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Fingerprint verification is an important biometric technique for
personal identification. In this paper, we describe the design and
implementation of a prototype automatic identity-authentication
system that uses fingerprints to authenticate the identity of an
individual. We have developed an improved minutiae-extraction al-
gorithm that is faster and more accurate than our earlier algorithm
[58]. An alignment-based minutiae-matching algorithm has been
proposed. This algorithm is capable of finding the correspondences
between input minutiae and the stored template without resorting to
exhaustive search and has the ability to compensate adaptively for
the nonlinear deformations and inexact transformations between
an input and a template. To establish an objective assessment of
our system, both the Michigan State University and the National
Institute of Standards and Technology NIST 9 fingerprint data
bases have been used to estimate the performance numbers. The
experimental results reveal that our system can achieve a good
performance on these data bases. We also have demonstrated that
our system satisfies the response-time requirement. A complete
authentication procedure, on average, takes about 1.4 seconds on
a Sun ULTRA 1 workstation (it is expected to run as fast or faster
on a 200 HMz Pentium [7]).

Keywords—Biometrics, dynamic programming, fingerprint iden-
tification, matching, minutiae, orientation field, ridge extraction,
string matching, verification.

I. INTRODUCTION

There are two types of systems that help automatically
establish the identity of a person: 1) authentication (verifica-
tion) systems and 2) identification systems. In a verification
system, a person desired to be identified submits an identity
claim to the system, usually via a magnetic stripe card,
login name, smart card, etc., and the system either rejects
or accepts the submitted claim of identity (Am I who I claim
I am?). In an identification system, the system establishes
a subject’s identity (or fails if the subject is not enrolled
in the system data base) without the subject’s having to
claim an identity (Who am I?). The topic of this paper is
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a verification system based on fingerprints, and the terms
verification, authentication, and identification are used in a
loose sense and synonymously.

Accurate automatic personal identification is becoming
more and more important to the operation of our increas-
ingly electronically interconnected information society [13],
[20], [53]. Traditional automatic personal identification
technologies to verify the identity of a person, which use
“something that you know,” such as a personal identifica-
tion number (PIN), or “something that you have,” such as an
identification (ID) card, key, etc., are no longer considered
reliable enough to satisfy the security requirements of
electronic transactions. All of these techniques suffer from
a common problem of inability to differentiate between
an authorized person and an impostor who fraudulently
acquires the access privilege of the authorized person [53].
Biometrics is a technology that (uniquely) identifies a per-
son based on his physiological or behavioral characteristics.
It relies on “something that you are” to make personal
identification and therefore can inherently differentiate be-
tween an authorized person and a fraudulent impostor
[13], [20], [53]. Although biometrics cannot be used to
establish an absolute “yes/no” personal identification like
some of the traditional technologies, it can be used to
achieve a “positive identification” with a very high level
of confidence, such as an error rate of 0.001% [53].

A. Overview of Biometrics

Theoretically, any human physiological or behavioral
characteristic can be used to make a personal identification
as long as it satisfies the following requirements [13]:

1) universality, which means that every person should
have the characteristic;

2) uniqueness, which indicates that no two persons
should be the same in terms of the characteristic;

3) permanence, which means that the characteristic
should be invariant with time;

4) collectability, which indicates that the characteristic
can be measured quantitatively.
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Table 1 Comparison of Biometric Technologies

In practice, there are some other important requirements
[13], [53]:

1) performance, which refers to the achievable identifi-
cation accuracy, the resource requirements to achieve
an acceptable identification accuracy, and the working
or environmental factors that affect the identification
accuracy;

2) acceptability, which indicates to what extent people
are willing to accept the biometric system;

3) circumvention, which refers to how easy it is to fool
the system by fraudulent techniques.

Biometrics is a rapidly evolving technology that has been
widely used in forensics, such as criminal identification and
prison security, and has the potential to be widely adopted
in a very broad range of civilian applications:

1) banking security, such as electronic fund transfers,
ATM security, check cashing, and credit card trans-
actions;

2) physical access control, such as airport access control;

3) information system security, such as access to data
bases via login privileges;

4) government benefits distribution, such as welfare dis-
bursement programs [49];

5) customs and immigration, such as the Immigration
and Naturalization Service Passenger Accelerated
Service System (INSPASS) which permits faster
immigration procedures based on hand geometry
[35];

6) national ID systems, which provide a unique ID to the
citizens and integrate different government services
[31];

7) voter and driver registration, providing registration
facilities for voters and drivers.

Currently, there are mainly nine different biometric tech-
niques that are either widely used or under investigation,

including face, fingerprint, hand geometry, hand vein, iris,
retinal pattern, signature, voice print, and facial thermo-
grams [13], [18], [20], [53], [68]. A brief comparison of
these nine biometric techniques is provided in Table 1.
Although each of these techniques, to a certain extent,
satisfies the above requirements and has been used in
practical systems [13], [18], [20], [53] or has the potential
to become a valid biometric technique [53], not many of
them are acceptable (in a court of law) as indisputable
evidence of identity. For example, despite the fact that
extensive studies have been conducted on automatic face
recognition and that a number of face-recognition systems
are available [3], [62], [70], it has not yet been proven that
1) face can be used reliably to establish/verify identity and
2) a biometric system that uses only face can achieve an
acceptable identification accuracy in a practical environ-
ment. Without any other information about the people in
Fig. 1, it will be extremely difficult for both a human and a
face-recognition system to conclude that the different faces
shown in Fig. 1 are disguised versions of the same person.
So far, the only legally acceptable, readily automated, and
mature biometric technique is the automatic fingerprint-
identification technique, which has been used and accepted
in forensics since the early 1970’s [42]. Although signatures
also are legally acceptable biometrics, they rank a distant
second to fingerprints due to issues involved with accuracy,
forgery, and behavioral variability. Currently, the world
market for biometric systems is estimated at approximately
$112 million. Automatic fingerprint-identification systems
intended mainly for forensic applications account for ap-
proximately $100 million. The biometric systems intended
for civilian applications are growing rapidly. For example,
by the year 1999, the world market for biometric systems
used for physical access control alone is expected to expand
to $100 million [53].

The biometrics community is slow in establishing bench-
marks for biometric systems [20]. Although benchmark
results on standard data bases in themselves are useful only
to a limited extent and may result in excessive tuning of the
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Fig. 1. Multiple personalities: all of the people in this image are the same person. (FromThe New
York Times Magazine,Sept. 1, 1996, sect. 6, pp. 48–49. Reproduced with permission of Robert
Trachtenberg.)

system parameters to “improve” the system performance,1

they constitute a good starting point for comparison of the
gross performance characteristics of the systems.

