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CPTIMAL CONVEX DECOMPCSITIONS
by

Bernard Chazelle and David P. Dobkin

Abstract:

The problem of decomposing a non-convex simple polygon into a minimum number of
convex polygons is solved. The decomposition alliows for the introduction of Steiner points.
Two algorithms are proposed. The first verifies that the problem is doable in polynomial time.
The second provides an efficient method. Along the way, numerous results of independent

interest in pure gecometry as weil as geometric compliexity are stated.

i. Introduction

The problem of decomposing & simple polygon into its basic components has becu a recur-
rent theme in computational geometry. Interest in this problem comes from its central location

in the study of object representation. In the same way that English words benefit “greatly”
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54 B. Chazelle arnd D.P. Dobkin

from their expressibility in a 26-letter alphabet, complex geometric structures are more easlly
handied when decomposed into simpler structures. Think of tool designers pressed for simple,
modaiar designs. for instance. Another good example is the recognition of Chinese characters
by matching text data against building blocks, as described in [8]. This operation involves the
decomposition of polygonal shapes into convex pleces. For further motivation on decomposition
problems, see {8.0,18.20]. The problem we consider is:

Given a simple polvgon P, what s the minimum number of convex polygons which form
a partition of P 7

This is cailed the OCD problem {for “optimal convex decomposition”). We will briefly
review the kuown results. The frst breakthrough on the OCD problew appeared in the pro-
ceedings of the 1979 STOC Symp. (5], There, these authors proved that the prohiem was poly-
nomial, thereby frustrating widespread suspicion that it was NP-hard. Iuterestingly enough,
this finding was followed by a stream of NP-hardness results for sianilar problems [12—17]. For
example, it was shown by Lingas that the presence of holes in the polygon P was sufficicnt to

make the OCD problem NP-hard [14].

Variants of the OCD problem were considered in [12,13], where the requirermnent was made
that no new vertices should be introduced in the partition of P. In [15,18] the objective function
to minimize was no longer the nuinber of pieces but the total edge-length. For other work,
cousult [1,3,4,8,0,14,18]. Followiug the original paper of Chazelle and Dobkin [5], the OCD
probiem was thoroughly treated in the former author’s PhD thesis [3], where an Ofn+c®) time
decomposition algorithm was presented {rz is the number of vertices of P aud ¢ is the number
of reflex angles). This result represents a quantitative (but not qualitative] Luprovement over
the O(n?} time algorithun of [5]. Of course it can be argued that for small values of ¢, the
algorithm in [3] is linear or quasi-linear. Unfortunately this statement must be tempered by

the rather intricate nature of the algorithm, which makes it an unlikely candidate for efficient

implementation.

The purpose of this paper is to present the main ideas of the algorithms in [5] and [3].
We recognize thnt the interest of our resuits is primarily theoretical, so we will devote most of

our effort to proving that the OCD problem is polynomial. The rest of the paper will outline
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Optimal Convex Decompositions o5

the most interesting points of the O{n + %) time algorithm, referring to [3] for details and
complementary information. The paper will be organized as follows: in this section, we zive a
brief overview of our method. In the mext section, we present the basic geometric facts for the

study of the OCD problem. In Section 3, we consider the algorithmic aspect of the problem and

describe the polynomial algorithm for the OCD problem. In the following section, we address
implementation issues and outline new lines of attack to speed up the algorithm. Finally we

give conclusions and outiine directions for further research in Section 5.

One methodological note is 11 order. Given the intricacy of our O(n-+¢®) algorithm for the

OCD problem, the presentation will follow a top-down approach. We present the main ideas
p k) kS

of the method Frst, and then fiil in the blanks left. Our rationale iz to scparate the essential

compouents of the algorithm and the parts which only contribute to 1is efficiency.

Two simple facts bound all algorithms for this problem. First, each notch (i.e. vertex
displaying a reflex angle} can be removed by the addition of a polygon to the decomposition.
Second, at moest two notches can be removed through the addition of a single polygon. Hence,
the minimum number of convex parts always lies between [¢/2] + 1 and ¢ + 1. To extend
these simple observations, however, is a difficuit mathematical problem. To form minimal
decompositions additional (Stelner) points must be introduced as vertices of newly generated
polygoas. This removes the obvious fluiteness of the problem and makes simple enumerative
procedures impossible. Furthermore the problem cannot be treated in a local manner. These

observations led to the conjecture that the problem was NP-hard.

To circumvent these difficuities, we lantroduce X-patternus, from which minimal decompo-
sitions can be generated. An Xp-patiern is a particular Interconnection of k& notches which
removes all reflex angles at the & notches ard createz no new notches. A decomposition ob-
tained by applying p patterns of type X;,, ..., X; along with straight-line segments to remove
the remaining notches can be shown to yield ¢ + 1 — p convex parts. Clearly, decompositions
with the most X-patterns also minimize the number of coavex polygons. This can be viewed as
a generalized matching probiem which might lend itseif to a dynamic programming approach.

Simple examination shows that there is exactly one t¥pe of each Xi-pattern for £ = 2,3. Were
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Figure

1 The naive decomposition and an improvement.
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Optimal Convex Decompositions 87

this the case for larger %, a polynomial-time algorithm based upon X-patierns would be pos-
sible. Unfortunately, determining whether a given set of notches can be interconnected via an

X-paticrn appears too involved to handle directly,

One solution is to constrain X-patterns in such a way that their detection becomes tractable.
This leads to the introduction of ¥-patierns, which we can regard as X-patterns eadowed with
some stractural property. We show that with the exception of X4-patterns any X-pattern can
be advantageously replaced by a ¥-pattern. Since ¥ -patterns can be constructed in polynomial
time via dynamic pmglram‘m%ng, we can achieve our first goal, which is to show that the OCD
problem is in . As is shown later on, further geometric analysis leads to substantial gains in

the eficlenicy of the original alzorithm.

2. The Geomeiric Ingredients

In this section, we introduce our notation and show that the OCD problem can be re-
duced to a form of generalized matching problem. Let P be a simple polygor with n vertices,
Pi, ..., Pn. in clockwise order. As previously mentioned, the vertices of P which display a re-
flex angle, called notches, will play a crucial role in the following. Let »;,...,v,, be the list
of notches in P, given in clockwise order. Throughout this paper, we will use the following
convention on the representation of angles. Let ab and ec be two non-collinear line segments.
Z(ab, ac) denotes the angle between 0 and 360 degrees swept by a counterclockwise rotation

{from ab to ac.

A decomposition of P is a set of polygons, Py, ..., P;, whose union gives P, and such that
the interscction of any two if non-empty consists totally of edges aud vertices. A decomposition
is said to be convez if all its polygons are convex. We define an optimal conves decomposition

of P, or OCD for short, as any convex decomposition of minimum cardinality.

We dehine the naive decomposition of P as the set of polygons obtained by removing each
notch in turn by means of a simple line segment nuively drawn from the notch. To be more
precise, a naive decomposition of P is obtained by going through each notch Vi,...,0, in tura,

extending a line segment from v; until we first hit another line already in the decomposition.
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Optimal Convex Decompositions 69

Of course. the extended line should remove the refiex angle at »;. Note that in this way we

mnside P. To simplify the easuing

wiil also guarantee that all lines drawn always lie entir
analysis, we wili ensure that the degree of each vertex in the decomposition does not exceed 3
and that no segment in the naive decomposition counects two notches. These conditions are
trivially always satisfiable. Figure 1 illustrates the notion of waive decomposition and shows in

particular that it is not always minimal. We have the foliowing {irivial) resuit.

Lemma 1. Any naive decompocsition of P produces exactly ¢ -+ 1 convex paris.

Next we wish to characterize a convenient class of decompositions to which we wiil restrict
oar attention in the following. We say that z polyzoen is inferior to P if it lies inside 2 and at

most a finite number of its points lie on the boundary of P.

Delinition 1. An X-decomposilion is any couvex decomposition coutaining no interior polygons

and such that no vertex is of degree greater than 3, except for the noiches, which may be of

degree at most 4.

Zemma 2, The class of X-decompositions aiways contains an QCD.

Proof: Consider an OCD which is not an X-decomposition. We transform its edges to yield an
X-decomposition. First, we show how to satisly the degree reguireimments. Since this process
may introduce interior polygons, we show kow fo remove interior polygons witlout lucreasing

the degree of any vertex.

1. We regard the decomposition as a planar graph consisting of boundery edges and added
edges {an edge 1s said to be added if it does not lie on the boundary of P). Let x be a notch
of degree greater than 4 and yy,...,¥m (m > 4] be its adjacent vertices, with yg,y0 €
boundary of £. It is trivial to show that there cxists ¢ > 2 such that Z{zyer1, zyi—3} < 180
{Fig.2-a). We can then move zy; nlong zy,—1 or Ty;+1 to form a new seg}new':\:z’y; with '
chosen close enough to z so as to preserve convexity. We iterate on this process until the
notch = becomes of degree 4. The other cases to consider are depicted in Fig.2-b,c. In case

b) the vertex z is not a motch but still lies on the boundary of P (it may or may not be a
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Optimal Convex Decampositions 71

vertex of P}. In case ¢} % is a vertex of degree > 3 which does not lie on the boundary of

P. The same method used in case a) will reduce the degrees accordingly.

Consider the subgraph H formed by the added edges of the OCD uader consideration.
Pick au interior polygon of the OCD and let & be the connected component in A to which
the edges of this polygon belong (Fig.2-d). Let ai,...,ax denote the vertices of & {in
ciockwise order) on the boundary of P aud iet K be the graph obtained by removing &
from the graph of the OCD. Since @ lies in P and 1s a connected component of H, it lles
entirely in one face of K, denoted ¢}. We observe that all the g;’s lic on the boundary
of £. Since (7 is connecied, it detcrmines at least & Taces in A, aside from the interior
polyzon(s). This shows that the OCD has at ieast k + 1 faces in {J. The polygon ¢ may
10t be convex, but since we had a convex decomposition of P before removing &, sll the
notches of @ must be notchies of P, i.e. must be some of the g;’s. Now, instead of keeping
the convex decomposition of @ induced by the OCD, we apply the naive decomposition to
it. This will vield at most £+ I polygons {exactly &+ 1, actuaily, since we are dealing with
an OCD, and consequently no transformation can iémprove the decompositionj. Since the
boundary of each of the created polygons contains at ieast one of the points ¢; as a vertex,
and each a; belongs to at most two polyzons, none of these polygons can be interior to
P. Furthermore it follows from the definition of the naive decomposition that the desired

degree constraints wiil be preserved. Iterating on this process for each of the remaining

interior polygous completes the proof. g

We are now ready to introduce the important notion of X-pattern. Once again we regard

the added edges of an X-decomposition as forming a subgraph of the total decomposition. From
she definition of X-decompositions, it follows that the subgraph is a forest of trecs with cach
node having degree 1 or & except for the notches which may have degree 1 or 2. We will pay

special attention to those trecs where all vertices of degree 1 or 2 are notches of 7.

Definition 2. A planar embedding of a tree lying iuside P is called an X-pattern if it is nos

sell-intersecting and:
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1. All vertices are of degree 1, 2 or 3.

2. Any vertex of degree ! or 2 colncides with a noteh of P, and its (i or 2} adiacent edges
remove its reflex angle.

3. None of the 3 angles around any vertex of degree 3 is refiex.

An X-pattern with & vertices of degree 1 or 2 is called an Xj-pattern. Vertices of dezree
1,2.8 arc called Ni, N2, N3-nodes, respectively. For simplicity we refer to the vertices of degree
1l or 2 as the notches of the X-pattern. Informally, an Xi-pattern is an interconnection of k
nosches used to remove them while introducing £—1 additional polygons into the decomposition.
Figure 3 gives an example of an X-dccomposition with one Xj-pattern and one X4-pattern.

We justify the introduction of X-patterns with the following observation.

Lemma 8. An X-decomposition with p X-patterns has at least ¢ + 1 — p convex parts.

