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CHAPTER
ONE

GRAPH OBJECTS AND METHODS

1.1 Generic graphs (common to directed/undirected)

This module implements the base class for graphs and digraphs, and methods that can be applied on both. Here is
what it can do:

Basic Graph operations:

networkx_graph () Return a new NetworkX graph from the Sage graph
igraph_graph () Return an igraph graph from the Sage graph
to_dictionary() Create a dictionary encoding the graph.

copy () Return a copy of the graph.

export_to_file() Export the graph to a file.

adjacency_matrix() Return the adjacency matrix of the (di)graph.
incidence_matrix() Return an incidence matrix of the (di)graph
distance_matrix/() Return the distance matrix of the (strongly) connected (di)graph
weighted _adjacency_matr Retyrn the weighted adjacency matrix of the graph
kirchhoff_matrix() Return the Kirchhoff matrix (a.k.a. the Laplacian) of the graph.
has_1loops () Return whether there are loops in the (di)graph
allows_loops () Return whether loops are permitted in the (di)graph
allow_loops() Change whether loops are permitted in the (di)graph

loops () Return a list of all loops in the (di)graph

loop_edges () Return a list of all loops in the (di)graph
number._of_loops () Return the number of edges that are loops

loop_vertices () Return a list of vertices with loops

remove_loops () Remove loops on vertices in vertices.
has_multiple_edges () Return whether there are multiple edges in the (di)graph.
allows_multiple_edges () Return whether multiple edges are permitted in the (di)graph.
allow_multiple_edges ()| Change whether multiple edges are permitted in the (di)graph.
multiple_edges () Return any multiple edges in the (di)graph.

name () Return or set the graph’s name.

is_immutable () Return whether the graph is immutable.

weighted () Whether the (di)graph is to be considered as a weighted (di)graph.
antisymmetric () Test whether the graph is antisymmetric

density () Return the density

order () Return the number of vertices.

size () Return the number of edges.

add_vertex () Create an isolated vertex.

add_vertices () Add vertices to the (di)graph from an iterable container of vertices

Continued on next page
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Table 1 — continued from previous page

delete vertex ()

Delete vertex, removing all incident edges.

delete _vertices ()

Delete vertices from the (di)graph taken from an iterable container of vertices.

has_vertex ()

Check if vertex is one of the vertices of this graph.

random vertex ()

Return a random vertex of self.

random vertex iterator

( Return an iterator over random vertices of self.

random_edge ()

Return a random edge of self.

random_edge_iterator ()

Return an iterator over random edges of self.

vertex_boundary ()

Return a list of all vertices in the external boundary of vertices1, intersected
with vertices2.

set_vertices ()

Associate arbitrary objects with each vertex

set_vertex ()

Associate an arbitrary object with a vertex.

get_vertex ()

Retrieve the object associated with a given vertex.

get_vertices ()

Return a dictionary of the objects associated to each vertex.

vertex iterator ()

Return an iterator over the given vertices.

neighbor_iterator()

Return an iterator over neighbors of vertex.

vertices ()

Return a list of the vertices.

neighbors ()

Return a list of neighbors (in and out if directed) of vertex.

merge_vertices ()

Merge vertices.

add_edge ()

Add an edge from u to v.

add_edges ()

Add edges from an iterable container.

subdivide_edge ()

Subdivide an edge k times.

subdivide edges ()

Subdivide k times edges from an iterable container.

delete_edge ()

Delete the edge from u to v

delete_edges ()

Delete edges from an iterable container.

contract_edge ()

Contract an edge from u to v.

contract_edges ()

Contract edges from an iterable container.

delete_multiedge ()

Delete all edges from u to v.

set_edge_label ()

Set the edge label of a given edge.

has_edge ()

Check whether (u, v) is an edge of the (di)graph.

edges ()

Return a list of edges.

edge_boundary ()

Return a list of edges (u, v, 1) withuinverticesl

edge_iterator ()

Return an iterator over edges.

edges_incident ()

Return incident edges to some vertices.

edge_label ()

Return the label of an edge.

edge_labels ()

Return a list of the labels of all edges in self.

remove_multiple_edges (

Remove all multiple edges, retaining one edge for each.

clear ()

Empty the graph of vertices and edges and removes name, associated objects,
and position information.

degree ()

Return the degree (in + out for digraphs) of a vertex or of vertices.

average_degree ()

Return the average degree of the graph.

degree_histogram()

Return a list, whose ith entry is the frequency of degree i.

degree_iterator ()

Return an iterator over the degrees of the (di)graph.

degree_sequence ()

Return the degree sequence of this (di)graph.

random_subgraph ()

Return a random subgraph containing each vertex with probability p.

add_clique ()

Add a clique to the graph with the given vertices.

add_cycle()

Add a cycle to the graph with the given vertices.

add _path ()

Add a cycle to the graph with the given vertices.

complement ()

Return the complement of the (di)graph.

line_graph ()

Return the line graph of the (di)graph.

Continued on next page
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Table 1 — continued from previous page

to_simple ()

Return a simple version of itself (i.e., undirected and loops and multiple edges
are removed).

disjoint_union ()

Return the disjoint union of self and other.

union ()

Return the union of self and other.

relabel ()

Relabel the vertices of self

degree_to_cell ()

Return the number of edges from vertex to an edge in cell.

subgraph ()

Return the subgraph containing the given vertices and edges.

is_subgraph ()

Check whether self is a subgraph of other.

Graph products:

cartesian_product ()

Return the Cartesian product of self and other.

tensor_product ()

Return the tensor product, also called the categorical product, of self and other.

lexicographic_product (

Return the lexicographic product of self and other.

strong_product ()

Return the strong product of self and other.

disjunctive_ product ()

Return the disjunctive product of self and other.

Paths and cycles:

eulerian orientation/()

Return a DiGraph which is an Eulerian orientation of the current graph.

eulerian_circuit ()

Return a list of edges forming an Eulerian circuit if one exists.

cycle basis ()

Return a list of cycles which form a basis of the cycle space of self.

all paths /()

Return a list of all paths (also lists) between a pair of vertices in the (di)graph.

triangles_count ()

Return the number of triangles in the (di)graph.

Linear algebra:

spectrum/()

Return a list of the eigenvalues of the adjacency matrix.

eigenvectors ()

Return the right eigenvectors of the adjacency matrix of the graph.

eigenspaces ()

Return the right eigenspaces of the adjacency matrix of the graph.

Some metrics:

cluster_triangles ()

Return the number of triangles for the set nbunch of vertices as a dictionary
keyed by vertex.

clustering_average ()

Return the average clustering coefficient.

clustering coeff ()

Return the clustering coefficient for each vertex in nbunch

cluster_transitivity/()

Return the transitivity (fraction of transitive triangles) of the graph.

szeged_index ()

Return the Szeged index of the graph.

Automorphism group:

1.1. Generic graphs (common to directed/undirected) 3
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coarsest_equitable_ref | Retwnthe)coarsest partition which is finer than the input partition, and equitable
with respect to self.

automorphism_group () Return the largest subgroup of the automorphism group of the (di)graph whose
orbit partition is finer than the partition given.

is vertex_transitive ()| Return whether the automorphism group of self is transitive within the partition

provided

is_isomorphic () Test for isomorphism between self and other.
canonical label () Return the canonical graph.
is_cayley () Check whether the graph is a Cayley graph.

Graph properties:
is_eulerian() Return True if the graph has a (closed) tour that visits each edge exactly once.
is_planar () Check whether the graph is planar.
is circular_planar() Check whether the graph is circular planar (outerplanar)
is_regular() Return True if this graph is (k-)regular.
is chordal () Check whether the given graph is chordal.
is_bipartite() Test whether the given graph is bipartite.
is_circulant () Check whether the graph is a circulant graph.
is_interval () Check whether the graph is an interval graph.
is_gallai_tree() Return whether the current graph is a Gallai tree.
is_clique /() Check whether a set of vertices is a clique
is_cycle() Check whether self is a (directed) cycle graph.
is_independent_set () Check whether vertices is an independent set of self
is_transitively reduced Test whether the digraph is transitively reduced.
is_equitable () Check whether the given partition is equitable with respect to self.
is_self _complementary () Check whether the graph is self-complementary.

Traversals:
breadth_first_search ()| Return an iterator over the vertices in a breadth-first ordering.
depth_first_search() Return an iterator over the vertices in a depth-first ordering.
lex _BFS () Perform a Lex BFS on the graph.

Distances:

4 Chapter 1. Graph objects and methods
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centrality betweenness

( Return the betweenness centrality

centrality closeness ()

Returns the closeness centrality (1/average distance to all vertices)

distance ()

Return the (directed) distance from u to v in the (di)graph

distance_all_pairs/()

Return the distances between all pairs of vertices.

distances _distribution

( Return the distances distribution of the (di)graph in a dictionary.

eccentricity()

Return the eccentricity of vertex (or vertices) v.

radius ()

Return the radius of the (di)graph.

center ()

Return the set of vertices in the center of the graph

diameter ()

Return the largest distance between any two vertices.

distance_graph ()

Return the graph on the same vertex set as the original graph but vertices are
adjacent in the returned graph if and only if they are at specified distances in the
original graph.

girth ()

Compute the girth of the graph.

periphery ()

Return the set of vertices in the periphery

shortest_path ()

Return a list of vertices representing some shortest path from u to v

shortest_path _length()

Return the minimal length of paths from u to v

shortest_paths ()

Return a dictionary associating to each vertex v a shortest path from u to v, if it
exists.

shortest_path_lengths(

Return a dictionary of shortest path lengths keyed by targets that are connected
by a path from u.

shortest_path_all pair

Qompute a shortest path between each pair of vertices.

wiener_index ()

Return the Wiener index of the graph.

average_distance ()

Return the average distance between vertices of the graph.

Flows, connectivity, trees:

1s _connected()

Test whether the (di)graph is connected.

connected_components ()

Return the list of connected components

connected_components_n

Return the number of connected components.

connected_components_s

1Returnladigp of connected components as graph objects.

connected_component_ col

n Refurnadistefithe vartices connected to vertex.

connected_components_s|

i Return the sizes of the connected components as a list.

blocks_and _cut_verticej

5 Oompute the blocks and cut vertices of the graph.

blocks_and cuts_tree()

Compute the blocks-and-cuts tree of the graph.

is_cut_edge ()

Return True if the input edge is a cut-edge or a bridge.

is cut_vertex()

Return True if the input vertex is a cut-vertex.

edge_cut () Return a minimum edge cut between vertices s and ¢
vertex_cut () Return a minimum vertex cut between non-adjacent vertices s and ¢
flow() Return a maximum flow in the graph from x to y

nowhere zero flow/()

Return a k-nowhere zero flow of the (di)graph.

edge_disjoint_paths ()

Return a list of edge-disjoint paths between two vertices

vertex_disjoint_paths (

Return a list of vertex-disjoint paths between two vertices

edge_connectivity ()

Return the edge connectivity of the graph.

vertex_connectivity()

Return the vertex connectivity of the graph.

transitive closure()

Compute the transitive closure of a graph and returns it.

transitive reduction|()

Return a transitive reduction of a graph.

min_spanning tree ()

Return the edges of a minimum spanning tree.

spanning_trees_count ()

Return the number of spanning trees in a graph.

dominator_tree()

Returns a dominator tree of the graph.

connected_subgraph_ite]

rdteratar) over the induced connected subgraphs of order at most k

1.1. Generic graphs (common to directed/undirected)
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Plot/embedding-related methods:

set_embedding ()

Set a combinatorial embedding dictionary to _embedding attribute.

get_embedding ()

Return the attribute _embedding if it exists.

faces () Return the faces of an embedded graph.

genus () Return the number of faces of an embedded graph.
planar_dual () Return the planar dual of an embedded graph.
get_pos () Return the position dictionary

set_pos () Set the position dictionary.

set_planar_positions ()

Compute a planar layout for self using Schnyder’s algorithm

layout_planar()

Compute a planar layout of the graph using Schnyder’s algorithm.

is_drawn_free_of_edge_

- £check whethgr the position dictionary gives a planar embedding.

latex_options ()

Return an instance of GraphLatex for the graph.

set_latex_options ()

Set multiple options for rendering a graph with LaTeX.

layout ()

Return a layout for the vertices of this graph.

layout_spring()

Return a spring layout for this graph

layout_ranked()

Return a ranked layout for this graph

layout_extend _randomly

( Extend randomly a partial layout

layout_circular/()

Return a circular layout for this graph

layout_tree ()

Return an ordered tree layout for this graph

layout_graphviz ()

Call graphviz to compute a layout of the vertices of this graph.

_circle_embedding()

Set some vertices on a circle in the embedding of this graph.

_line_embedding ()

Set some vertices on a line in the embedding of this graph.

graphplot ()

Return a GraphP 1ot object.

plot () Return a Graphics object representing the (di)graph.
show () Show the (di)graph.

plot3d() Plot the graph in three dimensions.

show3d () Plot the graph using Tachyon, and shows the resulting plot.

graphviz_string()

Return a representation in the dot language.

graphviz_to_file_ named

( Write a representation in the dot language in a file.

Algorithmically hard stuff:

steiner tree ()

Return a tree of minimum weight connecting the given set of vertices.

edge_disjoint_spanning]

| Return the desired number of edge-disjoint spanning trees/arborescences.

feedback_vertex_ set ()

Compute the minimum feedback vertex set of a (di)graph.

multiway_cut ()

Return a minimum edge multiway cut

max_cut ()

Return a maximum edge cut of the graph.

longest_path ()

Return a longest path of self.

traveling_salesman_pro

b Selve¢)the traveling salesman problem (TSP)

is_hamiltonian/()

Test whether the current graph is Hamiltonian.

hamiltonian_cycle()

Return a Hamiltonian cycle/circuit of the current graph/digraph

hamiltonian_path()

Return a Hamiltonian path of the current graph/digraph

multicommodity_flow()

Solve a multicommodity flow problem.

disjoint_routed _paths (

Return a set of disjoint routed paths.

dominating_set ()

Return a minimum dominating set of the graph

subgraph_search ()

Return a copy of Gin self.

subgraph_search_count (

Return the number of labelled occurrences of G in self.

subgraph_search_iterat

Return an iterator over the labelled copies of G in self.

characteristic_polynomj

i Return the characteristic polynomial of the adjacency matrix of the (di)graph.

genus ()

Return the minimal genus of the graph.

crossing_number ()

Return the crossing number of the graph.

Chapter 1. Graph objects and methods
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1.1.1 Methods

class sage.graphs.generic_graph.GenericGraph
Bases: sage.graphs.generic_graph_pyx.GenericGraph_pyx

Base class for graphs and digraphs.

__eq__ (other)
Compare self and other for equality.

Do not call this method directly. That is, for G.__eq__ (H) write G ==
Two graphs are considered equal if the following hold:
* they are either both directed, or both undirected;
* they have the same settings for loops, multiedges, and weightedness;
* they have the same set of vertices;

* they have the same (multi)set of arrows/edges, where labels of arrows/edges are taken into account
if and only if the graphs are considered weighted. See weighted ().

Note that this is not an isomorphism test.

EXAMPLES:

sage: G = graphs.EmptyGraph ()

sage: H = Graph()

sage: G == H

True

sage: G.to_directed() == H.to_directed()
True

sage: G = graphs.RandomGNP (8, .9999)

sage: H = graphs.CompleteGraph (8)

sage: G == H # most often true

True

sage: G = Graph({O: [1, 2, 3, 4, 5, 6, 71} )

sage: H = Graph({1: (0], 2: [O], 3: [O], 4: [0, 5: [0], 6: [O], 7: [O]} )

sage: G == H

True

sage: G.allow_loops (True)

sage: G == H

False

sage: G = graphs.RandomGNP (9, .3).to_directed()
sage: H = graphs.RandomGNP (9, .3).to_directed()
sage: G == H # most often false

False

sage: G = Graph(multiedges=True, sparse=True)
sage: G.add_edge (0, 1)

sage: H = copy(G)

sage: H.add_edge (0, 1)

sage: G ==

False

Note that graphs must be considered weighted, or Sage will not pay attention to edge label data in equality
testing:

sage: foo = Graph (sparse=True)
sage: foo.add_edges([(0, 1, 1), (0, 2, 2)1)
sage: bar = Graph (sparse=True)

(continues on next page)
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(continued from previous page)

sage: bar.add_edges ([ (0, 1, 2), (0, 2, 1)1)
sage: foo == bar

True

sage: foo.weighted(True)

sage: foo == bar

False

sage: bar.weighted(True)

sage: foo == bar

False

add_clique (vertices, loops=False)
Add a clique to the graph with the given vertices.

If the vertices are already present, only the edges are added.
INPUT:
e vertices — an iterable with vertices for the clique to be added, e.g. a list, set, graph, etc.

* loops — (boolean, default: False) whether to add edges from every given vertex to itself. This is
allowed only if the (di)graph allows loops.

EXAMPLES:

sage: G = Graph()

sage: G.add_clique (range (4))

sage: G.is_isomorphic (graphs.CompleteGraph (4))
True

sage: D = DiGraph()

sage: D.add_clique (range (4))

sage: D.is_isomorphic (digraphs.Complete (4))

True

sage: D = DiGraph (loops=True)

sage: D.add_clique (range (4), loops=True)

sage: D.is_isomorphic(digraphs.Complete (4, loops=True))
True

sage: D = DiGraph (loops=False)

sage: D.add_clique (range (4), loops=True)

Traceback (most recent call last):

ValueError: cannot add edge from 0 to 0 in graph without loops

If the list of vertices contains repeated elements, a loop will be added at that vertex, even if
loops=False:

sage: G = Graph(loops=True)
sage: G.add_clique([1,1])
sage: G.edges|()

[(1, 1, None)]

This is equivalent to:

sage: G = Graph(loops=True)

sage: G.add_clique([1], loops=True)
sage: G.edges|()

[(1, 1, None)]

add_cycle (vertices)
Add a cycle to the graph with the given vertices.

8 Chapter 1. Graph objects and methods
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If the vertices are already present, only the edges are added.

For digraphs, adds the directed cycle, whose orientation is determined by the list. Adds edges (vertices[u],

vertices[u+1]) and (vertices[-1], vertices[0]).

INPUT:

* vertices - a list of indices for the vertices of the cycle to be added.

EXAMPLES:

sage: G = Graph()

sage: G.add_vertices(range(10)); G
Graph on 10 vertices

sage: show (G)

sage: G.add_cycle(list (range(10,20)))
sage: show (G)

sage: G.add_cycle(list (range(10)))
sage: show (G)

sage: D = DiGraph()
sage: D.add_cycle(list (range(4)))
sage: D.edges ()

[(O, 1, None), (1, 2, None), (2, 3, None),

(3, 0, None)]

add_edge (u, v=None, label=None)
Add an edge from u to v.

INPUT: The following forms are all accepted:
e G.add_edge( 1,2)
e G.add_edge( (1,2))
e G.add_edges( [ (1,2)])
e G.add_edge( 1, 2, ‘label’ )
e G.add_edge( (1, 2, ‘label’) )
e G.add_edges( [ (1, 2, ‘label’) ])

WARNING: The following intuitive input results in nonintuitive output:

sage: G = Graph()

sage: G.add_edge( (1, 2), 'label")
sage: G.edges (sort=False)
[('"label', (1, 2), None)]

You must either use the 1abel keyword:

sage: G = Graph()

sage: G.add_edge((1l, 2), label="label")
sage: G.edges (sort=False)

[(1, 2, 'label')]

Or use one of these:

sage: G = Graph()
sage: G.add_edge(l, 2, 'label')
sage: G.edges (sort=False)

[(1, 2, 'label'")]

(continues on next page)
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(continued from previous page)

sage:
sage:
sage:
[ (1,

G
G.
G.

2,

= Graph ()

add_edge ((1, 2, '"label'))
edges (sort=False)
'label') ]

Vertex name cannot be None, so:

sage:
sage:
sage:
[0, 4

G

G.

G.
]

= Graph ()
add_edge (None, 4)
vertices ()

add_edges (edges, loops=True)
Add edges from an iterable container.

INPUT:

* edges — an iterable of edges, given either as (u, v) or (u, v, label).

* loops — boolen (default: True); if False, remove all loops (v, v) from the input iterator. If
None, remove loops unless the graph allows loops.

EXAMPLES:

sage: G = graphs.DodecahedralGraph ()

sage: H = Graph()

sage: H.add_edges(G.edge_iterator()); H
Graph on 20 vertices

sage: G = graphs.DodecahedralGraph () .to_directed()
sage: H = DiGraph()

sage: H.add_edges (G.edge_iterator()); H
Digraph on 20 vertices

sage: H.add_edges(iter([]))

sage: H = Graph()

sage: H.add_edges ([ (0, 1), (0, 2, "label")])
sage: H.edges|()

[(O, 1, None), (0, 2, '"label')]

We demonstrate the 1oops argument:

sage:
sage:
[]
sage:
[]

sage:

sage:
sage:
[]
sage:
[ (0,
sage:
[ (0,

H
H.

H.

H.

H

H.

H.

0,

H.

0,

= Graph ()
add_edges ([ (0, 0)], loops=False); H.edges ()

add_edges ([ (0, 0)], loops=None); H.edges|()

add_edges ([ (0, 0)]); H.edges|()

Traceback (most recent call last):

ValueError: cannot add edge from 0 to 0 in graph without loops

= Graph (loops=True)
add_edges ([ (0, 0)], loops=False); H.edges /()

add_edges ([ (0, 0)], loops=None); H.edges|()
None) ]

add_edges ([ (0, 0)]); H.edges|()

None) ]

10
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add_path (vertices)
Add a path to the graph with the given vertices.

If the vertices are already present, only the edges are added.
For digraphs, adds the directed path vertices[0], ..., vertices[-1].
INPUT:
* vertices - alist of indices for the vertices of the path to be added.

EXAMPLES:

sage: G = Graph()

sage: G.add_vertices(range(10)); G
Graph on 10 vertices

sage: show (G)

sage: G.add_path(list (range(10,20)))
sage: show (G)

sage: G.add_path(list (range(10)))
sage: show (G)

sage: D = DiGraph()

sage: D.add_path(list (range(4)))

sage: D.edges|()

[(O, 1, None), (1, 2, None), (2, 3, None)]

add_vertex (name=None)
Create an isolated vertex.

If the vertex already exists, then nothing is done.
INPUT:

* name — an immutable object (default: None); when no name is specified (default), then the new
vertex will be represented by the least integer not already representing a vertex. name must be an
immutable object (e.g., an integer, a tuple, etc.).

As it is implemented now, if a graph G has a large number of vertices with numeric labels, then G.
add_vertex () could potentially be slow, if name=None.

OUTPUT:
If name=None, the new vertex name is returned. None otherwise.

EXAMPLES:

sage: G = Graph(); G.add_vertex(); G
0
Graph on 1 vertex

sage: D = DiGraph(); D.add_vertex(); D
0
Digraph on 1 vertex

add_vertices (vertices)
Add vertices to the (di)graph from an iterable container of vertices.

Vertices that already exist in the graph will not be added again.
INPUT:

. Generic graphs (common to directed/undirected) 11
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e vertices — iterator container of vertex labels. A new label is created, used and returned in the
output list for all None values in vertices.

OUTPUT:

Generated names of new vertices if there is at least one None value present in vertices. None other-
wise.

EXAMPLES:

sage: d = {0: [1,4,5], 1: [2,6], 2: [3,7], 3: [4,8], 4: [9], 5: [7,8], 6: [8,
=91, 7: [91}

sage: G = Graph(d)

sage: G.add_vertices([10,11,127)

sage: G.vertices|()

(o, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]

sage: G.add_vertices (graphs.CycleGraph (25) .vertex_iterator())

sage: G.vertices()

(o, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
- 22, 23, 24]

sage: G = Graph()

sage: G.add_vertices([1, 2, 3])

sage: G.add_vertices([4, None, None, 5])
[0, 6]

adjacency_matrix (sparse=None, vertices=None)

Return the adjacency matrix of the (di)graph.

The matrix returned is over the integers. If a different ring is desired, use either the sage .matrix.
matrix0.Matrix.change_ring () method or the matrix () function.

INPUT:
* sparse — boolean (default: None); whether to represent with a sparse matrix

* vertices - list (default: None); the ordering of the vertices defining how they should appear in the
matrix. By default, the ordering given by GenericGraph.vertices () is used.

EXAMPLES:

sage: G = graphs.CubeGraph (4)
sage: G.adjacency_matrix(

)
(01 101000100O0O00O0O0O0]
(1001010001 0O0O0O0CO0DO0]
[1001001000100O00°O0 0]
(01 1000010001000 0]
[L0OO0OOO11O0000O01O0O0 0]
[01 00100100O00O0C1O0 0]
(001 01001000O0O00O0T1O0]
(0001 0110000O0O0O0O0T1]
[L0OO0OCOOO0CO0OO0OO0O1T1O0100 0]
(01 0000001001010 0]
(001 000001001001 0]
[0 0OO0O1 00000110000 T1]
(00001 0001000011 0]
(0 0O0O0O0O10001T0O01001]
[0 0OO0O0OO0OO01O0001O01001]
[0O0OO0O0OO0OO0DO0O100010110]
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sage: matrix (GF (2),G) # matrix over GF (2)
[01 1 01000100000O0DO0]
(L1001 01000110O0O0O0CO0DQO0]
[1001 00100010000 0]
[01 1000010001000 0]
[L0OO0OO0OO0O110000O01T0O0D0]
(01 001 00100000O0O1IO0 0]
[001 0100100000O0O0OT1DO0]
(0001 01100000O0O0O0T1]
[L0OO0OO0OODO0ODO0OO0OO1LT1O01O00 0]
[01 0000001001010 0]
(001 000001001001 0]
[0 001 000001110000 T1]
[0 0001 0001000011 0]
(0000010001 0O0100H1]
[0 0000010001010 01]
[0 0000001000101 10]

sage: D = DiGraph({O: [1, 2, 31, 1: [0, 2], 2: [31, 3: [4], 4: [0, 5], 5: [1]}

sage: D.adjacency_matrix()

(01 110 0]
[1 010 0 0]
(0001 0 0]
(00001 0]
[1 0000 1]
(01 00 0 0]

A different ordering of the vertices:

sage: graphs.PathGraph(5) .adjacency_matrix(vertices=[2, 4, 1, 3, 01])
(001 1 0]
[0 0 01 0]
[1 000 1]
[1 1 0 0 0]
[001 0 0]

all_paths (start, end)
Return the list of all paths between a pair of vertices.

If start is the same vertex as end, then [ [start] ] isreturned — a list containing the 1-vertex, 0-edge
path “start”.

INPUT:
e start —avertex of a graph, where to start
* end —a vertex of a graph, where to end

EXAMPLES:

sage: egl = Graph({0:[1,2]1, 1:[41, 2:[3,41, 4:[5], 5:[61})
sage: egl.all_paths (0, 6)
[ro, 1, 4, 5, 61, [0, 2, 4, 5, 6]]
sage: eg2 = graphs.PetersenGraph ()
sage: sorted(eg2.all_paths(1,4))
(ri, o, 41,
(1, o, 5, 7, 2, 3, 41,

(continues on next page)
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[0, 311

allow_loops (new, check=True)
Change whether loops are permitted in the (di)graph

INPUT:

¢ new — boolean

e check — boolean (default: True); whether to remove existing loops from the (di)graph when the

new status is False

EXAMPLES:

sage: G = Graph(loops=True); G
Looped graph on 0 vertices
sage: G.has_loops|()

False

sage: G.allows_loops ()
True

sage: G.add_edge((0, 0))
sage: G.has_loops()

True

sage: G.loops|()

(continues on next page)
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[(0, 0, None)]

sage: G.allow_loops (False); G
Graph on 1 vertex

sage: G.has_loops()

False

sage: G.edges|()

[]

sage: D = DiGraph(loops=True); D
Looped digraph on 0 vertices
sage: D.has_loops()

False

sage: D.allows_loops ()

True

sage: D.add_edge((0, 0))
sage: D.has_loops ()

True

sage: D.loops()

[(0, 0, None)]

sage: D.allow_loops(False); D
Digraph on 1 vertex

sage: D.has_loops()

False

sage: D.edges ()

[]

allow_multiple_edges (new, check=True, keep_label="any’)

Change whether multiple edges are permitted in the (di)graph.
INPUT:
* new — boolean; if True, the new graph will allow multiple edges

* check — boolean (default: True); if True and new is False, we remove all multiple edges from
the graph

e keep_label —string (default: 'any'); used only if new is False and check is True. If there
are multiple edges with different labels, this variable defines which label should be kept:

— 'any' —any label
— 'min' — the smallest label

— 'max' —the largest label

Warning: 'min' and 'max' only works if the labels can be compared. A TypeError might be
raised when working with non-comparable objects in Python 3.

EXAMPLES:

The standard behavior with undirected graphs:

sage: G = Graph(multiedges=True, sparse=True); G
Multi-graph on 0 vertices

sage: G.has_multiple_edges()

False

sage: G.allows_multiple_edges|()

(continues on next page)

1.1.

Generic graphs (common to directed/undirected) 15




Sage Reference Manual: Graph Theory, Release 8.6

(continued from previous page)

True

sage: G.add_edges([(O, 1, 1), (O, 1, 2), (0, 1, 3)1)
sage: G.has_multiple_edges|()

True

sage: G.multiple_edges (sort=True)

(o, 1, 1y, (o, 1, 2y, (0, 1, 3)]

sage: G.allow_multiple_edges (False); G

Graph on 2 vertices

sage: G.has_multiple_edges|()

False
sage: G.edges|()
[(0, 1, 3)]

If we ask for the minimum label:

—sparse=True)

sage: G.allow_multiple_edges (False, keep_label='min')
sage: G.edges|()

[0, 1, 1)]

sage: G = Graph([(0O, 1, 1), (O, 1, 2), (0, 1, 3)], multiedges=True,

If we ask for the maximum label:

—sparse=True)

sage: G.allow_multiple_edges (False, keep_label='max')
sage: G.edges|()

[(0, 1, 3)1

sage: G = Graph([(O, 1, 1), (O, 1, 2), (0, 1, 3)], multiedges=True,

The standard behavior with digraphs:

sage: D = DiGraph(multiedges=True, sparse=True); D
Multi-digraph on 0 vertices

sage: D.has_multiple_edges|()

False

sage: D.allows_multiple_edges|()

True

sage: D.add_edges ([ (0, 1)] = 3)

sage: D.has_multiple_edges()

True

sage: D.multiple_edges ()

[(O, 1, None), (0, 1, None), (0, 1, None)]
sage: D.allow_multiple_edges(False); D
Digraph on 2 vertices

sage: D.has_multiple_edges|()

False

sage: D.edges ()

[(0, 1, None)]

allows_loops ()
Return whether loops are permitted in the (di)graph

EXAMPLES:

sage: G = Graph(loops=True); G
Looped graph on 0 vertices
sage: G.has_loops()

(continues on next page)
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False

sage: G.allows_loops ()
True

sage: G.add_edge ((0, 0))
sage: G.has_loops|()

True
sage: G.loops()
[(0, 0, None)]

sage: G.allow_loops (False); G
Graph on 1 vertex

sage: G.has_loops()

False

sage: G.edges|()

[]

sage: D = DiGraph(loops=True); D
Looped digraph on 0 vertices
sage: D.has_loops()

False

sage: D.allows_loops ()

True

sage: D.add_edge((0, 0))

sage: D.has_loops ()

True
sage: D.loops|()
[(0, 0, None)]

sage: D.allow_loops (False); D
Digraph on 1 vertex

sage: D.has_loops()

False

sage: D.edges|()

[]

allows_multiple_edges ()
Return whether multiple edges are permitted in the (di)graph.