No metric is sufficiently adequate to give a reliable and
convincing indication of the identification accuracy of a
biometric system. A decision made by a biometric system
is either a “genuine individual” type of decision or an
“impostor” type of decision, which can be represented
by two statistical distributions, called genuine distribution
and impostor distribution, respectively. For each type of
decision, there are two possible decision outcomes, true or
false. Therefore, there are a total of four possible outcomes:
1) a genuine individual is accepted, 2) a genuine individual
is rejected, 3) an impostor is rejected, and 4) an impostor is
accepted. Outcomes 1) and 3) are correct, whereas 2) and 4)
are incorrect. In principle, we can use the false (impostor)
acceptance rate (FAR), the false (genuine individual) reject
rate (FRR), and the equal error rate (EER)2 to indicate the
identification accuracy of a biometric system [18], [19],
[53]. In practice, these performance metrics can only be
estimated from empirical data, and the estimates of the
performance are very data dependent. Therefore, they are
meaningful only for a specific data base in a specific test
environment. For example, the performance of a biometric
system claimed by its manufacturer had an FRR of 0.3%
and an FAR of 0.1%. An independent test by the Sandia
National Laboratory found that the same system had an
FRR of 25% with an unknown FAR [10]. To provide a
more reliable assessment of a biometric system, some more
descriptive performance measures are necessary. Receiver
operating curve (ROC) and are the two other commonly
used measures. An ROC provides an empirical assessment

1Several additional techniques, like data sequestering [51] and third-
party benchmarking [9], may also help in obtaining fairer performance
results.

2Equal error rate is defined as the value where FAR and FRR are equal.

of the system performance at different operating points,
which is more informative than FAR and FRR. The statis-
tical metric gives an indication of the separation between
the genuine distribution and impostor distribution [19]. It is
defined as the difference between the means of the genuine
distribution and impostor distribution divided by a conjoint
measure of their standard deviations [19]

(1)

where and
are the means and standard deviations of the genuine
distribution and impostor distribution, respectively. Like
FAR, FRR, and EER, both ROC andalso depend heavily
on test data and test environments. For such performance
metrics to be able to generalize precisely to the entire pop-
ulation of interest, the test data should 1) be large enough
to represent the population and 2) contain enough samples
from each category of the population [19]. To obtain fair
and honest test results, enough samples should be available,
and the samples should be representative of the population
and adequately represent all the categories (impostor and
genuine). Further, irrespective of the performance measure,
error bounds that indicate the confidence of the estimates
are valuable for understanding the significance of the test
results.

B. History of Fingerprints

Fingerprints are graphical flow-like ridges present on
human fingers (see Fig. 2). Their formations depend on
the initial conditions of the embryonic mesoderm from
which they develop. Humans have used fingerprints as a
means of identification for a very long time [42]. Modern
fingerprint techniques were initiated in the late sixteenth
century [25], [53]. In 1684, English plant morphologist N.
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(a) (b) (c)

(d) (e) (f)

Fig. 2. Fingerprints and a fingerprint classification schema of six categories: (a) arch, (b) tented
arch, (c) right loop, (d) left loop, (e) whorl, and (f) twinloop. Critical points in a fingerprint, called
core and delta, are marked on (c).

Grew published a paper reporting his systematic study on
the ridge, furrow, and pore structure in fingerprints, which is
believed to be the first scientific paper on fingerprints [42].
Since then, a number of researchers have invested a huge
amount of effort in studying fingerprints. In 1788, a detailed
description of the anatomical formations of fingerprints was
made by Mayer [16], in which a number of fingerprint
ridge characteristics were identified. Starting from 1809, T.
Bewick began to use his fingerprint as his trademark, which
is believed to be one of the most important contributions in
the early scientific study of fingerprint identification [42].
Purkinje proposed the first fingerprint classification scheme
in 1823, which classified fingerprints into nine categories
according to the ridge configurations [42]. H. Fauld, in
1880, first scientifically suggested the individuality and
uniqueness of fingerprints. At the same time, Herschel
asserted that he had practiced fingerprint identification for
approximately 20 years [42]. This discovery established the
foundation of modern fingerprint identification. In the late
nineteenth century, Sir F. Galton conducted an extensive
study of fingerprints [42]. He introduced the minutiae
features for single fingerprint classification in 1888. An
important advance in fingerprint identification was made
in 1899 by E. Henry, who (actually his two assistants from
India) established the famous “Henry system” of fingerprint
classification [25], [42], an elaborate method of indexing
fingerprints very much tuned to facilitating the human
experts in performing (manual) fingerprint identification.
By the early twentieth century, the formations of finger-

prints were well understood. The biological principles of
fingerprints are summarized below.

• Individual epidermal ridges and furrows (valleys) have
different characteristics for different fingers.

• The configuration types are individually variable but
they vary within limits that allow for systematic clas-
sification.

• The configurations and minute details of individual
ridges and furrows are permanent and unchanging for
a given finger.

In the early twentieth century, fingerprint identification was
formally accepted as a valid personal-identification method
by law-enforcement agencies and became a standard routine
in forensics [42]. Fingerprint-identification agencies were
set up worldwide, and criminal fingerprint data bases were
established [42].

Starting in the early 1960’s, the Federal Bureau of Inves-
tigation (FBI) home office in the United Kingdom and the
Paris Police Department invested a large amount of effort
in developing automatic fingerprint-identification systems
(AFIS’s) [25]. Their efforts were so successful that a large
number of AFIS’s are currently installed and in operation
at law-enforcement agencies worldwide. These systems
have greatly improved the operational productivity of these
agencies and reduced the cost of hiring and training human
fingerprint experts for manual fingerprint identification.
Encouraged by the success achieved by AFIS’s in law-
enforcement agencies, automatic fingerprint identification
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rapidly grew beyond law enforcement into civilian applica-
tions [25], [53]. In fact, fingerprint-based biometric systems
are so popular that they have almost become the synonym
of biometric systems [20]. Although significant progress has
been made in designing automatic fingerprint-authentication
systems over the past 30 years, a number of design factors
(lack of reliable minutiae-extraction algorithms [48], [54],
difficulty in quantitatively defining a reliable match between
fingerprint images [43], [45], poor fingerprint classification
algorithms [12], [14] [39], [46], [57], [74], etc.) create
bottlenecks in achieving the desired performance [25], [42].

C. Design of a Fingerprint-Verification System

An automatic fingerprint identity authentication system
has four main design components: acquisition, representa-
tion (template), feature extraction, and matching.

1) Acquisition: There are two primary methods of cap-
turing a fingerprint image: inked (off-line) and live scan
(ink-less). An inked fingerprint image is typically acquired
in the following way: a trained professional3 obtains an
impression of an inked finger on a paper, and the impression
is then scanned using a flat-bed document scanner. The live-
scan fingerprint is a collective term for a fingerprint image
directly obtained from the finger without the intermediate
step of getting an impression on a paper. Acquisition of
inked fingerprints is cumbersome; in the context of an
identity-authentication system, it is both infeasible and
socially unacceptable for identity verification.4 The most
popular technology to obtain a live-scan fingerprint image
is based on the optical frustrated total internal reflection
(FTIR) concept [28]. When a finger is placed on one side
of a glass platen (prism), ridges of the finger are in contact
with the platen while the valleys of the finger are not.
The rest of the imaging system essentially consists of an
assembly of a light emitting diode (LED) light source and
a charge-couple device (CCD) placed on the other side of
the glass platen. The laser light source illuminates the glass
at a certain angle, and the camera is placed such that it can
capture the laser light reflected from the glass. The light
that is incident on the plate at the glass surface touched by
the ridges is randomly scattered, while the light incident
at the glass surface corresponding to valleys suffers total
internal reflection, resulting in a corresponding fingerprint
image on the imaging plane of the CCD.