Proof: Let S,¢, % be respectively the number of polygons, trees, and tree-vertices lying on the

boundary of P. We prove the relation

S=k—t+1 (1

[™
e

by induction on ¢. The case t = § is trivial, so we may assume that the introduction of t — 1
trees involves &; vertices on the boundary of P and creates §; = &) — {t — 1) + I polygons.
Introducing the last tree into the decomposition will account for exactly £ — &; — 1 additional
polygons, leading to a total of § = 81 +& — k& — 1 = & — t + 1 polygons and proving {1).
Each of the £ — p trees whick are not X-patterns has at least one distinct vertex which lies on
the boundary of ¥ and is not a notch. This implies that ¢ — p < &k — ¢, which alongside {1)

estabiishes the lemma. j

Lemma 3 suggests that using p X-patterns saves a most p polyzons over the naive decom-
position. This leads to the definition of compatible X-patterns. A set of X-patterans is said to
be compatible, if no pair of ecdges taken from two distinct pasterns intersect. For example, the
X-patterns in any X-decomposition always form a compatible set. Couversely, we can show
that any set of compatible X-patterns can be used to produce a decomposition. The following

resalt 18 complementary to Lemma 3.
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Optimal Convex Decomipositions 73

Lemma 4. Any coiupatible set of p X-patterns can be used to produce an X-decomposition

with exactly ¢ + 1 — p convex parts.

Proof: Start the decomposition with the p X-pasterns. This will produce a certain number of
polygons. If any of them is not convex, apply the naive decomposition to it. Straightforward

analysis shows that the final number of polygons will be exactly e+ 1—p. g

From Leinmas 2, 3 and 4, we are able to express the original OCD problem as a generalized

matching problem.

Lemma 5. Let p be the maximum number of compatibie X-patierns. An OCD can be obtained
by Hrst applying the p X-patterns and then applying the nalve decomposition to auy remaining

nom-convex polygon.

Since any X-pattern has at least two notches, the previous resuit shows that an OCD
consists of at lcast 1+ [¢/2] polvgons. Lemma 5 suggests a new line of attack for the problem
at hand —the suficiency of computing s mazimum set of compatible X-patterns. Unfortunately
to do so seemas beyond reach, given the excessive number of candidates we mizht have to consider
in the process. X-patterns allow Steiner points (i.e. vertices not on the boundary of £} to be
adjacent. Looking at any X-pattera as a mechanical system of extendible arms and joints, this
corresponds to a system which is not strongly constrained. We show next that X-patterns can
be in zeneral redused to maximally constrained X-patterns, called ¥Y-patterns. The next step
will be to prove that ¥-patterus {being maximally constrained) can be computed in polynomisal

time. A rizgorous definition of these aotions is now in order.

Definition 3. A Y;-paitern i3 an Xj-pattern suck that
1. no edge joins two nodes of type N3.

2. in any path containing three consecutive nodes of respective type N2,N3,N2, the N2-uodes

lie on opposite sides, i.e. the two pairs of edges of P which emanate from the N2-nodes lie

on opposite side of the path.
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Optimal Convex Decompositions 75

We will use a special representation for N1, N2 and N3-nodes {Fig.4-a). Note that the
N3 nodes of a ¥-pattern are its Steiner points. A Yy-pattern and its representation are given

in Fig 4-b. To help visualize Condition 2, observe that if the two N2-nodes were poluting

downward, we would not have a ¥ -pattern.

We next show that all Xp-patterns {k # 4) can be transformed into ¥ -patterns. This aillows
1s to limit attention to X-decompositicns with caly ¥ and X -patterns. The transformations,
called reductions, involve the stretching, shrinking, and rotating of lines in the original pattern.
Reductions involve secuences of steps with each step translating an N3-node from one point to
another. All edges in the pattern except for the three edges adjacent to the N3-node remain
fixed. Reductions stop before an angle in the pattern becomes refiex or an edge in the pattern
strictly intersects an edge on the boundary of P. During a reduction, a tree remains an X-
pattern. It may however gain or lose vertices in the process. For example, Figure 5 shows the

reduction of an Xs-pattern, which might correspond to one step in the reduction of a more

eomplex X-pattern.

Iu Figure 5, we see how an Xi-pattern may be reduced to an X;-pattern (I < k). The final
tree is gtill an Xj-pattern; it can also be viewed as an Xs-pattern augmented with a seginent
provided by th? naive decomposition. The Xj-pattern loses a notch thereby being reduced to
an Xs-pattern. This is legitimate since from lemma 5 we know that numbers {rather than
types} of compatible X—pg terns matter. In Fig.5, observe that the notches 2 and b cannot
possibly be interconnected by an Xp-pattern in any X-decomposition. However, it is true that
an OCD can be obtained by considering the Xz-pattern as the single element of a maximal set
of compatible X-patterns. In this regard, the Xj-pattern is of interest to us. If X-patteras
can lose notches, they can also zain some, as will be soon shown. This should not surprise us,
however, since the previous ides of applying X-paitterns and then completing the process with
the ualve decomposition may also augment the X-patterns with additional edges {while not

increasing the number of patterns).

Lemma 6. In an X-decomposition, any X-pattern which is not reducible to an X;-patiern

can be reduced to a ¥Y-pattern.
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Figure 5

Supplied by The British Library - "The world's knowledge"

\I
Ig ——————
é——
b
N

Reductions on X-patterns.




Optimal Cornvex Decompositions 77

x.\?/"
T I. [STOP!

2. 2.1 [STOP]
(4
2.2 Ké [STOP]
%
2.3 [STOP]
-1

[GOTO I.2]

[STOP} 41f y= lm

o M i\T}A 6070 T 1t yod o MT/‘mirror
tr {8TOP] if y= @ v image of

the previous
case.

{STOP] or IST0P] or

%z = node of any type.
¥y = node of tfype Nl or N2.

Figure 6 The proof of Lemma 5.

ol
0Q

Supplied by The British Library - "The world's knowledge"




78

B. Chazelle and D.P. Dobkin

case 1: - case 2!
i

case 33 case 4:

Figure 7 Extreme lostances of X-pattern

vertices.

Supplied by The British Library - "The world's knowledge"

Proof: Beios

into ¥-pattes
patterns in

¥ a reductic

definition of

will not QceE:

We are

condition 1

Condition 15:
Figure
is not of ty;:s:
types in Fig;
arrow. The
boundary 03‘:
being that =
done. Gther:
process unti}
crirrent reél‘{

Convergencs

Note ‘t}:
of X-pattern
representing:
the reflex :\B:
edge from tl;
all angles. i
will be remaes

patterns doc




Optimal Convex Decompositions 79

Proof: Before describing the appropriate sequence of reductions which will turn X-patterns
into ¥ -patterns, we must ensure that reductions can be carried out freely without merging two
patterns in the process, which might increase the number of polygons in the decomposition.
¥ a reduction brings an edge of an H-pattern in coutact with auy edge of the decomposition
not on the boundary of P a reflex angle will have necessarily resulted beforehand. Since the
definition of a reduction precludes intersections with the boundary and reflex angles, this case

will not occur.

We are now ready to describe the reductions of undesirable X-patterns. We first ensure

condition 1 of Definition 3.

Condition 1.

Figure 6-I} illustrates the sequence of actions. As indicated, we assume that the pattern
is not of type X but has two N3-nodes adjacent to each other. Recall the notation for node
types in Fig.4. We move one of the N3-nodes by translation in the direction indicated by the
arrow. The translation continues until either an N2-node resuits from intersectiorn with the
boundary or we fall into one of the “extreme” instances depicted in Fig.7. Assume for the time
being that we are in the first case. If the N2-node occurs between the N3-nodes {case 1) we are
done. Otherwise {casc 2}, another reduction leads to 2.1}, 2.2} or 2.3). We then iterate on this
process uatil ao pair of N3-uodes are adjacent (the label STOP is meant to indicate that the
current reduction step is over and that we should check again if more reductions are necessary).

Convergence is guaranteed since each step adds a distinet N2-node.

Note that the figure investigates all cases except for those representing extreme instances
of X-patterns. These extreme cases are iliustrated in Fig.7. Case 2 is to be understood as
represeniing two edgzes emanating from the same notch, one of which is suficient to remove
the refiex angle. To handle all {our cases, we observe that in each of them we can prune one
edge from the paitern afong with the adjoining subtree and stili preserve the nou-reflexivity of
ail angles. Recall that the notches attached to the removed piece, although now uaresoived,

will be removed later on via the naive decomposition. The crucial observation 18 that pruning

patterns does uot affect the overall oumber of patterus in the decomposition. The pruning
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process will converge since every removal decreases the carrent number of Ni-nodes by at least
one. Unfortunately this statement is a littie hasty, since case 2 of Fig.7 surely removes at
least one Ni-node but, unfortunately, also adds one. To establish convergzence, we will have to
show that when in case 2 the subtree pruned invoives a single notch =z, this noich cau never
be re-introduced by subsequent reductions. Let zy be the unique edge thus prused. A simpile
observation shows that no further reduction of the pattern wiil ever bring any of its edzes across
the segment zy. For this rcason z can never become an N2-node for the pattern. But being
an N2-node i3 a prerequisite for becoming an Nl-node again, therefore x is safely lost for the

pattern once and {or ail —see [3] {or a detailed proof of this fact.

Condition 2.
{Once Condition 1 holds, we satisiy Condition 2 by following the instructions outlined in

Fig.6-ILIII). Proving convergence {ollows the lines given above and we do not elahorate on it

The reductions shown iu Fig.6 are to De applied iteratively to each Xg-pattern {k # 4)
with adjacent N3-nodes. Convergence is straightforward. We have iilustrated the complete

reduction of an Xg-pattern in Fig.8. g

8. The Polynomial Tirne Algorithm

The previous section proved the existence of an OCD comsisting solely of ¥ and X,-
patterns. In this section, we present a polynomia!l $ime algorithm for comstructiuyg such an
OCD. For the sake of clarity, we will ignore efficiency issues, merely showiag that every routiue

used in the algorithm runs in polynomial time. Later we will discuss efficient implementation.

We begin by constructing an oracle to answer questions of the form : “Does there exist
a pattern connecting k givea notches 77 in polynomial time. This oracle will be used by the

decomposition algorithm.

Let v be an N3-node of a Y-pattern. Remove the three edges vy, vy, vy adjacent §o u;
the Y -patteru becomes a disconnected set of three subtrees, for which the removed edges play

the roie of an Xj-pattern. This leads us to introduce the notion of extended X-pattern. An
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eztended Xj-pattern ({ = 2,3) is either an JX;-pattern by itself or an X;-pattern appearing as

a subgraph of an X, -pattern (m > I). It is clear that an algorithm for testing the possibility

of an X;-pattern between a given set of notches can also be used to determine the possibility
of an extended Xj-pattern, as long as the angles formed at the motches by the subtrees of the

Xm-pattern are known in advance.

To see this, we must define the notion of eziended notch and eztended range. Let v, be a
potch of the Xj-pattern, and et W he a wedge centered at v;. We define the cztended range of v,
as the set of points « such that v;u lies entirely within both P and W. In essence, the extended
range is the intersection of W with the visibility-polygon at »; [7]. In general the wedge W will
be taken as the locus of rays {i.e. half-lines} which emanate from »; and remove the refiex angle
at ;. When dealing with ordinary X-patterns, the wedge W is simply determined by the edges
of P adjacent to v;. In this case the extended range 1s simply referred to as range of v;, since
it is then defined only with respect to v; and P. In the case of cxtended patterns, however, the
wedge will take into account the other edges already adjacent to v;, and will thus be smalier
than in the previous case. Later, we consider cases where the wedge W is taken as the entire
plane. This is done if we do not wish to remove a reflex angle at a particular notch. In all

cases, anyhow, we say that we eztend the notch according to certain angniar specifications.

Lemma 7. Checking for the possibility of an (extended} Xj-pattern between ! given notches

can be done in polynomial time (for I < 4}.

