A description of relatively (p, r)-compact sets

KATI AIN AND EVE OJA

ABSTRACT. We introduce the notion of (p, r)-null sequences in a Banach space and we prove a Grothendieck-like result: a subset of a Banach space is relatively (p, r)-compact if and only if it is contained in the closed convex hull of a (p, r)-null sequence. This extends a recent description of relatively *p*-compact sets due to Delgado and Piñeiro, providing to it an alternative straightforward proof.

1. Introduction

Let X be a Banach space and let $c_0(X)$ denote the space of X-valued null sequences. By a classical result due to Grothendieck [6] (see, e.g., [7, p. 30]), a subset K of X is relatively compact if and only if there exists $(x_n) \in c_0(X)$ such that $K \subset \overline{\operatorname{conv}}(x_n)$, the closed convex hull of the sequence (x_n) .

There is a strong form of compactness, the *p*-compactness, where $p \ge 1$ is a real number, that has been studied during the last years in the literature (see, e.g., [3], [4], [5], [12]). Recently, Delgado and Piñeiro [10] introduced and studied an interesting class $c_{0,p}(X)$ of *p*-null sequences which is a linear subspace of $c_0(X)$ (in [8], it is proved that $c_{0,p}(X)$ coincides with the Chevet– Saphar tensor product $c_0 \hat{\otimes}_{d_p} X$). One of their main results is as follows.

Theorem 1 (Delgado–Piñeiro; see [10, Theorem 2.5]). Let $1 \le p < \infty$. A subset K of a Banach space X is relatively p-compact if and only if there exists $(x_n) \in c_{0,p}(X)$ such that $K \subset \overline{\operatorname{conv}}(x_n)$.

The proof of Theorem 1 in [10] is not self-contained. It relies on some theory of *p*-compact operators developed by Delgado, Piñeiro, and Serrano in [5] (see [5, Corrollary 3.4, Propositions 3.5 and 3.8, and Theorem 3.13]) and uses a characterization of operators having absolutely *p*-summing adjoints (see [10, Proposition 2.4]).

Received June 13, 2012.

²⁰¹⁰ Mathematics Subject Classification. Primary 46B50; Secondary 46B45.

Key words and phrases. Banach spaces, (p, r)-compactness, (p, r)-null sequences.

The research was partially supported by Estonian Science Foundation Grant 8976 and Estonian Targeted Financing Project SF0180039s08.

The aim of the present note is to give a very easy direct proof of the Delgado–Piñeiro theorem. However, we shall proceed in a more general setting of relatively (p, r)-compact sets, which is a very recent concept from [1]. This will be done in Section 3.

In Section 2 we extend the notion of p-null sequences due to Delgado and Piñeiro [10] to (p, r)-null sequences, and we show that a (p, r)-null sequence converges to 0 and is relatively (p, r)-compact.

Our notation is standard. We consider Banach spaces over the same, either real or complex, field K. The closed unit ball of a Banach space X is denoted by B_X . The Banach space of all p-summable sequences in X is denoted by $\ell_p(X)$ and its norm by $||(x_n)||_p$. If $1 \le p \le \infty$, then p^* denotes the conjugate index of p (i.e., $1/p+1/p^*=1$ with the convention $1/\infty = 0$).

2. Relatively (p, r)-compact sets and (p, r)-null sequences

Let X be a Banach space and let $p \ge 1$ be a real number. The *p*-convex hull of a sequence $(z_k) \in \ell_p(X)$ is defined as

$$p\text{-conv}(z_k) = \left\{ \sum_{k=1}^{\infty} a_k z_k : (a_k) \in B_{\ell_{p^*}} \right\}.$$

Let $1 \le p \le \infty$ and $1 \le r \le p^*$. We define the (p, r)-convex hull of a sequence $(z_k) \in \ell_p(X)$ (where $(z_k) \in c_0(X)$ if $p = \infty$) by

$$(p,r)\operatorname{-conv}(z_k) = \left\{\sum_{k=1}^{\infty} a_k z_k : (a_k) \in B_{\ell_r}\right\}.$$

As in [1], we say that a subset K of X is relatively (p, r)-compact if $K \subset (p, r)$ -conv (x_n) for some $(x_n) \in \ell_p(X)$, (where $(x_n) \in c_0(X)$ if $p = \infty$). According to Grothendieck's criterion, the $(\infty, 1)$ -compactness coincides with the usual compactness (because $(\infty, 1)$ -conv (x_n) is precisely the closed absolutely convex hull of (x_n)). The (p, 1)-compactness was occasionally considered in the 1980s by Reinov [11] and by Bourgain and Reinov [2] in the study of approximation properties of order $s \leq 1$. The (p, p^*) -compactness was introduced in 2002 by Sinha and Karn [12] under the name of p-compactness.

