.125 0.011 0.091 0.091 0.333

6 0.149 0.198 0.024 0.137 0.218 0.024 -0.181 0.181 -0.254

7 0.111 0.136 0.005 0.11 0.129 0.002 -0.010 0.010 -0.061

8* 0.171 0.115 0.012 0.146 0.091 0.003 0.373 0.373 -0.373

9 0.118 0.143 0.008 0.122 0.120 0.002 0.161 0.161 0.171

10 0.166 0.104 0.009 0.165 0.089 0.005 0.008 0.008 0.014

11 0.184 0.136 0.018 0.197 0.118 0.015 -0.178 0.178 0.178

12* 0.143 0.1 0.005 0.138 0.112 0.007 -0.413 0.413 -0.413

13 0.164 0.137 0.016 0.158 0.115 0.012 -0.004 0.004 -0.013

14 0.16 0.107 0.009 0.188 0.087 0.005 0.065 0.065 0.090

15 0.178 0.11 0.011 0.154 0.102 0.007 0.046 0.046 -0.086

16 0.143 0.095 -0.001 0.125 0.115 -0.004 -0.038 0.038 -0.204

SE: Standard Error; SA: Signed Area; UA: Unsigned Area (αLK = αLO);

H: Unsigned Area (αLK 6= αLO);

Note. Indexes with an * indicate items with areas whose standardized

statistics are greater than 3.
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Table 9

CBASE Items, in Order Used in Analysis

LK LO

Index Question Name Question Name

1 q42 202B-MA-08-I q42 202B-MA-08-I

2 q44 202C-MA-05-S q44 202C-MA-05-S

3 q52 201A-MA-03-S q52 201A-MA-03-S

4 q56 201C-MA-74-I q55 201C-MA-74-I

5 q58 203B-MA-70-S q58 203B-MA-70-S

6 q60 203B-MA-08-S q60 203B-MA-08-S

7 q62 203A-MA-07-A q64 203A-MA-07-A

8 q70 204B-AL-07-I q69 204B-AL-07-I

9 q80 205C-AL-01-I q80 205C-AL-01-I

10 q83 206A-GE-18-I q83 206A-GE-18-I

11 q85 206C-GE-11-I q85 206C-GE-11-I

12 q89 206C-GE-71-A q88 206C-GE-71-A

13 q91 207A-GE-02-S q91 207A-GE-02-S

14 q92 207A-GE-03-S q93 207A-GE-03-S

15 q96 207A-GE-12-I q96 207A-GE-12-I

16 q97 207C-GE-02-S q97 207C-GE-02-S

17 q43 202E-MA-02-S q43 NG

18 q45 202B-MA-01-I q45 NG

19 q46 202D-MA-03-S q46 202C-MA-08-I

20 q47 202A-MA-05-I q47 202B-MA-07-I

21 q48 202A-MA-02-S q48 202E-MA-03-I

Continued on next page
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LK LO

Index Question Name Question Name

22 q49 202C-MA-03-S q49 202C-MA-09-I

23 q50 201C-MA-04-S q50 NG

24 q51 201A-MA-73-I q51 NG

25 q53 201A-MA-07-S q53 NG

26 q54 201B-MA-06-S q54 201C-MA-06-S

27 q55 201C-MA-03-S q56 201B-MA-09-I

28 q57 201B-MA-04-S q57 201B-MA-11-I

29 q59 203A-MA-02-S q59 203C-MA-02-I

30 q61 203B-MA-01-A q61 203A-MA-11-I

31 q63 203B-MA-04-A q63 NG

32 q64 203A-MA-04-A q62 203B-MA-13-A

33 q65 203A-MA-03-S q65 203A-MA-10-I

34 q66 204B-AL-10-I q66 204B-AL-06-I

35 q67 204A-AL-02-I q67 204A-AL-70-I

36 q68 204A-AL-04-I q68 204A-AL-06-I

37 q69 204A-AL-05-I q70 204B-AL-72-I

38 q71 204B-AL-09-I q71 204B-AL-02-I

39 q72 204A-AL-03-I q72 NG

40 q73 204B-AL-04-I q73 204B-AL-73-I

41 q74 205A-AL-14-I q74 NG

42 q75 205A-AL-03-I q75 205A-AL-73-I

43 q76 205A-AL-08-I q76 205A-AL-07-I

44 q77 205B-AL-03-I q77 205B-AL-01-I

45 q78 205B-AL-02-I q78 205B-AL-09-I

Continued on next page
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LK LO

Index Question Name Question Name

46 q79 205A-AL-04-I q79 205A-AL-06-I

47 q81 205B-AL-05-I q81 205B-AL-10-I

48 q82 206B-GE-10-I q82 NG

49 q84 206C-GE-06-I q84 NG

50 q86 206A-GE-05-I q86 206A-GE-70-I

51 q87 206A-GE-07-I q87 206A-GE-01-I

52 q88 206C-GE-04-S q89 206A-GE-06-S

53 q90 207B-GE-71-S q90 NG

54 q93 207A-GE-01-S q92 207A-GE-14-S

55 q94 207C-GE-04-S q94 207C-GE-03-I

56 q95 207B-GE-05-I q95 207B-GE-01-I

NG: Item name not given in raw data.

Note. Question is the question number that that given item was

given for that form of the CBASE examination.
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Figure Captions

Figure 1. Item Characteristic Curve, f(xi|κκκi)

Figure 2. DIF between 2 groups

Figure 3. Area between ICCs exhibiting DIF
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Note. Adapted from G. Camilli & L. A. Shepard (1994). Methods for identifying biased

test items, p. 48.



Note. From G. Camilli & L. A. Shepard (1994). Methods for identifying biased test items,
p. 59.



Note. From G. Camilli & L. A. Shepard (1994). Methods for identifying biased test items,
p. 65.
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