Proof: For I = 2,3 it is clear that an Xj-pattern will be possible if and ounly if 1) (I = 2) the
{extended) range associated with each notch contains the other noteh; 2) (I = 3) the {extended)
ranges associated with the ! notches have a common intersection point forming three non-reflex
angles with respect to the notches. Computing each range can be done in U{n) time by first
computing the visibility-polygon [7}, and then clipping it along the corresponding wedge. Next
we compute the intersections of all ranges, which can be done naively in O(n?) time. To handle
Xs-pabterns, we first observe thai two different kinds must be considered, as shown in Fig.9.
Assume wlog that the two noiches v; and v, are adjacent to the same N3-node. We successively

apply the reductions shown in Fig.9-b-c¢, with respect to A then B. Assuming wiog that this
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does not create an X3 or a Yy-pattern with an M2-node between A and B, we simply observe
that the four edges emanating from the notches wili now be collinear with edges of 2. This
puts she total mumber of configurations within O{c*). We can therefore check whether any of

them is feasible, which will lead to an O(ne*) time algorithm. g

We can now turn to the decomposition aigorithm. The procecure for determining a max-
imum compatible sct of X-patterns is based on dynamic programming. We rely uzpon the
cbsesvation that if a certain X, or Yi-pattcrn belouzs tc an OCD of P, it decomposes P intc &
subpolygons, I, ..., P, so that finding an OCD for each F; yields an OCD for P. We compute
maximal compatible sets of patterns for each P;. Since the notches of P are also notches of P,
any X-pattern of & is aiso an X-pattern of P. Conversely, we want to show that any X-pattern
of P involving oniy notches in P; is also an X-pattern of Z;. This is quite important. Dynamic
programming proceeds bottom-up, so a maximal set of patterns involving notches of I must

be found before we know the shape of F;.

To solve this problem, we define V{4, 7} as the set of notches between v; and v, in clockwise
order, so ¥V (4,7) = {%i,%+1,...,v;}, with index arithmetic taken modulo ¢. Let 2;,...,2; be
the notches of an X-pattern, T, given in clockwise order around the boundary of P, and let
¥ {1i,7) be the notches of P between #, and zy41 in clockwise order {2, = iy, Zups = v;41).
We will show that no X-pattern with all its notches in V{7, 7) can intersect T. Assume that an
X-pattern S intersects an edge e of T. Consider the shortest segment which is collinear with
¢ and has both of its endpoints on the boundary of P. This segment partitions P into two
polygons Py and P, (Fig.10). Since the path of T between 2, and 2,3 is a convex polygonal
line, it Hes entirely iz P; or P (say, J%). Since all the notches in ¥ (i,7) are notches of Py,

S§ must have notches in Po, a contradiction. This independence result can be understood in

combinatorial terms. It states that two X-patterns are intersection-free if and only if their
notch sequences are not intermixed, i.e. one sequence falls completely between two cousecutive

clements of the other seguence.

We next define £{1,7), for every pair of noiches vy, v, a8 a maximum compatible zet of Xy

or V-patierns in V{1, 7). To achieve our ultimate goal, i.e. evaluating §{1,¢), we compute all
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valies §{1,7) from {S(&,1) | V{k,1) C V{i,7)} using dynamic programming. This can be done
directly if »; and v; are not coznnected to the same pattern. We simply test all combinations
{S(i,8).S(k+1,7)} for all v, & Vii,7 —1). Otherwise we have to distinguist whether »; and

v; should be counected together via an Xy or a Y -pattern.

To handle the latter case, we compute all Y -patterns which might belong to an OCD
via dynamic programming. We compute ¥ -subtrees {i.e. subtrees of ¥-patterns) as well as
Y-patterns by paiching ¥-subtrees together, To prevent the number of computations from
blowing up, however, we keep only the ¥ -subtrees thut are candidates for belonging to an
GOD. A Y-subtree is considered rot to be a candidate if at the time it is compused we are
ensured of the existence of at least one OCD which does not use this Y-sabtree {although we
may not know tkis OCD explicitiy yet). As a shorthand we say that a pattern or a Y-subtree
lies In V'(4,7} if all its notches do. It now remains to formalize the imtaition given here and

describe the polynomial time algorithm.

Counsider a Y-pattern which is used in an OCD and has at least onc N2-node, v;. This

node splits the ¥-pattern into two Y -subtrees, so there exists an index 7 such that

i. One of the Y-subtrees lies in V{4, ;) whercas the other lies iu Vi{ii+1,1).

2. All the other patterns in the OCD lie totally either in V{4,7) or in V(5 + ISR

We will consider the candidacy of the Y-subtree in V{i,7) immediately after S{i,7) has heen
computed. We firs¢ observe that if v, Ui ,... U5 is a list of its notches in clockwise arder, we

may dismiss the candidacy of the subtree if the following equality is not satisfied:
ISC =186+ Lds = )]+ 4+ 1S limet + Lim — 1)] + |S(in + 1, 7)), (2)

where [5(k,!)| represents the number of patterns in S{k,1).

Note that the last term in the right-hand side is to be iguored if 4,, = 7. If Relation {2) is
not satisfied, the right-hand side is strictly smalier than [S(2,7}|. When considering candidate
Y -subtrees, we have the idea in mind that only one pabiern will have notches in both Vi, 7)
and V(7 +1,7). It would then be unreasonsble to use any ¥ -subtree which does not satisfy {2),

since the patterns of §{{, 7} would provide a better decompositiou altogather.
D Ji g
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"Mhis simple fact will be consequential in achieving a polynomial tine algorithm. We still
have to cope, however, with the prospect of keeping an excessive mumber of candidate subtrees
for each pair {i,7}. Another geometric observation is in order. Let L; (resp. R;) demote the
edze of P adjacent to v; and preceding (resp. following) vy in clockwise order. Whenever L; or
£, is used in designating an angle, it is understoovd as directed cutwards with respect to v;. Let
£ be the edge adjacent to v; in the ¥ -suebtree lying in V{¢,5}. The edge ¢ is called the arm of the
¥ -subtree. When the arm of a ¥-subtree euters the expression of an angle, we assume that 18 is
Girected towards the notch (Lere t is directed towards vi). Among ali the ¥ -subirees in ¥V{1,7)
for which v; 15 au N2-node, {2} 1s true and u = Z{L,, ¢t} < 180, we imay keep the ¥-subtree T

whirh minimizes the angle u as the only candidate with respect to V{4,7) (Fiz.il-a).

We define B(i,7) as a pointer to the arm of 7. I there is no such subtree, B{i,7) is 0.
Patterns and subtrees will be represented by linked lists, so Z(f,7) will provide access to the
Lol

entire Y-subtree T whenever necessary. Carrying out the same reasoning counterclockwise in

V (i, 7) with now v; as an N2-node, we define F(4, 7) in a similar fashion {Fig.11-b}.

Having established our notation, we are now in a position to present the decomposition
alzorithm. We assume a function (ARG ) for assembling ¥ -subtrees when computing S(¢,7}.
ARG is in geueral a pair of ¥-subtrees taken from B(u,v) or F(u,v). If the two subtrees can
bhe patched together and form a ¥ -pattern T, the function {) returns {C,T), where { is the
waximum number of compatible patterns which can be applied in V{4, 7) including T. We
return to a discussion of this function after a presentation of the algorithm. Before proceeding

with a formal! description, a brief overview might be heipful.

After all necessary preprocessing in STEP 1, we use nested loops to implement the dynamic
programming scheme. Bach step involves computing $(,7) for a given valne of ¢ and 7. We
start by computing the best YV-pattern which connects »; aud vy (STEP 2). This iuvolves
patching precomputed candidate ¥ -subirees. STEP 3 computes a maximuam set of compatible
patterns in V{4, j). denoted L, assuming that v; and v; do not belong to the same pattern.
Then we compute M, defined similarly, with the difference that we now allow the preseace

of an X4-pattern counecting v, aud v;. Finally the ¥-pattern of STEP 2 (if any) is used to

compute N, so the maximal set among L, M, N is finaily chosen as §{7,7). STEDP 4 computes
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the Y -subtrees which lie in V{1, 7) and are considered as candidates. These subtrees are to be
used in further iterations through STEP 2. Once a maximum compatibie set of patterns for 2

has been determined, we fnish off the decomposition using the naive decomposition {STEP 5).

Procedure ConvDec{P)

STEP 1
The preprocessing involves checking that P is simple and non-convex. We make a list of

the notches vy,...,v,, and we initialize all B{s, 1) and F(1,4) to 0.
ford=1,...,e—1
fori=1,...,¢
jr=i+d [mod ]
do STEPS 23,4
STEDP 2:
Compute the best ¥ -pattern connecting v; and v; as follows:
For each k; vy € V(i + 1,5 — 1), compute the set Q = Ui<ics @i, where
Q1= {{F(1, k), Bk, 7))} /* N2-node on path */
@z = {{Bl&. &k — 1), Fl&k, ) UUBGE, 7 — 1L, F{7, 700} /* no N2 or N3 nodes on path
*/

Qs = {{B(i,k — 1}, B(k,7 - 1))} /* N3-node on path */

= {(Fi+ 1,E), Flk+1,7) /* N3-node on path *
AR i /

The elements of @ are pairs of the form (C,T). Let T be the Y-pattern which has the

maxImunl

C value in Q.

STEP 3:
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Let §{Z,7) be the maximum of I, M, N with respect to cardinality, where {max is taken
with respect to cardinality}

L= maXey, eV {s,5—1) {S(?'! ’%) U S(‘!‘: + }'13)}

/* corresponds to a patching together of ¥ -patterns */

M=max{{z; .3 ;3 USE+Le-HUSle+ 1,013 JS+1,7-1)}

for all X4-patterns ziqp,; connecting v;, va, Vs, v;, With ve, vy € V{4, 7}.

/* corresponds to the nse of an X -pattern */

N = {the YV-pattern T of STEP 2} S+ L4, — 1)U... S, 1 + 1,4, — 1IUS(E, +
Li—1)

where v;,9;,,...,¥,, ¥, are the notches of T in ciockwise order.

/* corresponds to the use of the Y-pattern T */
STEP 4:

Compute B{1, 7} and F(1, 7).
STLEP 5:

Finish off the decomposition using the naive decomposition, i.e. adding one polygon for
o ¥ [s]

each remaining notch.

The remaining of this section is devoted to explaining the various steps of the algorithm

and snalyzing its complexity.

1. Patching Y -subtrees (STEP 2)
The function (ARG ) takes two Y-subirees and constructz a Y -pattern if these two sub-
trees can be patched together. ARG is any argument of the form: {F{7, k), B{k, 1)}, {Bi.k —

3, Fle,5)). (Blik — 1), Bk, 7 — 1)} or {F{i+1,k), F(k + 1,7]), with vy, vx, »; occurring in

clockwise order.
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Figure 12 Computing the function <ARG>.

Supplied by The British Library - "The world's knowledge"

Vi

(if any
i Vi, 7)
Consider

detected &

be report{é

18 free of




Optimal Convex Decompositions 91

Case 1. {F{i, &), B{&, 7)) {Fig.12-a).
Let F(i,k) = T aud B(%, 5} =V, with r and s their respective arms. If /{r,s) < 180 and
T #0and V #£ 0, then set (F(z,k), B{k, 7)) = {{8{(5, 8)! + {S(#, )| + 1, ¥ -pattern: TU V),

else (F(3,%), B(k,7)) = 0.

Case 2. (B(i, k— 1), F{&, 7)) (Fig.12-b}.

Let B(i,k— 1) = T and F(k,7) = V. I an extended Xo-pattern is possible between v; and
vy

then set {B(<, & — 1), F{k,2)) = (1805, £ — 1)} + |8{%, 7}| + 1, Y -pattern: {vv;} JTUV),

else (B{i,k — 1), F(k, 7)) = 0.

Case 8. (Bli,k— 1), Blk,j— 1) {Fig.12-c).

Let B{i. k4~ 1) =T and B(k,j— 1) = V. If an extended Xj-pattern W is possible between
Vi, V5, Uk, then

(B(i, k- 1), Blk,7 = 1)) = (|, e— )|+ 18k, - DI+ L,TUVUW),

eise (B, k6 — 1), 8B(k.7—1)) =0

Case 4. (F{i+ 1. %), F{k + 1,7)) {Fig.12-d).

Let Flé+1.%4) = T and F(k=+1,7) = V. Il an extended X3-pattern W is possibic between
Vi, V5, Vi, then

(Fli+ 1.8 Fle+1,7)) = (|SE+ L&) +|SE+1L0+ L, TUVUW],

else (F{i+ 1. k), F(k+1,5)) = 0.