A number of other live-scan imaging methods are now
available, based on ultrasound total internal reflection [61],
optical total internal reflection of edge-lit holograms [21],
thermal sensing of the temperature differential (across the
ridges and valleys) [41], sensing of differential capaci-
tance [47], and noncontact three-dimensional scanning [44].
These alternate methods are primarily concerned with either
reducing the size/price of the optical scanning system or
improving the quality/resolution/consistency of the image

3For reasons of expediency, MasterCard sends fingerprint kits to its
credit card customers. The kits are used by the customers themselves to
create an inked fingerprint impression to be used for enrollment.

4Again, MasterCard relies on inked impressions forenrollment.

capture. Typical specifications for the optical live-scan
fingerprints are specified in [60].

2) Representation (Template):Which machine-readable
representation completely captures the invariant and
discriminatory information in a fingerprint image? This
representation issue constitutes the essence of fingerprint-
verification design and has far-reaching implications on the
design of the rest of the system. The unprocessed gray-
scale values of the fingerprint images are not invariant over
the time of capture.

Representations based on the entire gray-scale profile of
a fingerprint image are prevalent among the verification
systems using optical matching [4], [50]. The utility of
the systems using such representation schemes, however,
may be limited due to factors like brightness variations,
image-quality variations, scars, and large global distortions
present in the fingerprint image because these systems are
essentially resorting to template-matching strategies for ver-
ification. Further, in many verification applications, terser
representations are desirable, which preclude representa-
tions that involve the entire gray-scale profile fingerprint
images. Some system designers attempt to circumvent this
problem by restricting that the representation is derived
from a small (but consistent) part of the finger [50]. If this
same representation is also being used for identification
applications, however, then the resulting systems might
stand a risk of restricting the number of unique identities
that could be handled simply because of the fact that the
number of distinguishable templates is limited. On the
other hand, an image-based representation makes fewer
assumptions about the application domain (fingerprints) and
therefore has the potential to be robust to wider varieties of
fingerprint images. For instance, it is extremely difficult to
extract a landmark-based representation from a (degenerate)
finger devoid of any ridge structure.

Representations that rely on the entire ridge structure
(ridge-based representations) are largely invariant to the
brightness variations but are significantly more sensitive to
the quality of the fingerprint image than the landmark-based
representations described below. This is because the pres-
ence of the landmarks is, in principle, easier to verify [75].

An alternative to gray-scale-based representation is to ex-
tract landmark features from a binarized fingerprint image.
Landmark-based representations are also used for privacy
reasons—one cannot reconstruct the entire fingerprint im-
age from the fingerprint landmark information alone. The
common hypothesis underlying such representations is the
belief that the individuality of fingerprints is captured by
the local ridge structures (minute details) and their spatial
distributions [25], [42]. Therefore, automatic fingerprint
verification is usually achieved with minute-detail matching
instead of a pixel-wise matching or a ridge-pattern matching
of fingerprint images. In total, there are approximately 150
different types of local ridge structures that have been iden-
tified [42]. It would be extremely difficult to automatically,
quickly, and reliably extract these different representations
from the fingerprint images because 1) some of them
are so similar to each other and 2) their characterization
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(a)

(b)

Fig. 3. Ridge ending and ridge bifurcation.

depends upon the fine details of the ridge structure, which
are notoriously difficult to obtain from fingerprint images
of a variety of quality. Typically, automatic fingerprint
identification and authentication systems rely on repre-
senting the two most prominent structures5: ridge endings
and ridge bifurcations. Fig. 3 shows examples of ridge
endings and ridge bifurcations. These two structures are
background-foreground duals of each other, and pressure
variations could convert one type of structure into the
other. Therefore, many common representation schemes
do not distinguish between ridge endings and bifurca-
tions. Both the structures are treated equivalently and are
collectively called minutiae. The simplest of the minutiae-
based representations constitute a list of points defined by
their spatial coordinates with respect to a fixed image-
centric coordinate system. Typically, though, these minimal
minutiae-based representations are further enhanced by tag-
ging each minutiae (or each combination of minutiae subset,
e.g., pairs, triplets) with additional features. For instance,
each minutiae could be associated with the orientation of the
ridge at that minutiae; or each pair of the minutiae could be
associated with the ridge count: the number of ridges visited
during the linear traversal between the two minutiae. The
American National Standards Institute–National Institute of
Standards and Technology (NIST) standard representation
of a fingerprint is based on minutiae and includes minutiae
location and orientation [2]. The minutiae-based represen-
tation might also include one or more global attributes like
orientation of the finger, locations of core or delta,6 and
fingerprint class.

Our representation is minutiae based, and each minutia
is described by its location ( coordinates) and the
orientation. We also store a short segment of the ridge
associated with each minutia.

3) Feature Extraction:A feature extractor finds the ridge
endings and ridge bifurcations from the input fingerprint
images. If ridges can be perfectly located in an input

5Many of the other ridge structures could be described as a combination
of ridge endings and bifurcations [42].

6Core and delta are the two distinctive global structures in a fingerprint
[25]; see Fig. 2(c).

fingerprint image, then minutiae extraction is just a triv-
ial task of extracting singular points in a thinned ridge
map. In practice, however, it is not always possible to
obtain a perfect ridge map. The performance of currently
available minutiae-extraction algorithms depends heavily
on the quality of input fingerprint images. Due to a number
of factors (aberrant formations of epidermal ridges of
fingerprints, postnatal marks, occupational marks, problems
with acquisition devices, etc.), fingerprint images may
not always have well-defined ridge structures. Reliable
minutiae-extraction algorithms should not assume perfect
ridge structures and should degrade gracefully with the
quality of fingerprint images. We have developed a modified
version of the minutiae-extraction algorithm proposed in
[58] that is faster and more reliable. Our minutiae-extraction
scheme is described in the Section II.

4) Matching: Given two (test and reference) representa-
tions, the matching module determines whether the prints
are impressions of the same finger. The matching phase
typically defines a metric of the similarity between two
fingerprint representations. The matching stage also defines
a threshold to decide whether a given pair of representations
are of the same finger (mated pair) or not.

In the case of the minutiae-based representations, the
fingerprint-verification problem may be reduced to a point
pattern matching (minutiae pattern matching) problem. In
the ideal case, if 1) the correspondence between the tem-
plate minutiae pattern and input minutiae pattern is known,
2) there are no deformations such as translation, rota-
tion, and deformations between them, and 3) each minutia
present in a fingerprint image is exactly localized, then
fingerprint verification is only a trivial task of counting the
number of spatially matching pairs between the two im-
ages. Determining whether two representations of a finger
extracted from its two impressions, possibly separated by
a long duration of time, are indeed representing the same
finger is an extremely difficult problem. Fig. 4 illustrates
the difficulty with an example of two images of the same
finger. The difficulty can be attributed to two primary
reasons. First, if the test and reference representations are
indeed mated pairs, the correspondence between the test and
reference minutiae in the two representations is not known.
Second, the imaging system presents a number of peculiar
and challenging situations, some of which are unique to a
fingerprint image capture scenario.

1) Inconsistent contact:the act of sensing distorts the
finger. Determined by the pressure and contact of the
finger on the glass platen, the three-dimensional shape
of the finger gets mapped onto the two-dimensional
surface of the glass platen. Typically, this mapping
function is uncontrolled and results in different in-
consistently mapped fingerprint images across the
impressions.