EXAMPLES:

sage: G = Graph(multiedges=True, sparse=True); G
Multi-graph on 0 vertices

sage: G.has_multiple_edges()

False

sage: G.allows_multiple_edges()

True

sage: G.add_edges([(0, 1)1 = 3)

sage: G.has_multiple_edges|()

True

sage: G.multiple_edges()

[(O, 1, None), (0, 1, None), (0, 1, None)]
sage: G.allow_multiple_edges (False); G
Graph on 2 vertices

sage: G.has_multiple_edges|()

False
sage: G.edges ()
[(0, 1, None)]

sage: D = DiGraph(multiedges=True, sparse=True);

D

(continues on next page)
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Multi-digraph on 0 vertices

sage: D.has_multiple_edges|()

False

sage: D.allows_multiple_edges|()

True

sage: D.add_edges ([ (0, 1)] = 3)

sage: D.has_multiple_edges|()

True

sage: D.multiple_edges()

[(0, 1, None), (0, 1, None), (0, 1, None)]
sage: D.allow_multiple_edges (False); D
Digraph on 2 vertices

sage: D.has_multiple_edges()

False

sage: D.edges|()

[(0, 1, None)]

am (sparse=None, vertices=None)
Return the adjacency matrix of the (di)graph.

The matrix returned is over the integers. If a different ring is desired, use either the sage .matrix.
matrix0.Matrix.change_ring () method or the matrix () function.

INPUT:

* sparse — boolean (default: None); whether to represent with a sparse matrix

e vertices - list (default: None); the ordering of the vertices defining how they should appear in the
matrix. By default, the ordering given by GenericGraph.vertices () is used.

EXAMPLES:

sage: G = graphs.CubeGraph (4)
sage: G.adjacency_matrix/()

(01 101000100000 O0O0]
[100101000100000O0O0]
(100100100011TO000O0O0DO0]
(01 1000010001000 0]
[10000110000O01O0O0O0]
(01 0010010000010 0]
(001 01001000O0O0O0T1O0]
(0001 0110000O0O00O0O0 1]
(1000000001 1TO01O0O0 0]
(01 0000001001010 0]
(001 000001001001 0]
(0001000001 1TO0O00O0O01]
(00001 0001000011 0]
[00OO0O0OO0100010O01O0O01]
(0000001 0001TO01O0O01]
(000000010001 0110]
sage: matrix (GF (2),G) # matrix over GF (2)
(01 101000100000 O0O0]
(100101000100000O0O0]
[100100100011O000O0O0O0]
(01 1000010001000 0]
(10000110000O01O0O0O0]
(01 001 001000O0O01O0 0]

(continues on next page)
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(001 01 00100O0O0O0O0CT1DO0]
(0001 0110000O0O00O0O0 1]
[LOOOOOOOOLT1O0100 0]
[01 0000001001010 0]
(001 000001001001 0]
(0001 00000110000 1]
[0 0001 00010O0O0O01T10]
(0000010001 0O01O0O0 1]
[0 0O0O0O0O0OO01O0001O01001]
(000000010001 O0110]

sage: D = DiGraph({O: [1, 2, 3], 1: [0, 2], 2: [3]1, 3: [4]1, 4: [0, 5], 5: [1]}

sage: D.adjacency_matrix/()

(01 110 0]
(10100 0]
(0001 0 0]
[0O0 001 0]
[1 0000 1]
[01 00 0 0]

(001 1 0]
[0 0 O 1 0]
[1 000 1]
(1100 0]
[00O1 0 0]

antisymmetric ()
Check whether the graph is antisymmetric.

A graph represents an antisymmetric relation if the existence of a path from a vertex z to a vertex y implies
that there is not a path from y to = unless x = y.

EXAMPLES:

A directed acyclic graph is antisymmetric:

sage: G = digraphs.RandomDirectedGNR (20, 0.5)
sage: G.antisymmetric()
True

Loops are allowed:

sage: G.allow_loops (True)
sage: G.add_edge (0, 0)
sage: G.antisymmetric()
True

An undirected graph is never antisymmetric unless it is just a union of isolated vertices (with possible
loops):

sage: graphs.RandomGNP (20, 0.5).antisymmetric()
False
sage: Graph(3) .antisymmetric()

(continues on next page)
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True

sage: Graph([(i, i) for i in range(3)], loops=True).antisymmetric()
True

sage: DiGraph([ (i, 1) for i in range(3)], loops=True).antisymmetric/()
True

automorphism_group (partition=None, verbosity=0, edge_labels=False, order=False, re-

turn_group=True, orbits=False, algorithm=None)
Return the automorphism group of the graph.

With partition this can also return the largest subgroup of the automorphism group of the (di)graph
whose orbit partition is finer than the partition given.

INPUT:

* partition - defaultis the unit partition, otherwise computes the subgroup of the full automorphism
group respecting the partition.

* edge_labels - default False, otherwise allows only permutations respecting edge labels.
* order - (default False) if True, compute the order of the automorphism group

e return_group - default True

* orbits - returns the orbits of the group acting on the vertices of the graph

e algorithm - If algorithm = "bliss" the automorphism group is computed using the op-
tional package bliss (http://www.tcs.tkk.fi/Software/bliss/index.html). Setting it to “sage” uses Sage’s
implementation. If set to None (default), bliss is used when available.

OUTPUT: The order of the output is group, order, orbits. However, there are options to turn each of these
on or off.

EXAMPLES:
Graphs:

sage: graphs_query = GraphQuery (display_cols=['graph6t'],num_vertices=4)
sage: L = graphs_qguery.get_graphs_list ()

sage: graphs_list.show_graphs (L)

sage: for g in L:

et G = g.automorphism_group ()

e G.order (), G.gens/()

(24, [(2,3), (1,2), (0,1)1])

(4, [(2,3), (0,1)])

(2, [(1,2)1)

(6, [(1,2), (0,1)1)

(6, [(2,3), (1,2)1)

(8, [(1,2), (0,1)(2,3)])

(2, [(0,1)(2,3)])

(2, [(1,2)1)

(8, [(2,3), (0,1), (0,2)(1,3)1])
(4, [(2,3), (0,1)1)

(24, [(2,3), (1,2), (0,1)])
sage: C = graphs.CubeGraph (4)
sage: G = C.automorphism_group ()
sage: M = G.character_table() # random order of rows, thus abs() below
sage: QQ(M.determinant ()) .abs ()
712483534798848

(continues on next page)
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sage: G.order ()
384

sage: D = graphs.DodecahedralGraph ()

sage: G = D.automorphism_group ()

sage: A5 = AlternatingGroup (5)

sage: Z2 = CyclicPermutationGroup (2)

sage: H = Ab5.direct_product (22) [0] #see documentation for direct_product to,
—explain the [0]

sage: G.is_isomorphic (H)

True

Multigraphs:

sage: G = Graph(multiedges=True, sparse=True)
sage: G.add_edge(('a', 'b"))

sage: G.add_edge(('a', 'b'))

sage: G.add_edge(('a', 'b'"))

sage: G.automorphism_group ()

Permutation Group with generators [('a','b')]
Digraphs:

sage: D = DiGraph( { 0:[1], 1:[2]1, 2:[31, 3:[41, 4:[0]1 } )
sage: D.automorphism_group ()

Permutation Group with generators [(0,1,2,3,4)]

Edge labeled graphs:

sage: G = Graph(sparse=True)

sage: G.add_edges( [(0,1,'a"), (1,2,'D"),(2,3,'c"),(3,4,'b"), (4,0,'a")] )
sage: G.automorphism_group (edge_labels=True)

Permutation Group with generators [(1,4) (2,3)]

sage: G.automorphism_group (edge_labels=True, algorithm="bliss") # optional -
—bliss

Permutation Group with generators [(1,4) (2,3)]

sage: G.automorphism_group (edge_labels=True, algorithm="sage")
Permutation Group with generators [(1,4) (2,3)]

sage: G = Graph ({0 : {1 : 7}1})
sage: G.automorphism_group (edge_labels=True)
Permutation Group with generators [(0,1)]

sage: foo = Graph (sparse=True)

sage: bar Graph (implementation="'c_graph', sparse=True)
sage: foo.add_edges([(0,1,1),(1,2,2), (2,3,3)])

sage: bar.add_edges([(0,1,1),(1,2,2), (2,3,3)1)

sage: foo.automorphism_group (edge_labels=True)
Permutation Group with generators [ ()]

sage: foo.automorphism_group ()

Permutation Group with generators [(0,3) (1,2)]

sage: bar.automorphism_group (edge_labels=True)
Permutation Group with generators [ ()]

You can also ask for just the order of the group:
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sage: G = graphs.PetersenGraph ()
sage: G.automorphism_group (return_group=False, order=True)
120

Or, just the orbits (note that each graph here is vertex transitive)

sage: G = graphs.PetersenGraph ()

sage: G.automorphism_group (return_group=False, orbits=True,algorithm='sage')
(ro, 1, 2, 3, 4, 5, 6, 7, 8, 911

sage: G.automorphism_group (partition=[[0],1list (range(1,10))], return_
—group=False, orbits=True,algorithm="'sage')

(o1, 12, 3, 6, 7, 8, 91, [1, 4, 511

sage: C = graphs.CubeGraph (3)

sage: orb = C.automorphism_group (orbits=True, return_group=False,algorithm=
—'sage')

sage: [sorted(o) for o in orb]

(r-ooo'*, 'oo01€1', '010', 'owr', 'zoo', ‘'1io1r', r'110', '111']]

One can also use the faster algorithm for computing the automorphism group of the graph - bliss:

sage: G = graphs.HallJankoGraph () # optional - bliss
sage: Al = G.automorphism_group () # optional - bliss
sage: A2 = G.automorphism group (algorithm='bliss') # optional - bliss
sage: Al.is_isomorphic (A2) # optional - bliss
True

average_degree ()

Return the average degree of the graph.
The average degree of a graph G = (V, E) is equal to %
EXAMPLES:

The average degree of a regular graph is equal to the degree of any vertex:

sage: g = graphs.CompleteGraph (5)
sage: g.average_degree () ==
True

The average degree of a tree is always strictly less than 2:

sage: tree = graphs.RandomTree (20)

sage: tree.average_degree() < 2

True

F g 2|E|.

or any graph, it is equal to U

sage: g = graphs.RandomGNP (20, .4)

sage: g.average_degree() == 2 % g.size() / g.order()
True

average_distance (by_weight=False, algorithm=None, weight_function=None)

Return the average distance between vertices of the graph.

Formally, for a graph G this value is equal to ﬁ > uweq d(u, v) where d(u,v) denotes the distance
between vertices v and v and n is the number of vertices in G.

For more information on the input variables and more examples, we refer to wiener_ index () and
shortest_path_all_pairs (), which have very similar input variables.
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Chapter 1. Graph objects and methods




Sage Reference Manual: Graph Theory, Release 8.6

INPUT:

* by_weight — boolean (default: False); if True, the edges in the graph are weighted, otherwise
all edges have weight 1

* algorithm - string (default: None); one of the algorithms available for method
wiener index ()

* weight_function — function (default: None); a function that takes as input an edge (u, v,
1) and outputs its weight. If not None, by_weight is automatically set to True. If None and
by_weight is True, we use the edge label 1 as a weight.

e check_weight — boolean (default: True); if True, we check that the weight_function outputs a
number for each edge

EXAMPLES:
From [GYLL93]:

sage: g=graphs.PathGraph (10)
sage: w=lambda x: (x*(x*x —1)/6)/(x*(x-1)/2)

sage: g.average_distance ()==w(10)
True
REFERENCE:

blocks_and_cut_vertices (G, algorithm="Tarjan_Boost’, sort=False)
Return the blocks and cut vertices of the graph.

In the case of a digraph, this computation is done on the underlying graph.

A cut vertex is one whose deletion increases the number of connected components. A block is a maximal
induced subgraph which itself has no cut vertices. Two distinct blocks cannot overlap in more than a single
cut vertex.

INPUT:
* algorithm - string (default: "Tarjan_Boost™"); the algorithm to use among:
— "Tarjan_Boost" (default) — Tarjan’s algorithm (Boost implementation)
— "Tarjan_Sage" — Tarjan’s algorithm (Sage implementation)

* sort — boolean (default: False); whether to sort vertices inside the components and the list of cut
vertices currently only available for ‘“’Tarjan_Sage”*¢

OUTPUT: (B, C), where B is a list of blocks - each is a list of vertices and the blocks are the corre-
sponding induced subgraphs - and C is a list of cut vertices.

ALGORITHM:

We implement the algorithm proposed by Tarjan in [Tarjan72]. The original version is recursive.
We emulate the recursion using a stack.

See also:

e pblocks_and cuts_tree()
* sage.graphs.base.boost_graph.blocks_and cut_vertices ()
* is biconnected()

* bridges ()
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EXAMPLES:

We construct a trivial example of a graph with one cut vertex:

sage: from sage.graphs.connectivity import blocks_and_cut_vertices

sage: rings = graphs.CycleGraph (10)

sage: rings.merge_vertices ([0, 5])

sage: blocks_and_cut_vertices (rings)

(rro, 1, 4, 2, 31, [0, 6, 9, 7, 811, [0])

sage: rings.blocks_and_cut_vertices /()

(rro, 1, 4, 2, 31, [0, 6, 9, 7, 811, [01])

sage: blocks_and_cut_vertices(rings, algorithm="Tarjan_Sage", sort=True)
911, [0])

(
(rro, 1, 2, 3, 41, [0, 6, 7, 8,
sage: blocks_and_cut_vertices(rings, algorithm="Tarjan_Sage", sort=False)
(reo, 1, 2, 3, 41, (8, 9, 0, 6, 711, [01])

The Petersen graph is biconnected, hence has no cut vertices:

sage: blocks_and_cut_vertices (graphs.PetersenGraph())
([[O! 1/ 4/ 5! 2! 6/ 3/ 7! 8! 9]}! [J)

Decomposing paths to pairs:

sage: g = graphs.PathGraph(4) + graphs.PathGraph (5)
sage: blocks_and_cut_vertices (g)
(rez, 31, 1, 21, (o, 11, (7, 81, le6, 71, [5, 61, [4, 511, [1, 2, 5, 6, 7])

A disconnected graph:

sage: g = Graph({1: {2: 28, 3: 10}, 2: {1: 10, 3: 16}, 4: {}, 5: {6: 3, 7: 10,
— 8: 41}1})

sage: blocks_and_cut_vertices (g)

(rey, 2, 31, (5, el, (5 71, [5 81, [411, [51)

A directed graph with Boost’s algorithm (trac ticket #25994):

sage: rings = graphs.CycleGraph (10)

sage: rings.merge_vertices ([0, 5])

sage: rings = rings.to_directed()

sage: blocks_and_cut_vertices(rings, algorithm="Tarjan_ Boost")
(rrto, 1, 4, 2, 31, 1[0, 6, 9, 7, 811, 1[01)

blocks_and cuts_tree (G)

Return the blocks-and-cuts tree of self.

This new graph has two different kinds of vertices, some representing the blocks (type B) and some other
the cut vertices of the graph (type C).

There is an edge between a vertex u of type B and a vertex v of type C if the cut-vertex corresponding to
v is in the block corresponding to u.

The resulting graph is a tree, with the additional characteristic property that the distance between two
leaves is even. When self is not connected, the resulting graph is a forest.

When self is biconnected, the tree is reduced to a single node of type B.
We referred to [HarPri] and [Gallai] for blocks and cuts tree.

See also:

e blocks and cut_vertices ()
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* is biconnected()

EXAMPLES:

sage: from sage.graphs.connectivity import blocks_and_cuts_tree
sage: T = blocks_and_cuts_tree(graphs.KrackhardtKiteGraph()); T
Graph on 5 vertices

sage: T.is_isomorphic (graphs.PathGraph(5))

True
sage: from sage.graphs.connectivity import blocks_and_cuts_tree
sage: T = graphs.KrackhardtKiteGraph() .blocks_and_cuts_tree(); T

Graph on 5 vertices

The distance between two leaves is even:

sage: T = blocks_and_cuts_tree (graphs.RandomTree (40))
sage: T.is_tree()

True

sage: leaves = [v for v in T if T.degree(v) == 1]

sage: all(T.distance(u,v) % 2 == 0 for u in leaves for v in leaves)
True

The tree of a biconnected graph has a single vertex, of type B:

sage: T = blocks_and_cuts_tree (graphs.PetersenGraph())
sage: T.vertices()
(¢'s', (0, 1, 4, 5, 2, 6, 3, 7, 8, 9))1

breadth_first_search (start, ignore_direction=False, distance=None, neighbors=None, re-

port_distance=False)
Return an iterator over the vertices in a breadth-first ordering.

INPUT:
e start — vertex or list of vertices from which to start the traversal.

* ignore_direction — (default False) only applies to directed graphs. If True, searches across
edges in either direction.

e distance — the maximum distance from the start nodes to traverse. The start nodes are
distance zero from themselves.

* neighbors — a function giving the neighbors of a vertex. The function should take a vertex and
return a list of vertices. For a graph, neighbors is by default the neighbors () function of the
graph. For a digraph, the neighbors function defaults to the neighbor_out_iterator()
function of the graph.

e report_distance — (default False) If True, reports pairs (vertex, distance) where distance is
the distance from the start nodes. If False only the vertices are reported.

See also:

e breadth first_search - breadth-first search for fast compiled graphs.
* depth first_search - depth-first search for fast compiled graphs.

e depth_first_search () — depth-first search for generic graphs.

EXAMPLES:
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sage: G = Graph( { O: [1], 1: [2], 2: [31, 3: [4]1, 4: [0]1} )
sage: list (G.breadth_first_search(0))
[Ol 1/ 4’ 2’ 3]

By default, the edge direction of a digraph is respected, but this can be overridden by the
ignore_direction parameter:

sage: D = DiGraph( { O: [1,2,3], 1: [4,5]1, 2: [5], 3: [6], 5: [71, 6: [71, 7:
—[01})
sage: list(D.breadth_first_search(0))

(
[OI 1/ 2! 3’ 4/ 5/ 6! 7]
sage: list(D.breadth_first_search (0, ignore_direction=True))
(o, 1, 2, 3, 7, 4, 5, 6]

You can specify a maximum distance in which to search. A distance of zero returns the start vertices:

sage: D = DiGraph( { O: [1,2,3], 1: [4,5], 2: [5], 3: [6], 5: [7]1, 6: [7]1, 7:
—[01})
sage: list(D.breadth_first_search(0,distance=0))

[

[0]
sage: list(D.breadth_first_search(0,distance=1))
(o, 1, 2, 3]

Multiple starting vertices can be specified in a list:

sage: D = DiGraph( { O: [1,2,3], 1: [4,5], 2: [5], 3: [6], 5: [71, 6: [7]1, 7:
= [01})

sage: list (D.breadth_first_search([0]))

(
(o, 1, 2, 3, 4, 5, 6, 7]
sage: list(D.breadth_first_search([0,6]))
(0, 6, 1, 2, 3, 7, 4, 5]
sage: list(D.breadth_first_search([0,6],distance=0))
[0, 6]
sage: list(D.breadth_first_search([0,6],distance=1))
(o, 6, 1, 2, 3, 7]
sage: list (D.breadth_first_search(6,ignore_direction=True,distance=2))
(6, 3, 7, 0, 5]

More generally, you can specify a neighbors function. For example, you can traverse the graph back-
wards by setting neighbors to be the neighbors_in () function of the graph:

sage: D = DiGraph( { O: [1,2,3], 1: [4,5]1, 2: [5], 3: [6], 5: [71, 6: [71, 7:
<~ [01})

sage: list(D.breadth_first_search(5,neighbors=D.neighbors_in, distance=2))

[5, 1, 2, 0]

sage: list (D.breadth_first_search(5,neighbors=D.neighbors_out, distance=2))
[5, 7, 0]

sage: list(D.breadth_first_search (5,neighbors=D.neighbors, distance=2))

(5, 1, 2, 7, 0, 4, 6]

It is possible (trac ticket #16470) using the keyword report_distance to get pairs (vertex, distance)
encoding the distance to the starting vertices:

sage: G = graphs.PetersenGraph ()

sage: list (G.breadth_first_search (0, report_distance=True))

(¢, 0), (1, 1), (4, 1), (5, 1), (2, 2), (6, 2), (3, 2), (9, 2),
(7, 2), (8, 2)]

(continues on next page)
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sage: list (G.breadth_first_search (0, report_distance=False))
[OI 1/ 4! 5’ 2’ 6/ 3! 9’ 7’ 81

sage: D = DiGraph({0:[1, 3], 1:[0, 21, 2:[0, 31, 3:[41})

sage: D.show()

sage: list(D.breadth_first_search (4, neighbors=D.neighbor_in_iterator, report_
—distance=True))

(4, 0), (3, 1), (0, 2), (2, 2), (1, 3)]

sage: C = graphs.CycleGraph (4)
sage: list(C.breadth_first_search([0,1], report_distance=True))
[(0, 0), (1, 0), (3, 1), (2, 1)]

canonical_label (partition=None, certificate=False, verbosity=0, edge_labels=False, algo-

rithm=None, return_graph=True)
Return the canonical graph.

A canonical graph is the representative graph of an isomorphism class by some canonization function c. If
G and H are graphs, then G =2 ¢(G), and ¢(G) == ¢(H) if and only if G = H.

See the Wikipedia article Graph_canonization for more information.
INPUT:

e partition — if given, the canonical label with respect to this set partition will be computed. The
default is the unit set partition.

* certificate — boolean (default: False). When set to True, a dictionary mapping from the
vertices of the (di)graph to its canonical label will also be returned.

* edge_labels —boolean (default: False). When setto True, allows only permutations respecting
edge labels.

* algorithm - a string (default: None). The algorithm to use; currently available:
— 'bliss': use the optional package bliss (http://www.tcs.tkk.fi/Software/bliss/index.html);
— 'sage': always use Sage’s implementation.

— None (default): use bliss when available and possible

Note: Make sure you always compare canonical forms obtained by the same algorithm.

e return_graph — boolean (default: True). When set to False, returns the list of edges of the
canonical graph instead of the canonical graph; only available when 'bliss’' is explicitly set as
algorithm.

* verbosity — deprecated, does nothing
EXAMPLES:

Canonization changes isomorphism to equality:

sage: gl = graphs.GridGraph([2,3])
sage: g2 = Graph({1l: [2, 41, 3: [2, 61, 5: [4, 2, 61})

sage: gl == g2

False

sage: gl.is_isomorphic(g2)
True

(continues on next page)
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sage: gl.canonical_label () == g2.canonical_label()
True

We can get the relabeling used for canonization:

sage: g, ¢ = gl.canonical_label (algorithm='sage', certificate=True)

sage: g
Grid Graph for [2, 3]: Graph on 6 vertices
sage: c

{0, 0): 3, (0, 1): 4, (0, 2): 2, (1, 0): 0, (1, 1): 5, (1, 2): 1}

Multigraphs and directed graphs work too:

sage: G = Graph (multiedges=True, sparse=True)

sage: G.add_edge ((0,1))

sage: G.add_edge ((0,1))

sage: G.add_edge((0,1))

sage: G.canonical_label ()

Multi-graph on 2 vertices

sage: Graph('A?', implementation='c_graph') .canonical_label ()
Graph on 2 vertices

sage: P = graphs.PetersenGraph ()
sage: DP = P.to_directed()

0
o
Q
(]
=)}
as}

.canonical_label (algorithm="sage') .adjacency_matrix ()
0011 1]

=

P O OFr OFr OO OO
O OFr OO0OFr O o O
P O OOoORFr OO OO
O R OO0OFr OO OoORFr o
O O OO Pk OO
O O OO O oK
O O O K OOoOOoOOo
O O OO Ok O o
[eleolNeoloNeoNoN e

Edge labeled graphs:

sage: G = Graph(sparse=True)

sage: G.add_edges( [(0,1,'a"),(1,2,'D"),(2,3,'c"),(3,4,'D"), (4,0,'a")] )
sage: G.canonical_label (edge_labels=True)

Graph on 5 vertices

sage: G.canonical_label (edge_labels=True, algorithm="bliss", |
—certificate=True) # optional - bliss

(Graph on 5 vertices, {0: 4, 1: 3, 2: 1, 3: 0, 4: 2})

sage: G.canonical_label (edge_labels=True, algorithm="sage", certificate=True)
(Graph on 5 vertices, {0: 4, 1: 3, 2: 0, 3: 1, 4: 2})

Another example where different canonization algorithms give different graphs:

sage: g = Graph({'a': ['b'], 'c': ['d']l})
sage: g_sage = g.canonical_label (algorithm='sage')
sage: g_bliss = g.canonical_label (algorithm="'bliss') # optional - bliss

sage: g_sage.edges (labels=False)
(0, 3), (1, 2)]

(continues on next page)
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sage: g_bliss.edges (labels=False) # optional - bliss
[0, 1), (2, 3)]

cartesian_product (other)
Returns the Cartesian product of self and other.

The Cartesian product of G and H is the graph L with vertex set V(L) equal to the Cartesian product of
the vertices V(G) and V(H), and ((u,v), (w, x)) is an edge iff either - (u, w) is an edge of self and v = =,
or - (v, x) is an edge of other and u = w.

See also:

* is cartesian_product () — factorization of graphs according to the Cartesian product
* graph_products —amodule on graph products.
categorical_product (other)
Returns the tensor product of self and other.

The tensor product of G and H is the graph L with vertex set V(L) equal to the Cartesian product of the
vertices V/(G) and V(H), and ((u,v), (w, x)) is an edge iff - (u, w) is an edge of self, and - (v, x) is an
edge of other.

The tensor product is also known as the categorical product and the kronecker product (refering to the
kronecker matrix product). See the Wikipedia article Kronecker_product.

EXAMPLES:

sage: Z = graphs.CompleteGraph (2)

sage: C = graphs.CycleGraph(5)

sage: T = C.tensor_product(z); T

Graph on 10 vertices

sage: T.size()

10

sage: T.plot () # long time

Graphics object consisting of 21 graphics primitives

sage: D = graphs.DodecahedralGraph ()

sage: P = graphs.PetersenGraph ()

sage: T = D.tensor_product(P); T

Graph on 200 vertices

sage: T.size()

900

sage: T.plot () # long time

Graphics object consisting of 1101 graphics primitives

center (by_weight=False, algorithm=None, weight_function=None, check_weight=True)
Return the set of vertices in the center of the (di)graph.

The center is the set of vertices whose eccentricity is equal to the radius of the (di)graph, i.e., achieving
the minimum eccentricity.

For more information and examples on how to use input variables, see shortest_paths () and
eccentricity/()

INPUT:

* by_weight — boolean (default: False);if True, edge weights are taken into account; if False, all
edges have weight 1
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* algorithm - string (default: None); see method eccentricity () for the list of available algo-
rithms

* weight_function — function (default: None); a function that takes as input an edge (u, v,
1) and outputs its weight. If not None, by_weight is automatically set to True. If None and
by_weight is True, we use the edge label 1 as a weight.

¢ check_weight — boolean (default: True); if True, we check that the weight_function
outputs a number for each edge

EXAMPLES:

Is Central African Republic in the center of Africa in graph theoretic sense? Yes:

sage: A = graphs.AfricaMap (continental=True)
sage: sorted(A.center())
['Cameroon', 'Central Africa']

Some other graphs. Center can be the whole graph:

sage: G = graphs.DiamondGraph ()
sage: G.center()

(1, 2]

sage: P = graphs.PetersenGraph ()
sage: P.subgraph(P.center()) == P
True

sage: S = graphs.StarGraph(19)
sage: S.center ()
(0]

centrality_ betweenness (k=None, normalized=True, weight=None, endpoints=False,

seed=None, exact=False, algorithm=None)
Returns the betweenness centrality (fraction of number of shortest paths that go through each vertex) as a

dictionary keyed by vertices. The betweenness is normalized by default to be in range (0,1).

Measures of the centrality of a vertex within a graph determine the relative importance of that vertex to
its graph. Vertices that occur on more shortest paths between other vertices have higher betweenness than
vertices that occur on less.

INPUT:
e normalized - boolean (default True) - if set to False, result is not normalized.

* k - integer or None (default None) - if set to an integer, use k node samples to estimate betweenness.
Higher values give better approximations. Not available when algorithm="Sage".

* weight - None or string. If set to a string, use that attribute of the nodes as weight. weight =
True is equivalent to weight = "weight". Not available when algorithm="Sage".

* endpoints - Boolean. If set to True it includes the endpoints in the shortest paths count. Not
available when algorithm="Sage".

¢ exact (boolean, default: False) — whether to compute over rationals or on double C variables.
Not available when algorithm="NetworkX".

¢ algorithm (default: None) — can be either "Sage" (see centrality), "NetworkX" or
"None". In the latter case, Sage’s algorithm will be used whenever possible.

See also:

e centrality_degree ()
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* centrality closeness()

EXAMPLES:

sage: g = graphs.ChvatalGraph ()
sage: g.centrality_betweenness () # abs tol l1e-10

{0: 0.06969696969696969, 1: 0.06969696969696969,
2: 0.0606060606060606, 3: 0.0606060606060606,
4: 0.06969696969696969, 5: 0.06969696969696969,
6: 0.0606060606060606, 7: 0.0606060606060606,
8: 0.0606060606060606, 9: 0.0606060606060606,

10: 0.0606060606060606, 11: 0.0606060606060606}
sage: g.centrality_betweenness (normalized=False) # abs tol l1e-10

{0: 3.833333333333333, 1: 3.833333333333333, 2: 3.333333333333333,
3: 3.333333333333333, 4: 3.833333333333333, 5: 3.833333333333333,
6: 3.333333333333333, 7: 3.333333333333333, 8: 3.333333333333333,
9: 3.333333333333333, 10: 3.333333333333333,

11: 3.333333333333333}

sage: D = DiGraph({0:[1,2,3]1, 1:[2], 3:[0,11})

sage: D.show(figsize=[2,2])

sage: D = D.to_undirected()

sage: D.show(figsize=[2,2])

sage: D.centrality_betweenness () # abs tol abs le-10

{0: 0.16666666666666666, 1: 0.16666666666666666, 2: 0.0, 3: 0.0}

centrality_closeness (vert=None, by_weight=False, algorithm=None, weight_function=None,

check_weight=True)
Returns the closeness centrality of all vertices in variable vert.