Bacanse of Relation {2), it is clear that STEDP 2 computes the ¥Y-pattern connecting vy and
v, (if any is to be found) such that the number of compatible patterns which can be applied
in V{i 7) is maximum. All we have to check is that all cases are indeed handied in STEP 2.
Cousider the path from v; to v; in any such Y-pattern. If it contains an N2-node, it will be
detected in 1. Otherwise one N3-node may appear on this path and all these candidates will
be reported in Qs and Q4. The final case, handled by {2, assumes that the path from v, to v

is free of N2 and N3-nodes.
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Figure 13 Computing Y{i,ARG) and Y'{i,ARG).
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2. Computing S{1,7) {STEP 3)
Assume by induction that §{%,!} has been computed for all vz, v € V (1,5} (except for
S(4,7)). The algorithm investigates the three following cases in turn:
1. Disallow the preseuce of any patiern having bhoth v; and v; as vertices.
2. Comnsider the possibility of an X4-pattern connecting v, and vj.

3. Consider the possibility of a Y-pattern connecting v; and v,.

Lemma 7 shows that STEP 2 aund STEP 3 can be accomplished in polynomial time. Cor-

rectness follows directly from previous discussion.

&. Constructing Y -subtrces (STED 4)

We compute B{z,7) and F(i,7) by iteratively patching ¥ -subtrees together via two func-
tions, Y{i, ARG) and Y'{i, ARG). ARG is an argument of the form B{q, b} or (B{e, b}, B(e, d})
{or the same with #). We describe these functions with respect to B’s only, all other cases

being similar.

Case 1. Y (i, Bla. b)) {Fig.13-a)

The vertices vq. vy, v; occur in clockwise order. Let 7' = Bla, 8). Extend the notch at v, to
take into account the arm of 7. Extend the notch at v; by making its associated wedge be the
entire plane. If an extended Xo-pattern is possible between v, v; and if w = Z{R; v;p,} < 180,

set V{1, Bla, b)) = {Y -subtree: {vw,} {JT), else ¥Yii, Ba, b}) = 0.

/

Case 2. Y{i.(B(a.b). B{c.d}) (Fig.13-b}

The vertices vg.vp, Ve, g, v occur in clockwise order. Let T = B(a,b) and ¥V = Ble,d).
Extend the notch at v, {resp. v.) to take into accouni the armn of T (resp. V). Extend the
notch at v; by making its associated wedge be the entire plane. If an extended Xz-pattern is
possible between g, v, v;, compite the locus of its N3-node. Let § be the point in tke locus
which maximizes the angle w = Z( Ry, v:8).

Hw < 180, set Y {5, (B{a,b), Ble, d}) = (Y -subtrce:{Sv,;} U{Sva } U{Sv.; UTUV),

else ¥ {1,{B(a.b), Ble,d)) = 0.
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Figure 14 Computing B(i,j).
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We define Y'(z, Biz,b}!) in the same way as Y {i, B{a,b)), with Z{R;, viva) replaced by
/(vive. Li) (Fig.13-c). Y'(1, F(a,d}) is defined similarly, so we omit the details. We are now
ready to implement STEP 4 of the decomposition algorithm. We will only describe the cosn-
putation of B{i,7), since the case of F(1, 7} is strictly simiiar. We begin by computing the four
sats B;, Bo, B3, By. Let © be the value of |§{s, 7} computed in Step 3.

B; = { Y-subtree of B(1, k3}, for all vy € V{1,5~ 1) such that {S{¢, &)+ [S(k+1,7)} = C.

/* v, is not a noteh of the Y-subtree */

By, =1{Y", Blk,j))}, forallyy € V{t+1,7— 1) such that (IS +1,4—- 1)+ |5{k,7)| = €.

/* vi's neighbor is an N2-node */

Ba= { Y/ Fli+ L)hH ISGE+ 17| =0

J* »’s neighbor is an N2-node */

B, = { Vi {Fli+ L&), Fle+1 )}, forallv, eVi{i+315-1)

such thas [S{1 +1,k)

+18(k+1,7)| = C.

/* v.’s neighbor is an N3-node */

Let T be the Y-subtree of By |J Bz |J 83 |J By which maximizes the angle u = /(% L;),

where ¢ is understood here as the arm of T directed outward from v; {Fig.14). We define B{i, 7}

17

as a pointer to the arm of T {now understood to be directed towards v,).

Computing B(:, 7} can be clearly done in poiynomial time, according to Lemma 7. Note
that ¥ -subtrees can be merged in constant time by linking their respective arms together. 3,
shrough By cvaluate all candidate Y -subtrees adjacent o »; and lying in V{1, 7), and keep a
single candidate, i.e. the subtree which has maximum angle u. We can show by induction that
it 1s sufficient to consider only the Y -subtrees in the B’s and F’s. B; cousiders all subtrees
which do not have both »; and v; as notches {Fig.14-a}). B; and Bs compute the subtrees
whose vertex adjacent to v is an N2-node. Note that B; and 85 may share common subtrees.
The two possible configurations are illustrated in Fig.14-b,c. Finally By detects all candidate

subtrees such that the vertex adjacent to »; is an N3-node {Fig.14-d).

4. Completing the OCD (Step 5}
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The last step of pracedure ConvDeec consists of removing the remaining notches with the
naive decomposition. This canr be done 1n polynomial time, leading to the main result of this

section.

Theorern: An optimal convex decomposition of a simple polygon can be computed in polyno-

mial time.

4. Towards an Efficient Implementation

We will not make any attempt to evaliate the exponexnt in the polynomial expression
bounding the time complexity of the previous algorithm. Ciearly, it is prohibitively high. To
produce a substantial savings in the runamg time of the algorithm, we first identify routines
which need to be made more efficient. We essentially have three items to examine:

1. The nalve decomposition.
2. Computing (exteanded) X; and Xs-patterns.
3. Computing X4-patterns.

As we will see, improving the first two routines can be done without otherwise altering
procedure ConeDee. Unfortunately, following the exact prescriptions of the procedure would
lead to computing all possible X -patierus. Since we may have on the order of ¢! such patterns,
discovering structural facts to limit the number of candidates to examine i3 in order. To begin,
we consider the implementation of the naive decomposition. This allows ns to introduce most

of the tools used later on.

1. The Naive Decomposition

Recall that the naive decomposition involves removing each notch in turn by means of a
simple lue segmeut neively drawn {rom the notch. For simplicity we will choose a segment
coflinear with one of the edges of P adjacent to the notch. The degree requirements we made 1u

the orizinal definition of the naive decomposition can he relaxed here, since their only motivation

was the simplification of subscquent proofs. Each line segment extends from a notch to the first
intersection with the current decomposition. This can be easily accomplished in O{n -+ ¢} time,

but this is stiil too siow for our purposes,
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The improvement which we propose involves O(nj time preprocessing at the outset of the
computation. Before describing this preprocessing, a few more definitions are in order. A
convez polygonal line 1s a sequence of vertices {ay, . .. ,ag,'} such that /(a;6,_;,a;¢,41) < 180,
for euch ¢ such that 1 < ¢ < p. The sequence is called a convez chainif {ai,..., e,,a;} forms
a convex polygon. Note that in this case 6y, ..., a, corresponds to a clockwise traversal of the
polygon. It is known from [3,6] that if the vertices of a convex n-gon are stored in a linear
array it is possible to compute its intersection with any line in Of{logr) time. Unfortunately,
between each pair of notches vy, vy.3, the boundary of P certainly is a convex polygonal line

but not necessarily a convex chain. This motivates the foliowing preprocessing.

Partition the boundary of P between two consecutive noiches into contiguous couvex
chains. Let L; = {y;,...,y,} be the convex polygonal line given in <lockwise order, with
y1 = v; and y, = vi;;. If neither the angle /{y1yz, y1y2) nor the angle d{yeye—i,yxy1) is
reflex for any 2 < & < p, L; is a convex chain and remains unchanged. Otherwise, let 71
be the smallest k such that {y:,...,v%, ¥x+1,¥1} is a non-convex polygon, i.e. such that ei-
ther Z{ysye1.y1y2) oF £(Yat1¥a, ¥x+1y1) is reflex {Fig.15-a). We define (7} as the convex
chain {y;....,y;}. Next we apply the same procedure recursively on the remaining part of
L;. This leads to defining €5 as {y;,...,¥;,}, with 7o being the smallest £ > 5, such that
(W ¥ar i, ¥ Y5 +1) OT (Yry1¥s, ¥rt1Yy, ) is reflex. We iterate on this pracess until we reach y,,

thius partitioning L, into ¢ consecutive convex chains Oy, ..., C,.

We apply the same treatment to each pair of notches {v;,v;11) and reaumber the chains
accordingiy. This leads to a partitioning of the whole boundary of 2 into m consecutive convex
chains, 3,..., G, in clockwise order. Letting z,, 2,41 be the endpoints of C; in clockwise
order {with 21 = 2,41 = 01}, we call the z; the pseudo-notches of P. Note that all notches are
pscudo-notches but the converse is in general not true {Fig. 15-b). This preprocessing requires
0{n) operations. We next show that the number of convex chains is of the same order of

magunitude as the number of notches.

Lemma 8. m < 2{1+¢).
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Proof: Consider the vertices p; of P which are not notches of P and iet U be the sum of all the
angles Z{pipi+1,pi—1pi). Similarly for all vertices p; which are notches of P, let ¥V be the sum

value of ali the angles Z{p;_1p;. p;p;41). It is a classical resuit of geometry that

IV —V = 360, (3

S

For each convex chain C; = {ai1,...,a,} such that a, is not a notch of 2, let 6,4 be the vertex
of P adjaccnt to a, in clockwise order. We define U; as the sum of all angles Hajeyypy,ny g0y},
for ali 2 € 7 < p. Let U;,,..., 1/, be the values thus obtained. By construction the polygon
{G1.,...,8p,apr1, a1} has a reflex angle either at ayq or at a;. It foliows that if ¢ {resp. d} is
the angle Z{ap41a3, agapyr) {resp. /{ayaz,ap41a1)) measured {exceptionally) between —180
and +180 degrees, nezative if there is a reflex augle at ap41 iresp. @i}, positive otherwise, we

have

U; = 360 — (¢ + d) > 180. t4)

Since none of the U,'s accounts for the reflex angles of P, we have Eig;‘gf Uy, £ U. Also i,
between a pair of consecutive notches, 7 consists of a single convex chain, no U; is defined on
this portion of P, whereas if it cousists of p chains, p — 1 U;’s are defined. This implies that
t = m — ¢. Combining this fact with {4} we dsrive

180{m —¢) £ Uy

;U
1<j<t

)

and from (3)

U =360+ V < 180{2 + ¢),
which completes the proof. g

This leads to the following result.

Lernma 9. In procedure ConvDec, STEP § can be accomplished in time O(n + ¢Zlogn).

Proof: We assume that P has been preprocessed as described above, with each convex chain
stored in a linear array. For each remaining notch v, in tumn, let ¢ be the ray emanating from

v 1n a direction removing the reflex angle at v {for example the direction of one of the cdges
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Optimal Convex Decompositions 101

adjacent to v). Among the intersection-points of £ with the edges of the current decomposition,
we must defermine the closest to ». To do so, we compute all the intersections between £ and the
internal edges of the decomposition, i.e. the edges not on the boundary of P. It is easy to show
by induction that there are (}{¢) such edges, hence ({c} intersectiorn-points ta compute. Next
we compute the intersection of t with each convex chain of £ in tura, using the fast algorithm
of 0]

|
[

The running time of this method wili be O(n + ¢?log n). inciuding preprocessing. g

2. Computing Eztended Patterns

We refine the preprocessing cdescribed above. Since the computation of X-patterns is
intimately based on the notion of rauzes, we precompute the visibility-polygon with respect
to each motch at an overall cost of O{c?logn) time and spacc. This may scem a paradox
siuce storing all these polygons may require as much as #{cn) storage. The crux is that only
significant vertices of the visibility-polygons will be stored. This economical description of the
visibility-polygon of a notch v is cailed the superrange of v. In the next paragraphs we describe

how to compute superranges and then show how to use these new structures efliclently.

Let v be a notch of PP and ¢:,...,%{; be the list in clockwise order of ali the pseudo-
notches visible from ». Note that scanning ¢;,...,t, corresponds to a clockwise traversal of the
boundary of 2 as well as a clockwise sweep around v. Let [5; be the ray emanating {from v
with the direction from v to t; and let Dy {resp. Dpy1) be the ray passing through the edge
of P starting from v in clockwise (resp. counterciockwise) order. The sct of rays Dy,..., Dy
partitions the region of P visible from v into p+ 1 simple polygons, all adjacent to v. Typically
a polygon 1s comprised between D;, Dio; and a convex polygonal fine on the boundary of P.