2) Nonuniform contact:The ridge structure of a finger
would be completely captured if ridges of the part
of the finger being imaged are in complete optical
contact with the glass platen. However, the dryness of
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(a)

(b)

Fig. 4. Two different fingerprint impressions of the same finger.
To know the correspondence between the minutiae of these two
fingerprint images, all of the minutiae must be precisely localized
and the deformations must be recovered.

the skin, skin disease, sweat, dirt, and humidity in the
air all confound the situation, resulting in a nonideal
contact situation: some parts of the ridges may not
come in complete contact with the platen, and regions
representing some valleys may come in contact with
the glass platen. This results in “noisy” low-contrast
images, leading to either spurious minutiae or missing
minutiae.

3) Irreproducible contact:manual work, accidents, etc.
inflict injuries to the finger, thereby changing the
ridge structure of the finger either permanently or

semipermanently. This may introduce additional spu-
rious minutiae.

4) Feature extraction artifacts:The feature extraction
algorithm is imperfect and introduces measurement
errors. Various image-processing operations might
introduce inconsistent biases to perturb the location
and orientation estimates of the reported minutiae
from their gray-scale counterparts.

5) Sensing act:the act of sensing itself adds noise to the
image. For example, residues are leftover from the
previous fingerprint capture. A typical finger-imaging
system distorts the image of the object being sensed
due to imperfect imaging conditions. In the FTIR
sensing scheme, for example, there is a geometric
distortion because the image plane is not parallel to
the glass platen.

In light of the operational environments mentioned above,
the design of the matching algorithms needs to establish and
characterize a realistic model of the variations among the
representations of mated pairs. This model should include
the properties of interest listed below.

a) The finger may be placed at different locations on the
glass platen, resulting in a (global) translation of the
minutiae from the test representation from those in
the reference representation.

b) The finger may be placed in different orientations on
the glass platen, resulting in a (global) rotation of the
minutiae from the test representation from that of the
reference representation.

c) The finger may exert a different (average) downward
normal pressure on the glass platen, resulting in a
(global) spatial scaling of the minutiae from the test
representation from those in the reference represen-
tation.

d) The finger may exert a different (average) shear force
on the glass platen, resulting in a (global) shear
transformation (characterized by a shear direction and
magnitude) of the minutiae from the test representa-
tion from those in the reference representation.

e) Spurious minutiae may be present in both the refer-
ence and the test representations.

f) Genuine minutiae may be absent in the reference or
test representations.

g) Minutiae may be locally perturbed from their “true”
location, and the perturbation may be different for
each individual minutiae. (Further, the magnitude of
such perturbation is assumed to be small and within
a fixed number of pixels.)

h) The individual perturbations among the correspond-
ing minutiae could be relatively large (with respect
to ridge spacings), but the perturbations among pairs
of the minutiae are spatially linear.

i) The individual perturbations among the corresponding
minutiae could be relatively large (with respect to
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Fig. 5. Aligned ridge structures of mated pairs. Note that the best alignment in one part (top left)
of the image results in a large displacements between the corresponding minutiae in the other
regions (bottom right).

ridge spacings), but the perturbations among pairs of
the minutiae are spatially nonlinear.

j) Only a (ridge) connectivity preserving transformation
could characterize the relationship between the test
and reference representations [73].

A matcher may rely on one or more of these assumptions,
resulting in a wide spectrum of behavior. At the one
end of the spectrum, we have the “Euclidean” matchers,
which allow only rigid transformations among the test
and reference representations. At the other extreme, we
have a “topological” matcher, which may allow the most
general transformations, including, say, order reversals.7

The choice of assumptions often represents verification
performance tradeoffs. Only a highly constrained system
with not too demanding accuracies could get away with

7Order reversal means that a set of minutiae in the test representation
are in totally different spatial order with respect to their correspondences
in the reference representation.

restrictive assumptions. A number of the matchers in the
literature assume similarity transformation [assumptions a),
b), and c)]; they tolerate both spurious minutiae as well
as missing genuine minutiae. “Elastic” matchers in the
literature accommodate a small bounded local perturbation
of minutiae from their true location but cannot handle large
displacements of the minutiae from their true locations [59].

Fig. 5 illustrates a typical situation of aligned ridge
structures of mated pairs. Note that the best alignment in
one part (top left) of the image may result in a large amount
of displacements between the corresponding minutiae in the
other regions (bottom right). In addition, observe that the
distortion is nonlinear: given distortions at two arbitrary
locations on the finger, it is not possible to predict the
distortion at all of the intervening points on the line
joining the two points. In the authors’ opinion, a good
matcher needs to accommodate not only global similarity
transformations [assumptions a), b), and c)] but also shear
transformation [assumption d)] and linear [assumption h)]
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Fig. 6. Architecture of the automatic identity-authentication sys-
tem.

and nonlinear [assumption i)] differential distortions. In
our experience, assumption j) is too general a model to
characterize the impressions of a finger, and its inclusion
into the matcher design may compromise efficiency and
discriminatory power of the matcher. In addition, the match-
ers based on such assumptions need to use connectivity
information, which is notoriously difficult to extract from
fingerprint images of poor quality.

We have proposed an alignment-based elastic match-
ing algorithm. This algorithm is capable of finding the
correspondences between minutiae without resorting to
an exhaustive search and has the ability to compensate
adaptively for the nonlinear deformations and inexact trans-
formations between different fingerprints. Given a pair
of appropriately aligned fingerprint representations and a
set of already matched pairs of minutiae, the matching
algorithm incrementally and adaptively stretches (contracts)
the positions of candidate minutiae currently being matched
as a function of the minutiae pairs that are already matched.
Estimated orientations of minutiae are often inaccurate in
fingerprint images of poor quality. Our algorithm accommo-
dates noise in the minutiae orientations by permitting large
discrepancy between the corresponding minutiae (30). The
matching algorithm is described in detail in Section III.

D. An Automatic Identity-Authentication System

We will introduce a prototype automatic identity authen-
tication system, which is capable of automatically authen-
ticating the identity of an individual using fingerprints.
Currently, it is mainly intended for user authentication.
For example, our system can be used to replace password
authentication during the log-in session in a multiuser
computing environment.

The architecture of our automatic identity authentication
system is shown in Fig. 6. It consists of four components: 1)
user interface, 2) system data base, 3) enrollment module,
and 4) authentication module. The user interface provides
mechanisms for a user to indicate his identity and input his
fingerprints into the system. The system data base consists
of a collection of records, each of which corresponds
to an authorized person that has access to the system.
Each record contains the following fields that are used

for authentication purposes: 1) user name of the person,
2) minutiae templates of the person’s fingerprint, and 3)
other information.

The task of the enrollment module is to enroll persons and
their fingerprints into the system data base. When the fin-
gerprint images and the user name of a person to be enrolled
are fed to the enrollment module, a minutiae-extraction
algorithm is first applied to the fingerprint images, and
the minutiae patterns are extracted. A quality-checking
algorithm [29] is used to ensure that the records in the
system data base consist only of fingerprints of good
quality, in which a significant number (default value is 25)
of genuine minutiae may be detected. This is important
because there is no point in using a minutiae pattern with
only a very limited number of genuine minutiae as a
template to make an authentication. If a fingerprint image
is of poor quality, it is enhanced to improve the clarity
of ridge/valley structures and mask out all the regions that
cannot be recovered reliably [29]. The enhanced fingerprint
image is fed to the minutiae extractor again. Because the
current quality-checking algorithm is very slow [29], it is
only used in the enrollment module.