In a (strongly) connected graph, the closeness centrality of a vertex v is equal to the inverse of the average
distance between v and other vertices. If the graph is disconnected, the closeness centrality of v is multi-
plied by the fraction of reachable vertices in the graph: this way, central vertices should also reach several
other vertices in the graph [OLJ14]. In formulas,

r(v) —1 r(v) —1
ZwER(v) d(’U, ’UJ) n—1

where R(v) is the set of vertices reachable from v, and r(v) is the cardinality of R(v).

c(v) =

‘Closeness centrality may be defined as the total graph-theoretic distance of a given vertex from all other
vertices. .. Closeness is an inverse measure of centrality in that a larger value indicates a less central actor
while a smaller value indicates a more central actor,” [Borgatti95].

For more information, see the Wikipedia article Centrality.
INPUT:

e vert - the vertex or the list of vertices we want to analyze. If None (default), all vertices are
considered.

* by_weight (boolean) - if True, the edges in the graph are weighted; if False, all edges have
weight 1.

* algorithm (string) - one of the following algorithms:

— 'BFS': performs a BFS from each vertex that has to be analyzed. Does not work with edge
weights.

— 'NetworkX': the NetworkX algorithm (works only with positive weights).

— 'Dijkstra_Boost': the Dijkstra algorithm, implemented in Boost (works only with positive
weights).
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— 'Floyd-Warshall-Cython' - the Cython implementation of the Floyd-Warshall algorithm.
Works only if by_weight==False and all centralities are needed.

— 'Floyd-Warshall-Python' - the Python implementation of the Floyd-Warshall algorithm.
Works only if all centralities are needed, but it can deal with weighted graphs, even with negative
weights (but no negative cycle is allowed).

— '"Johnson_Boost ': the Johnson algorithm, implemented in Boost (works also with negative
weights, if there is no negative cycle).

— None (default): Sage chooses the best algorithm: 'BFS' if by weight is False,
'Dijkstra_Boost"' if all weights are positive, ' Johnson_Boost ' otherwise.

e weight_function (function) - a function that takes as input an edge (u, v, 1) and outputs its
weight. If not None, by_weight is automatically setto True. If None and by_weight is True,
we use the edge label 1 as a weight.

e check_weight (boolean) - if True, we check that the weight_function outputs a number for each
edge.

OUTPUT:

If vert is a vertex, the closeness centrality of that vertex. Otherwise, a dictionary associating to each
vertex in vert its closeness centrality. If a vertex has (out)degree 0, its closeness centrality is not defined,
and the vertex is not included in the output.

See also:

* centrality closeness_top k()
e centrality_ degree ()

* centrality betweenness ()

REFERENCES:
EXAMPLES:

Standard examples:

sage: (graphs.ChvatalGraph()).centrality_closeness|()

{0: 0.6112122111221111..., 1: O0.611112222222121..., 2: O.611111121121211111..., 3: O.
-—61111111111111..., 4: O0.61111112121112111..., 5: O0.611111111112121..., 6: O.
-61111111111111..., 7: O.611211111111111..., 8: O.61111111111111..., 9: O.
-6l11111111212111..., 10: O0.611111111122121..., 11: O0.61111111111111...}
sage: D = DiGraph({0O:[1,2,31, 1:[2], 3:[0,11})

sage: D.show(figsize=[2,2])

sage: D.centrality_closeness (vert=[0,1])

{0: 1.0, 1: 0.3333333333333333}

sage: D = D.to_undirected()

sage: D.show(figsize=[2,2])

sage: D.centrality_closeness|()

{0: 1.0, 1: 1.0, 2: 0.75, 3: 0.75}

In a (strongly) connected (di)graph, the closeness centrality of v is inverse of the average distance between
v and all other vertices:

sage: g = graphs.PathGraph (5)

sage: g.centrality_closeness (0)

0.4

sage: dist = g.shortest_path_lengths (0).values ()

(continues on next page)
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sage: float (len(dist)-1) / sum(dist)

0.4

sage: d = g.to_directed()

sage: d.centrality_closeness (0)

0.4

sage: dist = d.shortest_path_lengths (0).values ()
sage: float (len(dist)-1) / sum(dist)

0.4

If a vertex has (out)degree 0, its closeness centrality is not defined:

sage: g = Graph(5)

sage: g.centrality_closeness|()

{}

sage: print(g.centrality_closeness (0))
None

Weighted graphs:

sage: D = graphs.GridGraph([2,2])

sage: weight_function = lambda e:10

sage: D.centrality_closeness([(0,0), (0,1)1) # tol,,
—abs le-12

{(0, 0): 0.75, (0, 1): 0.75}

sage: D.centrality_closeness((0,0), weight_function=weight_function) # tol_
—abs le-12

0.075

characteristic_polynomial (var="x’, laplacian=False)
Return the characteristic polynomial of the adjacency matrix of the (di)graph.

Let G be a (simple) graph with adjacency matrix A. Let I be the identity matrix of dimensions the same
as A. The characteristic polynomial of G is defined as the determinant det(z1 — A).

Note: characteristic_polynomial and charpoly are aliases and thus provide exactly the
same method.

INPUT:
e x — (default: 'x"); the variable of the characteristic polynomial
* laplacian —boolean (default: False);if True, use the Laplacian matrix

See also:

o kirchhoff matrix()

e laplacian_matrix()

EXAMPLES:

sage: P = graphs.PetersenGraph ()

sage: P.characteristic_polynomial ()

x"10 — 15%x"8 + 75%x76 — 24%x"5 — 165xx"4 + 120xx"3 + 120*x"2 - 160*x + 48
sage: P.charpoly ()

XM10 = 15%xx78 + 75%x76 — 24%x"5 — 165xx"4 + 120xx"3 + 120*x"2 — 160*x + 48

(continues on next page)
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sage: P.characteristic_polynomial (laplacian=True)
x"10 — 30*x"9 + 390%x"8 - 2880%x"7 + 13305%x"6 -
39882xx"5 + 77640xx"4 - 94800%x"3 + 66000%xx"2 — 20000*x

charpoly (var="x’, laplacian=False)

Return the characteristic polynomial of the adjacency matrix of the (di)graph.

Let G be a (simple) graph with adjacency matrix A. Let I be the identity matrix of dimensions the same
as A. The characteristic polynomial of G is defined as the determinant det(x1 — A).

Note: characteristic_polynomial and charpoly are aliases and thus provide exactly the
same method.

INPUT:
e x — (default: 'x"); the variable of the characteristic polynomial
* laplacian —boolean (default: False); if True, use the Laplacian matrix

See also:

e kirchhoff matrix/()

e Japlacian_matrix()

EXAMPLES:

sage: P = graphs.PetersenGraph ()

sage: P.characteristic_polynomial ()

XM10 = 15%xx78 + 75%x76 — 24%x"5 — 165%xx"4 + 120xx"3 + 120*x"2 — 160*x + 48
sage: P.charpoly ()

x"10 — 15%x"8 + 75%x76 — 24%x"5 — 165xx"4 + 120xx"3 + 120*x"2 — 160%x + 48
sage: P.characteristic_polynomial (laplacian=True)

x*10 - 30%*x"9 + 390xx"8 - 2880xx"7 + 13305+x"6 —

39882xx"5 + 77640xx"4 - 94800%x"3 + 66000%xx"2 — 20000xx

clear ()

Empties the graph of vertices and edges and removes name, associated objects, and position information.

EXAMPLES:

sage: G=graphs.CycleGraph(4); G.set_vertices ({0:'vertex0'})
sage: G.order(); G.size()

4

4

sage: len(G._pos)

4

sage: G.name ()

'Cycle graph'

sage: G.get_vertex(0)

'vertex0'

sage: H = G.copy (implementation='c_graph', sparse=True)
sage: H.clear ()

sage: H.order(); H.size()

0

0

(continues on next page)
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sage: len(H._pos)

sage: H.name ()
T

sage: H.get_vertex(0)

sage: H = G.copy (implementation='c_graph', sparse=False)
sage: H.clear()

sage: H.order(); H.size()

0

0

sage: len(H._pos)

0

sage: H.name ()

[}

sage: H.get_vertex(0)

cluster_transitivity ()
Return the transitivity (fraction of transitive triangles) of the graph.

triangles
triads *

Transitivity is the fraction of all existing triangles over all connected triples (triads), 7' = 3 X
See also section “Clustering” in chapter “Algorithms” of [HSSNX].
EXAMPLES:

sage: graphs.FruchtGraph () .cluster_transitivity()
0.25

cluster_triangles (nbunch=None, implementation=None)
Return the number of triangles for the set nbunch of vertices as a dictionary keyed by vertex.

See also section “Clustering” in chapter “Algorithms” of [HSSNX].
INPUT:

e nbunch - a list of vertices (default: None); the vertices to inspect. If
* “nbunch=None, returns data for all vertices in the graph.

e implementation — string (default: None); one of 'sparse_copy', 'dense_copy',
'networkx' or None (default). In the latter case, the best algorithm available is used. Note that
'networkx' does not support directed graphs.

REFERENCE:
EXAMPLES:

sage: F = graphs.FruchtGraph ()

sage: list(F.cluster_triangles () .values())

., 1, o, 1, 1, 1, 1, 1, 0, 1, 1, 0]

sage: F.cluster_triangles()

{¢. 1, 1: 1, 2: 0, 3: 1, 4: 1, 5: 1, 6: 1, 7: 1, 8: 0, 9: 1, 10: 1, 11: 0}
sage: F.cluster_triangles (nbunch=[0, 1, 2])

{0: 1, 1: 1, 2: 0}

sage: G = graphs.RandomGNP (20, .3)

sage: dl = G.cluster_triangles (implementation="networkx")
sage: d2 = G.cluster_triangles (implementation="dense_copy")
sage: d3 = G.cluster_triangles (implementation="sparse_copy")

(continues on next page)
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sage: dl == d2 and dl == d3
True

clustering_ average (implementation=None)

Return the average clustering coefficient.

The clustering coefficient of a node i is the fraction of existing triangles containing node ¢ over all possible
triangles containing i: ¢; = T'(i)/ (’“2) where T'(7) is the number of existing triangles through ¢, and k; is
the degree of vertex 4.

A coefficient for the whole graph is the average of the ¢;.
See also section “Clustering” in chapter “Algorithms” of [HSSNX].
INPUT:

e implementation - string (default: None); one of 'boost', 'sparse_copy',
'dense_copy', 'networkx' or None (default). In the latter case, the best algorithm available
is used. Note that only 'networkx' supports directed graphs.

EXAMPLES:

sage: (graphs.FruchtGraph()).clustering_average ()

1/4

sage: (graphs.FruchtGraph()).clustering_average (implementation="'networkx")
0.25

clustering_ coeff (nodes=None, weight=False, implementation=None)

Return the clustering coefficient for each vertex in nodes as a dictionary keyed by vertex.

For an unweighted graph, the clustering coefficient of a node ¢ is the fraction of existing triangles contain-

ing node i over all possible triangles containing i: ¢; = T'(i)/ (’“2) where T'(i) is the number of existing

triangles through 4, and k; is the degree of vertex i.

For weighted graphs the clustering is defined as the geometric average of the subgraph edge weights,
normalized by the maximum weight in the network.

The value of ¢; is assigned 0 if k; < 2.
See also section “Clustering” in chapter “Algorithms” of [HSSNX].
INPUT:

* nodes — an iterable container of vertices (default: None); the vertices to inspect. By default, returns
data on all vertices in graph

* weight — string or boolean (default: False); if it is a string it uses the indicated edge property as
weight. weight = True isequivalent to weight = 'weight'

e implementation - string (default: None); one of 'boost', 'sparse_copy',
'dense_copy', 'networkx' or None (default). In the latter case, the best algorithm avail-
able is used. Note that only 'networkx' supports directed or weighted graphs, and that
'sparse_copy' and 'dense_copy' do not support node different from None

EXAMPLES:

sage: graphs.FruchtGraph () .clustering_coeff ()
{0: 1/3, 1: 1/3, 2: 0, 3: 1/3, 4: 1/3, 5: 1/3,
6: 1/3, 7: 1/3, 8: 0, 9: 1/3, 10: 1/3, 11: 0}

sage: (graphs.FruchtGraph()) .clustering_coeff (weight=True)

(continues on next page)
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{0: 0.3333333333333333, 1: 0.3333333333333333, 2: 0,
3: 0.3333333333333333, 4: 0.3333333333333333,

5: 0.3333333333333333, 6: 0.3333333333333333,

7: 0.3333333333333333, 8: 0, 9: 0.3333333333333333,
10: 0.3333333333333333, 11: 0}

sage: (graphs.FruchtGraph()).clustering_coeff (nodes=[0,1,2])
{0: 0.3333333333333333, 1: 0.3333333333333333, 2: 0.0}

sage: (graphs.FruchtGraph()).clustering_coeff (nodes=[0,1,2],
e weight=True)
{0: 0.3333333333333333, 1: 0.3333333333333333, 2: 0}

sage: (graphs.GridGraph([5,5])) .clustering_coeff (nodes=[(0,0), (0,1), (2,2)])
{0, 0): 0.0, (0, 1): 0.0, (2, 2): 0.0}

coarsest_equitable_refinement (partition, sparse=True)
Returns the coarsest partition which is finer than the input partition, and equitable with respect to self.

A partition is equitable with respect to a graph if for every pair of cells C1, C2 of the partition, the number
of edges from a vertex of C1 to C2 is the same, over all vertices in C1.

A partition P1 is finer than P2 (P2 is coarser than P1) if every cell of P1 is a subset of a cell of P2.
INPUT:
e partition - alist of lists

* sparse - (default False) whether to use sparse or dense representation- for small graphs, use dense
for speed

EXAMPLES:

sage: G = graphs.PetersenGraph ()
sage: G.coarsest_equitable_refinement ([[0],list (range(1,10))])
(rol, ftz, 3, e, 7, 8, 91, I[1, 4, 5]]

sage: G graphs.CubeGraph (3)
sage: verts = G.vertices|()
sage: Pi = [verts[:1], verts[l:]]

sage: Pi

(rrooo', ('ooxv', o010, r'o1z1z', 'aoor', 'io1', r'1ior', "111'11
sage: G.coarsest_equitable_refinement (Pi)

(rrooo'j, ('or2, "101+, 110", ['12212'3, ['00O1"', 'O10', '100']1]

Note that given an equitable partition, this function returns that partition:

sage: P = graphs.PetersenGraph ()

sage: prt = [[0], [1, 4, 51, [2, 3, 6, 7, 8, 911
sage: P.coarsest_equitable_refinement (prt)

rrol, i, 4, 51, (2, 3, 6, 7, 8, 911

sage: ss = (graphs.WheelGraph(6)) .line_graph(labels=False)
sage: prt = [[(0, 1)1, [(O, 2), (O, 3), (O, 4), (1, 2), (1, 4)1, [(2, 3), (3,
—4) 1]

sage: ss.coarsest_equitable_refinement (prt)
Traceback (most recent call last):

TypeError: Partition ([[(0, 1)], [(O, 2), (O, 3), (0, 4), (1, 2), (1, 4)],.,

[(2 3) (3 4)11) 1 not wvalid for this gravh: vertice are incorrect
& =7 17 =) e

C
(continues on next page)
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sage: ss = (graphs.WheelGraph(5)) .line_graph(labels=False)
sage: ss.coarsest_equitable_refinement (prt)
(re, i1, a, 2, 1, 491, [, 3)1, [0, 2), (0, 4)], [(2, 3), (3, 4)]1]

ALGORITHM: Brendan D. McKay’s Master’s Thesis, University of Melbourne, 1976.

complement ()
Returns the complement of the (di)graph.

The complement of a graph has the same vertices, but exactly those edges that are not in the original graph.
This is not well defined for graphs with multiple edges.

EXAMPLES:

sage: P = graphs.PetersenGraph ()

sage: P.plot () # long time

Graphics object consisting of 26 graphics primitives
sage: PC = P.complement ()

sage: PC.plot () # long time

Graphics object consisting of 41 graphics primitives

sage: graphs.TetrahedralGraph() .complement () .size()
0

sage: graphs.CycleGraph (4) .complement () .edges ()
[(0, 2, None), (1, 3, None)]

sage: graphs.CycleGraph (4) .complement ()

complement (Cycle graph): Graph on 4 vertices

sage: G = Graph(multiedges=True, sparse=True)

sage: G.add_edges ([ (0,1)]%3)

sage: G.complement ()

Traceback (most recent call last):

ValueError: This method is not known to work on graphs with
multiedges. Perhaps this method can be updated to handle them, but
in the meantime if you want to use it please disallow multiedges
using allow_multiple_edges/() .

connected_component_containing vertex (G, vertex, sort=True)
Return a list of the vertices connected to vertex.

INPUT:
* G —the input graph
¢ v — the vertex to search for

* sort —boolean (default True); whether to sort vertices inside the component

EXAMPLES:

sage: from sage.graphs.connectivity import connected_component_containing_
—vertex

sage: G = Graph({O: [1, 31, 1: [2], 2: [3], 4: [5, 6], 5: [6]})

sage: connected_component_containing vertex (G, 0)

(0, 1, 2, 31

sage: G.connected_component_containing_ vertex (0)

(0, 1, 2, 31

(continues on next page)
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sage: D = DiGraph({O0: [1, 31, 1: [2], 2: [31, 4: [5, 61, 5: [6]1})
sage: connected_component_containing vertex (D, 0)
(o, 1, 2, 3]

connected_components (G, sort=True)

Return the list of connected components.

This returns a list of lists of vertices, each list representing a connected component. The list is ordered
from largest to smallest component.

INPUT:
* G —the input graph
* sort —boolean (default True); whether to sort vertices inside each component

EXAMPLES:

sage: from sage.graphs.connectivity import connected_components
sage: G = Graph({O: [1, 31, 1: [2], 2: [3], 4: [5, 6], 5: [6]})
sage: connected_components (G)

[ro, 1, 2, 31, I[4, 5, 611

sage: G.connected_components ()

(ro, 1, 2, 31, 1[4, 5, 611

sage: D = DiGraph({O: [1, 31, 1: [2], 2: [3], 4 [5, 6], 5 [61})
sage: connected_components (D)

[ro, 1, 2, 31, 1[4, 5, 611

connected_components_number (G)
Return the number of connected components.

INPUT:
* G —the input graph

EXAMPLES:

sage: from sage.graphs.connectivity import connected_components_number
sage: G = Graph({O: [1, 31, 1: [2], 2: [3], 4: [5, 6], 5: [6]1})

sage: connected_components_number (G)

2

sage: G.connected_components_number ()

2

sage: D = DiGraph({O: [1, 31, 1: [2], 2: [3], 4: [5, 61, 5: [6]1})
sage: connected_components_number (D)

2

connected_components_sizes (G)
Return the sizes of the connected components as a list.

The list is sorted from largest to lower values.

EXAMPLES:

sage: from sage.graphs.connectivity import connected_components_sizes
sage: for x in graphs(3):

e print (connected_components_sizes (x))

(1, 1, 1]

(2, 1]

[3]

(continues on next page)
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sage: for x in graphs(3):
et print (x.connected_components_sizes())

connected_components_subgraphs (G)

Return a list of connected components as graph objects.

EXAMPLES:

sage: from sage.graphs.connectivity import connected_components_subgraphs
sage: G = Graph({O0: [1, 31, 1: [2], 2: [31, 4: [5, 6], 5: [6]})

sage: L = connected_components_subgraphs (G)

sage: graphs_list.show_graphs (L)

sage: D = DiGraph({O: [1, 31, 1: [2], 2: [31, 4: [5, 6], 5: [6]1})

sage: L = connected_components_subgraphs (D)

sage: graphs_list.show_graphs (L)

sage: L = D.connected_components_subgraphs ()

sage: graphs_list.show_graphs (L)

connected_subgraph_iterator (G, k=None, vertices_only=False)

Iterator over the induced connected subgraphs of order at most k.

This method implements a iterator over the induced connected subgraphs of the input (di)graph. An
induced subgraph of a graph is another graph, formed from a subset of the vertices of the graph and all of
the edges connecting pairs of vertices in that subset (Wikipedia article Induced_subgraph).

As for method sage.graphs.generic_graph.connected_components (), edge orientation
is ignored. Hence, the directed graph with a single arc 0 — 1 is considered connected.

INPUT:
* G—a Graphora DiGraph;loops and multiple edges are allowed

* k — (optional) integer; maximum order of the connected subgraphs to report; by default, the method
iterates over all connected subgraphs (equivalent to k == n)

e vertices_only — boolean (default: False); whether to return (Di)Graph or list of vertices

EXAMPLES:

sage: G = DiGraph ([ (1, 2), (2, 3), (3, 4), (4, 2)1)
sage: list (G.connected_subgraph_iterator())

[Subgraph of (): Digraph on 1 vertex,

(
Subgraph of (): Digraph on 2 vertices,
Subgraph of (): Digraph on 3 vertices,
Subgraph of (): Digraph on 4 vertices,
Subgraph of (): Digraph on 3 vertices,
Subgraph of (): Digraph on 1 vertex,
Subgraph of (): Digraph on 2 vertices,
Subgraph of (): Digraph on 3 vertices,
Subgraph of (): Digraph on 2 vertices,
Subgraph of (): Digraph on 1 vertex,
Subgraph of (): Digraph on 2 vertices,

(

Subgraph of (): Digraph on 1 vertex]
sage: list (G.connected_subgraph_iterator (vertices_only=True))

(continues on next page)

40

Chapter 1. Graph objects and methods



https://en.wikipedia.org/wiki/Induced_subgraph

Sage Reference Manual: Graph Theory, Release 8.6

(continued from previous page)

(), 1, 231, 1, 2, 31, 11, 2, 3, 41, [1, 2, 4],
(21, 2, 31, (2, 3, 41, (2, 41, [31, [3, 41, [4]]
sage: list (G.connected_subgraph_iterator (k=2))
[Subgraph of (): Digraph on 1 vertex,
Subgraph of (): Digraph on 2 vertices,
Subgraph of (): Digraph on 1 vertex,
Subgraph of (): Digraph on 2 vertices,
Subgraph of (): Digraph on 2 vertices,
Subgraph of (): Digraph on 1 vertex,
Subgraph of (): Digraph on 2 vertices,
Subgraph of (): Digraph on 1 vertex]
sage: list (G.connected_subgraph_iterator (k=2, vertices_only=True))
(11, 1, 21, 121, (2, 31, (2, 41, [31, [3, 41, [4]]
sage: G = DiGraph([ (1, 2), (2, 1)1)
sage: list (G.connected_subgraph_iterator())
[Subgraph of (): Digraph on 1 vertex,
Subgraph of (): Digraph on 2 vertices,
Subgraph of (): Digraph on 1 vertex]
sage: list (G.connected_subgraph_iterator (vertices_only=True))
(r11, 11, 21, (271

contract_edge (u, v=None, label=None)
Contract an edge from u to v.

This method returns silently if the edge does not exist.
INPUT: The following forms are all accepted:

* G.contract_edge( 1,2)

* G.contract_edge( (1,2))

* G.contract_edge( [ (1,2)])

* G.contract_edge( 1, 2, ‘label’ )

* G.contract_edge( (1, 2, ‘label’) )

* G.contract_edge( [ (1, 2, ‘label’) ])

EXAMPLES:
sage: G = graphs.CompleteGraph (4)
sage: G.contract_edge((0, 1)); G.edges()
[(O, 2, None), (0, 3, None), (2, 3, None)]
sage: G = graphs.CompleteGraph (4)
sage: G.allow_loops(True); G.allow_multiple_edges (True)
sage: G.contract_edge((0, 1)); G.edges()
[(0, 2, None), (0, 2, None), (0, 3, None), (0, 3, None), (2, 3, None)]
sage: G.contract_edge((0, 2)); G.edges()
[(0, O, None), (0, 3, None), (0, 3, None), (0, 3, None)]
sage: G = graphs.CompleteGraph(4) .to_directed()
sage: G.allow_loops (True)
sage: G.contract_edge (0, 1); G.edges()
[(0, 0, None),
(0, 2, None),
(0, 3, None),

(continues on next page)
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(2, 0, None),
(2, 3, None),
(3, 0, None),
(3, 2, None)]

contract_edges (edges)
Contract edges from an iterable container.

If e is an edge that is not contracted but the vertices of e are merged by contraction of other edges, then e

will become a loop.
INPUT:
* edges — a list containing 2-tuples or 3-tuples that represent edges

EXAMPLES:

sage: G = graphs.CompleteGraph (4)

sage: G.allow_loops(True); G.allow_multiple_edges (True)
sage: G.contract_edges([(0, 1), (1, 2), (0, 2)1); G.edges()
[(O, 3, None), (0, 3, None), (0, 3, None)]

sage: G = Graph(edgelist, loops=True, multiedges=True)
sage: G.contract_edges([(0, 1), (0, 1, 2)]1); G.edges()
Traceback (most recent call last):

ValueError: edge tuples in input should have the same length

sage: G.contract_edges([(1, 3), (2, 3)1); G.edges()
[(O, 3, None), (0, 3, None), (0, 3, None)]
sage: G = graphs.CompleteGraph (4)
sage: G.allow_loops(True); G.allow_multiple_edges (True)
sage: G.contract_edges([ (0, 1), (1, 2), (0, 2), (1, 3), (2, 3)1); G.edges()
[(0, 0, None)]
sage: D = digraphs.Complete (4)
sage: D.allow_loops(True); D.allow_multiple_edges (True)
sage: D.contract_edges([(0, 1), (1, 0), (0, 2)]); D.edges()
[(O, O, None),

(0, 0, None),

(0, 0, None),

(0, 3, None),

(0, 3, None),

(0, 3, None),

(3, 0, None),

(3, 0, None),

(3, 0, None)]
sage: edgelist = [(O, 1, 0), (O, 1, 1), (0, 1, 2)]

sage: G = graphs.CompleteGraph (4)

sage: G.allow_loops (True); G.allow_multiple_edges (True)
sage: for e in G.edges(sort=False):

R G.set_edge_label(e[0], e[1l], (e[0] + e[1]))

sage: H = G.copy ()

sage: G.contract_edges([(0, 1), (0, 2)]1); G.edges()

[(o, o, 3y, (0, 3, 3), (0, 3, 4), (0, 3, 5]

sage: H.contract_edges([(0, 1, 1), (0, 2, 3)1); H.edges()
(o, 2, 2, (0, 2, 3y, (0, 3, 3), (0, 3, 4), (2, 3, 5]
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copy (weighted=None,  implementation="c_graph’, data_structure=None, sparse=None, im-

mutable=None)
Change the graph implementation

INPUT:
* weighted — boolean (default: None); weightedness for the copy. Might change the equality class
if not None.
e sparse - boolean (default: None); sparse=True is an alias for
data_structure="sparse", and sparse=False is an alias for
data_structure="dense". Only used when implementation='c_graph' and

data_structure=None.

* data_structure - string (default: None); one of "sparse", "static_sparse",
or "dense". See the documentation of Graph or DiGraph. Only used when
implementation="'c_graph'.

e immutable — boolean (default: None); whether to create a mutable/immutable copy. Only used
when implementation="'c_graph' and data_structure=None.

— immutable=None (default) means that the graph and its copy will behave the same way.

— immutable=True is a shortcut for data_structure='static_sparse' and
implementation="'c_graph'

- immutable=False sets implementation to 'c_graph'. When immutable=False
is used to copy an immutable graph, the data structure used is "sparse" unless anything else is
specified.

Note: If the graph uses StaticSparseBackend and the _immutable flag, then self is returned
rather than a copy (unless one of the optional arguments is used).

OUTPUT:
A Graph object.

Warning: Please use this method only if you need to copy but change the underlying implementation
or weightedness. Otherwise simply do copy (g) instead of g. copy ().

Warning: If weighted is passed and is not the weightedness of the original, then the copy will not
equal the original.

EXAMPLES:

sage: g = Graph({0O: [0, 1, 1, 2]}, loops=True, multiedges=True, sparse=True)
sage: g == copy(9)

True

sage: g = DiGraph({O: [O, 1, 1, 2], 1: [O, 11}, loops=True, multiedges=True,
—sparse=True)

sage: g == copy(9)

True

Note that vertex associations are also kept:
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sage: d = {0: graphs.DodecahedralGraph(), 1: graphs.FlowerSnark(), 2:
—MoebiusKantorGraph (), 3: graphs.PetersenGraph()}

sage: T = graphs.TetrahedralGraph ()

sage: T.set_vertices(d)

sage: T2 = copy(T)

sage: T2.get_vertex(0)

Dodecahedron: Graph on 20 vertices

graphs.

Notice that the copy is at least as deep as the objects:

sage:
False

T2.get_vertex (0) is T.get_vertex(0)

Examples of the keywords in use:

sage: G = graphs.CompleteGraph(19)
sage: H = G.copy(implementation='c_graph')
sage: H == G; H is G

True

False

sage: Gl = G.copy (sparse=True)
sage: Gl == G

True

sage: Gl is G

False

sage: G2 = copy (G)

sage: G2 is G

False

Argument weighted affects the equality class:

sage: G = graphs.CompleteGraph (5)

sage: H1l = G.copy(weighted=False)

sage: H2 = G.copy(weighted=True)

sage: [G.weighted(), Hl.weighted(), H2.weighted()]
[False, False, True]

sage: [G == Hl, G == H2, Hl1 == H2]

[True, False, False]

sage: G.weighted (True)

sage: [G == Hl, G == H2, Hl1 == H2]

[False, True, False]

crossing_ number ()
Return the crossing number of the graph.

The crossing number of a graph is the minimum number of edge crossings needed to draw the graph on a

plane. It can be seen as a measure of non-planarity; a planar graph has crossing number zero.
See the Wikipedia article Crossing_number for more information.

EXAMPLES:

sage:
sage:
2

P = graphs.PetersenGraph ()
P.crossing_number ()

ALGORITHM:
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This is slow brute force implementation: for every k pairs of edges try adding a new vertex for a crossing
point for them. If the result is not planar in any of those, try k + 1 pairs.

Computing the crossing number is NP-hard problem.

cycle_basis (output="vertex’)
Return a list of cycles which form a basis of the cycle space of self.

A basis of cycles of a graph is a minimal collection of cycles (considered as sets of edges) such that the
edge set of any cycle in the graph can be written as a Z /27 sum of the cycles in the basis.

INPUT:

e output - string (default: 'vertex'); whether every cycle is given as a list of vertices (output
== 'vertex"')oralist of edges (output == 'edges')

OUTPUT:

A list of lists, each of them representing the vertices (or the edges) of a cycle in a basis.
ALGORITHM:

Uses the NetworkX library for graphs without multiple edges.

Otherwise, by the standard algorithm using a spanning tree.