Let ¢; and b; be the endpoints of this convex line {with b; following a; in ciockwise order

Fi1g.16). For each noteh v, we define the superrange of v, denoted SR{v)}, as the ordered list
SR{v) = {{ao.b0),... {ap bpl}.

The next resuit states that superranges can be computed very efiiciently.

Lemrna 10. An n-gon can be preprocessed in O{n) time so that the superrange of any of its

notches can be computed in O{ciogn) time.
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"

Proof: The proof of this result is too lengthy to be included here. We refer the rcaé‘er to {3] for
the details of the proof. In [7] El-Gindy and Avis present a linear algorithm for computing the
visibility-polygon from any pomnt in P. Althongh their algorithm cannot be uscd here since it
is too slow for our purpuses, we can siill use 1t as a basis to give intuition for our algorithm.
Bi-Gindy and Avis’s aigorithm can be seen as au exteasion of a Graham scan. It esseatialiy
involves traversing the boundary of P in one direction, occasionally backing up but never more
than once per vertex. Cur algorithm 1s conceptuaily similar to [7]; the ounly differcnce comes
from the traversing scheme used. Instead of going from one vertex to the next, indeed, we go
from cne convex chain tc the next. In this regard, the data type “edge” in (7] becomes, in
our algorithm, the data type “convex chain”. Aan important feature of the former data tvpe
which we lose in our algorithm is the property that a ray scanning an edze moves either totally
clockwise or totally counterciockwise. A convex chain, instead, can change directions at most
twice. However, whenever entering a new chain, we can use the fast algorithm of [8] to compute
the changes of direction in O(logn) time. This means that we can rewrite the entire algorithm
of {7}, now taking convex chains instcad of edges as our basic objects. The price to pay will be
a factor log n in every step of [7]’s algorithm. Since there are only Q(c) convex chains, however,

the O{n} algorithm of [7] now becomes an O{clog n} algorithm. g

The uotion of supcrrange can be of great use for many geometric problems and is tims
interesting in its own right. To appreciate its usefulness to our specific decomposition problem,
we need introduce a function of two argaments, R{v, D), where v is a notch of P and D is a
ray emanating from v. Let Dy, Dy be the two rays (introduced earlier in the definition of
superranges) between whickh D lies. If Z{vb;,va;) is reflex, R{v, D} is set to 0, otherwise it
is set to the segment vy, where y is the intersection of D with e;4;. Clearly, R{v, D) is still
well-defined if D is a directed segment emanating from v instead of a ray. The next two results

give motivation for these definitions.

Lemma 11. Once the superrange of each notch has been computed, R{v, D) can be computed

in Of¢) time for any notch v.

Proof: Trivial. g

e ————
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Leomma 12. If v is a notch of P aund vz is the edge of an X-patteru, = lies on the segment
Rlv, vz}

Proof: The result is obvious if « lies on the boundary of P, since it is then a notch of P and
R{v,vz) is exactly vz, Suppose that = is an N3-node and vz contains R(v, vz} (Fig.17). Let
{a;.b;) De the pair of SR{v) such that vz intersects a;b;. The segment a;b; partitions P into
two polygons, Py and Ps, with say P, contalning x. Since the portion of the boundary of P
hetween ¢; and 5, is a convex chaln, 7| is a convex polyzon, therefore the X-pattern cannot
have notches in I, which is in contradiction with the fact that all the anzles formed by an

X-pattern are non-reflex. g

We next show how to use these results to compute extended X, and Xs-patterns efficiently.
For simplicity we will first consider the cases where the patierns are standard, i.e. not extended.

1t will then be easy to generalize the results obtained to extended patterns.

— Detecting X,-patterns

Lemma 18. With O(n +¢® + ¢?logn) preprocessing it is possible to check for the possibility

of an Xo-pattern between any two noiches in constant time.

Proof: The preprocessing involves computing the superrange of each notch as well as the seg-
ments R{vi,vivy), for ali pairs of notches vy, v;. Lemmas 10 and 11 show that this can be done
in O{c® + e¢?logn) time. From Lemma 12, it then follows that an Xo-patiern between v, and
v; 15 possible If and only if R(v,, wiv;] = v;v; and the segment v;v; removes the reflex angle at

both vy and vj. 3

- Detecting X3-patterns

Computing X,-patterns is somewhat more complicated. We need some additional prepro-
cessing which we next describe. Recall that R; and L; are the directed segments from v; to

the next vertices of P respectively following and preceding v; in clockwise order. This notion

i and B{v;, L;} without ambiguity. Similarly to give

of direction allows as to define R{v;, R;

full meauing to augles of the form Z{w =, R{vi, D}), the segment R{v;, D} will be understood as

assuming the same direction as D.
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Figure 17 R(v,D) expresses the longest edge vx with

direction D of an X-pattern.

D)

Figure 18 The definition of Tis and Eéi'
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For each pair of notches »,,v;, we define the two points ry; and l;; as follows: v;ri; is the
rightmost segment in the range of vy, visible from v;. More precisely, if both & and Z; lie on
the same side of the line passing through v;v; and Z(vw;, B;) < 180 {Fiz.18-a}, we determine
the pairs (up, by} and {apyq, by} of SR{v;j such that v; occurs between b, and a,.; in a
clockwise traversal of the boundary of 2. We assume that a,+; does not lic on the segment

v;bp (uniike in Fig.18-b). We may have v; = b, = a,, however. Let t denote the segment

et

R(v;, Li) i 7{R{w;, L)}, wyapy 1) < 180 (Fig.18-¢), and the segment v,a,4; otherwise {Fig.18-d}.
If we actually have Z{v;v;,t) < 180, we define t as Riv;, v;v;}. Pinally if 7(¢, B;) < 130, we
define r;; as the endpoint of ¢ (# »;}. If any of the above conditions fails, r;; is 0.

We repeat the same process on v; with respect to v;. If R; and L; lie on the same side
of the line passing through »;v;, we first determine the pairs (ap,b,) and {ap4y, bpr1) from
SR{v;} such that vy occurs between b, and ap4; in clockwise order. We will suppose that &,
does not lle strictly between vy and ay5q. Let € be R{v;, By) if £{v;0y, R(vy, £;)) < 180 or vyd,

otherwise. Similarly, if 7 (t,v;v;) < 180, t is reset to R{vy, v;¥;) =0 that we can define {;; as the

endpoint of ¢ other than v; if /(L;,¢) < 180. In ali other cases, {,; is set to 0.

With the superrange of each notch at our disposal, we can compute each r;; and lj; in
O(e) time, which yields an O{n + ¢ + ¢% log n} overall preprocessing time. We arc now ready

to describe the computation of Xz-patterns.

Lemma 14. With O(n +¢3 + ¢%log n) preprocessing it is possible to check for the possibility

of an Xg-pattern between any three notches in constant time.

Proof: Let v;,v;,v; be three notches of P. We wish to rive a sed of necessary and sufficient
V3. Vi

conditions for v, vy, v; to form an Xz-pattern. Let O; = wiry Nwjlyy, Uz = viryy N varay
and 3 = w;l;; Mvgly;. One of the following is true: 1) 7 is further from v; than €
is {L{vklkj,vkrk;) + L{wgres, vxCi) = L{vglz;,9201)); 2} Cy is further from vj than 7 1s

(£{veCr,vxley) + L{vglay, verei) = L{vgCy,varii)); 3) Cy is further from vy than 2 is and
further from vy than Cz is {£{vales,vaC1) + £{vxC1,vpmes) = £(vaizi, vatai))- In case 1, set
¢ = Cy; in case 2, set £ = g, and in case 3 set & = C,. Similarly we introduce the points A

and B, defined like ©C with respect to {v;,v4) and (vg,v;) respectively. From now omn, we will
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Figure 19 Detecting X3-patterns.
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Optimal Convex Decompositions 107

assume that 4, B and ¢ fall in case 3. The other cases are treated in a similar way and may

thus be omitted. We can show that »;,v;, v are the notches of an Xa-pattern if and only if:
1. vy, vy, vg oceur in clockwise order on the triangle vv;v.
2. ri.rik, Tei, fik, dxj, i are all distinet from 0.
3. The points A, B, (¢ are well-defined.

4. The polygon @ = v;0v,;AvgDv; is simple and has a non-empty kernel (recall that the

Lernel of a polygoen is the region visible from every point in the polygon).

Al these conditions can be easily chiecked in constant time with the preprocessing described

above.

We say that a point is range-visible from a notch v if it lies in its range, i.e. if the segment
Hes totally within P and removes the reflex angle at v. We define the wedge W(az, ay) as the
region swept by a ray pivoting ia clockwise order around e from az to ey. Let S be the N3-node
of an Xs-pattern between v;,vj,vg. To prove that the second condition is also necessary, we
show that r;; # 0, all of the other cases being similar. Since the three edges of the pattern must
lie in the triangle v;, vy, vk, the first requirement {illustrated in Fig.18-a) is obvious. Considering
the pairs {ay,b5,) and {ayyy,dyt1) it is equally clear that the configuration of Fig.18-b cannot
lead to an Xs-pattern since we must have /{Sv;, Su;} < 180, where § is the N3-node. Indeed,
Sv; must intersect bpapy; with possibly v; = b, since § must be visible from both v; and v;.
This remark shows that not only are the configurations of Fig.1B-c,d the only ones possible,
but also that § cannot lie in the wedge W{v;ap+1, Ri). The other conditions to satisfy in order
to define r,;; express the fact that § lies in the triangle v;v,v; as well as the range of v;. Also,
since we must have /(v;5,v;v;] < 180, it is legitimate to set ¢ to R(v;, vyv;), if £{v;v;,¢) < 180.
Finally if £(¢, B;) > 180 no point visible from »; can be range-visible from v;, so we can set ri;
to 0. Thus, when an N3-node exists, all these conditions wili be satisfied and & cannot lie in

the wedge W (v;r;, R,}.

As mentioned earlier, the points ag,b0,61,81,..., G, b, occur in clockwise order around
the boundary of P, therefore we must have (v, viri;) < 180 i Lz # G and ri; # 0O, since

vi, ¥4, U occur in clockwise order. It follows that if 4, B, C exist, the polygon @ must be simple.
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To prove that these points are well-defined, we tirst show that Sv; intersects v,r,;. As we have
seen that Su; intersects vigy4z, thus implying that o;r;; is not defined as R{v;, viv;), we only
have to show that So; intersects v;r;; whenever this segment is defined as R{v;, L;}). Since §
cannot lie in W{R(v;, L), B;), Sv; must intersect v;A (Fig.10-a). Also Sv,; cannot intersect
Mr;. since § wouid then belong to a convex polyzon where no N3-node point can ile {Lemma
1Z). This proves our claim, and shows that r;; {as well as [, by a similar reasoning) lies outside
the triangle Sv;9; (Fig.19-b). Finally, as we know that § cannot lie in the wedges Wivery,, Ry
and W (L, v;l;;), we derive £{v;§,vir;;) < 180 and Z{v;l;;,9;5) < 180 which, combined with
the previous resuit, estabiishes that v¢ry; and v,{;; intersect. This proves the existence of the

poiut C as well as points A and B, by symmetry. Since § must iie in W (v, v;ri7), the same

reasoning applied to vy and vi shows that S lies in the kernel of Q.

The four conditions having proven necessary, we next show that they are suficient. Assume
that they are all satisfied {Fig.19-c). Since viry; is range-visible from v;, and =0 is viljs from vy,
Condition 3 shows that ¢’ is range-visible from both v; and v;. It follows that the boundary of
P cannot intersect strictly with v;C or v;C, and by syminetry, cannot intersect with the edges
of Q. Therefore, any point of its kernel is range-visible from v;,v;, vy and is the N3-node of

a possibie Xg-pattern. Note that all three angles around the Steiner point are ensured to be

< 189 since the kernel of ¢ lies within the triangle v;ujug.