The task of the authentication module is to authenticate
the identity of the person who intends to access the system.
The person to be authenticated indicates his identity and
places his finger on the fingerprint scanner; a digital image
of his fingerprint is captured; and a minutiae pattern is
extracted from the captured fingerprint image and fed
to a matching algorithm, which matches it against the
person’s minutiae templates stored in the system data base
to establish the identity.

In the following sections, we will describe in detail the
minutiae-extraction algorithm, the minutiae-matching algo-
rithm, and the experimental results on two fingerprint data
bases. Section II mainly discusses the fingerprint minutiae-
extraction algorithm. Section III presents our minutiae-
matching algorithm. Experimental results on the Michigan
State University (MSU) fingerprint data bases captured with
an inkless scanner and NIST 9 fingerprint data base are
described in Section IV. Section V contains the summary
and conclusions.

II. M INUTIAE EXTRACTION

Fingerprint authentication is based on the matching of
minutiae patterns. A reliable minutiae-extraction algorithm
is critical to the performance of an automatic identity-
authentication system using fingerprints. In our system,
we have developed a minutiae-extraction algorithm that
is an improved version of the technique described in
[58]. Experimental results show that this algorithm per-
forms very well in operation. The overall flowchart of
this algorithm is depicted in Fig. 7. It mainly consists of
three components: 1) orientation field estimation, 2) ridge
extraction, and 3) minutiae extraction and postprocessing.
In the following subsections, we will describe in detail
our minutiae-extraction algorithm. We assume that the
resolution of input fingerprint images is 500 dots per inch.
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Fig. 7. Flowchart of the minutiae-extraction algorithm.

A. Orientation Field Estimation

The orientation field of a fingerprint image represents
the intrinsic nature of the fingerprint image. It plays a very
important role in fingerprint-image analysis. A number of
methods have been proposed to estimate the orientation
field of fingerprint images [38], [40], [56]. In our system, a
new hierarchical implementation of the algorithm proposed
in [56] is used (Fig. 8). With this algorithm, a fairly smooth
orientation-field estimate can be obtained. Fig. 9 shows the
orientation field of a fingerprint image estimated with our
hierarchical algorithm.

After the orientation field of an input fingerprint image
is estimated, a segmentation algorithm, which is based on
the local certainty level of the orientation field, is used
to locate the region of interest within the input fingerprint
image. The certainty level of the orientation field at pixel

is defined as follows:

(2)

where

(3)

and is the size of a local neighborhood. For each pixel, if
its certainty level of the orientation field is below a certain
threshold , then the pixel is marked as a background
pixel. In our localization algorithm, we assume that only

one fingerprint is present in the image, which is used as a
heuristic to find the region of interest.

B. Ridge Detection

An important property of the ridges in a fingerprint image
is that the gray-level values on ridges attain their local max-
ima along a direction normal to the local ridge orientation.
Pixels can be identified to be ridge pixels based on this
property. In our minutiae-detection algorithm, a fingerprint
image is first convolved with two masks, and

, of size (on an average 11 7),
respectively. These two masks are capable of adaptively
accentuating the local maximum gray-level values along a
direction normal to the local ridge direction

if

if
otherwise

(4)

if

if
otherwise

(5)

(6)
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Fig. 8. Hierarchical orientation-field estimation algorithm.

where represents the local ridge direction at pixel
and is a large constant. Ifboth of the gray-level

values at pixel of the convolved images are larger
than a certain threshold , then pixel is labeled
as a ridge. By adapting the mask width to the width
of the local ridge, this algorithm can efficiently locate
the ridges in a fingerprint image. Due to the presence
of noise, breaks, and smudges, etc. in the input image,
however, the resulting binary ridge map often contains
holes and speckles. When ridge skeletons are used for
the detection of minutiae, the presence of such holes
and speckles (small spurious fragments detected as ridges)
will severely deteriorate the performance of our minutiae-
extraction algorithm because these holes and speckles may
drastically change the skeleton of the ridges. Therefore, a
procedure to remove the holes and speckles needs to be
applied before ridge thinning.

C. Minutiae Detection

Minutiae detection is a trivial task when an ideal thinned
ridge map is available. Without loss of generality, we as-
sume that if a pixel is on a thinned ridge (eight-connected),
then it has a value of one, and zero otherwise. Let
denote a pixel on a thinned ridge and
denote its eight neighbors. A pixel is a ridge ending if

and a ridge bifurcation if .
However, the presence of undesired spikes and breaks
present in a thinned ridge map may lead to detection of
many spurious minutiae. Therefore, before the minutiae
detection, a smoothing procedure is applied to remove

spikes and to join broken ridges. Our ridge-smoothing
algorithm uses the following heuristics.

• If the angle formed by a branch and the trunk
ridge is larger than and less than

and the length of the branch is less
than pixels), then the branch is removed.

• If a break in a ridge is shorter than pixels)
and no other ridges pass through it, then the break is
connected.

The parameters controlling the behavior of the ridge-
smoothing heuristic are presently set to very conservative
values. Although it is possible that the ridge-smoothing
algorithm may occasionally annihilate genuine minutiae,
by and large, it deletes the spurious minutiae generated
by the poor quality image, image-processing artifacts, and
fingerprint creases.

For each detected minutiae, the following parameters are
recorded: 1) -coordinate, 2) -coordinate, 3) orientation,
which is defined as the local ridge orientation of the
associated ridge, and 4) the associated ridge segment.
The recorded ridges are represented as one-dimensional
discrete signals, which are normalized by a preset length
parameter that is approximately equal to the average inter-
ridge distance of the finger (presently computed manually
once for the given imaging setup). About ten locations
on the ridge associated with each ridge are sampled per
minutiae. The entire representation for a finger when stored
in a compressed format takes, on an average, about 250
bytes. These recorded ridges are used for alignment in
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(a)

(b)

Fig. 9. Comparison of orientation fields by the method proposed
in [56] and the hierarchical method; the block size(W �W ) is
16� 16 and the size ofD is 5� 5. (a) Method proposed in [56].
(b) Hierarchical method.

the minutiae-matching stage. Fig. 10 shows the results of
our minutiae-extraction algorithm on a fingerprint image
captured with an inkless scanner.

III. M INUTIAE MATCHING

Fingerprint matching has been approached from several
different strategies, like image-based [4], [50] and ridge-
pattern matching of fingerprint representations. There also
exist graph-based schemes [22], [23], [26], [27], [34],
[36] for fingerprint matching. Our automatic fingerprint-
verification algorithm instead is based on point pattern

(a) (b)

(c) (d)

(e) (f)

Fig. 10. Results of our minutiae-extraction algorithm on a finger-
print image (512� 512) captured with an inkless scanner. (a) Input
image. (b) Orientation field superimposed on the input image. (c)
Fingerprint region. (d) Extracted ridges. (e) Thinned ridge map.
(f) Extracted minutiae and their orientations superimposed on the
input image.

matching (minutiae matching). The reason for this choice
is our need to design a robust, simple, and fast verification
algorithm and to keep a small template size. A number
of point pattern matching algorithms have been proposed
in the literature [1], [55], [63], [66], [69], [71]. A general
point matching problem is essentially intractable. Features
associated with points and their spatial properties, such as
the relative distances between points, are widely used in
these algorithms to reduce the exponential number of search
paths.