EXAMPLES:

A cycle basis in Petersen’s Graph

sage: g = graphs.PetersenGraph ()

sage: g.cycle_basis()

[[ll 2! 7! 5/ OJ! [8! 3! 2/ 7/ 5J! [4! 3! 2/ 7/ 5! O]I [4! 9/ 7/ 5! O]I [81 6/
- 9, 7, 51, [1, 6, 9, 7, 5, 0]]

One can also get the result as a list of lists of edges:

sage: g.cycle_basis (output='edge')
[(1, 2, None), (2, 7, None), (7, 5, None), (5, 0, None),

[

(0, 1, None)], [(8, 3, None), (3, 2, None), (2, 7, None),
(7, 5, None), (5, 8, None)], [(4, 3, None), (3, 2, None),
(2, 7, None), (7, 5, None), (5, 0, None), (0, 4, None)],
[(4, 9, None), (9, 7, None), (7, 5, None), (5, 0, None),
(0, 4, None)l, [(8, 6, None), (6, 9, None), (9, 7, None),
(7, 5, None), (5, 8, None)], [(1, 6, None), (6, 9, None),
(9, 7, None), (7, 5, None), (5, 0, None), (0, 1, None)]]

Checking the given cycles are algebraically free:

sage: g = graphs.RandomGNP (30, .4)
sage: basis = g.cycle_basis()

Building the space of (directed) edges over Z/2Z. On the way, building a dictionary associating an unique
vector to each undirected edge:

sage: m = g.size()

sage: edge_space = VectorSpace (FiniteField(2), m)

sage: edge_vector = dict(zip(g.edges(labels=False, sort=False), edge_space.
—basis()))

sage: for (u, v), vec in edge_vector.items():

e edge_vector[ (v, u)] = vec

Defining a lambda function associating a vector to the vertices of a cycle:
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sage: vertices_to_edges = lambda x: zip(x, x[1:] + [x[0]])
sage: cycle_to_vector = lambda x: sum(edge_vector[e] for e in vertices_to_
—edges (x))

Finally checking the cycles are a free set:

sage: basis_as_vectors = [cycle_to_vector(_) for _ in basis]
sage: edge_space.span(basis_as_vectors) .rank () == len(basis)
True

For undirected graphs with multiple edges:

sage: G = Graph([(O0, 2, 'a'), (0, 2, 'b'"), (O, 1, 'c"), (1, 2, 'd")]1,
—multiedges=True)

sage: G.cycle_basis()

(ro, 21, 12, 1, 011

sage: G.cycle_basis (output='edge')

(reo, 2, a'y, (2, 0, "1, 2, 1, '4"), (1, 0, '¢"), (0, 2, 'a"')]]

Disconnected graph:

sage: G.add_cycle(["Hey", "Wuuhuu", "Really ?"])
sage: G.cycle_basis()

[['Really ?', 'Hey', 'Wuuhuu'], [0, 2], [2, 1, O0]]
sage: G.cycle_basis (output="'edge')

[[('"Really ?', 'Hey', None),

'Hey', 'Wuuhuu', None),

'Wuuhuu', 'Really ?', None)],

0o, 2, 'a'y, (2, 0, 'b")1,

2, 1, 'd4"), (1, 0, 'c"), (0, 2, 'b")1]

[

(
(
(
[(

Graph that allows multiple edges but does not contain any:

sage: G = graphs.CycleGraph (3)
sage: G.allow_multiple_edges (True)
sage: G.cycle_basis()

({2, 1, 0]]

Not yet implemented for directed graphs with multiple edges:

sage: G = DiGraph([(0,2,'a"), (0,2,'b"),(0,1,'c"),(1,2,'d")], multiedges=True)
sage: G.cycle_basis()
Traceback (most recent call last):

NotImplementedError: not implemented for directed graphs with multiple edges

degree (vertices=None, labels=False)
Return the degree (in + out for digraphs) of a vertex or of vertices.

INPUT:

* vertices — a vertex or an iterable container of vertices (default: None); if vertices is a single
vertex, returns the number of neighbors of that vertex. If vertices is an iterable container of
vertices, returns a list of degrees. If vertices is None, same as listing all vertices.

* labels — boolean (default: False); when True, return a dictionary mapping each vertex in
vertices to its degree. Otherwise, return the degree of a single vertex or a list of the degrees
of each vertex in vertices
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OUTPUT:

e When vertices is a single vertex and labels is False, returns the degree of that vertex as an
integer

e When vertices is an interable container of vertices (or None) and 1abels is False, returns a list
of integers. The i-th value is the degree of the i-th vertex in the list vertices. When vertices
is None, the i-th value is the degree of i-th vertex in the ordering 1ist (self), which might be
different from the ordering of the vertices given by g.vertices ().

* When labels is True, returns a dictionary mapping each vertex in vertices to its degree

EXAMPLES:

sage: P = graphs.PetersenGraph ()
sage: P.degree(5)
3

sage: K = graphs.CompleteGraph (9)
sage: K.degree()
(8, 8, 8, 8, 8, 8, 8, 8, 8]

sage: D = DiGraph({O: [1, 2, 3], 1: [0, 2], 2: [3], 3: [41, 4: [0,5], 5: [11})
sage: D.degree(vertices=[0, 1, 2], labels=True)

{0: 5, 1: 4, 2: 3}

sage: D.degree()

(5, 4, 3, 3, 3, 2]

When vertices=None and labels=False, the i-th value of the returned list is the degree of the i-th
vertex in the list 1ist (self):

sage: D = digraphs.DeBruijn (4, 2)

sage: D.delete_vertex('20")

sage: print (D.degree())

(e, 7, 7, 7, 8, 7, 8, 8, 7, 8, 8, 8, 7, 8, 8]
sage: print (D.degree(vertices=1list (D)))

(e, 7, 7, 7, 8, 7, 8, 8, 7, 8, 8, 8, 7, 8, 8]
sage: print (D.degree(vertices=D.vertices()))
(7, 7, e, 7, 8, 8, 7, 8, 8, 7, 8, 8, 8, 7, 8]

degree_histogram ()

Return a list, whose -th entry is the frequency of degree i.

EXAMPLES:

sage: G = graphs.Grid2dGraph(9, 12)

sage: G.degree_histogram()

[0, 0, 4, 34, 70]

sage: G = graphs.Grid2dGraph (9, 12).to_directed()
sage: G.degree_histogram()

(o, o, o, o, 4, 0, 34, 0, 70]

degree_iterator (vertices=None, labels=False)

Return an iterator over the degrees of the (di)graph.

In the case of a digraph, the degree is defined as the sum of the in-degree and the out-degree, i.e. the total
number of edges incident to a given vertex.
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INPUT:

* vertices — a vertex or an iterable container of vertices (default: None); if vertices is a single
vertex, the iterator will yield the number of neighbors of that vertex. If vertices is an iterable
container of vertices, return an iterator over the degrees of these vertices. If vertices is None,
same as listing all vertices.

* labels —boolean (default: False); whether to return an iterator over degrees (1abels=False),
or over tuples (vertex, degree)

Note: The returned iterator yields values in order specified by 1ist (vertices). When vertices
is None, it yields values in the same order as 1ist (self), which might be different from the ordering
of the vertices given by g.vertices ().

EXAMPLES:

sage: G = graphs.Grid2dGraph (3, 4)
sage: for 1 in G.degree_iterator():
....: print(i)

sage: for i1 in G.degree_iterator (labels=True):
...t print(i)

sage: D = graphs.Grid2dGraph(2,4) .to_directed()
sage: for i in D.degree_iterator():
... print(i)

sage: for i1 in D.degree_iterator (labels=True):
....: print(i)

When vertices=None yields values in the order of 1ist (D):

sage: V = list (D)

sage: D = digraphs.DeBruijn (4, 2)
sage: D.delete_vertex('20")

sage: print (list (D.degree_iterator()))

(continues on next page)
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e, 7, 7, 7, 8 17, 8, 8, 7,8, 8, 8, 7, 8, 8]
sage: print ([D.degree(v) for v in D])
(e, 7, 7, 7, 8, 17, 8 8, 7, 8, 8 8, 7, 8, 8]

degree_sequence ()
Return the degree sequence of this (di)graph.

EXAMPLES:

The degree sequence of an undirected graph:

sage: g = Graph({1l: [z, 5], 2: [1, 5, 3, 4], 3: [2, 5], 4: [3], [2, 31})
sage: g.degree_sequence ()

(4, 3, 3, 2, 2]

The degree sequence of a digraph:

sage: g = DiGraph({1l: [2, 5, 6], 2: [3, 61, 3: [4, 6], 4: [6], [4, 61})

sage: g.degree_sequence ()
(5, 3, 3, 3, 3, 3]

Degree sequences of some common graphs:

sage: graphs.PetersenGraph () .degree_sequence ()

(3, 3, 3, 3, 3, 3, 3, 3, 3, 3]

sage: graphs.HouseGraph () .degree_sequence ()

(3, 3, 2, 2, 2]

sage: graphs.FlowerSnark () .degree_sequence ()

(3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 31

degree_to_cell (vertex, cell)

Returns the number of edges from vertex to an edge in cell. In the case of a digraph, returns a tuple

(in_degree, out_degree).

EXAMPLES:

sage: G = graphs.CubeGraph (3)

sage: cell = G.vertices () [:3]

sage: G.degree_to_cell('011', cell)
2

sage: G.degree_to_cell('111', cell)
0

sage: D = DiGraph({ 0:[1,2,31, 1:[3,4]1, 3:[4,51})

sage: cell = [0,1,2]

sage: D.degree_to_cell (5, cell)
(0, 0)

sage: D.degree_to_cell (3, cell)
(2, 0)

sage: D.degree_to_cell (0, cell)
(0, 2)

delete_edge (u, v=None, label=None)
Delete the edge from u to v.

This method returns silently if vertices or edge does not exist.

INPUT: The following forms are all accepted:
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G.delete_edge( 1,2)
G.delete_edge( (1, 2) )

* G.delete_edges([(1,2)])
G.delete_edge( 1, 2, ‘label’ )
G.delete_edge( (1, 2, ‘label’) )

e G.delete_edges( [ (1,2, ‘label’) ])

EXAMPLES:

sage: G = graphs.CompleteGraph (9)

sage: G.size()

36

sage: G.delete_edge( 1, 2 )

sage: G.delete_edge( (3, 4) )

sage: G.delete_edges( [ (5, 6), (7, 8) 1)
sage: G.size()

32

sage: G.delete_edge( 2, 3, 'label' )

sage: G.delete_edge( (4, 5, 'label'") )
sage: G.delete_edges( [ (6, 7, '"label') 1)
sage: G.size()

32

sage: G.has_edge( (4, 5) ) # correct!

True

sage: G.has_edge( (4, 5, 'label') ) # correct!
False

sage: C = digraphs.Complete (9)

sage: C.size()

72

sage: C.delete_edge( 1, 2 )

sage: C.delete_edge( (3, 4) )

sage: C.delete_edges( [ (5, 6), (7, 8) 1)
sage: C.size()

68

sage: C.delete_edge( 2, 3, 'label' )

sage: C.delete_edge( (4, 5, 'label'") )
sage: C.delete_edges( [ (6, 7, '"label') 1)
sage: C.size() # correct!

68

sage: C.has_edge( (4, 5) ) # correct!

True

sage: C.has_edge( (4, 5, 'label') ) # correct!
False

delete_edges (edges)
Delete edges from an iterable container.

EXAMPLES:
sage: K12 = graphs.CompleteGraph (12)
sage: K4 = graphs.CompleteGraph (4)

(continues on next page)
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sage: Kl2.size()

66

sage: Kl2.delete_edges (K4.edge_iterator())
sage: Kl2.size()

60

sage: K12 = digraphs.Complete(12)

sage: K4 = digraphs.Complete (4)

sage: Kl2.size()

132

sage: Kl2.delete_edges (K4.edge_iterator())
sage: Kl2.size()

120

delete_multiedge (u, v)

Delete all edges from u to v.

EXAMPLES:

sage: G = Graph(multiedges=True, sparse=True)

sage: G.add_edges([(O, 1), (0, 1), (0, 1), (1, 2), (2, 3)1)

sage: G.edges|()

[(0, 1, None), (0, 1, None), (0, 1, None), (1, 2, None), (2, 3, None)]
sage: G.delete_multiedge (0, 1)

sage: G.edges|()

[(1, 2, None), (2, 3, None)]

sage: D = DiGraph(multiedges=True, sparse=True)

sage: D.add_edges([(O, 1, 1), (O, 1, 2), (0, 1, 3), (L, 0, None), (1, 2,
—None), (2, 3, None)l)

sage: D.edges|()

(¢, 1, 1), (0, 1, 2), (0, 1, 3), (1, 0, None), (1, 2, None), (2, 3, None)]
sage: D.delete_multiedge (0, 1)

sage: D.edges|()

[(L, O, None), (1, 2, None), (2, 3, None)]

[

delete_vertex (vertex, in_order=False)

Delete vertex, removing all incident edges.
Deleting a non-existent vertex will raise an exception.
INPUT:

e in_order — boolean (default: False); if True, this deletes the i-th vertex in the sorted list of
vertices, i.e. G.vertices () [1]

EXAMPLES:

sage: G = Graph(graphs.WheelGraph(9))
sage: G.delete_vertex(0); G.show()

sage: D = DiGraph({O: [1, 2, 3, 4, 51, 1: [2], 2: [3]1, 3: [4], 4: [5], 5: [1]1}
)

sage: D.delete_vertex(0); D

Digraph on 5 vertices

sage: D.vertices()

(1, 2, 3, 4, 5]

(continues on next page)
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sage: D.delete_vertex(0)
Traceback (most recent call last):

ValueError: vertex (0) not in the graph

sage: G = graphs.CompleteGraph(4).line_graph(labels=False)
sage: G.vertices()

(o, 1), 0, 2y, (0, 3), (1, 2), (1, 3), (2, 3)]

sage: G.delete_vertex (0, in_order=True)

sage: G.vertices|()

[0, 2), (0, 3), (1, 2), (1, 3), (2, 3)]

sage: G = graphs.PathGraph (5)

sage: G.set_vertices({0: 'no delete', 1: 'delete'})
sage: G.delete_vertex (1)

sage: G.get_vertices()

{0: '"no delete', 2: None, 3: None, 4: None}
sage: G.get_pos|()
{0: (0, 0), 2: (2, 0), 3: (3, 0), 4: (4, 0)}

delete_vertices (vertices)

Delete vertices from the (di)graph taken from an iterable container of vertices.

Deleting a non-existent vertex will raise an exception, in which case none of the vertices in vertices is
deleted.

EXAMPLES:

sage: D = DiGraph({O: [1, 2, 3, 4, 51, 1: [2], 2: [3]1, 3: [4], 4: [5], 5: [1]}
)

sage: D.delete_vertices([1l, 2, 3, 4, 5]); D

Digraph on 1 vertex

sage: D.vertices|()

[0]

sage: D.delete_vertices([1])

Traceback (most recent call last):

ValueError: vertex (1) not in the graph

density ()

Return the density of the (di)graph.
The density of a (di)graph is defined as the number of edges divided by number of possible edges.
In the case of a multigraph, raises an error, since there is an infinite number of possible edges.

EXAMPLES:

sage: d = {0: [1,4,5], 1: [2,6], 2: [3,7], 3: [4,81, 4: [9], 5: [7, 8], 6: [8,
—9], 7: [91}

sage: G = Graph(d); G.density()

1/3

sage: G = Graph({0O: [1, 2], 1: [0]}); G.density()

2/3

sage: G = DiGraph({O: [1, 2], 1: [0]1}); G.density()

1/2

Note that there are more possible edges on a looped graph:
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sage: G.allow_loops (True)
sage: G.density ()
1/3

depth_first_search (start, ignore_direction=False, distance=None, neighbors=None)
Return an iterator over the vertices in a depth-first ordering.

INPUT:
e start - vertex or list of vertices from which to start the traversal

e ignore_direction - (default False) only applies to directed graphs. If True, searches across
edges in either direction.

* distance - Deprecated. Broken, do not use.

* neighbors - a function giving the neighbors of a vertex. The function should take a vertex and
return a list of vertices. For a graph, neighbors is by default the neighbors () function of the
graph. For a digraph, the neighbors function defaults to the neighbor._out_iterator ()
function of the graph.

See also:

e breadth first_search()
* breadth first_search - breadth-first search for fast compiled graphs.

* depth_ first_search — depth-first search for fast compiled graphs.

EXAMPLES:

sage: G = Graph( { O0: [1], 1: [2], 2: [31, 3: [4]1, 4: [0]1} )
sage: list (G.depth_first_search(0))
(0, 4, 3, 2, 1]

By default, the edge direction of a digraph is respected, but this can be overridden by the
ignore_direction parameter:

sage: D = DiGraph( { O: [1,2,3], 1: [4,5], 2: [5], 3: [6], 5: [71, 6: [7]1, 7T:_
—~[01})

sage: list(D.depth_first_search(0))

[0, 3, 6, 7, 2, 5, 1, 4]

sage: list(D.depth_first_search (0, ignore_direction=True))

(o, 7, 6, 3, 5, 2, 1, 4]

Multiple starting vertices can be specified in a list:

sage: D = DiGraph( { O: [1,2,3], 1: [4,5], 2: [5], 3: [6]1, 5: [71, 6: [71, 7:
—~[01})

sage: list(D.depth_first_search([0]))

(o, 3, 6, 7, 2, 5, 1, 4]

sage: list (D.depth_first_search([0,6]))

(o, 3, 6, 7, 2, 5, 1, 4]

More generally, you can specify a neighbors function. For example, you can traverse the graph back-
wards by setting neighbors to be the neighbors_in () function of the graph:
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sage: D = digraphs.Path(10)

sage: D.add_path([22,23,24,5])

sage: D.add_path([5,33,34,351])

sage: list(D.depth_first_search(5, neighbors=D.neighbors_in))
(5, 4, 3, 2, 1, 0, 24, 23, 22]

sage: list (D.breadth_first_search (5, neighbors=D.neighbors_in))
[5, 24, 4, 23, 3, 22, 2, 1, 0]

sage: list(D.depth_first_search (5, neighbors=D.neighbors_out))
[5, 6, 7, 8, 9, 33, 34, 35]

sage: list(D.breadth_first_search (5, neighbors=D.neighbors_out))
[5, 33, 6, 34, 7, 35, 8, 9]

diameter (by_weight=False, algorithm=None, weight_function=None, check_weight=True)
Return the diameter of the (di)graph.

The diameter is defined to be the maximum distance between two vertices. It is infinite if the (di)graph is
not (strongly) connected.

For more information and examples on how to use input variables, see shortest_paths () and
eccentricity ()

INPUT:

* by_weight —boolean (default: False); if True, edge weights are taken into account; if False, all
edges have weight 1

* algorithm - string (default: None); one of the following algorithms:

— 'BFS':the computation is done through a BFS centered on each vertex successively. Works only
if by_weight==False.

— 'Floyd-Warshall-Cython': a Cython implementation of the Floyd-Warshall algorithm.
Works only if by_weight==Falseandv is None.

— 'Floyd-Warshall-Python': a Python implementation of the Floyd-Warshall algorithm.
Works also with weighted graphs, even with negative weights (but no negative cycle is allowed).
However, v must be None.

— 'Dijkstra_NetworkX': the Dijkstra algorithm, implemented in NetworkX. It works with
weighted graphs, but no negative weight is allowed.

- 'standard', '2sweep', 'multi-sweep', 'iFUB': these algorithms are imple-
mented in sage.graphs.distances_all pairs.diameter () They work only if
by_weight==False. See the function documentation for more information.

— 'Dijkstra_Boost': the Dijkstra algorithm, implemented in Boost (works only with positive
weights).

— '"Johnson_Boost ': the Johnson algorithm, implemented in Boost (works also with negative
weights, if there is no negative cycle).

— None (default): Sage chooses the best algorithm: 'iFUB' for unweighted graphs,
'Dijkstra_Boost"' if all weights are positive, ' Johnson_Boost ' otherwise.

e weight_function — function (default: None); a function that takes as input an edge (u, v,
1) and outputs its weight. If not None, by_weight is automatically set to True. If None and
by_weight is True, we use the edge label 1 as a weight.

¢ check_weight — boolean (default: True); if True, we check that the weight_function
outputs a number for each edge

EXAMPLES:
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The more symmetric a graph is, the smaller (diameter - radius) is:

sage: G = graphs.BarbellGraph(9, 3)
sage: G.radius ()

3

sage: G.diameter ()

6

sage: G = graphs.OctahedralGraph ()
sage: G.radius()

sage: G.diameter ()

disjoint_routed_paths (pairs, solver=None, verbose=0)
Return a set of disjoint routed paths.

Given a set of pairs (s;, t;), a set of disjoint routed paths is a set of s; — ¢; paths which can intersect at their
endpoints and are vertex-disjoint otherwise.

INPUT:
* pairs —list of pairs of vertices

* solver — string (default: None); specifies a Linear Program (LP) solver to be used. If set to None,
the default one is used. For more information on LP solvers and which default solver is used, see the
method solve of the class MixedIntegerLinearProgram.

* verbose — integer (default: 0); sets the level of verbosity. Set to 0 by default (quiet).
EXAMPLES:

Given a grid, finding two vertex-disjoint paths, the first one from the top-left corner to the bottom-left
corner, and the second from the top-right corner to the bottom-right corner is easy:

sage: g = graphs.Grid2dGraph (5, 5)
sage: pl,p2 = g.disjoint_routed_paths([((0, 0), (0, 4)), ((4, 4), (4, 0))1)

Though there is obviously no solution to the problem in which each corner is sending information to the
opposite one:

sage: g = graphs.Grid2dGraph (5, 5)
sage: pl,p2 = g.disjoint_routed_paths ([ ((0, 0), (4, 4)), ((O0, 4), (4, 0))1)
Traceback (most recent call last):

EmptySetError: the disjoint routed paths do not exist

disjoint_union (other, labels="pairs’, immutable=None)
Return the disjoint union of self and other.

INPUT:

e labels - (defaults to ‘pairs’) If set to ‘pairs’, each element v in the first graph will be named (0, v)
and each element u in other will be named (1, u) in the result. If set to ‘integers’, the elements of
the result will be relabeled with consecutive integers.

e immutable (boolean) — whether to create a mutable/immutable disjoint union. immutable=None
(default) means that the graphs and their disjoint union will behave the same way.

See also:
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e union{()
* join()

EXAMPLES:

sage: G = graphs.CycleGraph(3)

sage: H = graphs.CycleGraph (4)

sage: J = G.disjoint_union(H); J

Cycle graph disjoint_union Cycle graph: Graph on 7 vertices
sage: J.vertices|()

(¢, o0, ¢, 1), (0, 2), (1, 0), (1, 1), (1, 2), (1, 3)]
sage: J = G.disjoint_union(H, labels='integers'); J

Cycle graph disjoint_union Cycle graph: Graph on 7 vertices
sage: J.vertices()

(o, 1, 2, 3, 4, 5, 6]

sage: (G+H) .vertices() # '+'-operator is a shortcut

(o, 1, 2, 3, 4, 5, 6]

sage: G=Graph({'a': ['bD']})

sage: G.name ("Custom path")

sage: G.name ()

'Custom path'

sage: H=graphs.CycleGraph (3)

sage: J=G.disjoint_union(H); J

Custom path disjoint_union Cycle graph: Graph on 5 vertices
sage: J.vertices|()

[, 'a")y, (0, 'b"), (1, 0), (1, 1), (1, 2)]

disjunctive_product (other)

Returns the disjunctive product of self and other.

The disjunctive product of G and H is the graph L with vertex set V(L) = V(G) x V(H), and
((u,v), (w, z)) is an edge iff either :

* (u,w) is an edge of G, or
* (v, ) is an edge of H.
EXAMPLES:

sage: Z = graphs.CompleteGraph (2)

sage: D = Z.disjunctive_product(Z); D

Graph on 4 vertices

sage: D.plot () # long time

Graphics object consisting of 11 graphics primitives

sage: C = graphs.CycleGraph (5)

sage: D = C.disjunctive_product (Z); D

Graph on 10 vertices

sage: D.plot () # long time

Graphics object consisting of 46 graphics primitives

distance (u, v, by_weight=False)

Returns the (directed) distance from u to v in the (di)graph, i.e. the length of the shortest path from u to v.

This method simply calls shortest_path length (), with default arguments. For more information,
and for more option, we refer to that method.

INPUT:
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* by_weight -if False, the graph is considered unweighted, and the distance is the number of edges
in a shortest path. If True, the distance is the sum of edge labels (which are assumed to be numbers).

EXAMPLES:
sage: G = graphs.CycleGraph(9)
sage: G.distance(0,1)
1
sage: G.distance(0,4)
4
sage: G.distance(0,5)
4
sage: G = Graph({0:[], 1:[1})
sage: G.distance(0,1)
+Infinity
sage: G = Graph({ O0: {1: 1}, 1: {2: 1}, 2: {3: 1}, 3: {4: 2}, 4: {0: 2}},.,
—sparse = True)
sage: G.plot (edge_labels=True) .show() # long time
sage: G.distance (0, 3)
2
sage: G.distance (0, 3, by_weight=True)
3
distance_all_pairs (by_weight=False, algorithm=None, weight_function=None,
check_weight=True)
Returns the distances between all pairs of vertices.
INPUT:

* by_weight (boolean) - if True, the edges in the graph are weighted; if False, all edges have
weight 1.

* algorithm (string) - one of the following algorithms:

'BFS' - the computation is done through a BFS centered on each vertex successively. Works
only if by_weight==False.

'Floyd-Warshall-Cython' - the Cython implementation of the Floyd-Warshall algorithm.
Works only if by_weight==False.

'Floyd-Warshall-Python' - the Python implementation of the Floyd-Warshall algorithm.
Works also with weighted graphs, even with negative weights (but no negative cycle is allowed).

'Dijkstra_NetworkX': the Dijkstra algorithm, implemented in NetworkX. It works with
weighted graphs, but no negative weight is allowed.

'Dijkstra_Boost ': the Dijkstra algorithm, implemented in Boost (works only with positive
weights).

'Johnson_Boost ': the Johnson algorithm, implemented in Boost (works also with negative
weights, if there is no negative cycle).

None (default): Sage chooses the best algorithm: 'BFS' if by_weight is False,
'Dijkstra_Boost' if all weights are positive, 'Floyd-Warshall-Cython' otherwise.

e weight_function (function) - a function that takes as input an edge (u, v, 1) and outputs its
weight. If not None, by_weight is automatically set to True. If None and by_weight is True,
we use the edge label 1 as a weight.

* check_weight (boolean) - if True, we check that the weight_function outputs a number for each
edge.
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OUTPUT:
A doubly indexed dictionary

Note: There is a Cython version of this method that is usually much faster for large graphs, as most of
the time is actually spent building the final double dictionary. Everything on the subject is to be found in
the distances_all_pairs module.

Note: This algorithm simply calls GenericGraph.shortest_path_all_pairs (), and we sug-
gest to look at that method for more information and examples.

EXAMPLES:
The Petersen Graph:

sage: g = graphs.PetersenGraph ()

sage: print(g.distance_all_pairs())

{0: {(0: O, 1: 1, 2: 2, 3: 2, 4: 1, 5: 1, 6: 2, 7: 2, 8: 2, 9: 2}, 1: {0
—~1l: 0, 2: 1, 3: 2, 4: 2, 5: 2, 6: 1, 7: 2, 8: 2, 9: 2}, 2: {0: : :
- 3: 1, 4: 2, 5: 2, 6: 2, 7: 1, 8: 2, 9: 2}, 3: {0: 2, 1: 2, 2: 1, 3: 0, 4:
-1, 5: 2, 6: 2, 7: 2, 8: 1, 9: 2}, 4 : : : :

—~6: 2, 7: 2, 8: 2, 9: 1}, 5: {0: 1, 1: 2, 2: 2, 3: 2, 4: 2, 5: 0, 6: 2, 7: 1,
- 8: 1, 9: 2}, 6: {(O0: 2, 1: 1, 2: 2, 3: 2, 4: 2, 5: 2, 6: 0, 7: 2, 8: 1, 9
-1}, 7: {0: 2, 1: 2, 2: 1, 3: 2, 4: 2, 5: 1, 6: 2, 7: 0, 8: 2, 9: 1}, 8
-2, 1: 2, 2: 2, 3: 1, 4: 2, 5.1, 6: 1, 7: 2, 8: 0, 9: 2}, 9: {0: 2, 1: 2,
—~2: 2, 3: 2, 4: 1, 5: 2, 6: 1, 7: 8

Testing on Random Graphs:

sage: g = graphs.RandomGNP (20, .3)

sage: distances = g.distance_all_pairs()

sage: all([g.distance(0,v) == distances[0][v] for v in g])
True

See also:

e distance_matrix()

* shortest_path_all _pairs/()

distance_graph (dist)

Returns the graph on the same vertex set as the original graph but vertices are adjacent in the returned
graph if and only if they are at specified distances in the original graph.

INPUT:

e dist is a nonnegative integer or a list of nonnegative integers. Infinity may be used here to
describe vertex pairs in separate components.

OUTPUT:

The returned value is an undirected graph. The vertex set is identical to the calling graph, but edges of the
returned graph join vertices whose distance in the calling graph are present in the input dist. Loops will
only be present if distance O is included. If the original graph has a position dictionary specifying locations
of vertices for plotting, then this information is copied over to the distance graph. In some instances this
layout may not be the best, and might even be confusing when edges run on top of each other due to
symmetries chosen for the layout.
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EXAMPLES:

sage:
sage:
sage:

= graphs.CompleteGraph (3)

= G.cartesian_product (graphs.CompleteGraph (2))
H.distance_graph (2)

(

xR I Q
Il

O ORr oo
OO oRr o

O OO O -
ook or o3
O OOk O R —

To obtain the graph where vertices are adjacent if their distance apart is d or less use a range () command
to create the input, using d+1 as the input to range. Notice that this will include distance 0 and hence
place a loop at each vertex. To avoid this, use range (1, d+1).

sage: G = graphs.OddGraph (4)

sage: d = G.diameter ()

sage: n = G.num_verts()

sage: H = G.distance_graph(list (range(d+1)))
sage: H.is_isomorphic (graphs.CompleteGraph (n))
False

sage: H = G.distance_graph(list (range(l,d+1)))
sage: H.is_isomorphic (graphs.CompleteGraph (n))
True

A complete collection of distance graphs will have adjacency matrices that sum to the matrix of all ones.

sage: P = graphs.PathGraph (20)

sage: all_ones = sum([P.distance_graph(i).am() for i in range(20)])
sage: all_ones == matrix(ZzZ, 20, 20, [1]%400)
True

Four-bit strings differing in one bit is the same as four-bit strings differing in three bits.

sage: G = graphs.CubeGraph (4)
sage: H = G.distance_graph(3)
sage: G.is_isomorphic (H)

True

The graph of eight-bit strings, adjacent if different in an odd number of bits.

sage: G = graphs.CubeGraph(8) # long time
sage: H = G.distance_graph([1,3,5,7]) # long time

sage: degrees = [0]*sum([binomial(8,]j) for j in [1,3,5,71]1) # long time
sage: degrees.append(278) # long time

sage: degrees == H.degree_histogram() # long time

True

An example of using Infinity as the distance in a graph that is not connected.

sage: G = graphs.CompleteGraph (3)

sage: H = G.disjoint_union (graphs.CompleteGraph(2))
sage: L = H.distance_graph(Infinity)

sage: L.am()

(00 01 1]

[00 01 1]

(continues on next page)
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distance matrix (vertices=None, **kwds)

Return the distance matrix of (di)graph.
The (di)graph is expected to be (strongly) connected.