Cur techniques for computing Xz and X3 patterns can be used to handle extended patterns
as weil. Patching together ¥ -subtrees in STEP 2 can be done along the same {ines and no further
explanation is necessary. The only remaining guestion to address concerns the computation of
Y{i, ARG) and Y'{i, ARG) in STEP 4. The most geaera] case corresponds to the computation
of ¥ (4,(B{a,b), Bc,d)}} {Fig.13) {¥' is handled similarly). We extend the notches v, v, v,
accordingly, aud {referring to Condition 4 in Lemma 14) compuie the kernel of Q. In doing so,
we drop all requiremcnts involving By, since we do not have to remove reflex angles at v; at

this point. Once again, detalls are tedious but straightforward — see [3]. We conclude

Lemma 15. After O{rn + ¢ -+ ¢? log n) preprocessing it is possible, in constant time, to

i. check for the possibility of an extended X,-pattern between any iwo notches,

2. check:::
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2. check for the possibility of an extended Xj3-pattern between any three notches,

3. evaluate the fanctions ¥ and Y.

3. Computing X, -patiterns

We now have to face the most difficuit task in our guest for an efficient implemcntation.
Improving the previous routines simply relied on increasing the amount of preprocessing with-
out otherwise altering the basic nature of the algorithun. The excessive number of possible
X4-patterns require concepiual changes in our aigorithm. These changes are based on the
observation that of all the (2} potential Xg-patterns, only {}{n2) need be retained for consid-

eration. Implementing the sclection requires structural facts about the nature of Xy-patterns.

Definition 4. Au X4-pattern is said to be loose if it can be reduced so that each edge adjacent
to a notch v; is made to be collinear with either B; or L; (16 configurations should thus be

achievablie - Fig.20).

The term “reduced” is to be understood here in the sensec of Lemma 6. The introduction

of loose patterns finds justification in the followiag.

Lermma i6. Bvery X4-pattern which is not reducibie fo an Xz-patiern or a ¥y-pattern can be

reduced to a loose X4-pattern.

Proojf: Let hull{T) desiznate the convex hull of all the points of an X-pattern T'. It is clear
that every X -pattern, 7, can be reduced to an X -pattern ¥ such that no further reduction
of V can lead to another Xy-pattern lying strictly inside Auli(V'), i.e. an X4-pattern where at
least one notch lies strictly in the interior of 2ull(V). We show that if T cannot be reduced to
a Y-pattern, ¥ must be loose. Assume that one of the 16 configurations cannot be achieved for
¥: by spplylng the reductions shown in Fig.21 we can reach an X3-pattern, a ¥ -pattern or an

Xa-pattern lying strictly in hull(¥V'}. Actually, another possibility is to reduce to the alternate

case of Fig.21, which can arise only a finite number of times. g
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Figure 20 A loose X4-pattern with its 16 extreme configurations.

.
\

Figure 21 H4-patterns can be assumed to be loose.

Figure 22 Characteristics of an X4-pattern
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Beeause of this resilt we can assuime that the A4-patterns considered in STED 3 are loose
and collinear with the right edge of each motch involved. More precisely, if § is an N3-node
adjacent to vi, the edge I is coltinear with Sv. From 10w oD, all the Xg-patterns considered
will be assumed to have this configuration. Before addressing the main problem, we give a

convenicnt characterization of X4-patterns which we will be using throuzhout.

Lemma 17. Let vk, vi, ¥, Y5 be four notches in clockwise order around P, the tree in Fiz.22

forms an Aa-pattern i and oaly if:
1. A and B are the only two intersecilons between cdges.
9 Angles £z, 2y, 42, (2 Ly, 22 are < 180 degrees.

5 No edge of the tree infersects with the boundary of P {exccpt at the notches).

Proof: This characterization is falrly siraightforward. it iz important to notice, however, that if
we consider the convex hull of the Xy-pattern, & clockwise order of its four vertices corresponds
to a clockwise order of the notehes on the boundary of P. This topological fact will be useful

throughont. @

The fact that an X4-pattern with the configuration of Fiz.22 is possible between v;, Vi, Yk, Vs
will be expressed by the notation Xé(e}k,v;,v;,vj,A, B). We will often use this notation with
nodes teplaced by = 11 order to represcnt the set of all pussible Xy-patierns having the *-od
elements filied in, Mext we introdnce some operations to Be added to the preprocessing at STEP
1. Let r; he the segmens Riv;, By) and {ap,bp) be the pair of SE{vi) such that aph, 1mtersects
#; {recall that this pair has to be determined in order 10 compute 2{v;, R;) - see Lemma 11).
Tor all ve between 3, and v; in clockwise order {inciuding by it isa notch), compute A,
¢he intersection of ry and ry if it exists. Note that the intersection is undefired if one of the

seginents ry 8 0.

Tact 1. Z{Aixvi, Aizvi) < 180, and A;pvi and Atz intersect the bouudary of P at v, and vg,

respectively.

Fact 2. For each v, the set of Aq's contains all possible N3-nodes adjaceut to vi in the loose

Ka(*, v5, %, %, %, %)

Supplied by The British Library - "The world's knowledge"

A B




112 B. Chazelle and D.P. Dobiin

Next for each v; the points A,z are sorted along r; and maintained in a sorted list. In the
following, r; will be viewed either as a geometric segment or as a list of sorted points. The
data structure chosen for r; should allow constant time access to A;z as well as two-way scans
through the list r; (use a limear array for example}. Note that the A; mizht not be defined for

1

all pairs {1, %). All the segments r;’s can be computed in O{n + ¢“logn} time and setting up

their respective lists can be done in 9{c? log ¢) operations.

We wish to apply the idea of patching subtrees together to the consiruction of X,-patterns.
In the configuration of Fig.22, the edge vy A is to be patched with the rest of the pattern. To
generate X ;-subtrees we extend the notion of F aud 2 functions. We introduce the set {4, 5)
to store all the information needed to decide, in constant time, if for a given », there exists a
vy such that X4(vg, v;, 05,95, %, %), The set E(¢. 7) will be computed immediately after {1, 7).
To do so, we will consider each notch v between v; and v; and determire all the o; that can
be patched to form an Xg-pattern. Since for each »; we potentially have on the order of ¢
notches of the form vg, we must avold goiug through each of them 1 our goal is to compute
E{1,7) in Ofe) time. Fortunately for cach v; we cau express the corresponding set of vz’s in
constant space after constant time computing time. It remains now to formalize the intuition

given above.

E(i,7)} 1s defined as the set of pairs { Ay, Ajy) obtained for all distinct values of £ with the
following properties:

1) Xelog, v, v, 05, Aig, A} 2) if an OCD contains a loose X -pattern, Xd{vy, v, +, vy, %, %),
then there exists an GCD containing X4 (vk, vi, v, v, Aw, Aj1), where {A, An) € E(41, 7). This
allows the set E{i, 7} to he used for onr purposes withoni overiooking candidate Xg-patterns.

We uext show that such sets can be found satisfying this property and that each of them can

be compuied in O{c} time with the previous preprocessing.

1, Computing E(4,7)

Recail that E{f,7) is to be computed immediately after §{1, 7).

T} Selecting candidates on r; and r;
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To begin with, we determine the points Az such that v € V(7 + 1,7 — 1) {note that if the
pair {a,,b,) of SR{v;]} used to compute r; is such that b, € V{7,¢), all the vertices in r; will
alrcady satisfy this condition). Next we keep only the A;; which lie on the other side of the
infimte line passing through R, than the edge L; {repeat same operations with respect to ry

and Ajyri. This ensures that:
Fact 3. v;, vy, v; occur in clockwise order and the angle /2 < 180 (Fig.22).
Fact 4. v, v, v; occur in clockwise order and /y < 180.
We now retain in r; only the points Aj; for which
IS, 71 =]|SGE+LI=-0)+ IS+ 1,7 -1).

By doing this we keep only the candidates for N3-nodes of ar CGCD. Similar to the Y-
subtrees occurring in B{4, 7}, candidates must contribute a savings of |S(t, 5)! with respect 20
the removal of reflex angles in V{1, 7). Finally we update thie lists r; and r; with the points just
chosen, maintaining the sorted order. We rename the points of r; {resp. r;} from v; (resp. v;),
A1, ..., Ay {resp. Bq, ..., B,;). This entire step can be done in O{c) time with the preprocessing
indicated earlier. We now have a list of all possible N3-nodes for candidate X4-patterns. It
is clear that E{<, 7} can be found satisfying the specifications given above. Each Ax will be
paired with the point By such that A, and By are the N3-nodes of the same aptimal Xs-pattern
forming the maximum angle Z{4; By, Azv,) (Fig.28). We must now give a precise procedure

for accomplishing this task.

11} Computing a region of safety

We compute the region of safety for added edges in order to ensure Condition 3 of Lemma
17. Note that A1 A, By B, forms a convex guadrilateral {Facts 3,4}, The next step is to compute
two convex chains ¢ = {e;,...,¢,} and D = {d;,..., d;} running from r; to r; and r; to ry,
regpectively. These chains will have the property that a middie edge, (i.e. the edge of an X,-
pattern between the two N3-modes) from ry to rj lies totally in P if and oniy if it lies totally

between the two chaius {Fig.27-a). Informally € {resp. D) is the convex hull of the pieces of
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the boundary of P which pass through A; B, (resp. A,B;), and delimits an area of safety for
potential middle edges. Actually, as we will see later on, this definition will apply to the parts
of € and D inside the quadrilateral A3 A, B; B,. To preserve the flow of the prescutation, we

will prove the following result 1n the next section.

Lernma 18. The convex chains € and D can be computed in O(¢) time after O{n + c¢? logn}

time preprocessing.

1f the procedure of Lemma 18 determines that any segment drawn between A; A, and
B; By should intersect the boundary of P, it sets £ or D to O, Otherwise, it cfectively returns
two convex chains (¢ and D, with the segment ¢;4, {resp. dyc,} contaiming A; and A, (resp. B,
and Bg). Also, as stated carlicr, a segment joining 43 A, and By B; will intersect the boundary

of £ if and ouly if it lutersects C or D,

It takes O{e} operations to test whether  and D intersect since both have Of¢) vertices.
If they do, no micddle edge is possible and E(z, 7) i= set to 0. Otherwise, we can compute R’
and §S' as the limits put upon the middle edges by the polygon P (Fig.24). §§' is computed
by beginning at ¢; and dy and moving through D wuntil ‘all of D lies above the line passing
through dgcy, then moving through C uniil all of € lies below the lire passing through die;.
We iterate on this process until termination, which will occur after O{¢) steps since no vertex
of 7 or D is visited more than ouce, Here is a more formal description of the procedure. RR'

is obtained in a similar manner.
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Figure 25 The funetion f.

n -
SIS " By
8] (&) g, (%)
Figure 26  The functions g, and g,.
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Compai%ﬁg ss’

while /{didpy1, drer) < 180 or Z(ererry, eqde) < 180
beg
while /(didy 1, deeg) < 180
begin k:=k-+1 end

while /{cierg 1. crdg} < 180

I Computing wedges for possible middle edges

We arc now in a position to compute the wedges where middle edges must Hle. We begin
by observing that any point in the list r; not in the wedge formed by RR and §8' cau be
discarded, which we can do in O[e) time. For simplicity we still call A;,..., A, the elements

of the list r;.