In general, for $p \neq q$, $r \neq s$, relatively (p, r)-compact sets and relatively (q, s)-compact sets do not coincide. In [10, Proposition 3.5], it was proved (see also [9, Proposition 20] for a short proof within the framework of operator ideals) that in all infinite-dimensional Banach spaces, relatively *p*-compact subsets differ from relatively *q*-compact subsets for $p \neq q$, $2 \leq p, q \leq \infty$. In our setting, this means that relatively (p, p^*) -compact sets differ from relatively (p, q^*) -compact sets.

Let $1 \le p < \infty$ and $1 \le r \le p^*$. Extending the notion of *p*-null sequences due to Delgado and Piñeiro [10], we call a sequence (x_n) in X(p, r)-null if for

every $\epsilon > 0$ there exist $N \in \mathbb{N}$ and $(z_k) \in \ell_p(X)$ with $||(z_k)||_p \leq \epsilon$ such that $x_n \in (p, r)$ -conv (z_k) for all $n \geq N$. The *p*-null sequences in [10] are defined using the *p*-conv (z_k) , and they are precisely the (p, p^*) -null sequences.

Let us point out a couple of easy properties of (p, r)-null sequences.

Proposition 2. Let $1 \le p < \infty$ and $1 \le r \le p^*$. If a sequence (x_n) in a Banach space X is (p,r)-null, then $x_n \to 0$ and (x_n) is relatively (p,r)-compact.

Proof. Suppose that $(x_n) \subset X$ is (p, r)-null. Then for every $\epsilon > 0$ there exist $N \in \mathbb{N}$ and $(z_k) \in \ell_p(X)$, $||(z_k)||_p \leq \epsilon$, such that $x_n = \sum_{k=1}^{\infty} a_k^n z_k$, where $(a_k^n)_{k=1}^{\infty} \in B_{\ell_r}$, for all $n \geq N$.

We have, for all $n \ge N$,

$$||x_n|| \le \sum_{k=1}^{\infty} ||a_k^n z_k|| \le ||(a_k^n)_k||_{p^*} ||(z_k)||_p \le ||(a_k^n)_k||_r ||(z_k)||_p \le \epsilon,$$

and therefore $x_n \to 0$.

We already have $\{x_N, x_{N+1}, ...\} \subset (p, r)$ -conv (z_k) . We also have $\{x_1, ..., x_{N-1}\} \subset (p, r)$ -conv (w_k) , where

$$w_k = \begin{cases} x_k & \text{if } k < N, \\ 0 & \text{if } k \ge N. \end{cases}$$

Now the sequence

$$y_k = \begin{cases} w_k & \text{if } k \text{ is odd,} \\ z_k & \text{if } k \text{ is even,} \end{cases}$$

is in $\ell_p(X)$ and $x_n \in (p, r)$ -conv (y_k) for all $n \in \mathbb{N}$.

Sometimes (see, e.g., the next section), it is convenient to look at (p, r)-convex hulls in the following way.

Let $1 \leq p < \infty$ and $1 \leq r \leq p^*$. It is well known and easy to see that every $(z_k) \in \ell_p(X)$ defines a compact operator $\Phi_{(z_k)} : \ell_r \to X$ through the equality

$$\Phi_{(z_k)}(a_k) = \sum_{k=1}^{\infty} a_k z_k, \ (a_k) \in \ell_r.$$

Clearly,

$$(p, r)\operatorname{-conv}(z_k) = \Phi_{(z_k)}(B_{\ell_r}),$$

so that a subset K of X is relatively (p,r)-compact if and only if $K \subset \Phi_{(z_k)}(B_{\ell_r})$ for some $(z_k) \in \ell_p(X)$; in particular, $\Phi_{(z_k)}(B_{\ell_r})$ itself is relatively (p,r)-compact.

3. Relatively (p, r)-compact sets are contained in closed convex hulls of (p, r)-null sequences

In the case when $r = p^*$, the following theorem reduces to the Delgado– Piñeiro theorem (see Theorem 1).