The distance matrix of a (strongly) connected (di)graph is a matrix whose rows and columns are by de-
fault (vertices == None) indexed with the positions of the vertices of the (di)graph in the ordering
vertices (). When vertices is set, the position of the vertices in this ordering is used. The inter-
section of row ¢ and column j contains the shortest path distance from the vertex at the i-th position to the
vertex at the j-th position.

Note that even when the vertices are consecutive integers starting from one, usually the vertex is not equal
to its index.

INPUT:

* vertices —list (default: None); the ordering of the vertices defining how they should appear in the
matrix. By default, the ordering given by vertices () is used. Because vertices () only works
if the vertices can be sorted, using vertices is useful when working with possibly non-sortable
objects in Python 3.

* All other arguments are forwarded to the subfunction distance _all pairs()

EXAMPLES:

sage: d = DiGraph({1l: [2, 31, 2: [3], 3: [4], 4 [11})
sage: d.distance_matrix/()

[0 1 1 2]

[3 01 2]

[2 30 1]

[1 2 2 0]

sage: d.distance_matrix(vertices=[4, 3, 2, 11)
[0 2 2 1]

[1 0 3 2]

[2 1 0 3]

[2 1 1 0]

sage: G = graphs.CubeGraph (3)
sage: G.distance_matrix/()
(0112122 3]

[1 021213 2]

[1 2012 31 2]

[2 11032 21]

[1 22 3011 2]

[2 1 32102 1]

[2 312120 1]

[32 21 2 1 1 0]

The well known result of Graham and Pollak states that the determinant of the distance matrix of any tree
of order n is (—1)"~(n — 1)2"~2:
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sage: all(T.distance_matrix().det() == (-1)"9%(9)*2"8 for T in graphs.
—trees (10))
True

See also:
* distance_all_pairs () —computes the distance between any two vertices.
distances_distribution (G)
Return the distances distribution of the (di)graph in a dictionary.
This method ignores all edge labels, so that the distance considered is the topological distance.
OUTPUT:

A dictionary d such that the number of pairs of vertices at distance k (if any) is equal to d[k] -

V(@] (VG =)

Note: We consider that two vertices that do not belong to the same connected component are at infinite
distance, and we do not take the trivial pairs of vertices (v, v) at distance 0 into account. Empty (di)graphs
and (di)graphs of order 1 have no paths and so we return the empty dictionary { }.

EXAMPLES:
An empty Graph:

sage: g = Graph()
sage: g.distances_distribution ()

{}

A Graph of order 1:

sage: g = Graph()
sage: g.add_vertex (1)
sage: g.distances_distribution ()

{}

A Graph of order 2 without edge:

sage: g = Graph()

sage: g.add_vertices([1,2])
sage: g.distances_distribution ()
{+Infinity: 1}

The Petersen Graph:

sage: g = graphs.PetersenGraph ()
sage: g.distances_distribution ()
{1: 1/3, 2: 2/3}

A graph with multiple disconnected components:

sage: g = graphs.PetersenGraph ()
sage: g.add_edge('good', 'wine')
sage: g.distances_distribution ()

{1: 8/33, 2: 5/11, +Infinity: 10/33}
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The de Bruijn digraph dB(2,3):

sage: D = digraphs.DeBruijn(2, 3)
sage: D.distances_distribution ()
{1: 1/4, 2: 11/28, 3: 5/14}

dominating_set (independent=False, total=False, value_only=False, solver=None, verbose=0)

Return a minimum dominating set of the graph.

A minimum dominating set S' of a graph G is a set of its vertices of minimal cardinality such that any
vertex of GG is in S or has one of its neighbors in .S. See the Wikipedia article Dominating_set.

As an optimization problem, it can be expressed as:
Minimize : Z by
veG

Such that : Yv € G, b, + Z by, >1
(u,v)€G.edges()

Va € G, b, is a binary variable
INPUT:

* independent — boolean (default: False); when True, computes a minimum independent
dominating set, that is a minimum dominating set that is also an independent set (see also
independent_set ())

* total — boolean (default: False); when True, computes a total dominating set (see the See the
Wikipedia article Dominating_set)

* value_only — boolean (default: False); whether to only return the cardinality of the computed
dominating set, or to return its list of vertices (default)

* solver — (default: None); specifies a Linear Program (LP) solver to be used. If set to None, the
default one is used. For more information on LP solvers and which default solver is used, see the
method solve of the class MixedIntegerLinearProgram.

* verbose — integer (default: 0); sets the level of verbosity. Set to 0 by default, which means quiet.
EXAMPLES:

A basic illustration on a PappusGraph:

sage: g = graphs.PappusGraph ()
sage: g.dominating_set (value_only=True)
5

If we build a graph from two disjoint stars, then link their centers we will find a difference between the
cardinality of an independent set and a stable independent set:

sage: g = 2 * graphs.StarGraph (5)

sage: g.add_edge (0, 6)

sage: len(g.dominating_set ())

2

sage: len(g.dominating_set (independent=True))
6

The total dominating set of the Petersen graph has cardinality 4:
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sage: G = graphs.PetersenGraph ()
sage: G.dominating_set (total=True, value_only=True)
4

The dominating set is calculated for both the directed and undirected graphs (modification introduced in
trac ticket #17905):

sage: g = digraphs.Path(3)

sage: g.dominating_set (value_only=True)
2

sage: g = graphs.PathGraph (3)

sage: g.dominating_set (value_only=True)
1

dominator_tree (g, root, return_dict=False, reverse=False)
Use Boost to compute the dominator tree of g, rooted at root.

A node d dominates a node n if every path from the entry node root to n must go through d. The
immediate dominator of a node n is the unique node that strictly dominates n but does not dominate any
other node that dominates n. A dominator tree is a tree where each node’s children are those nodes it
immediately dominates. For more information, see the Wikipedia article Dominator_(graph_theory).

If the graph is connected and undirected, the parent of a vertex v is:
* the root if v is in the same biconnected component as the root;
* the first cut vertex in a path from v to the root, otherwise.

If the graph is not connected, the dominator tree of the whole graph is equal to the dominator tree of the
connected component of the root.

If the graph is directed, computing a dominator tree is more complicated, and it needs time O(m logm),
where m is the number of edges. The implementation provided by Boost is the most general one, so it
needs time O(m log m) even for undirected graphs.

INPUT:
e g — the input Sage (Di)Graph
¢ root — the root of the dominator tree

e return_dict —boolean (default: False);if True, the function returns a dictionary associating to
each vertex its parent in the dominator tree. If False (default), it returns the whole tree, as a Graph
oraDiGraph.

¢ reverse —boolean (default: False); when set to True, computes the dominator tree in the reverse
graph

OUTPUT:

The dominator tree, as a graph or as a dictionary, depending on the value of return_dict. If the output
is a dictionary, it will contain None in correspondence of root and of vertices that are not reachable from
root. If the output is a graph, it will not contain vertices that are not reachable from root.

EXAMPLES:

An undirected grid is biconnected, and its dominator tree is a star (everyone’s parent is the root):

sage: g = graphs.GridGraph([2,2]) .dominator_tree((0,0))

sage: g.to_dictionary()

{0, 0): (O, 1), (1, O0), (1, 1)], (O, 1): [(O, O)], (1, 0): [(O, O)], (1
—1): [(0, 0)]}
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If the graph is made by two 3-cycles C7, Cs connected by an edge (v, w), with v € Cy, w € Ca, the cut
vertices are v and w, the biconnected components are Cy, Co, and the edge (v, w). If the root is in C1, the

parent of each vertex in (] is the root, the parent of w is v, and the parent of each vertex in Cs is w:

sage: G = 2 * graphs.CycleGraph (3)

sage: v = 0

sage: w = 3

sage: G.add_edge (v, w)

sage: G.dominator_tree(l, return_dict=True)

{0: 1, 1: None, 2: 1, 3: 0, 4: 3, 5: 3}

An example with a directed graph:

sage: g = digraphs.Circuit (10) .dominator_tree (5)

sage: g.to_dictionary ()

{0: (11, 1: [2], 2: [3]1, 3: [41, 4: [1, 5: [6], 6: [7], 7: [8], 8: [9], 9:
—[0]}

sage: g = digraphs.Circuit (10) .dominator_tree (5, reverse=True)

sage: g.to_dictionary()

{0: [9], 1: [0], 2: [1], 3: [2], 4: [3], 5: (4], 6: [], 7: [6], 8: [7]1, 9:
—[8]}

If the output is a dictionary:

sage: graphs.GridGraph([2,2]) .dominator_tree((0,0), return_dict=True)
{(0, 0): None, (0, 1): (0, O), (1, O0): (0, 0), (1, 1): (0, 0)}
eccentricity (v=None, by_weight=Fualse, algorithm=None, weight_function=None,

check_weight=True, dist_dict=None, with_labels=False)
Return the eccentricity of vertex (or vertices) v.

The eccentricity of a vertex is the maximum distance to any other vertex.
For more information and examples on how to use input variables, see shortest_paths ()
INPUT:

v - either a single vertex or a list of vertices. If it is not specified, then it is taken to be all vertices.

* by_weight — boolean (default: False);if True, edge weights are taken into account; if False, all

edges have weight 1

* algorithm - string (default: None); one of the following algorithms:

— '"BFS' - the computation is done through a BFS centered on each vertex successively. Works
only if by_weight==False.

— 'Floyd-Warshall-Cython' - a Cython implementation of the Floyd-Warshall algorithm.
Works only if by_weight==Falseandv is None.

— 'Floyd-Warshall-Python' - a Python implementation of the Floyd-Warshall algorithm.
Works also with weighted graphs, even with negative weights (but no negative cycle is allowed).
However, v must be None.

— 'Dijkstra_NetworkX' - the Dijkstra algorithm, implemented in NetworkX. It works with
weighted graphs, but no negative weight is allowed.

— 'Dijkstra_Boost' -the Dijkstra algorithm, implemented in Boost (works only with positive
weights).

— 'Johnson_Boost "' - the Johnson algorithm, implemented in Boost (works also with negative
weights, if there is no negative cycle).
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— 'From_Dictionary' - uses the (already computed) distances, that are provided by input
variable dist_dict.

— None (default): Sage chooses the best algorithm: 'From_Dictionary' if dist_dict is
not None, 'BFS' for unweighted graphs, 'Dijkstra_Boost' if all weights are positive,
'Johnson_Boost ' otherwise.

* weight_function — function (default: None); a function that takes as input an edge (u, v,
1) and outputs its weight. If not None, by_weight is automatically set to True. If None and
by_weight is True, we use the edge label 1 as a weight.

e check_weight — boolean (default: True); if True, we check that the weight_function
outputs a number for each edge

e dist_dict - a dictionary (default: None); a dict of dicts of distances (used only if
algorithm=='From_Dictionary"')

* with_labels —boolean (default: False); whether to return a list or a dictionary keyed by vertices.

EXAMPLES:

sage: G = graphs.KrackhardtKiteGraph ()
sage: G.eccentricity()

(4, 4, 4, 4, 4, 3, 3, 2, 3, 4]

sage: G.vertices()

(o, 1, 2, 3, 4, 5, 6, 7, 8, 9]

sage: G.eccentricity(7)

2

sage: G.eccentricity([7,8,9])

[3, 4, 2]

sage: G.eccentricity([7,8,9], with_labels=True) == {8: 3, 9: 4, 7: 2}
True

sage: G = Graph( { O = [1, 1 =« [1, 2 ¢ [11 } )

sage: G.eccentricity()

[+Infinity, +Infinity, +Infinity]

sage: G = Graph({0:[1})

sage: G.eccentricity(with_labels=True)

{0: 0}

sage: G = Graph({0:[], 1:[1})

sage: G.eccentricity(with_labels=True)

{0: +Infinity, 1: +Infinity}

sage: G = Graph([(0,1,1), (1,2,1), (0,2,3)1)

sage: G.eccentricity(algorithm = 'BFS'")

[1, 1, 1]

sage: G.eccentricity(algorithm = 'Floyd-Warshall-Cython')

(1, 1, 1]

sage: G.eccentricity(by_weight = True, algorithm = 'Dijkstra NetworkX'")
(2, 1, 2]

sage: G.eccentricity(by_weight = True, algorithm = 'Dijkstra_Boost')
(2, 1, 2]

sage: G.eccentricity(by_weight = True, algorithm = 'Johnson_ Boost')

(2, 1, 2]

sage: G.eccentricity(by_weight = True, algorithm = 'Floyd-Warshall-Python')
(2, 1, 2]

sage: G.eccentricity(dist_dict = G.shortest_path_all_pairs(by_weight =
—True) [0])
(2, 1, 2]

[

edge_boundary (verticesl, vertices2=None, labels=True, sort=False)

Return a list of edges (u, v, 1) withuin verticesl and vinvertices2.
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If vertices2 is None, then it is set to the complement of verticesl.
In a digraph, the external boundary of a vertex v are those vertices u with an arc (v, u).
INPUT:
* labels —boolean (default: True); if False, each edge is a tuple (u, v) of vertices
e sort —boolean (default False); whether to sort the result

EXAMPLES:

sage: K = graphs.CompleteBipartiteGraph (9, 3)

sage: len(K.edge_boundary ([0, 1, 2, 3, 4, 5, 6, 7, 81, [9, 10, 111))
27

sage: K.size()

27

Note that the edge boundary preserves direction:

sage: K = graphs.CompleteBipartiteGraph(9, 3).to_directed()

sage: len (K.edge_boundary([0, 1, 2, 3, 4, 5, 6, 7, 81, [9, 10, 111))
27

sage: K.size()

54

sage: D = DiGraph ({0: [1, 2], 3: [0]})

sage: D.edge_boundary ([0], sort=True)

[(O, 1, None), (0, 2, None)]

sage: D.edge_boundary([0], labels=False, sort=True)
[(0, 1), (0, 2)]

edge_connectivity (G, value_only=True, implementation=None, use_edge_labels=False, ver-

tices=False, solver=None, verbose=0)
Return the edge connectivity of the graph.

For more information, see the Wikipedia article Connectivity_(graph_theory).

Note: When the graph is a directed graph, this method actually computes the strong connectivity, (i.e.
a directed graph is strongly k-connected if there are k disjoint paths between any two vertices u,v). If
you do not want to consider strong connectivity, the best is probably to convert your DiGraph object to a
Graph object, and compute the connectivity of this other graph.

INPUT:

e G — the input Sage (Di)Graph

e value_only —boolean (default: True)
— When set to True (default), only the value is returned.
— When set to False, both the value and a minimum vertex cut are returned.

e implementation — string (default: None); selects an implementation:
— None (default) — selects the best implementation available
— "boost" — use the Boost graph library (which is much more efficient). It is not available when

edge_labels=True, and it is unreliable for directed graphs (see trac ticket #18753).

-"Sage" - use Sage’s implementation based on integer linear programming
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¢ use_edge_labels —boolean (default: False)

— When set to True, computes a weighted minimum cut where each edge has a weight defined by
its label. (If an edge has no label, 1 is assumed.). Implies boost =False.

— When set to False, each edge has weight 1.
e vertices —boolean (default: False)

— When set to True, also returns the two sets of vertices that are disconnected by the cut. Implies
value_only=False.

e solver - string (default: None); specify a Linear Program (LP) solver to be used (ignored
if implementation="'boost"'). If set to None, the default one is used. For more infor-
mation on LP solvers and which default solver is used, see the method solve of the class
MixedIntegerLinearProgram.

* verbose —integer (default: 0); sets the level of verbosity. Set to 0 by default, which means quiet.
EXAMPLES:
A basic application on the PappusGraph:

sage: from sage.graphs.connectivity import edge_connectivity
sage: g = graphs.PappusGraph ()

sage: edge_connectivity (g)

3

sage: g.edge_connectivity ()

3

The edge connectivity of a complete graph is its minimum degree, and one of the two parts of the bipartition
is reduced to only one vertex. The graph of the cut edges is isomorphic to a Star graph:

sage: g = graphs.CompleteGraph (5)

sage: [ value, edges, [ setA, setB ]] = edge_connectivity(g,vertices=True)
sage: value

4

sage: len(setA) == 1 or len(setB) == 1

True

sage: cut = Graph()

sage: cut.add_edges (edges)

sage: cut.is_isomorphic (graphs.StarGraph(4))
True

Even if obviously in any graph we know that the edge connectivity is less than the minimum degree of the

graph:

sage: g = graphs.RandomGNP (10, .3)

sage: min(g.degree()) >= edge_connectivity(qg)
True

If we build a tree then assign to its edges a random value, the minimum cut will be the edge with minimum
value:

sage: tree = graphs.RandomTree (10)

sage: for u,v in tree.edge_iterator (labels=None) :

et tree.set_edge_label (u, v, random())

sage: minimum = min(tree.edge_labels())

sage: [_, [(_, _, 1)]] = edge_connectivity(tree, value_only=False, use_edge_
—labels=True)

(continues on next page)

1.1. Generic graphs (common to directed/undirected) 67


../../../../../../html/en/reference/numerical/sage/numerical/mip.html#sage.numerical.mip.MixedIntegerLinearProgram.solve
../../../../../../html/en/reference/numerical/sage/numerical/mip.html#sage.numerical.mip.MixedIntegerLinearProgram

Sage Reference Manual: Graph Theory, Release 8.6

(continued from previous page)

sage: 1 == minimum
True

When value_only=True and implementation="sage", this function is optimized for small con-
nectivity values and does not need to build a linear program.

It is the case for graphs which are not connected

sage: g = 2 * graphs.PetersenGraph ()
sage: edge_connectivity (g, implementation="sage")
0.0

For directed graphs, the strong connectivity is tested through the dedicated function:

sage: g = digraphs.ButterflyGraph (3)
sage: edge_connectivity (g, implementation="sage")
0.0

‘We check that the result with Boost is the same as the result without Boost:

sage: g = graphs.RandomGNP (15, .3)

sage: edge_connectivity (g, implementation="boost") == edge_connectivity (g,
—implementation="sage")
True

Boost interface also works with directed graphs:

sage: edge_connectivity (digraphs.Circuit (10), implementation="boost",
—vertices=True)
(1, o, 1)1, {0y, {1, 2, 3, 4, 5, 6, 7, 8, 9}1]

However, the Boost algorithm is not reliable if the input is directed (see trac ticket #18753):

sage: g = digraphs.Path(3)

sage: edge_connectivity (qg)

0.0

sage: edge_connectivity (g, implementation="boost")
1

sage: g.add_edge(l, 0)

sage: edge_connectivity(qg)

0.0

sage: edge_connectivity (g, implementation="boost")
0

edge_cut (s, t, value_only=True, use_edge_labels=False, vertices=False, algorithm="FF’,

solver=None, verbose=0)
Return a minimum edge cut between vertices s and ¢.

A minimum edge cut between two vertices s and ¢ of self is a set A of edges of minimum weight such
that the graph obtained by removing A from the graph is disconnected. For more information, see the
Wikipedia article Cut_(graph_theory).

INPUT:
* 5 —source vertex

e t —sink vertex
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* value_only — boolean (default: True); whether to return only the weight of a minimum cut
(True) or a list of edges of a minimum cut (False)

* use_edge_labels — boolean (default: False); whether to compute a weighted minimum edge
cut where the weight of an edge is defined by its label (if an edge has no label, 1 is assumed), or to
compute a cut of minimum cardinality (i.e., edge weights are set to 1)

* vertices — boolean (default: False); whether set to True, return a list of edges in the edge cut
and the two sets of vertices that are disconnected by the cut

Note: vertices=True implies value_only=False.

* algorithm - string (default: 'FF '); algorithm to use:

— Ifalgorithm = "FF", aPython implementation of the Ford-Fulkerson algorithm is used
— Ifalgorithm = "LP", the problem is solved using Linear Programming.
— If algorithm = "igraph", the igraph implementation of the Goldberg-Tarjan algorithm is

used (only available when igraph is installed)

If algorithm = None, the problem is solved using the default maximum flow algorithm (see
flow())

¢ solver - string (default: None); specifies a Linear Program (LP) solver to be used. If set to None,
the default one is used. For more information on LP solvers and which default solver is used, see the
method solve of the class MixedIntegerLinearProgram.

* verbose —integer (default: 0); sets the level of verbosity. Set to 0 by default, which means quiet.

Note: The use of Linear Programming for non-integer problems may possibly mean the presence of a
(slight) numerical noise.

OUTPUT:

Real number or tuple, depending on the given arguments (examples are given below).
EXAMPLES:

A basic application in the Pappus graph:

sage: g = graphs.PappusGraph ()
sage: g.edge_cut(l, 2, wvalue_only=True)
3

Or on Petersen’s graph, with the corresponding bipartition of the vertex set:

sage: g = graphs.PetersenGraph ()

sage: g.edge_cut (0, 3, vertices=True)

(3, [((0, 1, None), (O, 4, None), (0, 5, None)], [[O], [1, 2, 3, 4, 5, 6, 7, 8,
< 9111

If the graph is a path with randomly weighted edges:

sage: g = graphs.PathGraph(15)
sage: for u,v in g.edge_iterator (labels=None) :
et g.set_edge_label (u, v, random())

The edge cut between the two ends is the edge of minimum weight:
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sage: minimum = min(g.edge_labels())

sage: minimum == g.edge_cut (0, 14, use_edge_labels=True)

True

sage: [value, [e]] = g.edge_cut (0, 14, use_edge_labels=True, value_only=False)
sage: g.edge_label(e[0], e[l]) == minimum

True

The two sides of the edge cut are obviously shorter paths:

sage: value,edges, [setl,set2] = g.edge_cut (0, 14, use_edge_labels=True,
—vertices=True)

sage: g.subgraph(setl) .is_isomorphic (graphs.PathGraph(len(setl)))

True

sage: g.subgraph(set2) .is_isomorphic (graphs.PathGraph (len(set2)))

True

sage: len(setl) + len(set2) == g.order()

True

edge_disjoint_paths (s, 1, algorithm="FF’, solver=None, verbose=False)

Return a list of edge-disjoint paths between two vertices.

The edge version of Menger’s theorem asserts that the size of the minimum edge cut between two vertices
s and‘t* (the minimum number of edges whose removal disconnects s and t) is equal to the maximum
number of pairwise edge-independent paths from s to t.

This function returns a list of such paths.
INPUT:
* algorithm - string (default: "FF"); the algorithm to use among:
— "FF", a Python implementation of the Ford-Fulkerson algorithm
— "LP", the flow problem is solved using Linear Programming

e solver - string (default: None); specifies a Linear Program (LP) solver to be used. If set to None,
the default one is used. For more information on LP solvers and which default solver is used, see the
method solve of the class MixedIntegerLinearProgram.

* verbose —integer (default: 0); sets the level of verbosity. Set to 0 by default, which means quiet.

Note: This function is topological: it does not take the eventual weights of the edges into account.

EXAMPLES:

In a complete bipartite graph

sage: g = graphs.CompleteBipartiteGraph (2, 3)
sage: g.edge_disjoint_paths (0, 1)
(o, 2, 11, [0, 3, 11, [0, 4, 1]]

edge_disjoint_spanning_trees (k, root=None, solver=None, verbose=0)

Return the desired number of edge-disjoint spanning trees/arborescences.
INPUT:
* k —integer; the required number of edge-disjoint spanning trees/arborescences

* root — vertex (default: None); root of the disjoint arborescences when the graph is directed. If set
to None, the first vertex in the graph is picked.
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e solver - string (default: None); specify a Linear Program (LP) solver to be used. If set to None,
the default one is used. For more information on LP solvers and which default solver is used, see the
method solve of the class MixedIntegerLinearProgram.

* verbose — integer (default: 0); sets the level of verbosity. Set to 0 by default, which means quiet.
ALGORITHM:
Mixed Integer Linear Program. The formulation can be found in [LPForm].
There are at least two possible rewritings of this method which do not use Linear Programming:

 The algorithm presented in the paper entitled “A short proof of the tree-packing theorem”, by Thomas
Kaiser [KaisPacking].

* The implementation of a Matroid class and of the Matroid Union Theorem (see section 42.3 of
[SchrijverCombOpt]), applied to the cycle Matroid (see chapter 51 of [SchrijverCombOpt]).

EXAMPLES:

The Petersen Graph does have a spanning tree (it is connected):

sage: g = graphs.PetersenGraph ()

sage: [T] = g.edge_disjoint_spanning_trees (1)
sage: T.is_tree()

True

Though, it does not have 2 edge-disjoint trees (as it has less than 2(|V| — 1) edges):

sage: g.edge_disjoint_spanning_trees(2)
Traceback (most recent call last):

EmptySetError: this graph does not contain the required number of trees/
—arborescences

By Edmond’s theorem, a graph which is k-connected always has k edge-disjoint arborescences, regardless
of the root we pick:

sage: g = digraphs.RandomDirectedGNP (28, .3) # reduced from 30 to 28, cf.

#9584
sage: k = Integer (g.edge_connectivity())
sage: arborescences = g.edge_disjoint_spanning_trees (k) # long time (up to,

—~15s on sage.math, 2011)

sage: all([a.is_directed_acyclic() for a in arborescences]) # long time
True

sage: all(a.is_connected() for a in arborescences) # long time

True

In the undirected case, we can only ensure half of it:

sage: g = graphs.RandomGNP (30, .3)
sage: k = Integer (g.edge_connectivity()) // 2

sage: trees = g.edge_disjoint_spanning_trees (k)
sage: all(t.is_tree() for t in trees)

True

REFERENCES:

edge_iterator (vertices=None, labels=True, ignore_direction=False)
Return an iterator over edges.

1.1. Generic graphs (common to directed/undirected) 71


../../../../../../html/en/reference/numerical/sage/numerical/mip.html#sage.numerical.mip.MixedIntegerLinearProgram.solve
../../../../../../html/en/reference/numerical/sage/numerical/mip.html#sage.numerical.mip.MixedIntegerLinearProgram

Sage Reference Manual: Graph Theory, Release 8.6

The iterator returned is over the edges incident with any vertex given in the parameter vertices. If the
graph is directed, iterates over edges going out only. If vertices is None, then returns an iterator over
all edges. If self is directed, returns outgoing edges only.

INPUT:
e vertices — object (default: None); a vertex, a list of vertices or None
* labels - boolean (defaul: True); if False, each edge is a tuple (u,v) of vertices

¢ ignore_direction - boolean (defaul: False); only applies to directed graphs. If True,
searches across edges in either direction.

EXAMPLES:

sage: for 1 in graphs.PetersenGraph () .edge_iterator ([0]):
....: print(i)

(0, 1, None)

(0, 4, None)

(0, 5, None)

sage: D = DiGraph({O: [1, 2], 1: [01})

sage: for i1 in D.edge_iterator ([0]):

....: print(i)

(0, 1, None)

(0, 2, None)

sage: G = graphs.TetrahedralGraph ()
sage: list (G.edge_iterator (labels=False))
(o, 1), o, 2), (0, 3), (1, 2), (1, 3), (2, 3)]

sage: D = DiGraph({1l: [0], 2: [0]})

sage: list(D.edge_iterator (0))

[]

sage: list(D.edge_iterator (0, ignore_direction=True))
[(1, O, None), (2, 0, None)]

edge_label (u,v)

Return the label of an edge.
If the graph allows multiple edges, then the list of labels on the edges is returned.

See also:
* set_edge label ()

EXAMPLES:

sage: G = Graph({0: {1: 'edgelabel'}})

sage: G.edge_label (0, 1)

'edgelabel’

sage: D = DiGraph({1l: {2: 'up'}, 2: {1: 'down'}})
sage: D.edge_label (2, 1)

'down'

sage: G = Graph(multiedges=True)

sage: [G.add_edge (0, 1, i) for i in range(l, 6)]
[None, None, None, None, None]

sage: sorted(G.edge_label (0, 1))

(1, 2, 3, 4, 5]
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edge_labels ()
Return a list of the labels of all edges in self.

The output list is not sorted.

EXAMPLES:

sage: G = Graph({0: {1: 'x', 2: 'z', 3: 'a'}, 2: {5: 'out'}},
sage: G.edge_labels()

['x'", 'z', 'a', 'out']

sage: G = DiGraph({0: {1: 'x'
sage: G.edge_labels ()

['x'", 'z', 'a', 'out']

sparse=True)

, 2: 'z', 3: 'a'}, 2: {5: 'out'}}, sparse=True)

edges (labels=True, sort=True, key=None)
Return a list of edges.

Each edge is a triple (u, v, 1) where u and v are vertices and 1 is a label. If the parameter 1abels
is False then alist of couple (u, v) isreturned where u and v are vertices.

INPUT:
e labels —boolean (default: True); if False, each edge is simply a pair (u, wv) of vertices
e sort —boolean (default: True); if True, edges are sorted according to the default ordering

* key — a function (default: None); a function that takes an edge (a pair or a triple, according to the

labels keyword) as its one argument and returns a value that can be used for comparisons in the
sorting algorithm

OUTPUT: A list of tuples. It is safe to change the returned list.

Warning: Since any object may be a vertex, there is no guarantee that any two vertices will be
comparable, and thus no guarantee how two edges may compare. With default objects for vertices (all
integers), or when all the vertices are of the same simple type, then there should not be a problem with
how the vertices will be sorted. However, if you need to guarantee a total order for the sorting of the
edges, use the key argument, as illustrated in the examples below.