For every B; € r; {recall that B) = Aj, for some u) we define f({) as the iutersection of
the line supporting r; and the ray emanating from B, in the direction of Ry, and nct passing
through R.. If this intersection does not exist, we compare the direction of Ry and r; to
decide if the “middle edze” wedge centered at 3y formed by the ray aud r; intersects the line
supporting ry or not. If yes, we set f{I) = Ay, else f{I) = 0 {Fig.25). Also, for each Ax € ry.
let AL (resp. A!'} denote the point on the segment r; whick is the clasest to Iy {zesp. DBy)
and such that the segment Az A} (resp. AxAY) does not strictly intersect D (resp. ), Le. the
intersection consists of a segment or a siugle point. We now view rj as a list of vertices and we
fnd the two vertices B; (= g,(k)) and B,, (= go(k)) which lic on the segment A} AY and are
the closest to AL and A}, respectively {Fig.26). I Br and By do not exist, we define g;{%) and

g2{k) to be C. At this stage we need two results whose proofs we pastpone till the next scction.
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Lemma 19. After O(c) preparation, the functions £, g1, g2 can be evaluated in constant time.
P

Lemma 20. Let V ={1,...,q} and W = {1,...,p+q}, Wi UWa = W, |W1| = ¢, [Wa| = p
and let f,g1,92 be defined with: f |V +» W, a bijection aud g, 90 | Wo — V non-decreasing
functions, with g1 (i) < g2(¢) for cach i € W2. Define z | Wa — V such that for each i € Wa,
z(7) is the smallest integer in V with g, (i) < =z(f} € g2(¢) and ¢ < f(2{i)) if such an ‘integer

exists, and 0 otherwise. If f, g1, g2 are computable in constant time, then so is z after Olp+qg)

preprocessiug.

iV) Computing Eii, 7)

Lemua 19 aliows us to compute ali the values of £, g1, ¢z in O{c) time. Nate that if fily=0
no middle edge adjacent to B; is possible since it must lie in the wedge WI(EB By, 8, 5{1)).
Therefore we can eliminate those By from r;. Once again we still represent the resulting list by
By,..., By Simijarly, if g: (k) = g2{%) = 0, A cannot be an N3-node aud we climinate alf such
Ag from r;. Note that the values of g3 and gz should be computed after the last seleetion on rs.
We will merge the points f{I} with the remaining vertices Ag, thus forming the set . Strictly
speaking, f maps ! not to a point on r; but to the corresponding index in ¥. We can always
assume that f is injective. Next we define ¥ as the set of vertices left on r;; instead of mapping
to actual vertices of rj, the functions g; and go will map k to the corresponding indices in V.
Because of the removals, g; and g2 obey the two conditions of Lemma 20, Finally we define ¥
as the rublist of W corresponding to the f(I) aud #¥a as the complement in W, ie. the indices
corresponding to the Ag. It is easy to see that all removals, merges, and settings of functions

can be done in Ole) time. Moreover all the conditions of Lemma 20 have been mez.

We can thus set up the function z in O{c]) time. The last step consists of keeping iu B{i, 5}
all the pairs (Ay, By(a,)) such that z{Ay) # 0, with A; € r; and AArva, AxBLiy,)) < 180
{Ax = Aiu). Note that z(Ag) is a shorthand for z(t), with ¢ the element in Wa corresponding
to Az. Recall that if any of the previous computations fails, we have E(4,7) = 0. We can now

state our maiu resalt:

angle

such &

Lemn

time o

Proof:
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Lemma 21. After Oin+ ¢?logn) preparation, E{t, 5) can be evaluated in Ofc) time.

Proof: The preprocessing involves setting up the lists ry which, as seen earlier, requires O{n+
:2logn) time. For any ¢ and j, E{4, 7} is then computed in O{c) operations. We review the
main phases of the procedure and establish its correctness. In the preprocessing stage, Fact
1 ensures that the angles Zz < 180 and Zz' < 180, and that Condition 1 of Lemma 17 i
satished. Pacts 3 and 4 show that Zy < 180 and £z’ < 180. Then, considering the savings, by
an argument now standard, we eliminate the N3-nodes which are not candidates. Next we pair
Ap € ry with B € r; (I = ={AL)).

By definition, z{4x) is the smallest iuteger in ¥ (i.e. the vertex of r; that maximizes the
angle 7y) lying on the seguent {gi(%), 22{%)} (i.c. eusuring Condition 3 of Lemma 17), and
such that Ay Tles on the segment A:#, with F the point on r, corresponding to f{z{A4z)), ie.
ensuring 2y’ < 180. Fiaally, since z{A;) maximizes the angle /y and /{y + z} is a constant
for all By, no vertex of ry can be paired with A if 7z > 180. I Zz < 180, all the conditions of
Lemma 17 are satisfled, and Az B.a,) can be kept as the middle edge candidate to be adjacent
to Ag. Since we know that this edge is indeed the middle edze of a loose Xy-pattern, only
savings cousideration will later decide whether this edge belongs to an OCD or not. This is, in
essence, the only major difference with the ¥ -subtrees of (s, 7) and F{z, 7}, where both savings

and geometry had to be tested at once in order fo determine candidacy.
7o 8

2. The Proofs of the Lemmas Left Unresolved
We now justify our eariier claims and successively shaw how to compute the region of safety

aud set up the functions f.g;.g2, z. all in Ofe) time.

Lemma 18. The convex chains € and D can be compnted in O(¢) fime after O{n + ¢%logn}
time preprocessing.

Proof: C and D are compuied in the same manner, so we may concentrate on CC exclusively.
We assume that all the superranges have been precomputed, which requires Ofn + e? logn}
time, ns was shown in Lemma 10. Let {ap, bp) be the pair of SR{v;} such that the segment a,b,

intersects r;. Recall that this pair is uniquely defined and must be computed iu order to obtain
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120 B, Chozelle ard D.P. Dobkin

ri. Il a, is a notch let w be 6,, otherwise let w be the notch of P next to a,, counterciockwise.
We may always assume that adequate preprocessing allows us to determine w iz constant time,
given a,. If v; lies beiween w and v; in elockwise order, we simply define C as v, B, (Fig.27-¢).
Otherwise things are somewhat more complex, and before describing an algorithm formally we

will give an overview of the method.

Let L be the line collincar with the edge of C adjacent to v; {i.e. the frst edge of C
counterclockwise}. L will essentially wrap around the obstacles created by the bouudary of
P in a counterclockwise motion {Fig.27-d). Let V be the polygonal line on the boundary of
P between #; and w in clockwise order. We will show that all the obatacles {which are the
vertices of ) are notches of V. Consequentiy we can expect to wrap around & entirely in Gie)

operations if L can pivot around each vertex of € In counstant time on the average.

{resp. Ls) designating the line L before {resp. after)

Let x be a vertex of C with L.
pivoting around = {Fig.27-d}. We #rst locate L; in the superrange of =z, then we scan SR{z)
counterciockwise, until we hit a vertex b, which lies ou V. We can show that in general b, is
aiso the next vertex of €. Recall that locating L in SR{zs) involves finding the pair {t;,8;) such
that L intersects ¢;by;, To cnsure an O(c) running time, we cannot actually locate Z, in SRz
Instead we determine a notch y nearby which wili serve the same purpose. This uotch is to be
determined at the time when £; is computed. Thus we define the function NEXT which maps
{x,¥) to (ex,br). More generally, NEXT maps any pair of notches z,y {z € V) to the pair

{ak.bx} of SR{z}, computed as follows:

1. Find the two pairs (a;, 4;) and {a;4,, bj+1) of SR{r)} such that y lies between 4; and aji1
in clockwise order.

2. Scan the pairs of SR{z) counterclockwise, starting at (a;,b;} {i.e. {a;,b;), (aj—y.b;-4),...)
and determine the pair {as, bz} such that bg is a uotch of ¥ and a1 lies outside of ¥. If
we fail to find such a pair, return (0).

3. When NEXT is evaluated and a pair (az, 5z) iz actually returncd, the function sets a giobal
variable enezt to ag, ¢ if it is a notch, else the notch of P next o Bi+1. counterclockwise

{Fig.27-d).
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We first show that the function NEXT is weil-defined and can be evaluated in time propor-
tional to the number of pairs scanned in step 2. Recall that in any superrange SR{z}, the palrs
{a;.b;) realize a partition of the set of all notches, and more precisely any notck y lies between
b; and aj; in clockwise order for some 5. Thus, once SR{xz] has been computed, we can extend
the preprocessing to assign each notch of P to each corresponding pair 45, a;41. A simple scan
through the notches of P will do it in G{c) time. PFinally, noticing that we can test if a notch
lies in ¥V in constant time, and that cnezt is also found in constant time, for the reasons seen
above, we achieve our claims. We are now ready to set out the algorithm for computing ©.
Let a;h be the segment intersecting r; with {a;,5;) iIn SR(v;) and let ¢ be the notch next to g;
counterciockwise. Let 4 be the intersection ry []r; if it is defined, or the endpoint of ry {# vy)

otherwise.

Computing C

il v; lies between w and vy
then return (U = {v;, v, By }j
C:={v;}, d:= v;, e:z= NEXT {v;,t)
while e £ 0
bezin
if /(dB,. de) < 180
then return (&= O U{B,})
d=e
C:= CU{d}
e:= NEXT {e,cnezt)
end

return {C:= 0)

To see that the algorithm runs in O{c) time, it suffices to note that the notch cnezt moves
counterclockwise on the boundary of P, so O(c) pairs (aj;, b;) will be examined in all the

superranges considered by the function NEXT.
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Figure 27 Computing the chains C and D.
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We next show how a mniddle edge intersects the boundary of P if and ouly if it intersects €
or 7. In order to connect r; and ry; via a middle edge, the intersection of P and the qguadrilateral
Ay B, B, A, must contain a polygon § with edges A4y and By B,. Note that this interseetion
may aciually consist of several polygouns. The boundary of § consists of these two segments
Juined by two polygonal lines, §; and 8. ) has all its vertices in ¥ and S in V', wlere V' i

defined as V. switchiag the roles of v; and v; (Fig.27-h).

To avoid computing §; and §5 explicitly (they may have on the order of n vertices), we
first notice that no middie edge can intersect the convex huil of §1 without intersecting §,.
The same observation on Ss leads to computing the convex hulls & and s, respectively. For
convenicnce, we can replace the vertex 4; in 8§, (resp. B, in 82} by vi (resp. v;} and still
preserve the mitial property that a middie edge lies totally in P if and only if it docs not strictly

cross ¢ or D. We now turn to the actual computation of € and D.

The first case considered assumes that vy lies between w and vy 1n clockwise order. § is
then reduced to the single intersection poiut of r; and ry and § ean be st to v 0, (Fig.27-¢).
Note that we can always assume that in this case r; and r; intersect, otherwise the lists ri and
r; woild be empty. If v, does nol lic between w and vy, ¥ is not empty, aud we will prove by
induction that € is actually the couvex hull of §; or 0 i no middle edge is possible. Fig.27-¢
illustrates the computation of the next edge of . To ensure convexity, all of 8§; must lic on the
same side of the line passing through this edge. Therefare the next vertex of C after the vertex
labelled e in Fig.27-e-17 must be the point z of V', visible from &z, which minimizes the angle

/leagi.ex). by and ap,; are the vertices in SR{d) returned by the previous call on NEXT,

Siuce the endpoints of V' are notches of P, z must be one of the vertices listed in SR{e)
between which agy lies, so we must start scanning SR{e]. We only have to perform a counter-
clockwise scan since, by induction hypothesis, az41 does not lic in ¥, therefore the pext vertex
of €7 must be sowe a; or 3; in SR{¢) for [ < 7. Once agaln, the conx is that a counterciockwise
scan inn SR{e) corresponds both to = counterclockwise scaun through the vertices of P and a
counterclockwise angular sweep. Note that ag; is a point of SR{d) which has to be located in

SR{e). Since az4y is not a notch in general this operation seems too corplex.
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Optimal Convex Decompositions

Instead we can find the pair by, a;441 of SR{e} between which erezt lies (recall that cnex?
is the first notch after ar+: In a couznterclockwise scan through the boundary of P). Since
cnezi iz o notch, this operation can be done in constant time. Thus the function NEXT will
return the next vertex of €. Note that if the point determined by MEXT is not a notch, NEXT
returns 0. Indeed, this point could not be the next vertex of C and the actual next vertex y
would not be visible from e. Censequently, C would intersect S5 and no middie edge would
then possibie {Fig.27-{). We observe that if € is well-defined, there exists | such that B, lies
inn the wedge W(C_; 7, C1C51) (F12.27-g). Thus the algorithm terminates by substituting B,

for Cr1, Cig2. ... and the remaining vertices of (7; this is legitimate since this last portion of

{ canunot have any effect on middle edges. g

Lemrsa 19. In O(e) thae, it is possible to precompute the functions f,g:1,g2 so that any

evaluation can he done In constant time.