The relaxation approach to point pattern matching [55]
iteratively adjusts the confidence level of each correspond-
ing pair based on its consistency with other pairs until a
certain criterion is satisfied. Although a number of modified
versions of this algorithm have been proposed to reduce the
matching complexity [69], these algorithms are inherently
slow because of their iterative nature.

The generalized Hough transform-based approach to
point pattern matching [6], [67] converts point pattern
matching to a problem of detecting peaks in the Hough
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Fig. 11. The alignment-based minutiae-matching algorithm.

space of transformation parameters. It discretizes the pa-
rameter space and accumulates evidence in the discretized
space by deriving transformation parameters that relate
two point patterns using a substructure or feature matching
technique. A hierarchical Hough transform-based algorithm
may be used to reduce the size of the accumulator array by
using a multiresolution approach. If there are only a few
minutiae points available, however, it is very difficult to
accumulate enough evidence in the Hough transform space
for a reliable match.

Tree-pruning approaches attempt to find the correspon-
dence between a pair of point sets by searching over a
tree of possible matches while employing different tree-
pruning methods, such as branch-and-bound, to reduce the
search space [5]. To prune the tree of possible matches
efficiently, this approach tends to impose a number of
requirements on the input point sets, such as an equal
number of points and no outliers. These requirements are
difficult to satisfy in practice, especially in a fingerprint
identification/verification system.

The energy minimization approach to point pattern
matching establishes the correspondence between a pair of
point sets by defining an energy function based on an initial
set of possible correspondences. It uses an appropriate
optimization algorithm such as genetic algorithm [1] and
simulated annealing [66] to find a possible suboptimal
match. These methods tend to be very slow and are
unsuitable for a real-time identification/verification system.

In our system, an alignment-based matching algorithm is
developed. It is simple in theory, efficient in discrimination,
and fast in speed. The alignment-based matching algorithm
decomposes the minutiae matching into two stages:

1) alignment stage,where transformations such as trans-
lation, rotation, and scaling between an input and

Fig. 12. Alignment of the input ridge and the template ridge.

a template in the data base are estimated and the
input minutiae are aligned with the template minutiae
according to the estimated parameters;

2) matching stage,where both the input minutiae and
the template minutiae are converted to polygons in the
polar coordinate system and an elastic string matching
algorithm is used to match the resulting polygons.

Let and

denote the minu-
tiae in the template and the minutiae in the input image,
respectively. Our alignment-based matching algorithm is
depicted in Fig. 11.

A. Alignment of Point Patterns

Ideally, two sets of planar point patterns can be aligned
completely by only two corresponding point pairs. A true
alignment between two point patterns can be obtained by
testing all possible corresponding point pairs and select-
ing the optimal one. Due to the presence of noise and
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Fig. 13. The minutiae-alignment algorithm.

deformations, however, the input minutiae cannot always
be aligned exactly with respect to those of the templates. To
accurately recover pose transformations between two point
patterns, a relatively large number of corresponding point
pairs need to be used. This leads to a prohibitively large
number of possible correspondences to be tested. Therefore,
an alignment by corresponding point pairs is not practical
even though it is feasible.

It is well known that corresponding curve segments
are capable of aligning two point patterns with a high
accuracy in the presence of noise and deformations [32].
Each minutiae in a fingerprint is associated with a ridge.
Therefore, it is clear that a true alignment can be achieved
by aligning corresponding ridges (see Fig. 12). During the
minutiae-detection stage, when a minutiae is extracted and
recorded, the ridge on which it resides is also recorded.
This ridge is represented as a planar curve, with its origin
coincident with the minutiae and its-coordinate being
in the same direction as the direction of the minutiae.
Also, this planar curve is normalized with the average
interridge distance. By matching these ridges, the relative

pose transformation between the input fingerprint and the
template can be accurately estimated. To be specific, let

and denote the sets of ridges associated with
the minutiae in the input and the template, respectively.
Our alignment algorithm is described in Fig. 13. Note that
because the aspect ratio of the pixels in our acquisition
devices is not one (nonsquare pixels), a rectification is
performed before the alignment.

B. Aligned Point Pattern Matching

If two identical point patterns are exactly aligned with
each other, then each pair of corresponding points are com-
pletely coincident. In such a case, point pattern matching
can be simply achieved by counting the number of over-
lapping pairs. In practice, however, such a situation is not
encountered. On the one hand, the error in determining and
localizing minutiae hinders the alignment algorithm to re-
cover the relative pose transformation exactly, while on the
other hand, our alignment scheme described in Fig. 13 does
not model the nonlinear deformation of fingerprints, which
is an inherent property of fingerprint impressions. With the
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existence of such a nonlinear deformation, it is impossible
to recover the position of each input minutiae exactly
with respect to its corresponding minutiae in the template.
Therefore, the aligned point pattern matching algorithm
needs to beelastic,which means that it should be capable of
tolerating, to some extent, the deformations due to inexact
extraction of minutiae positions and nonlinear deforma-
tions. Usually, such an elastic matching can be achieved
by placing a bounding box around each template minutiae,
which specifies all the possible positions of the correspond-
ing input minutiae with respect to the template minutiae,
and restricting the corresponding minutiae in the input im-
age to be within this box [59]. This method does not provide
a satisfactory performance in practice because local defor-
mations may be small while the accumulated global defor-
mations can be quite large. We have proposed an adaptive
elastic matching algorithm with the ability to compensate
the minutiae localization errors and nonlinear deformations.

Our adaptive elastic matching algorithm consists of two
main steps: 1) representing minutiae patterns as astring in
the polar coordinate system and 2) matching the strings
with a dynamic programming algorithm to establish the
correspondence. Minutiae matching in the polar coordinate
system has several advantages. Although the deformation
of fingerprints depends on a number of factors, such as
impression pressure and impression direction, the deforma-
tion in a local region is usually consistent and may become
less consistent as one moves further away from the region
where the fingerprint patterns are consistent (see Fig. 5).
Consequently, it is easier to represent and manipulate the
representations in polar space (with origin at a point of
maximal consistency between the reference and aligned
test template). At the same time, it is easier to formulate
rotation, which constitutes the main part of the alignment
error between an input image and a template, in the polar
space than in the Cartesian space. The symbolic string
generated by concatenating points in an increasing order
of radial angle in polar coordinates uniquely represents a
point pattern. This reveals that point pattern matching can
be achieved with a string-matching algorithm.