EXAMPLES:

sage: graphs.DodecahedralGraph () .edges ()

[(0, 1, None), (O, 10, None), (0, 19, None), (1, 2, None), (1, 8, None), (2,
-3, None), (2, 6, None), (3, 4, None), (3, 19, None), (4, 5, None), (4, 17,
—None) , 5, 6, None), (5, 15, None), (6, 7, None), (7, 8, None), (7, 14,_

8, 9, None), (9, 10, None), (9, 13, None), (10, 11, None), (11, 12,
11, 18, None), (12, 13, None), (12, 16, None), (13, 14, None), (14,
), (15, 16, None), (16, 17, None), (17, 18, None), (18, 19, None)]

(
—None) , (
—None), (
15, None

sage: graphs.DodecahedralGraph () .edges (labels=False)
[(0, 1), (0, 10), (0, 19), (1, 2y, (1, 8), (2, 3), (2, 6), (3, 4), (3, 19,
—~ (4, 5), (4, 17), (5, 6), (5, 15, (6, 7), (7, 8), (7, 14), (8, 9), (9, 10),.
- (9, 13), (10, 11), (11, 12), (11, 18), (12, 13), (12, 16), (13, 14), (14
—15), (15, 16), (16, 17), (17, 18), (18, 19)]

sage: D = graphs.DodecahedralGraph () .to_directed()
sage: D.edges|()
[(0, 1, None), (0, 10, None), (0, 19, None), (1, 0, None), (1, 2, None), (1

-8, None), (2, 1, None), (2, 3, None), (2, 6, None), (3, 2, None), (3, 4
—None) ,

—None) ,

s

L=

(3, 19, None), (4, 3, None), (4, 5, None), (4, 17, Noné&gontingesognextpage)
(5,

6, None), (5, 15, None), (6, 2, None), (6, 5, None), (6, 7

—None) (7, 6, Nonie),. ( 8, None) , 14, NoneJ), (8, L, None), (8, 7,.
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(continued from previous page)

sage: D.edges (labels=False)

(¢o, 1), (o, 10), (0, 19, (1, 0), (1, 2), (1, 8), (2, L), (2, 3), (2, 6), (3,
—~ 2), (3, 4), (3, 19), (4, 3), (4, 5), (4, 17), (5, 4), (5, 6), (5, 15, (6,
~2), (6, 5), (6, 7), (7, 6), (7, 8), (7, 14), (8, 1), (8, 7), (8, 9, (9, 8),
- (9, 10), (9, 13), (10, 0), (10, 9, (10, 11), (112, 10), (11, 12), (11, 18),
- (12, 11), (12, 13), (12, 16), (13, 9), (13, 12), (13, 14), (14, 7), (14,
—13), (14, 15), (15, 5), (15, 14), (15, 16), (le6, 12), (le6, 15), (le6, 17),,
(17, 4y, (17, 16), (17, 18), (18, 11), (18, 17), (18, 19), (19, 0), (19, 3),
— (19, 18)]

The default is to sort the returned list in the default fashion, as in the above examples. This can be
overridden by specifying a key function. This first example just ignores the labels in the third component
of the triple:

sage: G = graphs.CycleGraph (5)
sage: G.edges (key=lambda x: (x[1], -x[0]))
[(0O, 1, None), (1, 2, None), (2, 3, None), (3, 4, None), (0, 4, None)]

We set the labels to characters and then perform a default sort followed by a sort according to the labels:

sage: G = graphs.CycleGraph (5)

sage: for e in G.edges(sort=False):

et G.set_edge_label(e[0], e[l], chr(ord('A') + e[0] + 5 % e[1]))
sage: G.edges (sort=True)

(o, 1, '#"y, (0, 4, 'U"y, (1, 2, 'L"), (2, 3, 'R"), (3, 4, 'X")]
sage: G.edges (key=lambda x: x[2])

r(o, 1, '#"y, (1, 2, 'L"), (2, 3, 'R"), (O, 4, 'U"), (3, 4, 'X")]

edges_incident (vertices=None, labels=True, sort=False)
Return incident edges to some vertices.

If vertices' is a vertex, then it returns the list of edges incident to
that vertex. If "“vertices is a list of vertices then it returns the list of all edges adjacent
to those vertices. If vertices is None, it returns a list of all edges in graph. For digraphs, only lists
outward edges.

INPUT:
* vertices — object (default: None); a vertex, a list of vertices or None
* labels - boolean (default: True); if False, each edge is a tuple (u,v) of vertices
e sort —boolean (default: False); if True the returned list is sorted

EXAMPLES:

sage: graphs.PetersenGraph() .edges_incident ([0, 9], labels=False)
(¢, 1)y, (o, 4), (0, 5, (4, 9), (6, 9), (7, 9]

sage: D = DiGraph({0: [11})

sage: D.edges_incident ([0])

[(0, 1, None)]

sage: D.edges_incident ([1])

[]

eigenspaces (laplacian=False)
Return the right eigenspaces of the adjacency matrix of the graph.

INPUT:

74 Chapter 1. Graph objects and methods




Sage Reference Manual: Graph Theory, Release 8.6

* laplacian - boolean (default: False); if True, use the Laplacian matrix (see
kirchhoff matrix())
OUTPUT:

A list of pairs. Each pair is an eigenvalue of the adjacency matrix of the graph, followed by the vector
space that is the eigenspace for that eigenvalue, when the eigenvectors are placed on the right of the matrix.

For some graphs, some of the eigenspaces are described exactly by vector spaces over a
NumberField (). For numerical eigenvectors use eigenvectors ().

EXAMPLES:

sage: P = graphs.PetersenGraph()

sage: P.eigenspaces|()

[

(3, Vector space of degree 10 and dimension 1 over Rational Field
User basis matrix:

(1111111111,

(-2, Vector space of degree 10 and dimension 4 over Rational Field
User basis matrix:

[r o 0o 0-1 -1 -1 0 1 1]

0 1 0 0-1 0-2-1 1 2]

0 1 0-1 1-1-2 0 2]

o o0 1-1 1 0-1-1 11),

1, Vector space of degree 10 and dimension 5 over Rational Field

[

[

[

(1,

User basis matrix:

[1 0O O O O 1 -1 0 0 -1]
[0 1 0 O 0-1 1 -1 0 O0]
[0 O 1 0O 0O 0-1 1-1 0]
[0 0O O 1 0 0 0-1 1 -1]
(0o 0o 0 0O 1-1 0 O0-1 11)

Eigenspaces for the Laplacian should be identical since the Petersen graph is regular. However, since the
output also contains the eigenvalues, the two outputs are slightly different:

sage: P.eigenspaces (laplacian=True)

[

(0, Vector space of degree 10 and dimension 1 over Rational Field
User basis matrix:

(r1111111111),

(5, Vector space of degree 10 and dimension 4 over Rational Field
User basis matrix:

1 0 0 0-1-1-1 0 1 1]

0 1 0 0-1 0-2-1 1 2]

0 0 1 0-1 1-1-2 0 2]

o 0 0o 1-1 1 0-1-1 11),

, Vector space of degree 10 and dimension 5 over Rational Field
User basis matrix:

0o 0 o0 o0 1-1 0 0 -1]

[
[
[
[
(2

(

(0 1 0 O O0-1 1 -1 0 0]
(0O O 1 O O O0-1 1 -1 0]
[O O O 1 O O O0-1 1 -1]
(0O O O 0O 1 -1 0 0 -1 11)

]

Notice how one eigenspace below is described with a square root of 2. For the two possible values (positive
and negative) there is a corresponding eigenspace:
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sage: C = graphs.CycleGraph (8)

sage: C.eigenspaces()

[

(2, Vector space of degree 8 and dimension 1 over Rational Field

User basis matrix:

(r11111111),

(-2, Vector space of degree 8 and dimension 1 over Rational Field

User basis matrix:

(1 -1 1 -1 1 -1 1 -11),

(0, Vector space of degree 8 and dimension 2 over Rational Field

User basis matrix:

(1 O0-1 0 1 0 -1 0]

(0O 1 0-1 0 1 0 -11),

(a3, Vector space of degree 8 and dimension 2 over Number Field in a3 with_
—~defining polynomial x"2 - 2

User basis matrix:

[ 1 0 -1 -a3 -1 0 1 a3]

[ O 1 a3 1 0 -1 -a3 -11])

]

A digraph may have complex eigenvalues and eigenvectors. For a 3-cycle, we have:

sage: T = DiGraph({O: [1], 1: [2], 2: [O]})

sage: T.eigenspaces()

[

(1, Vector space of degree 3 and dimension 1 over Rational Field

User basis matrix:

(11 11),

(al, Vector space of degree 3 and dimension 1 over Number Field in al with_
—~defining polynomial x72 + x + 1

User basis matrix:

[ 1 al -al - 1])

]

eigenvectors (laplacian=False)

Return the right eigenvectors of the adjacency matrix of the graph.

INPUT:
e laplacian - boolean (default: False); if True, use the Laplacian matrix (see
kirchhoff_matrix())

OUTPUT:

A list of triples. Each triple begins with an eigenvalue of the adjacency matrix of the graph. This is
followed by a list of eigenvectors for the eigenvalue, when the eigenvectors are placed on the right side
of the matrix. Together, the eigenvectors form a basis for the eigenspace. The triple concludes with the
algebraic multiplicity of the eigenvalue.

For some graphs, the exact eigenspaces provided by eigenspaces () provide additional insight into the
structure of the eigenspaces.

EXAMPLES:

sage: P = graphs.PetersenGraph ()
sage: P.eigenvectors ()
(3, [

(continues on next page)
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(x, o, o0, 0, -1, -1, -1, 0, 1, 1),
(6, 1, o, 0, -1, 0, -2, -1, 1, 2),
(0, 0, 1, 0, -1, 1, -1, -2, 0, 2),
(0, o, 0, 1, -1, 1, 0, -1, -1, 1)

I 4y, (1, 1

(x, o, o0, 0, 0, 1, -1, 0, O, -1),
(0, ., 0, 0, 0, -1, 1, -1, 0, 0),
(0, 0, », 0, 0, 0, -1, 1, -1, 0),
(0, o, 0, ., 0, 0, 0, -1, 1, -1),
(0, o, 0, 0, 1, -1, 0, 0, -1, 1)

)

~
a
N

Eigenspaces for the Laplacian should be identical since the Petersen graph is regular. However, since the
output also contains the eigenvalues, the two outputs are slightly different:

sage: P.eigenvectors (laplacian=True)
(0, I

(¢, 2, 1, 1, 1, 1, 1, 1, 1, 1)

I, 1), (5, [

(x, o, o0, 0, -1, -1, -1, 0, 1, 1),
(6, 1, o0, 0, -1, 0, -2, -1, 1, 2),
(0, 0, 1, 0, -1, 1, -1, -2, 0, 2),
(0, o, 0, 1, -1, 1, 0, -1, -1, 1)
I, 4, (2, 1

(x, o, o, 0, 0, 1, -1, 0, O, -1),
(0, 1, o, 0, 0, -1, 1, -1, 0, 0),
(0, 0, », 0, 0, 0, -1, 1, -1, 0),
(0, o, 0, ., 0, 0, 0, -1, 1, -1),
(0, o, 0, 0, 1, -1, 0, 0, -1, 1)
I, 51

sage: C = graphs.CycleGraph(8)
sage: C.eilgenvectors()

(2, I

(1, 1, 1, 1, 1, 1, 1, 1)
I, 1)y (=2, 1
(1, -1, 1, -1, 1, -1, 1, -1)
I, 1), (0, 1

)
(x, 0, -1, 0, 1, O, -1, 0),
(0, 1, 0, -1, o, 1, 0, -1)

1, 2), (-1.4142135623..., [(1, O, -1, 1.4142135623..., -1, 0, 1, -1.
—4142135623...), (0, 1, -1.4142135623..., 1, 0, -1, 1.4142135623..., -1)1,.
—2), (1.4142135623..., [(1, O, -1, -1.4142135623..., -1, 0, 1, 1.4142135623..
—.), (0, 1, 1.4142135623..., 1, 0, -1, -1.4142135623..., -1)1, 2)]

A digraph may have complex eigenvalues. Previously, the complex parts of graph eigenvalues were being
dropped. For a 3-cycle, we have:

sage: T = DiGraph({O:[1], 1:[2], 2:[01})
sage: T.eigenvectors()

(1, I

(1, 1, 1)

], 1), (-0.5000000000... - 0.8660254037...*I, [(1, -0.5000000000... — O.
—8660254037...xI, —-0.5000000000... + 0.8660254037...%I)], 1), (-0.5000000000.
—.. + 0.8660254037...xI, [(1, -0.5000000000... + 0.8660254037...xI, -0.
—5000000000... - 0.8660254037...%xI)], 1)]
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eulerian_circuit (return_vertices=False, labels=True, path=False)
Return a list of edges forming an Eulerian circuit if one exists.

If no Eulerian circuit is found, the method returns False.

This is implemented using Hierholzer’s algorithm.

INPUT:
¢ return_vertices - boolean (default: False); optionally provide a list of vertices for the path
* labels - boolean (default: True); whether to return edges with labels (3-tuples)
e path —boolean (default: False); find an Eulerian path instead

OUTPUT:

either ([edges], [vertices]) or [edges] of an Eulerian circuit (or path)

EXAMPLES:

sage: g = graphs.CycleGraph(5)

sage: g.eulerian_circuit ()

[(O, 4, None), (4, 3, None), (3, 2, None), (2, 1, None), (1, 0, None)]
sage: g.eulerian_circuit (labels=False)

[0, 4), (4, 3), (3, 2), (2, 1), (1, 0)]

sage: g = graphs.CompleteGraph (7)

sage: edges, vertices = g.eulerian_circuit (return_vertices=True)
sage: vertices

(o, 6, 5, 4, 6, 3, 5, 2, 4, 3, 2, 6, 1, 5, 0, 4, 1, 3, 0, 2, 1, 0]

sage: graphs.CompleteGraph(4) .eulerian_circuit ()
False

A disconnected graph can be Eulerian:

sage: g = Graph({O0: [], 1: [2], 2: [3], 3: [1], 4: [1})
sage: g.eulerian_circuit (labels=False)
[(1, 3), (3, 2), (2, 1)]

sage: g = DiGraph({O: [1], 1: [2, 41, 2:[3]1, 3:[11})
sage: g.eulerian_circuit (labels=False, path=True)
(o, 1y, 1, 2y, (2, 3), (3, 1), (1, 4)]

sage: g = Graph({0:[1,2,31, 1:[2,3]1, 2:[3,41, 3:[41})
sage: g.is_eulerian (path=True)

(0, 1)
sage: g.eulerian_circuit (labels=False, path=True)
((L, 3), (3, 4), (4, 2), (2, 3), (3, 0), (O, 2), (2, 1), (1, 0)]

eulerian orientation|()
Return a DiGraph which is an Eulerian orientation of the current graph.

An Eulerian graph being a graph such that any vertex has an even degree, an Eulerian orientation of a
graph is an orientation of its edges such that each vertex v verifies d* (v) = d~(v) = d(v)/2, where d*
and d~ respectively represent the out-degree and the in-degree of a vertex.

If the graph is not Eulerian, the orientation verifies for any vertex v that |[d* (v) — d~ (v)| < 1.

ALGORITHM:
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This algorithm is a random walk through the edges of the graph, which orients the edges according to the
walk. When a vertex is reached which has no non-oriented edge (this vertex must have odd degree), the
walk resumes at another vertex of odd degree, if any.

This algorithm has complexity O(m), where m is the number of edges in the graph.
EXAMPLES:

The CubeGraph with parameter 4, which is regular of even degree, has an Eulerian orientation such that
dt =d—:

sage: g = graphs.CubeGraph (4)

sage: g.degree()

(4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4]
sage: o = g.eulerian_orientation()

sage: o.in_degree ()

(2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]
sage: o.out_degree ()

(2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]

Secondly, the Petersen Graph, which is 3 regular has an orientation such that the difference between d*+
and d~ is at most 1:

sage: g = graphs.PetersenGraph ()
sage: o = g.eulerian_orientation()
sage: o.in_degree ()

(2, 2, 2, 2, 2, 1, 1, 1, 1, 1]
sage: o.out_degree ()

(1, 1, 1, 1, 1, 2, 2, 2, 2, 2]

export_to_file (filename, format=None, **kwds)
Export the graph to a file.

INPUT:
e filename - string; a file name

e format - string (default: None); select the output format explicitly. If set to None (default),
the format is set to be the file extension of £ilename. Admissible formats are: adjlist, dot,
edgelist, gexf, gml, graphml,multiline_adjlist, pajek, yaml.

e All other arguments are forwarded to the subfunction. For more information, see their respective
documentation:
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adjlist http://networkx.lanl.gov/reference/generated/networkx.readwrite.
adjlist.write_adjlist.html

dot https://networkx.github.io/documentation/latest/reference/
generated/networkx.drawing.nx_pydot.write_dot.html

edgelist http://networkx.lanl.gov/reference/generated/networkx.readwrite.
edgelist.write_edgelist.html

gexf http://networkx.lanl.gov/reference/generated/networkx.readwrite.
gexf.write_gexf.html

gml http://metworkx.lanl.gov/reference/generated/networkx.readwrite.
gml.write_gml.html

graphml http://networkx.lanl.gov/reference/generated/networkx.readwrite.
graphml.write_graphml.html

multiline_adjlist http://networkx.lanl.gov/reference/generated/networkx.readwrite.
multiline_adjlist.write_multiline_adjlist.html

pajek http://networkx.lanl.gov/reference/generated/networkx.readwrite.
pajek.write_pajek.html

yaml http://networkx.lanl.gov/reference/generated/networkx.readwrite.
nx_yaml.write_yaml.html

See also:
* save () —save a Sage object to a ‘sobj’ file (preserves all its attributes)
Note: This functions uses the write_* functions defined in NetworkX (see http://networkx.lanl.gov/

reference/readwrite.html).

EXAMPLES:

sage: g = graphs.PetersenGraph ()

sage: filename = tmp_filename (ext=".pajek")
sage: g.export_to_file(filename)

sage: import networkx

sage: G_networkx = networkx.read_pajek (filename)
sage: Graph (G_networkx) .is_isomorphic(g)

True

sage: filename = tmp_filename (ext=".edgelist")
sage: g.export_to_file(filename, data=False)
sage: h = Graph (networkx.read_edgelist (filename))
sage: g.is_isomorphic (h)

True

faces (embedding=None)

Return the faces of an embedded graph.

A combinatorial embedding of a graph is a clockwise ordering of the neighbors of each vertex. From this
information one can define the faces of the embedding, which is what this method returns.

INPUT:

* embedding — dictionary (default: None); a combinatorial embedding dictionary. Format: {v1:

[v2,v3], v2: [vl], v3: [v1]} (clockwise ordering of neighbors at each vertex). If set

to None (default) the method will use the embedding stored as self._embedding. If none is
stored, the method will compute the set of faces from the embedding returned by is_planar () (if
the graph is, of course, planar).
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Note: embedding is an ordered list based on the hash order of the vertices of graph. To avoid confusion,
it might be best to set the rot_sys based on a ‘nice_copy’ of the graph.

See also:

* set_embedding ()
* get_embedding ()
e is_planar()

* planar_dual ()

EXAMPLES:

Providing an embedding:

sage: T = graphs.TetrahedralGraph ()
sage: T.faces({O: [1, 3, 2], 1: [O, 2, 3], 2: [0, 3, 11, 3: [0, 1, 2]})

(eeo, 1, (1, 2y, (2, 0)1,
(3, 2), (2, 1), (1, 3)1,
(3, 0), (0, 20, (2, 3)1,
(3, 1), (1, 0), (0, 3)1]

14 14 ’

With no embedding provided:

sage: graphs.TetrahedralGraph() .faces()
(re, 1y, (1, 23, (2, 0)1,

[(3, 2
[(3, O
[(3, 1

14

31,
2, 3)1,
0, 3)11

With no embedding provided (non-planar graph):

sage: graphs.PetersenGraph () .faces()
Traceback (most recent call last):

ValueError: no embedding is provided and the graph is not planar

feedback_vertex_set (value_only=False, solver=None, verbose=0, constraint_generation=True)
Return the minimum feedback vertex set of a (di)graph.

The minimum feedback vertex set of a (di)graph is a set of vertices that intersect all of its cycles. Equiva-
lently, a minimum feedback vertex set of a (di)graph is a set S of vertices such that the digraph G — S'is
acyclic. For more information, see the Wikipedia article Feedback_vertex_set.

INPUT:

* value_only —boolean (default: False); whether to return only the minimum cardinal of a mini-
mum vertex set, or the Set of vertices of a minimal feedback vertex set

¢ solver - string (default: None); specifies a Linear Program (LP) solver to be used. If set to None,
the default one is used. For more information on LP solvers and which default solver is used, see the
method solve of the class MixedIntegerLinearProgram.

* verbose —integer (default: 0); sets the level of verbosity. Set to O by default, which means quiet.

e constraint_generation —boolean (default: True); whether to use constraint generation when
solving the Mixed Integer Linear Program
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ALGORITHMS:
(Constraints generation)

When the parameter constraint_generation is enabled (default) the following MILP formulation
is used to solve the problem:

Minimize : Z b
vEG
Such that :

VC circuits C G, Z by >1
veC

As the number of circuits contained in a graph is exponential, this LP is solved through constraint genera-
tion. This means that the solver is sequentially asked to solve the problem, knowing only a portion of the
circuits contained in GG, each time adding to the list of its constraints the circuit which its last answer had
left intact.

(Another formulation based on an ordering of the vertices)

When the graph is directed, a second (and very slow) formulation is available, which should only be used
to check the result of the first implementation in case of doubt.

Minimize : Z by
veG

Such that :
Y(u,v) € G,dy, — dyy + nby, + nby, >0
Yu € G,0 <d, <|G]

A brief explanation:

An acyclic digraph can be seen as a poset, and every poset has a linear extension. This means that in any
acyclic digraph the vertices can be ordered with a total order < in such a way that if (u,v) € G, then
u < v. Thus, this linear program is built in order to assign to each vertex v a number d,, € [0,...,n — 1]
such that if there exists an edge (u,v) € G then either d,, < d,, or one of u or v is removed. The number
of vertices removed is then minimized, which is the objective.

EXAMPLES:

The necessary example:

sage: g = graphs.PetersenGraph ()

sage: fvs = g.feedback_vertex_set ()
sage: len(fvs)
3

sage: g.delete_vertices (fvs)
sage: g.is_forest ()
True

In a digraph built from a graph, any edge is replaced by arcs going in the two opposite directions, thus
creating a cycle of length two. Hence, to remove all the cycles from the graph, each edge must see one of
its neighbors removed: a feedback vertex set is in this situation a vertex cover:

sage: cycle = graphs.CycleGraph (5)

sage: dcycle = DiGraph (cycle)

sage: cycle.vertex_cover (value_only=True)

3

sage: feedback = dcycle.feedback_vertex_set ()

(continues on next page)
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sage: len (feedback)

3

sage: u,v = next (cycle.edge_iterator (labels=None))
sage: u in feedback or v in feedback

True

For a circuit, the minimum feedback arc set is clearly 1:

sage: circuit = digraphs.Circuit (5)
sage: circuit.feedback_vertex_set (value_only=True) == 1
True

flow (x, y, value_only=True, integer=False, use_edge_labels=True, vertex_bound=False, algo-

rithm=None, solver=None, verbose=0)
Return a maximum flow in the graph from x to y.

The returned flow is represented by an optimal valuation of the edges. For more information, see the
Wikipedia article Max_flow.

As an optimization problem, is can be expressed this way :

Maximize : E Webe
e€G.edges()

Such that : Vv € G, Z bluw) <1
(u,v)EG.edges()

Yz € G, b, is a binary variable
INPUT:
* x — source vertex
e y —sink vertex

* value_only — boolean (default: True); whether to return only the value of a maximal flow, or to
also return a flow graph (a copy of the current graph, such that each edge has the flow using it as a
label, the edges without flow being omitted)

* integer — boolean (default: True); whether to compute an optimal solution under the constraint
that the flow going through an edge has to be an integer, or without this constraint

* use_edge_labels —boolean (default: False); whether to compute a maximum flow where each
edge has a capacity defined by its label (if an edge has no label, capacity 1 is assumed), or to use
default edge capacity of 1

* vertex_bound — boolean (default: False); when set to True, sets the maximum flow leaving a
vertex different from x to 1 (useful for vertex connectivity parameters)

* algorithm - string (default: None); the algorithm to use among:

— "FF", a Python implementation of the Ford-Fulkerson algorithm (only available when
vertex_bound = False)

— "LP", the flow problem is solved using Linear Programming

— "igraph", the igraph implementation of the Goldberg-Tarjan algorithm is used (only avail-
able when igraph is installed and vertex_bound = False)

When algorithm = None (default), weuse LP if vertex_bound = True, otherwise, we use
igraph if it is available, FF if it is not available.
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* solver — string (default: None); specifies a Linear Program (LP) solver to be used. If set to None,
the default one is used. For more information on LP solvers and which default solver is used, see the
method solve of the class MixedIntegerLinearProgram.

Only useful when LP is used to solve the flow problem.
* verbose —integer (default: 0); sets the level of verbosity. Set to 0 by default (quiet).

Only useful when LP is used to solve the flow problem.

Note: Even though the three different implementations are meant to return the same Flow values, they
can not be expected to return the same Flow graphs.

Besides, the use of Linear Programming may possibly mean a (slight) numerical noise.

EXAMPLES:

Two basic applications of the flow method for the PappusGraph and the ButterflyGraph with
parameter 2

sage: g=graphs.PappusGraph ()
sage: int(g.flow(l,2))
3

sage: b=digraphs.ButterflyGraph (2)
sage: int (b.flow(('00"'", 1), ('00", 2)))

The flow method can be used to compute a matching in a bipartite graph by linking a source s to all the
vertices of the first set and linking a sink ¢ to all the vertices of the second set, then computing a maximum

s —t flow

sage: g = DiGraph()

sage: g.add_edges(('s', 1) for i in range(4))

sage: g.add_edges((i, 4 + Jj) for i in range(4) for j in range (4))
sage: g.add_edges((4 + i, 't') for i in range(4))

sage: [cardinal, flow_graph] = g.flow('s', 't', integer=True, value_

—only=False)

sage: flow_graph.delete_vertices(['s', 't'])
sage: flow_graph.size()

4

The undirected case:

sage: g = Graph()

sage: g.add_edges(('s', 1) for i in range(4))

sage: g.add_edges((i, 4 + Jj) for i in range (4) for j in range (4))
sage: g.add_edges((4 + i, 't') for i in range(4))

sage: [cardinal, flow_graph] = g.flow('s', 't', integer=True, value_
—only=False)

sage: flow_graph.delete_vertices(['s', 't'])

sage: flow_graph.size()

4

genus (set_embedding=True, on_embedding=None, minimal="True, maximal=False, circular=None, or-

dered=True)
Return the minimal genus of the graph.
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The genus of a compact surface is the number of handles it has. The genus of a graph is the minimal genus
of the surface it can be embedded into. It can be seen as a measure of non-planarity; a planar graph has
genus zero.

Note: This function uses Euler’s formula and thus it is necessary to consider only connected graphs.

INPUT:

* set_embedding — boolean (default: True); whether or not to store an embedding attribute of the
computed (minimal) genus of the graph

* on_embedding — two kinds of input are allowed (default: None):

— a dictionary representing a combinatorial embedding on which the genus should be com-
puted. Note that this must be a valid embedding for the graph. The dictionary struc-
ture is given by: vertexl: [neighborl, neighbor2, neighbor3], vertex2:

[neighbor] where there is a key for each vertex in the graph and a (clockwise) ordered list of
each vertex’s neighbors as values. The value of on_embedding takes precedence over a stored
_embedding attribute if minimal is set to False.

— The value True, in order to indicate that the embedding stored as _embedding should be used
(see examples).

e minimal — boolean (default: True); whether or not to compute the minimal genus of the graph
(i.e., testing all embeddings). If minimal is False, then either maximal must be True or
on_embedding must not be None. If on_embedding is not None, it will take priority over
minimal. Similarly, if maximal is True, it will take priority over minimal.

* maximal — boolean (default: False); whether or not to compute the maximal genus of the graph
(i.e., testing all embeddings). If maximal is False, then either minimal must be True or
on_embedding must not be None. If on_embedding is not None, it will take priority over
maximal. However, maximal takes priority over the default minimal.

e circular —list (default: None); if circular is a list of vertices, the method computes the genus
preserving a planar embedding of the this list. If circular is defined, on_embedding is not a
valid option.

* ordered-boolean (default: True); if circular is True, then whether or not the boundary order
may be permuted (default is True, which means the boundary order is preserved)

EXAMPLES:

sage: g = graphs.PetersenGraph ()

sage: g.genus () # tests for minimal genus by default

1

sage: g.genus (on_empbedding=True, maximal=True) # on _embedding overrides,_
—minimal and maximal arguments

1

sage: g.genus (maximal=True) # setting maximal to True overrides default
—minimal=True

3

sage: g.genus (on_embedding=g.get_embedding()) # can also send a valid,
—combinatorial embedding dict

3

sage: (graphs.CubeGraph(3)) .genus ()

0

sage: K23 = graphs.CompleteBipartiteGraph (2, 3)

(continues on next page)
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sage: K23.genus ()

sage: K33 = graphs.CompleteBipartiteGraph (3, 3)
sage: K33.genus ()

Using the circular argument, we can compute the minimal genus preserving a planar, ordered boundary:

sage: cube = graphs.CubeGraph (2)

sage: cube.genus (circular=['01","'10"])

0

sage: cube.is_circular_planar ()

True

sage: cube.genus (circular=['01"',"'10"])

0

sage: cube.genus (circular=['01","'10"'], on_embedding=True)
0

sage: cube.genus(circular=['01","'10"'], maximal=True)
Traceback (most recent call last):

NotImplementedError: cannot compute the maximal genus of a genus respecting a,,
—boundary

Note: not everything works for multigraphs, looped graphs or digraphs. But the minimal genus is ulti-
mately computable for every connected graph — but the embedding we obtain for the simple graph can’t be
easily converted to an embedding of a non-simple graph. Also, the maximal genus of a multigraph does
not trivially correspond to that of its simple graph:

sage: G = DiGraph({O: [O, 1, 1, 11, 1: [2, 2, 3, 31, 2: [1, 3, 31, 3: [0, 31})
sage: G.genus ()
Traceback (most recent call last):

NotImplementedError: cannot work with embeddings of non-simple graphs

sage: G.to_simple () .genus ()

0

sage: G.genus (set_embedding=False)
0

sage: G.genus (maximal=True, set_embedding=False)
Traceback (most recent call last):

NotImplementedError: cannot compute the maximal genus of a graph with loops,,
—or multiple edges

We break graphs with cut vertices into their blocks, which greatly speeds up computation of minimal
genus. This is not implemented for maximal genus:

sage: G = graphs.RandomBlockGraph (10, 5)
sage: G.genus()
10

get_embedding ()

Return the attribute _embedding if it exists.

_embedding is a dictionary organized with vertex labels as keys and a list of each vertex’s neighbors in
clockwise order.

Error-checked to insure valid embedding is returned.
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EXAMPLES:

sage: G = graphs.PetersenGraph ()

sage: G.genus ()

1

sage: G.get_embedding ()

{0: 1, 4, 51, 1: [0, 2, 6], 2: [1, 3, 71, 3: [2, 4, 8], 4: [0, 3, 91, 5: [0
-7, 81, 6: [1, 9, 81, 7: [2, 5, 91, 8: [3, 6, 51, 9: [4, 6, 71}

get_pos (dim=2)
Return the position dictionary.

The position dictionary specifies the coordinates of each vertex.
INPUT:

¢ dim — integer (default: 2); whether to return the position dictionary in the plane (dim == 2) or in
the 3-dimensional space

EXAMPLES:

By default, the position of a graph is None:

sage: G = Graph()
sage: G.get_pos|()

sage: G.get_pos() is None
True
sage: P = G.plot (save_pos=True)

sage: G.get_pos|()
{}

Some of the named graphs come with a pre-specified positioning:

sage: G = graphs.PetersenGraph ()
sage: G.get_pos|()
{0: (0.0, 1.0),

9: (0.475..., 0.154...)}

get_vertex (vertex)
Retrieve the object associated with a given vertex.

If no associated object is found, None is returned.
INPUT:
* vertex — the given vertex

EXAMPLES:

sage: d = {0: graphs.DodecahedralGraph(), 1: graphs.FlowerSnark(), 2: graphs.
—MoebiusKantorGraph (), 3: graphs.PetersenGraph()}

sage: d[2]

Moebius-Kantor Graph: Graph on 16 vertices

sage: T = graphs.TetrahedralGraph()

sage: T.vertices()

(0, 1, 2, 3]

sage: T.set_vertices(d)

sage: T.get_vertex(l)

Flower Snark: Graph on 20 vertices
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get_vertices (verts=None)
Return a dictionary of the objects associated to each vertex.