Proof: f{l} can be evaluated directly in coustant time by intersecting the line passing through r,
with the ray emanating from DIy, collinear with R, , yet not passing through £, with B; = A;,.
if there is no intersection, (I} = 9. Next we show how to compute all the values of g, and
gz in Ofe) time. We start by computing the intersection of r; with all the lnes {dgdey ;) for
consgecutive values of £, These points partition r; into segments, and the previous computation
provides a sorted list of their endpoiats in O(e) time. To each of these segments corresponds a
unigue vertex of D. Then, for each A, ..., A, in turn, we find the segment where Ay les. Let
dy be the corresponding vertex of D. We compute A} by intersecting r; with the line passing
through Axd,, {Fig.28). This also gives 13 a sorted list of the points A}, since D is convex.
Finally we can merge the A% and B; in O(c) time, and in one scan through the list, find for
eac A} the nearest By on the same side as By, We then set g1(%) to 1. We iterate on this
process with respect to €, defiuing go(%) for each A on r;. Finally, for each Ag, we check that
g1{k) < golk). I this is not the case, we set g;{%) and g2(%) to G. Ali of this work clearly

requires O{c¢) time.
-7
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Al1;] 1 2 | o 0
AL2] o | 0 | 1 1
1 3 3 4
1 1 1 2

Figure 29 The setting
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Lemnma 20. Let V = {1,...,¢}

Yand W ={1,...,p+q}, W UWo =W, Wil=gq, |We|=p
and let f,g1,g2 be defined with: f | ¥V — W1 a bijection and gi1,g2 | W2 +— ¥V non-decreasing
functions, with g,{1} < go(f) for each 1 € W,. Define z | Wy +— V¥ such that for each ¢ € Wa,
z{1) 1s the smallest integer in V with g,{7} € z{1} < g2{4} and 1 € f{z{4)) if such an integer

exists, and O otherwise. If f g1, g2 are computable in constant time, then sc is z after O{p+ q)
Dreprocessing.

Proof: Note that the naive method for computing all the vahies of z runs in O{pqg) time.
We present an C{p + ¢) time algorithm for achieving all these computations and establish its
correciness. Let i,...,4, be the elements of W; in increasing order (1 < yi € p+g). Firss
of all, we consider the set of ¥y € Wy suck that gi{y) < 1 < go{y) for a given ¢ between 1
and q, and observe that it is a contiguous {possibly empty} subset of Wy since g; and g, are
non-decreasing. We compute the largest and smallest y, denoted y;, and y;, respectively, as

follows (if there is no such y, we set {{; A;) to 0).

Initialize an array A {2 x ¢} to 0.
for:=1,...,p
begin
AfL g{ya)]= All, guly:)]+1
Al2,92(ye)]:= A[2,92(3:)]+1
end
I:=1; =0
fori=1...,q
begin
hi= h+All 4]
ifl<h
than {4, A= {,R)
else {{;,h:):=0
L= l+Al2,4]

end
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The algorithm clearly achicves a time bound of O(p + g!. To establish its correctniess, we

observe that the first loop sets A1, 7] to the number of y in W, such that 7 = g,{y), i.e. the

H

{y}1.g2(y)], starting at 7. Shmilarly, Aj2, 7] counts the number of intervals

- :
numnber of intervals gy
Auishing at 7. Then since, as 1 increases, g; (y;} and g2{y,} cannot decrease or pass each other,

we can derive ({; k) from {{;_1, ki 1} by connting the number of intervals which have te be

added and removed. More precisely, the difference &; — h;_; is exactly the number of y in W

such that 2 — 1 < gy (y} < 7, which s equivalent to gi1{y} = 7 and shows that this number is
Al ). Likewise,if ¢ — 1 < go{yr,_, ) we have &y = {;_;. Eise if ga{ys,_,) =1 — 1, —j—1 is the

nuinber of ¢ such that ga{y} =4 — 1, i.e. A[2,14] {see example in Fig.26).

We are now ready to set up the function z by computing all its values. ¥ y;, < fiI} < 4, ,
ail z{1) with 7 between y;, and f({) must be set to 1. Now if y;, < yp, < f({), all 2(¢) with 2
between yi, aund yp, must be set to 1. In both cases, no other ¢ in W should have z{+) equal
to 1. Then we can carry out the same reasoning with 2, assigning this value ounly to the z(t)

which have not been set yet. Since, as ¢ increases from 1 to g, {; and k; cannot decrease or pass

each other {unless ({;, h;) = 0) a possible implementation is:

Initialize all z{<}to 0 forallt=1,...,¢
M:=0
fort=1,...,q9
begin
a:= max{y;,, M)
b:= min(f{i), ;)
if a < band (4, hi) # 0
then
for y=ua,...,}
begin z{7):= ¢ end
M=5s+1

end
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Note that if 1 belongs to W, the value assigued to z(7) is meaningless. The algorithin runs

in time O(p + ¢). which completes rhe proof. 3

3. The Cubic Algorithm

We are now prepared to use the information contalned in £{7, ) to produce an OCD. E{z, 7}
may be computed in STEP 4 of the algorithm ConvDee, with the additional preprocessing
described earlier. We can now replace the former compuiation of 44 in STEDP 3 by the following:

Initialize M as tlic cuipty set.

Yor each vy € V{1 + 1,5 — 2) such that F{k, ) contains a pair {Ag;, Bjr), assign to A the

maximum {with respect to cardinality) of A and

X‘i{u;,vk,Ug,UJ'.Ak;,ng)U.g(i +1Le— DUSE+1,I- 1}1}5(5 +1,7-—1).

For cach v € Vii + 2,7 — 1! such that E{+, k) contains a pair {A;y, Bx;), assign to M the
maximum {with respect to cardinality) of M and

X4(vj,vi,vg,vk,A,J,BH)U.G'(i+ 11— _‘i)US{l-l-}.,F%— EEuS(k—f— 1,9 — 1}

Note that we investigate the two possible topologies of an Xy-pattern iying in V {¢,7) and
adjacent to v; and v; {Fig.30). The procedure for computing M requires O(c) time and, from
Lemma 21, we know that the additional preprocessing requires On + ¢Zlogn) time. We are

now ready to evaluate the complexity of each step of the decomposition algorithm:

— Preprocessing: Oin + ¢ + ¢%logn)
- Step 20 0O{c?)
- Step 3: O(c?)
- Step 4: O(e%)

Y 2
— Step 5: Oin + c?logn)
The total running time of the decomposition aigorithm is therefore O{r + ¢® + ¢%logn),

which is easily shown to be also O{n + ¢%}.

Main Theorem. It is possible to compute an optimal convex decomposition of a simple

polygon with n vertices and e reflex angles in time O{r + ¢*).
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We should uote that in S(¢,7 — 1) the algorithm provides us with ¢ optimal, yet not all

necessarily identical, decompositions.

5. Concluding Remarks

The main result of this paper is an algorithm for decomposing a polygon into a minimum
number of convex parts. The algorithm is linear in the number of vertices and cubic in the
number of reflex angles. From a theoretical viewpoint, our main achievement has been to show
that the decomposition problem was polynomial, even when Steiner points are allowed in the
decomposition. Also one merit of our algorithm is to have its complexity expressed in the form
Gln + f(¢)). This is to our knowledge the only decomposition algorithm with this property;
one interesting open problem is to decide whether the preprocessing used in our algorithm can
be applied to the algorithms known for the case where no Steiner points are allowed in the
decomposition. Indeed, Greene’s @(n%c?) and Keil’s {¢*nlog n) methods for this probiem are

less efficient than our algorithm.

On the practical side, the complexity of our algorithm might be acceptable, given the near-
convexity of most polygons in practice. Unfortunately the algorithm seems inherently intricate
and implementing it in its most elaborate form is certainly a formidable task. We might be
willing, however, to sacrifice a little efficiency in order to achieve greater simplicity. Computing
only X,-patterns and doing away with superranges may often be found an acceptable com-
promise. Even the maive decomposition, when implemented cfficiently, may turn out the best
alternative if we can afford to miss an optimal solution by at worst a factor of two in the number

of convex parts.

Of course, ouly the cabic algorithm reveals the genuine “beauty” of the problem. Its long
development involves many subproblems, most of which are interesting in their own right {we
believe). For example the concept of superranges might provide an effective means of dealing

with visibility problems and its fast computation {(O{clogn}) makes it very appealing. This

can be viewed as a first step towards adapting non-convexity to algorithms for convex designs.

Supplied by The British Library - "The world's knowledge"




132 B. Chazelle cnd D.P. Dobkin

Acknowiedgment: We thank Diaue Souvaine for reading this {long) manuscript very carefully

ard giving us many helpful comments and suggestions.

REFERENCES

[12]
{1} Asano, T., Asano, T. AMinsmum paertition of polygonal regions into trapezoids, Proc. 24th
Annuual FOCS Symp., 1983, pp. 233-241.
[13]
[2} Aho, AV, Hopcroft, J.E. and Ullman, J.D. The design and cnclysis of computer ulyo-
rithms, Addison- Wesley, 1074,
[14]

[3] Clazelle, B. Computational geometry and convezity, PhD Thesis, Yale University, 1980,

Also available as Technical Report CMU-CS-80-150, Carnegie-Mellon University, Pitts- !
. [153] Lings
burgh PA, 1980, -
MIT.
[4] Chazelle, B. Convez partitions of polyhedra: o lower bound and worst-case optimal clgo-

[16] Linza
rithm, SIAM J. on Computing, August 1984, : T

recttls

(5] Chazelle, B., Dobkin, D.P. Decomposing & polygon into its convez parts, Proc. 11th Annual and €

SIGACT Symp., pp. 28 48, 1979.
17] O'Ro
[6] Thazelle, B., Dobkin, D. Detection ts ecsier than computation, Proc. 12¢h Annual SIGACT

Infor

Symp., pp. 146-153, 1989. .
[18] Schac

[7] Ei Gindy, H., Avis, D. A linear algorithm for computing the visibility polygon from a point, CJZ?,:

Journal of Algorithms, 2{i981), pp. 186-197.
[19] Sham
[8] Feng, H,, Pavlidis, T. Decomposition of polygons into simpler components: Feature gener-

. . .. 0] Touss
ation for eyntactic pattern recognition, IBEE Trans. Comp., Vol. C-24, No. 6, June 1975, [20] Touss

fer
pp. 836-650. patter

121] Touss

[9] Ferrari, L., Sankar, P.V. and Sklansky, I. Ainimal rectangular partittons of digitized biobs,
h 2
Proc. 5th Interaational Conference on Pattern Recognition, Miami Beach, Dec. 1081, PD. 18¢h .
1040-1043. Oct. fi

Supplied by The British Library - "The world's knowledge"




wefally

. 24th

r algo-

, 1980.

Ditts-

{ algo-

innual

FACT

point,

gener-

[10]

[11]

b

[19]

20]

Optimal Convex Decompositions 138

Garey, M.R., Johneon, D.S., Preparata, F.P. and Tarjan, R.E. Trienguleting o eimplc

polygon, Info. Proc. Lett., Vol. 7(4), June 1978%.

Grabam, R.L. An efficient algorithm for determining the convez hull of a finite planar sct.

Info. Proc. Lett., 2, pp. 18B-21, i973.

{ Greene, D.H. The decomposition of polygons into convez parts, Advances in Computing

Research, Jay Press, pp. 235-259, 1983,

Keil, M. Decompoaing polygons into simpler components, PaD Thesis, University of Toronto,

1983.

Lingas, A. The power of non-rectilineur Loles, Proc. 9th Colloquium on Automata, Lan-

guages and Programming, Aarhus, 1982,

Lingus, A, Heuristics for minimum edge length rectungular decomposition, Unpub. Man.,

MIT, Nov. 1981.

Lingas, A., Pinter, R, Rivest, R. and Shamir, A. Minimum edge length pariitioning of
rectilinear polygons, Proc. 20th Annual Allerton Conference on Communication, Control,

and Computing, Moaticello, Iil,, Ozt 1982,

O’'Rourke, 3., Supowit, X.J. Some NP-hard polygon decomposition prodbleme, [EER Trans.

informasion Theory, 20(2), 1083, pp. 181-100.

Schachter, B. Decomposttion of polygons into conver sets, IEEE Trans. on Computers,

C 27, pp. 1078-1082, 1978,
Shamos, M.1. Computational geometry, PhD thesis, Yale University, 1978.

Toussaint, G.T. Paitern recognition and geometricel complezity, Proc. 5th Int. Conf. on

pattern recognition, Miami Beach, 1980, pp. 1324-1347.

| Toussaint, G.T. Decomposing a simple polygon with the relntive neighborhosd graph, Proc.

18th Annual Ailerton Conf. oa Commuuication, Control, and Computing, Monticello, Iil.,

Oct. 1080.

Supplied by The British Library - "The world's knowledge"