A number of string-matching algorithms have been re-
ported in the literature [15]. Generally, string matching can
be thought of as the maximization/minimization of a certain
cost function, such as the edit distance. Including an elastic
term in the cost function of a string-matching algorithm

Fig. 14. Bounding box and its adjustment.

can achieve a certain amount of error tolerance. Given two
strings and of lengths and , respectively, we
define the “edit distance” recursively as shown
in (7)–(10), shown at the bottom of the page, where
and are the weights associated with radius, radial angle,
and minutiae direction, respectively; and specify
the bounding box; and is a prespecified penalty for a
mismatch. Such an edit distance, to some extent, captures
the elastic property of string matching. It represents the cost
of changing one string to the other. However, this scheme
can only tolerate, but not compensate for, the adverse effect
on matching produced by the inexact localization of minu-
tiae and nonlinear deformations. Therefore, an adaptive
mechanism is needed. This adaptive mechanism should be
able to track the local nonlinear deformation and inexact
alignment and try to alleviate them during the minimization
process. We do not expect that this adaptive mechanism
can handle the “order flip” of minutiae, however, which,
to some extent, can be solved by an exhaustive reordering
and matching within a local angular window.

In our matching algorithm, the adaptation is achieved
by adjusting the bounding box (Fig. 14) when an inexact
match is found. It can be represented as follows [(11) and
(12) are shown at the bottom of the next page]:

(13)

(14)

(15)

(16)

if and

and
(7)

if and
otherwise

(8)

if
otherwise

(9)

if
otherwise

(10)
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where represents the penalty for matching a pair
of minutiae and ;

and specify the adaptive
bounding box in the polar coordinate system (radius and
radial angle), and is the learning rate. This elastic string-
matching algorithm has a number of parameters that are
critical to its performance. We have empirically determined
the values of these parameters as follows:
pixels, pixels, pixels,

pixels, , , , ,
, and . The values of

and depend on the resolution of
fingerprint images. Fig. 15 shows the results of applying
the matching algorithm to an input and a template minutiae
set pair.

IV. EXPERIMENTAL RESULTS

Here, we present our experimental results on the per-
formance of feature extraction and the entire verification
system.

A. Feature-Extraction Performance

It is very difficult to assess the performance of feature-
extraction algorithms independently. Accuracy of the ex-
tracted minutiae was subjectively confirmed in two ways.
Visual inspection of a large number of typical minutiae-
extraction results showed that our algorithm rarely missed
minutiae in fingerprint images of reasonable quality.

We have also compared the performance of our feature-
extraction algorithm with that of our previous feature-
extraction algorithm [58]. The premise underlying this
experiment is that given an identical matcher, the accuracy
of the system indicates the performance of the feature-
extraction algorithm. We extracted fingerprint representa-
tions from a sample set of fingerprint images using our
feature-extraction algorithm. The verification accuracy was
estimated using a Hough-transform-based matcher [59] by
performing an “all against all” verification test to obtain
match and mismatch score distributions. The same test was
also performed on the features extracted from our previ-
ous feature-extraction algorithm [58]. The ROC’s resulting
from these two experiments (shown in Fig. 16) indicate
a significant improvement in accuracy. We also plan to
evaluate the performance of our feature extraction algorithm
objectively by using the methodology defined in [58].

B. System Performance

We have tested our system on the MSU fingerprint data
base. It contains ten images (640480) per finger from
70 individuals for a total of 700 fingerprint images, which
were captured with a scanner manufactured by Digital
Biometrics. When these fingerprint images were captured,
no restrictions on the position and orientation of fingers
were imposed. The captured fingerprint images vary in
quality. Fig. 17 shows some of the fingerprint images in
our data base. Approximately 90% of the fingerprint images
in our data base are of reasonable quality, similar to those
shown in Fig. 17, while about 10% of the fingerprint images
in our data base are not of good quality (Fig. 18), mainly
due to large creases and smudges in ridges and dryness of
the impressed finger. To establish an objective assessment
of the performance, the system was also tested on a portion
of the NIST 9 fingerprint data base. The NIST 9 fingerprint
data base contains 1350 mated fingerprint card pairs (image
size is 832 768) that approximate a natural distribution
of the National Crime and Information Center fingerprint
classes [72]. It is divided into multiple volumes. Each
volume has three compact discs (CD’s). Each CD contains
900 images of card type 1 and 900 images of card type
2. Fingerprints on card type 1 were scanned using a rolled
method, and fingerprints on card type 2 were scanned using
a live-scan method. The fingerprint images in the NIST 9
data base are difficult compared to the live-scan fingerprint
images for a number of reasons, including:

1) the NIST 9 fingerprints are a combination of dabs
and rolled impressions; large discrepancy between the
number of minutiae in test and reference templates
inherently skews the matching score normalization;

2) a large number of NIST 9 images are of much poorer
image quality than a typical live-scan fingerprint
image;

3) NIST 9 images often contain extraneous objects like
handwritten characters and other artifacts common to
inked fingerprints.

Although only one-half of the fingerprint images in the
NIST 9 fingerprint data base are live-scan images and
there exists a large distortion between a rolled fingerprint
and a live-scan fingerprint, we can still use this data base
to generate some statistics and comparative performance
numbers.

if

otherwise

(11)

if

otherwise

(12)
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(a) (b)

(c) (d)

Fig. 15. Results of applying the matching algorithm to an input minutiae set and a template. (a)
Input minutiae set. (b) Template minutiae set. (c) Alignment result based on the minutiae marked
with green circles. (d) Matching result where template minutiae and their correspondences are
connected by green lines.

C. Matching Scores

We first evaluated the matching scores of correct and
incorrect matches. In test 1, each fingerprint in the MSU
fingerprint data base was matched with all the other finger-
prints in the data base. A matching was labeled correct if the
matched fingerprint was from the same finger, and incorrect
otherwise. A total of 489 300 (700 699) matchings
were performed. The distributions of correct and incorrect
matching scores are shown in Fig. 19(a). In test 2, each
of the 900 fingerprints of card type 1 in the NIST 9
(CD no. 1) was matched with all 900 fingerprints of card
type 2. A matching was labeled correct if a matched
fingerprint was from the same finger. A total of 810 000

(900 900) matchings were performed on this data base
(to our knowledge, no comparative results are available
on the NIST 9 data base). The distributions of correct
and incorrect matching scores are shown in Fig. 19(b).
Table 2 lists the values in addition to the mean and
standard deviation of correct and incorrect matching scores.
The large variance of correct matching scores is mainly
due to different numbers of detected minutiae, quality of
acquired fingerprint images, and fingerprint distortion. For
example, the fingerprint images shown in Fig. 17(a) and (b)
are captured from the same finger. However, only a small
region of interest is common to these two fingerprint images
(approximately 30%). Obviously, it is impossible to make a
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Fig. 16. ROC’s showing the improvement in performance of verification due to the new version
of the feature extraction.

(a) (b) (c)

Fig. 17. Fingerprint images captured with a scanner manufactured by Digital Biometrics. The size
of these images is 640� 480; all three images are from the same individual’s finger.

highly confident decision based only on the limited number
of minutiae appearing in the region of interest common to
both fingerprints. In practice, such a problem can be solved
by requiring that each input fingerprint image should have
a sufficient amount of common region of interest with its
stored template(s).