INPUT:
e verts — iterable container of vertices

EXAMPLES:

sage: d = {0: graphs.DodecahedralGraph(), 1: graphs.FlowerSnark(), 2: graphs.
—MoebiusKantorGraph (), 3: graphs.PetersenGraph ()}
sage: T = graphs.TetrahedralGraph ()
sage: T.set_vertices(d)
sage: T.get_vertices([1l, 21])
{l: Flower Snark: Graph on 20 vertices,
2: Moebius-Kantor Graph: Graph on 16 vertices}

girth ()
Computes the girth of the graph. For directed graphs, computes the girth of the undirected graph.

The girth is the length of the shortest cycle in the graph. Graphs without cycles have infinite girth.

EXAMPLES:

sage: graphs.TetrahedralGraph() .girth()
3

sage: graphs.CubeGraph(3) .girth()

4

sage: graphs.PetersenGraph() .girth()
5

sage: graphs.HeawoodGraph () .girth ()
6

sage: next (graphs.trees(9)) .girth()
+Infinity

See also:

e odd_girth () —computes the odd girth of a graph.
graphplot (**options)
Return a GraphP 1ot object.
See GraphP 1ot for more details.
INPUT:
* x*xoptions — parameters for the GraphPlot constructor
EXAMPLES:

Creating a GraphP 1ot object uses the same options as plot ():

sage: g = Graph({}, loops=True, multiedges=True, sparse=True)

sage: g.add_edges([(0,0,'a"), (0,0,'"), (0,1,"'c"), (0,1,'d"),

et (0,1,'e"),(0,1,'£"),(0,1,"€£"),(2,1,'g"), (2,2,'h")])

sage: GP = g.graphplot (edge_labels=True, color_by_label=True, edge_style=
— 'dashed"')

sage: GP.plot ()

Graphics object consisting of 26 graphics primitives

We can modify the GraphP 1ot object. Notice that the changes are cumulative:
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sage: GP.set_edges (edge_style='solid'")

sage: GP.plot ()

Graphics object consisting of 26 graphics primitives
sage: GP.set_vertices (talk=True)

sage: GP.plot ()

Graphics object consisting of 26 graphics primitives

graphviz_string (rankdir="down’, edge_color=None, vertex_labels=True, edge_options=(), la-

bels="string’, color_by_label=False, edge_colors=None, edge_labels=False,
subgraph_clusters=[], **options)

Return a representation in the dot language.

The dot language is a text based format for graphs. It is used by the software suite graphviz. The
specifications of the language are available on the web (see the reference [dotspec]).

INPUT:

labels — string (default: "string"); either "string" or "latex". If labels is "string",
latex commands are not interpreted. This option stands for both vertex labels and edge labels.

vertex_labels —boolean (default: True); whether to add the labels on vertices
edge_labels —boolean (default: False); whether to add the labels on edges

edge_color — (default: None); specify a default color for the edges. The color could be one of

a name given as a string such as "blue" or "orchid"

a HSV sequence in a string such as " .52, .386, .22"

an hexadecimal code such as "#DA3305"

a 3-tuple of floating point (to be interpreted as RGB tuple). In this case the 3-tuple is converted
in hexadecimal code.

edge_colors — dictionary (default: None); a dictionary whose keys are colors and values are list
of edges. The list of edges need not to be complete in which case the default color is used. See the
option edge_color for a description of valid color formats.

color_by_label — aboolean or dictionary or function (default: False); whether to color each
edge with a different color according to its label; the colors are chosen along a rainbow, unless they
are specified by a function or dictionary mapping labels to colors; this option is incompatible with
edge_color and edge_colors. See the option edge_color for a description of valid color
formats.

edge_options — a function (or tuple thereof) mapping edges to a dictionary of options for this
edge

rankdir — 'left', 'right', 'up', or 'down' (default: 'down', for consistency with
graphviz): the preferred ranking direction for acyclic layouts; see the rankdir option of
graphviz.

subgraph_clusters —alist of lists of vertices (default: []); From [dotspec]: “If supported, the
layout engine will do the layout so that the nodes belonging to the cluster are drawn together, with
the entire drawing of the cluster contained within a bounding rectangle. Note that, for good and bad,
cluster subgraphs are not part of the dot language, but solely a syntactic convention adhered to by
certain of the layout engines.”

EXAMPLES:
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sage: G = Graph({0: {1: None, 2: None}, 1: {0: None, 2:
—~1: None, 3: 'foo'}, 3: {2: '"foo'}l}, sparse=True)
sage: print (G.graphviz_string(edge_labels=True))

graph {

node_0 [label="0"];

node_1 [label="1"1;

node_2 [label="2"];

node_3 [label="3"];

node_0 —-- node_1;

node_0 —-- node_2;

node_1 -- node_2;

node_2 —-- node_3 [label="foo"];

None}, 2: {O0:

None,

A variant, with the labels in latex, for post-processing with dot 2tex:

sage: print (G.graphviz_string(edge_labels=True, labels="latex"))
graph {
node [shape="plaintext"];

node_0 [label=" ", texlbl="$0S$"];

node_1 [label=" ", texlbl="$1S"];

node_2 [label=" ", texlbl="$25"];

node_3 [label=" ", texlbl="$3S$"];

node_0 —-- node_1;

node_0 —-- node_2;

node_1 —-- node_2;

node_2 —- node_3 [label=" ", texlbl="S$\text{\texttt{foo}}s"];

Same, with a digraph and a color for edges:

sage: G = DiGraph({0: {1:
— sparse=True)
sage: print (G.graphviz_string(edge_color="red"))

None, 2: None}, 1: {2: None}, 2: {3:

digraph {
node_0 [label="0"];
node_1 [label="1"];
node_2 [label="2"];
node_3 [label="3"];

’

edge [color="red"];
node_0 —> node_1;
node_0 —-> node_2;
node_1 —-> node_2;
node_2 —-> node_3;

"foo'}l, 3: {}},

A digraph using latex labels for vertices and edges:

sage: f(x) = -1 / x

sage: g(x) =1 / (x + 1)

sage: G = DiGraph()

sage: G.add_edges((i, f(i), f) for i in (1, 2, 1/2, 1/4))

sage: G.add_edges((i, g(i), g) for i in (1, 2, 1/2, 1/4))

sage: print (G.graphviz_string(labels="latex", edge_labels=True))

# random

(continues on next page)
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digraph {
node
node_10
node_11
node_3
node_6
node_7
node_5
node_38
node_4
node_1
node_9
node_0
node_2

node_10
node_10
node_11
node_11

digraph {
node
node_10
node_11
node_3
node_6
node_7
node_5
node_38
node_4
node_1
node_9
node_0
node_2

node_10
node_10
node_11
node_11

digraph {
node
node_10
node_11

node_7 ->
node_7 —->
node_4 —->
node_4 ->

node_7 —>
node_7 —>
node_4 —>
node_4 —>

[shape="plaintext"];

[label=" ", texlbl="S$1s"];
[label=" ", texlbl="$2S%"];
[label=" ", texlbl="$-\frac{l}{2}$"];
[label=" ", texlbl="$\frac{l}{2}$"];
[label=" ", texlbl="S$\frac{l}{2}$"];
[label=" ", texlbl="$\frac{l}{3}$"];
[label=" ", texlbl="$\frac{2}{3}$"];
[label=" ", texlbl="S$\frac{l}{4}$"];
[label=" ", texlbl="$-2S5"];
[label=" ", texlbl="$\frac{4}{5}$"];
[label=" ", texlbl="$-4S$"];
[label=" ", texlbl="$-1$"];
-> node_2 [label=" ", texlbl="Sx \ {\mapsto}\
-> node_6 [label=" ", texlbl="$x \ {\mapsto}\
-> node_3 [label=" ", texlbl="$x \ {\mapsto}\
-> node_5 [label=" ", texlbl="Sx \ {\mapsto}\
node_1 [label=" ", texlbl="S$x
node_8 [label=" ", texlbl="S$x
node_0 [label=" ", texlbl="Sx
node_9 [label=" ", texlbl="S$x

sage: print (G.graphviz_string(labels="latex",

[shape="plaintext"];

[label=" ", texlbl="$1S$"];

[label=" ", texlbl="$2$"];
[label=" ", texlbl="$-\frac{l}{2}$"];
[label=" ", texlbl="$\frac{l}{2}s"];
[label=" ", texlbl="$\frac{l}{2}$"];
[label=" ", texlbl="S$\frac{l}{3}$"];
[label=" ", texlbl="$\frac{2}{3}s"];
[label=" ", texlbl="$\frac{l}{4}$"];
[label=" ", texlbl="$-2$"];
[label=" ", texlbl="$\frac{4}{5}s"];
[label=" ", texlbl="S$-4%$"];
[label=" ", texlbl="$-1$"];
—-> node_2 [color = "#££f0000"];
-> node_6 [color = "#00ffff"];
—-> node_3 [color = "#££f0000"];
-> node_5 [color = "#00ffff"];

node_1 [color = "#££0000"];

node_8 [color = "#00ffff"];

node_0 [color = "#££0000"7;

node_9 [color = "#00ffff"];

sage: print (G.graphviz_string(labels="latex",
—"blue"}))

[label=" "
[label=" "

# random

[shape="plaintext"];

texlbl="$1$"];
texlbl="$2s"];

color_by_label=True))

color_by_label={f:

-\frac{1}{x}s$"];
\frac{l}{x + 1}s$"];
—\frac{l}{x}s"];
\frac{l}{x + 1}$"];

\ {\mapsto}\ -\frac{l}{x}s$"];
\ {\mapsto}\ \frac{l}{x + 1}s$"];
\ {\mapsto}\ -\frac{l}{x}s$"];
\ {\mapsto}\ \frac{l}{x + 1}$"1;

# random

"red", g:

(continues on next page)
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node_3 [label=" ", texlbl="$-\frac{l}{2}$"];
node_6 [label=" ", texlbl="$\frac{l}{2}s$"];
node_7 [label=" ", texlbl="$\frac{l}{2}s$"];
node_5 [label=" ", texlbl="S$\frac{l}{3}s$"];
node_8 [label=" ", texlbl="$\frac{2}{3}s$"];
node_4 [label=" ", texlbl="$\frac{l}{4}s"];
node_1 [label=" ", texlbl="$-2$"];

node_9 [label=" ", texlbl="$\frac{4}{5}s"];
node_0 [label=" ", texlbl="$-45"7];

node_2 [label=" ", texlbl="$-1%"];

node_10 -> node_2 [color = "red"];

node_10 -> node_6 [color = "blue"];

node_11 —-> node_3 [color = "red"];

node_11 -> node_5 [color = "blue"];

node_7 -> node_1 [color = "red"];

node_7 —-> node_8 [color = "blue"];

node_4 -> node_0 [color = "red"];

node_4 -> node_9 [color = "blue"];

By default graphvi z renders digraphs using a hierarchical layout, ranking the vertices down from top to
bottom. Here we specify alternative ranking directions for this layout:

sage: D = DiGraph ([ (1, 2)1)
sage: print (D.graphviz_string(rankdir="up"))
digraph {

rankdir=BT

node_0 [label="1"];

node_1 [label="2"1;

node_0 —-> node_1;
}
sage: print (D.graphviz_string(rankdir="down"))
digraph {

node_0 [label="1"];

node_1 [label="2"];

node_0 —-> node_1;
}
sage: print (D.graphviz_string(rankdir="1left"))
digraph {

rankdir=RL

node_0 [label="1"];

node_1 [label="2"1;

node_0 -> node_1;
}
sage: print (D.graphviz_string(rankdir="right"))
digraph {

rankdir=LR

node_0 [label="1"];

node_1 [label="2"];

node_0 —> node_1;
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Edge-specific options can also be specified by providing a function (or tuple thereof) which maps each
edge to a dictionary of options. Valid options are "color", "backward" (a boolean), "dot" (a string
containing a sequence of options in dot format), "label" (a string), "label_style" ("string"
or "latex"), "edge_string" ("--" or "->"). Here we state that the graph should be laid out so
that edges starting from 1 are going backward (e.g. going up instead of down):

sage: def edge_options(data):
..... u, v, label = data
..... return {"backward": == 1}
sage: print (G.graphviz_string(edge_options=edge_options))
digraph {

node_10 [label="1"];

node_11 [label="2"];

node_3 [label="-1/2"1;

node_6 [label="1/2"7;

node_7 [label="1/2"];

node_5 [label="1/3"];

node_8 [label="2/3"];

node_4 [label="1/4"];

node_1 [label="-2"];

node_9 [label="4/5"]

node_0 [label="-4"];

node_2 [label="-1"];

node_2 -> node_10 [dir=back];

node_6 —-> node_10 [dir=back];

node_11 —-> node_3;

node_11 —-> node_5;
node_7 —-> node_1;
node_7 -> node_38;
node_4 —-> node_0;
node_4 -> node_9;

# random

We now test all options:

sage: def edge_options(data):
..... u, v, label = data
..... options = {"coloxr": {f: "red", g: "blue"}[label]
..... if (u,v) == (1/2, -2): options["label"] =

—~"label_style"] = "string"
..... if (u,v) == (1/2,2/3): options["dot"] =
..... if (u,v) == (1, -1): options["label_style"] =
..... if (u,v) == (1, 1/2): options["edge_string"] =
..... if (u,v) == (1/2, 1) : options["backward"] =
..... return options
sage: print (G.graphviz_string(edge_options=edge_options))
digraph {

node_10 [label="1"];

node_11 [label="2"];

node_3 [label="-1/2"]

node_6 [label="1/2"];

node_7 [label="1/2"1;

node_5 [label="1/3"];

node_8 [label="2/3"];

node_4 [label="1/4"];

node_1 [label="-2"];

node_9 [label="4/5"];

}
"coucou"; options|
llx=1, y=2 "

"latex"

H<_"

True

# random

(continues on next page)
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node_0 [label="-4"];
node_2 [label="-1"];

node_10 -> node_2 [label=" ", texlbl="S$x \ {\mapsto}\ —-\frac{l}{x}$", color_
—= "red"];

node_10 <- node_6 [color = "blue"];

node_11 -> node_3 [color = "red"];

node_11 —-> node_5 [color = "blue"];

node_7 -> node_1 [label="coucou", color = "red"];

node_7 -> node_8 [x=1,y=2, color = "blue"];

node_4 -> node_0 [color = "red"];

node_4 -> node_9 [color = "blue"];

REFERENCES:

graphviz_to_file_named (filename, **options)

Write a representation in the dot language in a file.

The dot Ilanguage is a plaintext format for graph structures. See the documentation of
graphviz_string () for available options.
INPUT:

* filename — the name of the file to write in
* x*xoptions — options for the graphviz string

EXAMPLES:

sage: G = Graph({0: {l1: None, 2: None}, 1: {0: None, 2: None}, 2: {0: None,
—~1: None, 3: 'foo'}, 3: {2: '"foo'}l}, sparse=True)

sage: tempfile = os.path.join(SAGE_TMP, 'temp_ graphviz')

sage: G.graphviz_to_file_named(tempfile, edge_labels=True)

sage: print (open(tempfile) .read())

graph {

node_0 [label="0"];

node_1 [label="1"];

node_2 [label="2"];

node_3 [label="3"];

node_0 —-- node_1;

node_0 —-- node_2;

node_1 —-- node_2;

node_2 -- node_3 [label="foo"];

hamiltonian_cycle (algorithm="tsp’, solver=None, constraint_generation=None, verbose=0, ver-

bose_constraints=False)
Return a Hamiltonian cycle/circuit of the current graph/digraph.

A graph (resp. digraph) is said to be Hamiltonian if it contains as a subgraph a cycle (resp. a circuit) going
through all the vertices.

Computing a Hamiltonian cycle/circuit being NP-Complete, this algorithm could run for some time de-
pending on the instance.

ALGORITHM:

See traveling_salesman_problem() for ‘tsp’ algorithm and find hamiltonian () from
sage.graphs.generic_graph_pyx for ‘backtrack’ algorithm.
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INPUT:
* algorithm - string (default: 'tsp'); one of ‘tsp’ or ‘backtrack’

* solver — (default: None); specifies a Linear Program (LP) solver to be used. If set to None, the
default one is used. For more information on LP solvers and which default solver is used, see the
method solve of the class MixedIntegerLinearProgram.

* constraint_generation—boolean (default: None); whether to use constraint generation when
solving the Mixed Integer Linear Program.

When constraint_generation = None, constraint generation is used whenever the graph
has a density larger than 70%.

* verbose —integer (default: 0); sets the level of verbosity. Set to 0 by default, which means quiet.

* verbose_constraints — boolean (default: False); whether to display which constraints are
being generated

OUTPUT:

If using the 'tsp' algorithm, returns a Hamiltonian cycle/circuit if it exists; otherwise, raises a
EmptySetError exception. If using the 'backtrack' algorithm, returns a pair (B, P).If B is
True then P is a Hamiltonian cycle and if B is False, P is a longest path found by the algorithm. Ob-
serve that if B is False, the graph may still be Hamiltonian. The 'backtrack' algorithm is only
implemented for undirected graphs.

Warning: The 'backtrack' algorithm may loop endlessly on graphs with vertices of degree 1.

NOTE.:

This function, as is_hamiltonian (), computes a Hamiltonian cycle if it exists: the user should NOT
test for Hamiltonicity using is_hamiltonian () before calling this function, as it would result in
computing it twice.

The backtrack algorithm is only implemented for undirected graphs.
EXAMPLES:

The Heawood Graph is known to be Hamiltonian

sage: g = graphs.HeawoodGraph ()
sage: g.hamiltonian_cycle ()
TSP from Heawood graph: Graph on 14 vertices

The Petersen Graph, though, is not

sage: g = graphs.PetersenGraph ()
sage: g.hamiltonian_cycle ()
Traceback (most recent call last):

EmptySetError: the given graph is not Hamiltonian

Now, using the backtrack algorithm in the Heawood graph

sage: G=graphs.HeawoodGraph ()
sage: G.hamiltonian_cycle (algorithm='backtrack")
(True, [11, 10, 1, 2, 3, 4, 9, 8, 7, 6, 5, 0, 13, 121])

And now in the Petersen graph
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sage: G=graphs.PetersenGraph ()
sage: G.hamiltonian_cycle (algorithm='backtrack")
(False, [6, 8, 5, 0, 1, 2, 7, 9, 4, 31)

Finally, we test the algorithm in a cube graph, which is Hamiltonian

sage: G=graphs.CubeGraph (3)
sage: G.hamiltonian_cycle (algorithm='backtrack")
(True, ([('0O10', '110', '100', 'OOO', 'oOO1', '101', '111', '011'])

hamiltonian_path (s=None, t=None, use_edge_labels=False, maximize=False, algorithm="MILP’,

solver=None, verbose=0)
Return a Hamiltonian path of the current graph/digraph.

A path is Hamiltonian if it goes through all the vertices exactly once. Computing a Hamiltonian path being
NP-Complete, this algorithm could run for some time depending on the instance.

When use_edge_labels == True, this method returns either a minimum weight hamiltonian path
or a maximum weight Hamiltonian path (if maximize == True).
See also:

* longest_path ()

e hamiltonian_cycle ()

INPUT:

* s —vertex (default: None); if specified, then forces the source of the path (the method then returns a
Hamiltonian path starting at s)

e t — vertex (default: None); if specified, then forces the destination of the path (the method then
returns a Hamiltonian path ending at t)

* use_edge_labels —boolean (default: False); whether to compute a weighted hamiltonian path
where the weight of an edge is defined by its label (a label set to None or { } being considered as a
weight of 1), or a non-weighted hamiltonian path

* maximize — boolean (default: False); whether to compute a minimum (default) or a maxi-
mum (when maximize == True) weight hamiltonian path. This parameter is considered only
if use_edge_labels == True.

* algorithm - string (default: "MILP"); the algorithm the use among "MILP" and
"backtrack"; two remarks on this respect:

— While the MILP formulation returns an exact answer, the backtrack algorithm is a randomized
heuristic.

— The backtrack algorithm does not support edge  weighting, so  setting
use_edge_labels=True will force the use of the MILP algorithm.

e solver — string (default: None); specifies the Linear Program (LP) solver to be used. If set to
None, the default one is used. For more information on LP solvers and which default solver is used,
see the method solve

* verbose —integer (default: 0); sets the level of verbosity with 0 meaning quiet
OUTPUT:

A subgraph of self corresponding to a (directed if self is directed) hamiltonian path. If no hamiltonian
path is found, return None. If use_edge_labels == True, apair weight, path isreturned.
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EXAMPLES:

The 3 x 3-grid has an Hamiltonian path, an hamiltonian path starting from vertex (0,0) and ending at
vertex (2, 2), but no Hamiltonian path starting from (0, 0) and ending at (0,1):

sage: g = graphs.Grid2dGraph (3, 3)

sage: g.hamiltonian_path{()

Hamiltonian path from 2D Grid Graph for [3, 3]: Graph on 9 vertices
sage: g.hamiltonian_path(s=(0, 0), t=(2, 2))

Hamiltonian path from 2D Grid Graph for [3, 3]: Graph on 9 vertices
sage: g.hamiltonian_path(s=(0, 0), t=(2, 2), use_edge_labels=True)

(8, Hamiltonian path from 2D Grid Graph for [3, 3]: Graph on 9 vertices)
sage: g.hamiltonian_path(s=(0, 0), t=(0, 1)) is None

True
sage: g.hamiltonian_path(s=(0, 0), t=(0, 1), use_edge_labels=True)
(0, None)

has_edge (1, v=None, label=None)
Check whether (u, v) is an edge of the (di)graph.

INPUT: The following forms are accepted:
* G.has_edge(1,2)
* G.has_edge( (1,2))
* G.has_edge( 1, 2, ‘label’ )
e G.has_edge( (1, 2, ‘label’) )

EXAMPLES:

sage: graphs.EmptyGraph () .has_edge (9, 2)
False

sage: DiGraph() .has_edge (9, 2)

False

sage: G = Graph(sparse=True)

sage: G.add_edge (0, 1, "label™)

sage: G.has_edge (0, 1, "different label")
False

sage: G.has_edge (0, 1, "label™)

True

has_loops ()
Return whether there are loops in the (di)graph

EXAMPLES:

sage: G = Graph(loops=True); G
Looped graph on 0 vertices
sage: G.has_loops|()

False

sage: G.allows_loops ()

True

sage: G.add_edge ((0, 0))
sage: G.has_loops()

True

sage: G.loops|()

[(0, 0, None)]

sage: G.allow_loops (False); G
Graph on 1 vertex

(continues on next page)

1.1. Generic graphs (common to directed/undirected) 97



Sage Reference Manual: Graph Theory, Release 8.6

(continued from previous page)

sage: G.has_loops()
False

sage: G.edges ()

[]

sage: D = DiGraph(loops=True); D
Looped digraph on 0 vertices
sage: D.has_loops()

False

sage: D.allows_loops ()

True

sage: D.add_edge((0, 0))
sage: D.has_loops ()

True

sage: D.loops()

[(0, O, None)]

sage: D.allow_loops (False); D
Digraph on 1 vertex

sage: D.has_loops()

False

sage: D.edges ()

[]

has_multiple_edges (fo_undirected=False)

Return whether there are multiple edges in the (di)graph.
INPUT:

e to_undirected — (default: False); if True, runs the test on the undirected version of a Di-
Graph. Otherwise, treats DiGraph edges (u, v) and (v, u) as unique individual edges.

EXAMPLES:

sage: G = Graph(multiedges=True, sparse=True); G
Multi-graph on 0 vertices

sage: G.has_multiple_edges|()

False

sage: G.allows_multiple_edges|()

True

sage: G.add_edges ([ (0, 1)] = 3)

sage: G.has_multiple_edges|()

True

sage: G.multiple_edges()

[(0O, 1, None), (0, 1, None), (0, 1, None)]
sage: G.allow_multiple_edges (False); G
Graph on 2 vertices

sage: G.has_multiple_edges|()

False

sage: G.edges|()

[(0, 1, None)]

sage: D = DiGraph(multiedges=True, sparse=True); D
Multi-digraph on 0 vertices

sage: D.has_multiple_edges()

False

sage: D.allows_multiple_edges()

True

(continues on next page)
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sage: D.add_edges ([ (0, 1)1 = 3)

sage: D.has_multiple_edges|()

True

sage: D.multiple_edges()

[(O, 1, None), (0, 1, None), (0, 1, None)]
sage: D.allow_multiple_edges (False); D
Digraph on 2 vertices

sage: D.has_multiple_edges|()

False

sage: D.edges|()

[(0, 1, None)]

sage: G = DiGraph({1: {2: 'h'}, 2: {1: 'g'}}, sparse=True)
sage: G.has_multiple_edges/()

False

sage: G.has_multiple_edges (to_undirected=True)

True

sage: G.multiple_edges|()

[]

sage: G.multiple_edges (to_undirected=True)

[((1, 2, 'h"), (2, 1, 'g")]

A loop is not a multiedge:

sage: g = Graph (loops=True, multiedges=True)
sage: g.add_edge (0, 0)

sage: g.has_multiple_edges|()

False

has_vertex (vertex)
Check if vertex is one of the vertices of this graph.

INPUT:
e vertex — the name of a vertex (see add_vertex ())

EXAMPLES:

sage: g = Graph({0: [1, 2, 31, 2: [4]1}); g
Graph on 5 vertices

sage: 2 in g

True

sage: 10 in g

False

sage: graphs.PetersenGraph () .has_vertex (99)
False

igraph_graph (vertex_list=None, vertex_attrs={}, edge_attrs={})
Return an igraph graph from the Sage graph.

Optionally, it is possible to add vertex attributes and edge attributes to the output graph.

Note: This routine needs the optional package igraph to be installed: to do so, it is enough to run sage
-i python_igraph. For more information on the Python version of igraph, see http://igraph.org/
python/.

INPUT:
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e vertex_list — list (default: None); defines a mapping from the vertices of the graph
to consecutive integers in (0, \ldots, n-1)" . Otherwise, the result of
:meth: vertices' will be used instead. Because :meth: vertices’
only works 1f the vertices can be sorted, using ~“vertex_list is useful
when working with possibly non-sortable objects in Python 3.

e vertex_attrs — dictionary (default: {}); a dictionary where the key is a string (the attribute
name), and the value is an iterable containing in position ¢ the label of the i-th vertex in the
list vertex_list if it is given or in vertices () when vertex_list == None (see http:
/ligraph.org/python/doc/igraph.Graph-class.html#__init__ for more information)

* edge_attrs —dictionary (default: {}); a dictionary where the key is a string (the attribute name),
and the value is an iterable containing in position ¢ the label of the ¢-th edge in the list outputted by
edge_iterator () (see http://igraph.org/python/doc/igraph.Graph-class.html#__init__ for more
information)

Note: In igraph, a graph is weighted if the edge labels have attribute weight. Hence, to create a
weighted graph, it is enough to add this attribute.

Note: Often, Sage uses its own defined types for integer/floats. These types may not be igraph-compatible
(see example below).

EXAMPLES:

Standard conversion:

sage: G = graphs.TetrahedralGraph() # optional - python igraph
sage: H = G.igraph_graph() # optional - python_igraph
sage: H.summary () # optional - python_igraph
'IGRAPH U-— 4 6 —— '

sage: G digraphs.Path (3) optional - python_igraph
sage: H = G.igraph_graph() optional - python_igraph
sage: H.summary () # optional - python_igraph
'"IGRAPH D—— 3 2 —— '

=

He

Adding edge attributes:

sage: G = Graph([ (1, 2, 'a'), (2, 3, 'b")1) # optional -
— python_igraph

sage: E = list(G.edge_iterator()) # optional -
— python_igraph

sage: H = G.igraph_graph (edge_attrs={'label': [e[2] for e in E]}) # optional -
— python_igraph

sage: H.es['label'] # optional -
— python_igraph

['a', 'b']

If edges have an attribute weight, the igraph graph is considered weighted:

sage: G = Graph([ (1, 2, {'weight': 1}), (2, 3, {'weight': 2})1)

—# optional - python_igraph

sage: E = list(G.edge_iterator())

—# optional — python_igraph

sage: H = G.igraph_graph(edge_attrs={'weight': [e[2]['weight'] for e in E]})
—# optional - python_igraph

(continues on next page)
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sage: H.is_weighted()

—# optional — python_igraph
True

sage: H.es['weight']

—# optional — python_igraph
(1, 2]

Adding vertex attributes:

sage: G = graphs.GridGraph([2, 2]) # optional -,
—python_igraph

sage: H = G.igraph_graph (vertex_attrs={'name': G.vertices()}) # optional
—python_igraph

sage: H.vs () ['name'] # optional —_

—python_igraph
(e, 0y, (0, 1), (1, 0), (1, 1)]

Providing a mapping from vertices to consecutive integers:

sage: G = graphs.GridGraph([2, 2]) # optional -
— python_igraph
sage: V = list (G) # optional -

— python_igraph

sage: H = G.igraph_graph (vertex_list=V, vertex_attrs={'name': V}) # optional -
— python_igraph

sage: H.vs () ['name'] # optional -
— python_igraph

[0, 1), (1, 0), (0, 0), (1, 1)]

Sometimes, Sage integer/floats are not compatible with igraph:

sage: G = Graph([(0, 1, 2)1) #.,
—optional - python_igraph

sage: E = list(G.edge_iterator()) #.,
—optional - python_igraph

sage: H = G.igraph_graph(edge_attrs={'capacity': [e[2] for e in E]}) #
—optional - python_igraph

sage: H.maxflow_value (0, 1, 'capacity') #.,
—optional - python_igraph

1.0

sage: H = G.igraph_graph (edge_attrs={'capacity': [float(e[2]) for e in E]}) #
—optional - python_igraph

sage: H.maxflow_value (0, 1, 'capacity') #,
—optional - python_igraph

2.0

incidence_matrix (oriented=None, sparse=True, vertices=None)
Return the incidence matrix of the (di)graph.

Each row is a vertex, and each column is an edge. The vertices are ordered as obtained by the method
vertices (), except when parameter vertices is given (see below), and the edges as obtained by the
method edge _iterator().

If the graph is not directed, then return a matrix with entries in {0, 1, 2}. Each column will either contain
two 1 (at the position of the endpoint of the edge), or one 2 (if the corresponding edge is a loop).

If the graph is directed return a matrix in {—1,0,1} where —1 and 41 correspond respectively to the
source and the target of the edge. A loop will correspond to a zero column. In particular, it is not possible

1.1. Generic graphs (common to directed/undirected) 101



Sage Reference Manual: Graph Theory, Release 8.6

to recover the loops of an oriented graph from its incidence matrix.
See the Wikipedia article Incidence_matrix for more information.
INPUT:

e oriented — boolean (default: None); when set to True, the matrix will be oriented (i.e. with
entries in —1, 0, 1) and if set to False the matrix will be not oriented (i.e. with entries in 0, 1, 2). By
default, this argument is inferred from the graph type. Note that in the case the graph is not directed
and with the option directed=True, a somewhat random direction is chosen for each edge.