Theorem 3. Let $1 \le p < \infty$ and $1 \le r \le p^*$. A subset K of a Banach space X is relatively (p, r)-compact if and only if K is contained in the closed convex hull of a (p, r)-null sequence.

Proof. For the "if" part, let $(x_n) \subset X$ be a (p, r)-null sequence. By Proposition 2, (x_n) is relatively (p, r)-compact. Thus $(x_n) \subset \Phi_{(z_k)}(B_{\ell_r})$ for some $(z_k) \in \ell_p(X)$. The set $\Phi_{(z_k)}(B_{\ell_r})$ is clearly absolutely convex. It is also weakly compact. Indeed, if $1 < r < \infty$, then B_{ℓ_r} is weakly compact; if r = 1 (or $r = \infty$), then $B_{\ell_1} = B_{c_0^*}$ (or $B_{\ell_\infty} = B_{\ell_1^*}$) is weak* compact; and $\Phi_{(z_k)} \in \mathcal{L}(c_0^*, X)$ (or $\Phi_{(z_k)} \in \mathcal{L}(\ell_1^*, X)$) is weak* to weakly continuous (because $\Phi_{(z_k)}^*(X^*) \subset c_0$ (or $\Phi_{(z_k)}^*(X^*) \subset \ell_1$)). Hence, $\Phi_{(z_k)}(B_{\ell_r})$ is a closed absolutely convex subset of X containing (x_n) . Since $\overline{\operatorname{conv}}(x_n)$ is contained in the relatively (p, r)-compact set $\Phi_{(z_k)}(B_{\ell_r})$, it is also relatively (p, r)-compact.

For the "only if" part, let us assume that $K \subset X$ is relatively (p, r)compact. We clearly may assume that $K = \Phi_{(z_k)}(B_{\ell_r})$ for some $(z_k) \in \ell_p(X)$.
We are going to construct a (p, r)-null sequence (x_n) such that $K \subset \overline{\text{conv}}(x_n)$.

Similarly to the very beginning of the proof of [4, Theorem 2.1, (c) \Rightarrow (a)] (or of [10, Theorem 2.5]), we choose $\alpha_k \searrow 0$ such that $(\alpha_k^{-1}z_k) \in \ell_p(X)$, and we consider a compact diagonal operator $D : \ell_r \to \ell_r$, defined by $D(\beta_k) = (\alpha_k \beta_k), \ (\beta_k) \in \ell_r$, and $\Phi := \Phi_{(\alpha_k^{-1}z_k)} : \ell_r \to X$. Then, clearly, $\Phi_{(z_k)} = \Phi D$.

Since $D(B_{\ell_r})$ is a relatively compact subset of ℓ_r , by Grothendieck's criterion, there exists a sequence $(\Gamma_n) \subset \ell_r$ such that $\Gamma_n \to 0$ and $D(B_{\ell_r}) \subset \overline{\operatorname{conv}}(\Gamma_n)$. Denote $x_n = \Phi\Gamma_n$. Then $K \subset \overline{\operatorname{conv}}(x_n)$, and it remains to show that (x_n) is a (p, r)-null sequence.

that (x_n) is a (p, r)-null sequence. Let $\Gamma_n = (\gamma_k^n)_{k=1}^{\infty}$. Then $\sum_{k=1}^{\infty} |\gamma_k^n|^r = \|\Gamma_n\|_r^r \xrightarrow[n]{} 0$ if $r < \infty$ or $\sup_k |\gamma_k^n| \xrightarrow[n]{} 0$ if $r = \infty$. Let us only consider the former case, the latter case being similar.

Let $\epsilon > 0$ be fixed. Choose $\delta > 0$ satisfying $\delta^r \leq 1 - 2^{-r}$ and $\delta^p (2^p \nu^p + 1) \leq \epsilon^p$, where $\nu := \|(\alpha_k^{-1} z_k)\|_p$. Then there exists $N \in \mathbb{N}$ such that $\sum_{k=1}^{\infty} |\gamma_k^n|^r < \delta^r$ if $n \geq N$, and also $\sum_{k>N} \|\alpha_k^{-1} z_k\|^p < \delta^p$. Now