D. Authentication Test

In test 1, for each individual, we randomly selected three
fingerprint images that passed the quality check as the
template minutiae patterns for the individual and inserted
them into the system data base. The major reason why we
use three fingerprint templates is that a significant number
of acquired fingerprint images from the same finger in the

MSU data base do not have a sufficient amount of common
region of interest due to the unrestricted acquisition process.
Two fingerprint images may both be of good quality. If
there is only a very limited amount of common region of
interest, however, it is unlikely that the matching algorithm
can establish a sufficient number of corresponding minutiae
pairs to reach a correct decision. Using more than one
template is a simple solution, although it may result in
a higher FAR. There are six individuals who cannot be
enrolled into the system data base because the quality of
their captured fingerprints was too poor to pass the quality
checking. The remaining 490 (70 7) fingerprint images
were used as input fingerprints to test the performance
of the system. An identity is established if at least one
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(a)

(b)

Fig. 18. Fingerprint images of poor quality.

of the three matching scores is above a certain threshold
value. Otherwise, the input fingerprint is rejected as an
impostor. In test 2, we use 798 out of the 900 fingerprints
of card type 1 in the NIST 9 data base (CD no. 1)
as templates, which pass the quality checking. The 900
fingerprints of card type 2 were used as input fingerprints.
An identity is established if the matching score is above
a certain threshold value. The false acceptance rates and
false reject rates with different threshold values on the
matching score are shown in Table 3, which are obtained
based on 31 360 (64 490) matches for test 1 and 718 200
(798 900) matches on test 2. Since the matching scores
are discretized with a large sampling interval, only an
approximate EER can be obtained by averaging the most

Table 2 d
0 and Mean and Standard Deviation of the

Correct and Incorrect Matching Scores

Table 3 False Acceptance and False Reject Rates on
Test Sets with Different Threshold Values

similar FAR and FRR. The EER was approximated to be
3.07% in test 1 and 2.69% in test 2. The ROC’s of the
two tests are shown in Fig. 20. In each ROC, authentic
acceptance rate (the percentage of a genuine individual’s
being accepted) is plotted against the FAR. Each point
on the curve corresponds to a decision criterion. In the
ideal cases, if the genuine distribution and the imposter
distribution are disjoint, i.e., each genuine individual is
accepted and each impostor is rejected correctly, then the
ROC is a horizontal line segment hovering at the authentic
acceptance rate of 100%. On the other hand, if the genuine
distribution and the imposter distribution are exactly the
same, then the ROC is a 45line segment with one end
point at the origin (in Fig. 20, it corresponds to the dotted
curve in the lower-right corner since the ROC’s are plotted
in semilog space). In this case, decisions can only be made
by a random choice. In practice, an ROC is a curve between
these two extremes. The closer the ROC is to the upper
boundary, the better the system performance. The numbers
shown in Table 3 are the performance measures of our
verification algorithm. They should not be treated as the
ultimate performance numbers of the system. In practice, a
number of techniques can be employed to ensure a sufficient
amount of common region of interest and good image
quality and to restrict the distortion of input images, which
can substantially decrease both the FAR and the FRR.

The number of tests conducted on an automatic fin-
gerprint identification/verification system is never enough.
Performance measures are as much a function of the
algorithm as they are a function of the data base used for
testing. The biometrics community is slow at establishing
benchmarks, and the ultimate performance numbers of a
fingerprint identification/verification system are those that
you find in a deployed system. Therefore, one can carry out
only a limited amount of testing in a laboratory environment
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(a)

(b)

Fig. 19. Distributions of correct and incorrect matching scores; vertical axis represents distribution
of matching scores in percentage. (a) MSU data base. (b) NIST 9 (CD no. 1).

to show the anticipated system performance. In field testing,
in addition to the real performance of the system, the
system designer has to pay attention to the perceived
performance of the system, especially in the context of
the authentication applications, which are sensitive to false
negatives. The presentation of the matcher outcome, work
flow, ergonomics, engineering, rejection criteria, operating

point on the ROC, etc. play an important role in the user’s
perception of the system performance.

For an automatic identity-authentication system to be
acceptable in practice, the response time of the system
needs to be within a few seconds. Table 4 shows that our
implemented system does meet the practical response-time
requirement.
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(a)

(b)

Fig. 20. ROC. (a) MSU data base. (b) NIST 9 (CD no. 1).

V. SUMMARY AND CONCLUSIONS

We have introduced an automatic identity-authentication
system using fingerprints. The implemented minutiae-
extraction algorithm is much more accurate and faster
than our previous feature-extraction algorithm [58]. The
proposed alignment-based elastic matching algorithm is
capable of finding the correspondences between minutiae
without resorting to an exhaustive search. The system

achieves an excellent performance because it has the ability
to compensate adaptively for the nonlinear deformations
and inexact transformations between different fingerprints.
Experimental results show that our system performs very
well. It meets the response-time requirements as well as
the accuracy requirements.

The current system is designed as a prototype system to
evaluate the performance of our algorithms under different
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Table 4 Average CPU Time for Minutiae Extraction
and Matching on a Sun ULTRA 1 Workstation.

types of inputs. It should not be confused with a practical
system. In practice, a number of mechanisms need to be
developed besides the minutiae extraction and minutiae
matching.

Based on the experimental results, we observe that the
matching errors of the system mainly result from 1) in-
sufficient number of corresponding minutiae, 2) missing
minutiae and spurious minutiae, 3) inaccurate alignment,
and 4) large distortion.

In practice, simple mechanisms like providing visual
feedback about the fingerprint image being captured (in
terms of a live display) make a significant difference in
the system performance [8]. Further, prompting the user
to place the finger in a desirable position and orientation
also improves the false negative performance of the system.
Detecting bad quality images, treating the finger with proper
remedies (e.g., application of moisturizer), and subsequent
recapturing of the fingerprint images are some of the useful
strategies to improve the system performance.

A number of factors are detrimental to the correct local-
ization of minutiae. Among them, poor image quality is the
most serious. By integrating an enhancement mechanism
into the minutiae-extraction module, this problem can, to
a limited extent, be solved. Image enhancement is usually
an expensive operation [29], however, which may increase
the response time of the system.

Although the current minutiae-matching algorithm can
compensate for the inexact alignment and distortion be-
tween an input fingerprint and its template, it cannot handle
large alignment errors and large distortions. Currently, we
are investigating a possible solution to this problem by
incorporating a dynamic model in string matching.

Fingerprint classification is to categorize a fingerprint
into a certain prespecified category based on its global
pattern configuration. If two fingerprints are from the same
finger, they must belong to the same category. Although
fingerprint classification is still a challenging problem and
it is very difficult to achieve a high classification rate, it
is beneficial to incorporate the category information into a
minutiae-matching algorithm to improve its discrimination
performance.

A biometric system based solely on a single biometric
feature may not be able to meet the practical performance
requirement in all aspects. By integrating two or more
biometric features, overall verification performance may be
improved. For example, it is well known that fingerprint
verification tends to have a larger false reject rate due to
the reasons discussed above, but it has a very low false
accept rate. On the other hand, face recognition is not

reliable in establishing the true identity but it is efficient
in searching a large data base to find the topmatches.
By combining fingerprint matching and face recognition,
the false reject rate may be reduced without sacrificing the
false accept rate, and the system may then be able to operate
in the identification mode. Currently, we are investigating
a decision-fusion schema to integrate fingerprint and face.

The expected error rate of a deployed biometric system
is usually a very small number ( 1%). To estimate such a
small number reliably and accurately, large representative
data sets that satisfy the two requirements mentioned in
Section I are needed. Generally, under the assumption of
statistical independence, the number of tests conducted
should be larger than ten divided by the error rate [24].
Currently, we are evaluating the system on a large data set
of live-scan fingerprint images.
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