$$x_{n} = \sum_{k=1}^{\infty} \gamma_{k}^{n} \alpha_{k}^{-1} z_{k} = \sum_{k=1}^{N} \gamma_{k}^{n} \alpha_{k}^{-1} z_{k} + \sum_{k>N} \gamma_{k}^{n} \alpha_{k}^{-1} z_{k}$$
$$= \sum_{k=1}^{N} \frac{\gamma_{k}^{n}}{2\delta} 2\delta \alpha_{k}^{-1} z_{k} + \sum_{k>N} \gamma_{k}^{n} \alpha_{k}^{-1} z_{k} = \sum_{k=1}^{\infty} \delta_{k}^{n} y_{k},$$

where

$$(\delta_k^n)_{k=1}^{\infty} := (\frac{\gamma_1^n}{2\delta}, \dots, \frac{\gamma_N^n}{2\delta}, \gamma_{N+1}^n, \gamma_{N+2}^n, \dots) \in \ell_r$$

and

$$(y_k)_{k=1}^{\infty} := (2\delta\alpha_1^{-1}z_1, \dots, 2\delta\alpha_N^{-1}z_N, \alpha_{N+1}^{-1}z_{N+1}, \alpha_{N+2}^{-1}z_{N+2}, \dots) \subset X.$$

Observe that

$$\|(y_k)\|_p^p = 2^p \delta^p \sum_{k=1}^N \|\alpha_k^{-1} z_k\|^p + \sum_{k>N} \|\alpha_k^{-1} z_k\|^p$$

$$< 2^p \delta^p \nu^p + \delta^p = \delta^p (2^p \nu^p + 1) \le \epsilon^p,$$

i.e., $(y_k) \in \ell_p(X)$ and $||(y_k)||_p \leq \epsilon$. Observe also that, for every $n \geq N$,

$$\|(\delta_k^n)_k\|_r^r = \sum_{k=1}^N \frac{|\gamma_k^n|^r}{2^r \delta^r} + \sum_{k>N} |\gamma_k^n|^r < \frac{\delta^r}{2^r \delta^r} + \delta^r = \frac{1}{2^r} + \delta^r \le 1,$$

i.e., $(\delta_k^n)_k \in B_{\ell_r}$ if $n \ge N$. Hence, for every $n \ge N$, we have

$$x_n = \sum_{k=1}^{\infty} \delta_k^n y_k \in (p, r)\text{-conv}(y_k),$$

as desired.

References

- K. Ain, R. Lillemets, and E. Oja, Compact operators which are defined by l_p-spaces, Quaest. Math. 35 (2012), 145–153.
- J. Bourgain and O. Reinov, On the approximation properties for the space H[∞], Math. Nachr. 122 (1985), 19–27.
- [3] Y.S. Choi and J.M. Kim, The dual space of (L(X,Y), τ_p) and the p-approximation property, J. Funct. Anal. 259 (2010), 2437–2454.
- [4] J. M. Delgado, E. Oja, C. Piñeiro, and E. Serrano, The p-approximation property in terms of density of finite rank operators, J. Math. Anal. Appl. 354(2009), 159–164.
- [5] J.M. Delgado, C. Piñeiro, and E. Serrano, Operators whose adjoints are quasi p-nuclear, Studia Math. 197 (2010), 291–304.
- [6] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 16 (1955).
- [7] J. Lindenstrauss and L. Tzafriri, *Classical Banach Spaces I*, Ergebnisse der Mathematik und ihrer Grenzgebiete 92, Springer-Verlag, Berlin-Heidelberg-New York, 1977.
- [8] E. Oja, Grothendieck's nuclear operator theorem revisited with an application to p-null sequences, J. Funct. Anal. 263 (2012), 2876–2892.
- [9] A. Pietsch, The ideal of p-compact operators and its maximal hull, Proc. Amer. Math. Soc. (to appear)
- [10] C. Piñeiro and J. M. Delgado, p-Convergent sequences and Banach spaces in which p-compact sets are q-compact, Proc. Amer. Math. Soc. 139 (2011), 957–967.
- [11] O. Reinov, A survey of some results in connection with Grothendieck approximation property, Math. Nachr. 119 (1984), 257–264.

[12] D. P. Sinha and A. K. Karn, Compact operators whose adjoints factor through subspaces of ℓ_p , Studia Math. **150** (2002), 17–33.

Kati Ain, Faculty of Mathematics and Computer Science, Tartu University, J. Liivi $2,\ 50409$ Tartu, Estonia

 $E\text{-}mail \ address: \texttt{kati.ainQut.ee}$

Eve Oja, Faculty of Mathematics and Computer Science, Tartu University, J. Liivi 2, 50409 Tartu, Estonia; Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn, Estonia

E-mail address: eve.oja@ut.ee