¢ sparse — boolean (default: True); whether to use a sparse or a dense matrix

e vertices — list (default: None); when specified, the i-th row of the matrix corresponds to the i-th
vertex in the ordering of vertices, otherwise, the i-th row of the matrix corresponds to the i-th
vertex in the ordering given by method vertices ().

EXAMPLES:

sage: G = graphs.CubeGraph (3)
sage: G.incidence_matrix/()

[01 000101000 0]
(00010110000 0]
[111000O0O0O0O0GO0DO0]
[1 0011000000 O0]
[0 0OO0OO0OO0OO0DO01O0O0T1T1]
[0 0OO0OO0OO0OO01O0O01IO0T1]
[00O1 000O0O0C1IO0T1O0]
(00001 00O01T1O0 0]

sage: G.incidence_matrix (oriented=True)

[0O-1 0 O O0-1 O0-1 0 0 0 0]
(0O O 0-1 0 1 -1 0 O O 0 O]
[-1L 1 -1 0 O O O O O O 0 O]
[1 0O 0O 1 -1 0 O O O O O 0]
(0O 0O 0 0 O 0O O 1 0 0 -1 -1]
(0O 0O 0 O O 0 1 0o 0-1 0 1]
(O O 1 0 O O O O0-1 0 1 0]
(0 0o 0 0 1 0 0 o 1 1 0 O0]

sage: G = digraphs.Circulant (4, [1, 31)
sage: G.incidence_matrix()
-1 -1 1 0 O 1 0

o o |

sage: graphs.CompleteGraph(3) .incidence_matrix ()

[1 1 0]

[1 0 1]

[0 1 1]

sage: G = Graph([ (0O, O0), (0, 1), (0, 1)1, loops=True, multiedges=True)
sage: G.incidence_matrix (oriented=False)

[2 1 1]

[0 1 1]

A well known result states that the product of the (oriented) incidence matrix with its transpose of a (non-
oriented graph) is in fact the Kirchhoff matrix:

sage: G = graphs.PetersenGraph ()
sage: m = G.incidence_matrix(oriented=True)

(continues on next page)
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sage: m * m.transpose() == G.kirchhoff _matrix()
True

sage: K = graphs.CompleteGraph (3)

sage: m = K.incidence_matrix(oriented=True)
sage: m » m.transpose() == K.kirchhoff matrix()
True

sage: H = Graph([ (0, 0), (0, 1), (0, 1)], loops=True, multiedges=True)

sage: m = H.incidence_matrix(oriented=True)
sage: m * m.transpose() == H.kirchhoff matrix()
True

A different ordering of the vertices:

sage: graphs.PathGraph(5).incidence_matrix ()

0]

0]

0]

1]

1]

sage: graphs.PathGraph(5) .incidence_matrix(vertices=[2, 4, 1, 3, 0])

o O
o = o
O R B O O

O O O
o P O O

is_bipartite (certificate=False)
Check whether the graph is bipartite.

Traverse the graph G with breadth-first-search and color nodes.

INPUT:

e certificate — boolean (default: False); whether to return a certificate. If set to True, the
certificate returned in a proper 2-coloring when G is bipartite, and an odd cycle otherwise.

EXAMPLES:

sage: graphs.CycleGraph (4) .is_bipartite()

True

sage: graphs.CycleGraph (5) .is_bipartite ()

False

sage: graphs.RandomBipartite (10, 10, 0.7).is_bipartite ()
True

A random graph is very rarely bipartite:

sage: g = graphs.PetersenGraph ()
sage: g.is_bipartite()
False

sage: false, oddcycle =
sage: len(oddcycle) % 2
1

g.is_bipartite(certificate=True)

The method works identically with oriented graphs:
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sage: g = DiGraph({O: [1, 2, 31, 2: [1], 3: [41})
sage: g.is_bipartite()
False

sage: false, oddcycle

= g.1ls_bipartite(certificate=True)
sage: len(oddcycle) % 2

1

sage: graphs.CycleGraph (4) .random_orientation () .is_bipartite()
True

sage: graphs.CycleGraph (5) .random_orientation () .is_bipartite()
False

is_cayley (return_group=False, mapping=False, generators=False, allow_disconnected="False)

Check whether the graph is a Cayley graph.

If none of the parameters are True, return a boolean indicating whether the graph is a Cayley graph.
Otherwise, return a tuple containing said boolean and the requested data. If the graph is not a Cayley
graph, each of the data will be None.

The empty graph is defined to be not a Cayley graph.

Note: For this routine to work on all graphs, the optional package gap_packages needs to be installed:
to do so, it is enough to run sage -i gap_packages.

INPUT:
e return_group (boolean; False) — If True, return a group for which the graph is a Cayley graph.
* mapping (boolean; False) — If True, return a mapping from vertices to group elements.
* generators (boolean; False) — If True, return the generating set of the Cayley graph.

* allow_disconnected (boolean; False) — If True, disconnected graphs are considered Cayley
if they can be obtained from the Cayley construction with a generating set that does not generate the

group.
ALGORITHM:

For connected graphs, find a regular subgroup of the automorphism group. For disconnected graphs, check
that the graph is vertex-transitive and perform the check on one of its connected components. If a simple
graph has density over 1/2, perform the check on its complement as its disconnectedness may increase
performance.

EXAMPLES:
A Petersen Graph is not a Cayley graph:

sage: g = graphs.PetersenGraph ()
sage: g.is_cayley ()
False

A Cayley digraph is a Cayley graph:

sage: C7 = groups.permutation.Cyclic(7)
sage: S ((1,2,3,4,5,6,7), (1,3,5,7,2,4,6), (1,5,2,6,3,7,4)]

sage: d = C7.cayley_graph(generators=S)
sage: d.is_cayley ()
True
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Graphs with loops and multiedges will have identity and repeated elements, respectively, among the gen-
erators:

sage: g = Graph(graphs.PaleyGraph(9), loops=True, multiedges=True)

sage: g.add_edges ([ (u, u) for u in g])
sage: g.add_edges ([ (u, ut+l) for u in g])
sage: _, S = g.is_cayley(generators=True)

sage: S # random
[O)s

(0,2,1) (a,a + 2,a + 1) (2%a,2+a + 2,2+a + 1),
(0,2,1) (a,a + 2,a + 1) (2%a,2*a + 2,2xa + 1),
(0,1,2) (a,a + 1,a + 2) (2*a,2*a + 1,2xa + 2),
(0,1,2) (a,a + 1,a + 2) (2%a,2+a + 1,2%a + 2),
(0,2%a + 2,a + 1) (1,2xa,a + 2)(2,2xa + 1,a),
(0,a + 1,2xa + 2)(1l,a + 2,2*a) (2,a,2+xa + 1)]

is_chordal (certificate=False, algorithm="B’)
Check whether the given graph is chordal.

A Graph G is said to be chordal if it contains no induced hole (a cycle of length at least 4).
Alternatively, chordality can be defined using a Perfect Elimination Order :

A Perfect Elimination Order of a graph G is an ordering vy, ..., v, of its vertex set such that for all 7, the
neighbors of v; whose index is greater that ¢ induce a complete subgraph in G. Hence, the graph G can
be totally erased by successively removing vertices whose neighborhood is a clique (also called simplicial
vertices) [Fulkerson65].

(It can be seen that if G contains an induced hole, then it can not have a perfect elimination order. Indeed,
if we write hq, ..., hi the k vertices of such a hole, then the first of those vertices to be removed would
have two non-adjacent neighbors in the graph.)

A Graph is then chordal if and only if it has a Perfect Elimination Order.
INPUT:
e certificate —boolean (default: False); whether to return a certificate.
— Ifcertificate = False (default), returns True or False accordingly.
— If certificate = True,returns:

# (True, peo) when the graph is chordal, where peo is a perfect elimination order of its
vertices.

* (False, Hole) when the graph is not chordal, where Hole (a Graph object) is an induced
subgraph of self isomorphic to a hole.

* algorithm - string (default: "B"); the algorithm to choose among "A" or "B" (see next section).
While they will agree on whether the given graph is chordal, they can not be expected to return the
same certificates.

ALGORITHM:

This algorithm works through computing a Lex BFS on the graph, then checking whether the order is a Per-
fect Elimination Order by computing for each vertex v the subgraph induces by its non-deleted neighbors,
then testing whether this graph is complete.

This problem can be solved in O(m) [Rose75] ( where m is the number of edges in the graph ) but this
implementation is not linear because of the complexity of Lex BFS.

EXAMPLES:

The lexicographic product of a Path and a Complete Graph is chordal
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sage: g = graphs.PathGraph(5) .lexicographic_product (graphs.CompleteGraph (3))
sage: g.is_chordal ()
True

The same goes with the product of a random lobster (which is a tree) and a Complete Graph

sage: g = graphs.RandomLobster (10, .5, .5).lexicographic_product (graphs.
—CompleteGraph (3))

sage: g.is_chordal ()

True

The disjoint union of chordal graphs is still chordal:

sage: (2 » g).is_chordal()
True

Let us check the certificate given by Sage is indeed a perfect elimination order:

sage: _, peo = g.is_chordal (certificate=True)

sage: for v in peo:

et if not g.subgraph(g.neighbors(v)).is_clique():
R raise ValueError ("this should never happen")
et g.delete_vertex(v)

Of course, the Petersen Graph is not chordal as it has girth 5:

sage: g = graphs.PetersenGraph ()
sage: g.girth()

5

sage: g.is_chordal ()

False

We can even obtain such a cycle as a certificate:

sage: _, hole = g.is_chordal (certificate=True)
sage: hole

Subgraph of (Petersen graph): Graph on 5 vertices
sage: hole.is_isomorphic (graphs.CycleGraph (5))
True

REFERENCES:

is_circulant (certificate=False)

Check whether the graph is circulant.
For more information, see Wikipedia article Circulant_graph.
INPUT:

e certificate — boolean (default: False); whether to return a certificate for yes-answers (see
OUTPUT section)

OUTPUT:

When certificate is set to False (default) this method only returns True or False answers.
When certificate is set to True, the method either returns (False, None) or (True,
lists_of_parameters) eachelementof l1ists_of_parameters canbe used to define the graph
as a circulant graph.
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See the documentation of CirculantGraph () and Circulant () for more information, and the
examples below.

See also:
CirculantGraph () — a constructor for circulant graphs.
EXAMPLES:

The Petersen graph is not a circulant graph:

sage: g = graphs.PetersenGraph ()
sage: g.is_circulant ()
False

A cycle is obviously a circulant graph, but several sets of parameters can be used to define it:

sage: g = graphs.CycleGraph(5)
sage: g.is_circulant (certificate=True)
(True, [(5, [1, 41), (5, [2, 31)])

The same goes for directed graphs:

sage: g = digraphs.Circuit (5)
sage: g.is_circulant (certificate=True)
(True, [(5, [11), (5, [31), (5, [2]), (5, [41)])

With this information, it is very easy to create (and plot) all possible drawings of a circulant graph:

sage: g = graphs.CirculantGraph(13, [2, 3, 10, 117)
sage: for param in g.is_circulant (certificate=True) [1]:
et graphs.CirculantGraph (xparam)

Circulant graph ([2, 3, 10, 11]): Graph on 13 vertices
Circulant graph ([1, 5, 8, 12]): Graph on 13 vertices
Circulant graph ([4, 6, 7, 9]): Graph on 13 vertices

is_circular_planar (on_embedding=None, kuratowski=False, set_embedding=True, bound-

ary=None, ordered=False, set_pos=False)
Check whether the graph is circular planar (outerplanar)

A graph is circular planar if it has a planar embedding in which all vertices can be drawn in order on a
circle. This method can also be used to check the existence of a planar embedding in which the vertices of
a specific set (the boundary) can be drawn on a circle, all other vertices being drawn inside of the circle.
An order can be defined on the vertices of the boundary in order to define how they are to appear on the
circle.

INPUT:

* on_embedding — dictionary (default: None); the embedding dictionary to test planarity on (i.e.:
will return True or False only for the given embedding)

* kuratowski — boolean (default: False); whether to return a tuple with boolean first entry and
the Kuratowski subgraph (i.e. an edge subdivision of K5 or K3 3) as the second entry (see OUTPUT
below)

¢ set_embedding - boolean (default: True); whether or not to set the instance field variable that
contains a combinatorial embedding (clockwise ordering of neighbors at each vertex). This value will
only be set if a circular planar embedding is found. Itis stored as a Python dict: v1: [nl,n2,n3]
where v1 is a vertex and n1, n2, n3 are its neighbors.
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* boundary — list (default: None); an ordered list of vertices that are required to be drawn on the
circle, all others being drawn inside of it. It is set to None by default, meaning that all vertices should
be drawn on the boundary.

e ordered - boolean (default: False); whether or not to consider the order of the boundary. It
required boundary to be defined.

* set_pos — boolean (default: False); whether or not to set the position dictionary (for plotting) to
reflect the combinatorial embedding. Note that this value will defaultto False if set_embedding
is set to False. Also, the position dictionary will only be updated if a circular planar embedding is
found.

OUTPUT:
The method returns True if the graph is circular planar, and False if it is not.

If kuratowski is set to True, then this function will return a tuple, whose first entry is a boolean and
whose second entry is the Kuratowski subgraph (i.e. an edge subdivision of K5 or K3 3) isolated by the
Boyer-Myrvold algorithm. Note that this graph might contain a vertex or edges that were not in the initial
graph. These would be elements referred to below as parts of the wheel and the star, which were added
to the graph to require that the boundary can be drawn on the boundary of a disc, with all other vertices
drawn inside (and no edge crossings).

ALGORITHM:

This is a linear time algorithm to test for circular planarity. It relies on the edge-addition planarity algorithm
due to Boyer-Myrvold. We accomplish linear time for circular planarity by modifying the graph before
running the general planarity algorithm.

REFERENCE:
EXAMPLES:

sage: g439 = Graph({1: [5, 71, 2: [5, 61, 3: [6, 71, 4: [5, 6, 71})
sage: g439.show ()

sage: g439.1is_circular_planar (boundary=[1, 2, 3, 4])

False

sage: g439.is_circular_planar (kuratowski=True, boundary=[1, 2, 3, 4])
(False, Graph on 8 vertices)

sage: g439.1is_circular_planar (kuratowski=True, boundary=[1, 2, 3])
(True, None)

sage: g439.get_embedding ()

{1: [7, 51,
2: [5, 61,
3: [6, 71,
4: [7, 6, 51,
5: [1, 4, 27,
6: [2, 4, 31,
7: [3, 4, 11}

Order matters:

sage: K23 = graphs.CompleteBipartiteGraph (2, 3)

sage: K23.is_circular_planar (boundary=[0, 1, 2, 31])

True

sage: K23.is_circular_planar (ordered=True, boundary=[0, 1, 2, 31)
False

With a different order:
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sage: K23.is_circular_planar (set_embedding=True, boundary=[0, 2, 1, 3])
True

is_clique (vertices=None, directed_clique=False, induced=True, loops=False)
Check whether a set of vertices is a clique

A clique is a set of vertices such that there is exactly one edge between any two vertices.

INPUT:

e vertices — a single vertex or an iterable container of vertices (default: None); when

set, check whether the set of vertices is a clique, otherwise check
whether °“self isaclique

directed_clique — boolean (default: False); if set to False, only consider the underlying
undirected graph. If set to True and the graph is directed, only return True if all possible edges in
_both_ directions exist.

induced - boolean (default: True); if set to True, check that the graph has exactly one edge
between any two vertices. If set to False, check that the graph has at least one edge between any
two vertices.

loops — boolean (default: False); if set to True, check that each vertex of the graph has a loop,

and exactly one if furthermore induced == True. If set to False, check that the graph has no
loop when induced == True, and ignore loops otherwise.

EXAMPLES:

sage: g = graphs.CompleteGraph (4)

sage: g.is_clique([1, 2, 31)

True

sage: g.is_clique()

True

sage: h = graphs.CycleGraph (4)

sage: h.is_clique([1l, 21])

True

sage: h.is_clique([1, 2, 31)

False

sage: h.is_clique ()

False

sage: i1 = digraphs.Complete (4)

sage: i.delete_edge ([0, 11)

sage: i.is_clique(directed_clique=False, induced=True)
False

sage: i.is_clique(directed_clique=False, induced=False)
True

sage: i.is_clique(directed_clique=True)

False

is_connected (G)
Check whether the (di)graph is connected.

Note that in a graph, path connected is equivalent to connected.
INPUT:
* G — the input graph

See also:

e is_biconnected()
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EXAMPLES:

sage: from sage.graphs.connectivity import is_connected
sage: G = Graph({O: [1, 2], 1: [2], 3: [4, 51, 4: [5]})
sage: is_connected(G)

False

sage: G.is_connected()

False

sage: G.add_edge (0, 3)

sage: is_connected(G)

True

sage: D = DiGraph({O: [1, 2], 1: [2], 3: [4, 51, 4: [51})
sage: is_connected (D)

False

sage: D.add_edge (0, 3)

sage: is_connected (D)

True

sage: D = DiGraph({1: [0], 2: [01})

sage: is_connected (D)

True

is_cut_edge (G, u, v=None, label=None)

Returns True if the input edge is a cut-edge or a bridge.

A cut edge (or bridge) is an edge that when removed increases the number of connected components. This
function works with simple graphs as well as graphs with loops and multiedges. In a digraph, a cut edge
is an edge that when removed increases the number of (weakly) connected components.

INPUT: The following forms are accepted
e is_cut_edge(G, 1,2)
* is_cut_edge(G, (1,2))
* is_cut_edge(G, 1, 2, ‘label’ )
* is_cut_edge(G, (1, 2, ‘label’) )
OUTPUT:
* Returns True if (u,v) is a cut edge, False otherwise

EXAMPLES:

sage: from sage.graphs.connectivity import is_cut_edge
sage: G = graphs.CompleteGraph (4)

sage: is_cut_edge(G,0,2)

False

sage: G.is_cut_edge(0,2)

False

sage: G = graphs.CompleteGraph (4)
sage: G.add_edge((0,5,"'silly"))
sage: is_cut_edge (G, (0,5, 'silly"))
True

sage: G = Graph([[O0,1],[0,2],[3,4],14,5],1[3,5]11])
sage: is_cut_edge (G, (0,1))

True

sage: G = Graph([[0,1],10,2]1,([1,1]1], loops = True)

(continues on next page)
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sage: is_cut_edge (G, (1,1))
False

sage: G = digraphs.Circuit (5)
sage: is_cut_edge (G, (0,1))
False

sage: G = graphs.CompleteGraph (6)
sage: 1is_cut_edge (G, (0,7))
Traceback (most recent call last):

ValueError: edge not in graph

is_cut_vertex (G, u, weak=False)
Check whether the input vertex is a cut-vertex.

A vertex is a cut-vertex if its removal from the (di)graph increases the number of (strongly) connected
components. Isolated vertices or leafs are not cut-vertices. This function works with simple graphs as well
as graphs with loops and multiple edges.

INPUT:
* G —a Sage (Di)Graph
* u —avertex

* weak — boolean (default: False); whether the connectivity of directed graphs is to be taken in the
weak sense, that is ignoring edges orientations

OUTPUT:

Return True if u is a cut-vertex, and False otherwise.

EXAMPLES:

Giving a LollipopGraph(4,2), that is a complete graph with 4 vertices with a pending edge:

sage: from sage.graphs.connectivity import is_cut_vertex
sage: G = graphs.LollipopGraph (4, 2)
sage: is_cut_vertex (G, 0)

False

sage: is_cut_vertex (G, 3)
True

sage: G.is_cut_vertex(3)
True

Comparing the weak and strong connectivity of a digraph:

sage: from sage.graphs.connectivity import is_strongly_connected
sage: D = digraphs.Circuit (6)
sage: is_strongly_connected (D)

True

sage: is_cut_vertex (D, 2)

True

sage: is_cut_vertex (D, 2, weak=True)
False

Giving a vertex that is not in the graph:
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sage: G = graphs.CompleteGraph (4)
sage: is_cut_vertex (G, 7)
Traceback (most recent call last):

ValueError: vertex (7) is not a vertex of the graph

is_cycle (directed_cycle=True)

Check whether self is a (directed) cycle graph.

We follow the definition provided in [BM2008] for undirected graphs. A cycle on three or more vertices
is a simple graph whose vertices can be arranged in a cyclic order so that two vertices are adjacent if they
are consecutive in the order, and not adjacent otherwise. A cycle on a vertex consists of a single vertex
provided with a loop and a cycle with two vertices consists of two vertices connected by a pair of parallel
edges. In other words, an undirected graph is a cycle if it is 2-regular and connected. The empty graph is
not a cycle.

For directed graphs, a directed cycle, or circuit, on two or more vertices is a strongly connected directed
graph without loops nor multiple edges with has many arcs as vertices. A circuit on a vertex consists of a
single vertex provided with a loop.

INPUT:

e directed_cycle — boolean (default True); if set to True and the graph is directed, only return
True if self is a directed cycle graph (i.e., a circuit). If set to False, we ignore the direction of
edges and so opposite arcs become multiple (parallel) edges. This parameter is ignored for undirected
graphs.

EXAMPLES:

sage: G = graphs.PetersenGraph ()

sage: G.is_cycle()

False

sage: graphs.CycleGraph (5) .is_cycle ()

True

sage: Graph([ (0,1 )]).is_cycle()

False

sage: Graph([(0, 1), (0, 1)], multiedges=True) .is_cycle()
True

sage: Graph([ (0, 1), (0, 1), (0, 1)], multiedges=True) .is_cycle()
False

sage: Graph() .is_cycle()

False

sage: G = Graph([(0, 0)], loops=True)

sage: G.is_cycle()

True

sage: digraphs.Circuit (3) .is_cycle ()
True

sage: digraphs.Circuit (2) .is_cycle ()
True

sage: digraphs.Circuit (2) .is_cycle(directed_cycle=False)
True

sage: D = DiGraph(graphs.CycleGraph(3))
sage: D.is_cycle()

False

sage: D.is_cycle(directed_cycle=False)
False

sage: D.edges (labels=False)
(o, 1), 0, 2), (1, 0), (1, 2), (2, 0), (2, 1)]
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is_drawn_free_of_edge_crossings ()
Check whether the position dictionary for this graph is set and that position dictionary gives a planar
embedding.

This simply checks all pairs of edges that don’t share a vertex to make sure that they don’t intersect.

Note: This function require that _pos attribute is set (Returns False otherwise)

EXAMPLES:

sage: D = graphs.DodecahedralGraph ()
sage: D.set_planar_positions{()

sage: D.is_drawn_free_of_edge_crossings()
True

is_equitable (partition, quotient_matrix=False)
Checks whether the given partition is equitable with respect to self.

A partition is equitable with respect to a graph if for every pair of cells C1, C2 of the partition, the number
of edges from a vertex of C1 to C2 is the same, over all vertices in C1.

INPUT:
e partition - alist of lists

* quotient_matrix - (default False) if True, and the partition is equitable, returns a matrix over the
integers whose rows and columns represent cells of the partition, and whose i,j entry is the number of
vertices in cell j adjacent to each vertex in cell i (since the partition is equitable, this is well defined)

EXAMPLES:

sage: G = graphs.PetersenGraph ()

sage: G.is_equitable([[0,4]1,11,3,5,91,12,6,81,[711)

False

sage: G.is_equitable([[0,41,[1,3,5,91,1[2,6,8,711)

True

sage: G.is_equitable([[0,41,11,3,5,91,12,6,8,7]1]1, quotient_matrix=True)
[1 2 0]

[1 0 2]

[0 2 1]

sage: ss = (graphs.WheelGraph(6)) .line_graph(labels=False)
sage: prt = [[(0, 1)1, [(O, 2), (O, 3), (O, 4), (1, 2), (1, 4)1, [(2, 3), (3
—4) 1]

sage: ss.is_equitable (prt)
Traceback (most recent call last):

TypeError: Partition ([[(O, 1)], [(O, 2), (O, 3), (0, 4), (1, 2), (1, 4)],
—~[(2, 3), (3, 4)1]) is not wvalid for this graph: vertices are incorrect.

sage: ss = (graphs.WheelGraph(5)) .line_graph(labels=False)
sage: ss.is_equitable (prt)
False

is_eulerian (path=False)
Check whether the graph is Eulerian.
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A graph is Eulerian if it has a (closed) tour that visits each edge exactly once.
INPUT:

* path — boolean (default: False); by default this function finds if the graph contains a closed tour
visiting each edge once, i.e. an Eulerian cycle. If you want to test the existence of an Eulerian path,
set this argument to True. Graphs with this property are sometimes called semi-Eulerian.

OUTPUT:

True or False for the closed tour case. For an open tour search (path” * =" True) the function returns
False if the graph is not semi-Eulerian, or a tuple (u, v) in the other case. This tuple defines the edge
that would make the graph Eulerian, i.e. close an existing open tour. This edge may or may not be already
present in the graph.

EXAMPLES:

sage: graphs.CompleteGraph(4) .is_eulerian()

False

sage: graphs.CycleGraph(4) .is_eulerian()

True

sage: g = DiGraph({0:[1,2], 1:[2]1}); g.is_eulerian()

False

sage: g = DiGraph({0:[2], 1:[3], 2:[0,1]1, 3:[21}); g.is_eulerian()
True

sage: g = DiGraph({O0:[1], 1:[2], 2:[0], 3:[1}); g.is_eulerian()
True
sage:
False

Graph ([(1,2), (2,3), (3,1), (4,5, (5,6), (6,4)]1); g.is_eulerian()

Q
Il

sage: g = DiGraph({0: [1]}); g.is_eulerian(path=True)

(1, 0)

sage: graphs.CycleGraph (4) .is_eulerian (path=True)

False

sage: g = DiGraph({O: [1], 1: [2,3], 2: [4]}); g.is_eulerian(path=True)
False

sage: g = Graph({0:[1,2,31, 1:[2,31, 2:[3,4], 3:[4]}, multiedges=True)
sage: g.is_eulerian()

False

sage: e = g.is_eulerian(path=True); e

(0, 1)

sage: g.add_edge (e)

sage: g.is_eulerian(path=False)

True

sage: g.is_eulerian(path=True)

False

is_gallai_tree()

Return whether the current graph is a Gallai tree.

A graph is a Gallai tree if and only if it is connected and its 2-connected components are all isomorphic to
complete graphs or odd cycles.

A connected graph is not degree-choosable if and only if it is a Gallai tree [erdos]978choos].
REFERENCES:
EXAMPLES:

A complete graph is, or course, a Gallai Tree:
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sage: g = graphs.CompleteGraph (15)
sage: g.is_gallai_tree()
True

The Petersen Graph is not:

sage: g = graphs.PetersenGraph ()
sage: g.is_gallai_tree()
False

A Graph built from vertex-disjoint complete graphs linked by one edge to a special vertex —1 is a “’star-
shaped” Gallai tree:

sage: g = 8 * graphs.CompleteGraph (6)
sage: g.add_edges ([ (-1, c[0]) for c in g.connected_components()])
sage: g.is_gallai_tree()
True
is_hamiltonian (solver=None, constraint_generation=None, verbose=0, ver-

bose_constraints=False)
Test whether the current graph is Hamiltonian.

A graph (resp. digraph) is said to be Hamiltonian if it contains as a subgraph a cycle (resp. a circuit) going
through all the vertices.

Testing for Hamiltonicity being NP-Complete, this algorithm could run for some time depending on the
instance.

ALGORITHM:
See traveling_salesman_problem().
INPUT:

* solver — (default: None) Specify a Linear Program (LP) solver to be used. If set to None, the
default one is used. For more information on LP solvers and which default solver is used, see the
method solve () of the class MixedIntegerLinearProgram.

e constraint_generation (boolean) — whether to use constraint generation when solving the
Mixed Integer Linear Program. When constraint_generation = None, constraint genera-
tion is used whenever the graph has a density larger than 70%.

* verbose —integer (default: 0). Sets the level of verbosity. Set to 0 by default, which means quiet.
* verbose_constraints — whether to display which constraints are being generated.

OUTPUT:

Returns True if a Hamiltonian cycle/circuit exists, and False otherwise.

NOTE:

This function, as hamiltonian_cycle and traveling_salesman_problem, computes a
Hamiltonian cycle if it exists: the user should NOT test for Hamiltonicity using is_hamiltonian
before calling hamiltonian_cycle or traveling_salesman_problem as it would result in
computing it twice.

EXAMPLES:

The Heawood Graph is known to be Hamiltonian
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sage: g = graphs.HeawoodGraph ()
sage: g.is_hamiltonian()
True

The Petergraph, though, is not

sage: g = graphs.PetersenGraph ()
sage: g.is_hamiltonian()
False

is_immutable ()
Check whether the graph is immutable.

EXAMPLES:

sage: G = graphs.PetersenGraph ()

sage: G.is_immutable ()

False

sage: Graph (G, immutable=True) .is_immutable ()
True

is_independent_set (vertices=None)
Check whether vertices is an independent set of self.

An independent set is a set of vertices such that there is no edge between any two vertices.
INPUT:

* vertices — a single vertex or an iterable container of vertices (default: None); when
set, check whether the given set of vertices is an independent set,
otherwise, check whether the set of vertices of " 'self is an independent
set

EXAMPLES:

sage: graphs.CycleGraph (4) .is_independent_set ([1,3])
True

sage: graphs.CycleGraph (4) .is_independent_set ([1,2,3])
False

is_interval (certificate=False)
Check whether the graph is an interval graph.

An interval graph is one where every vertex can be seen as an interval on the real line so that there is an
edge in the graph iff the corresponding intervals intersects.

See the Wikipedia article Interval_graph for more information.
INPUT:
e certificate —boolean (default: False);

— When certificate=False, returns True is the graph is an interval graph and False oth-
erwise

— When certificate=True, returns either (False, None) or (True, d) where dis a
dictionary whose keys are the vertices and values are pairs of integers. They correspond to an
embedding of the interval graph, each vertex being represented by an interval going from the first
of the two values to the second.
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ALGORITHM:

Through the use of PQ-Trees.
AUTHOR:

Nathann Cohen (implementation)

EXAMPLES:

sage: g = Graph({1l: [2, 3, 41, 4: [2, 31})

sage: g.is_interval()

True

sage: g.is_interval (certificate=True)

(True, {1: (0, 5), 2: (4, 6), 3: (1, 3), 4: (2, T)})

The Petersen Graph is not chordal, so it cannot be an interval graph:

sage: g = graphs.PetersenGraph ()
sage: g.is_interval()
False

A chordal but still not an interval graph:

sage: g = Graph({1: [4, 2, 31, 2: [3, 51, 3: [6]})
sage: g.is_interval()
False

See also:

* Interval Graph Recognition.
* PO - implementation of PQ-Trees
e is chordal ()
e IntervalGraph ()
* RandomIntervalGraph ()
is_isomorphic (other, certificate=False, verbosity=0, edge_labels=False)
Tests for isomorphism between self and other.
INPUT:
* certificate -if True, then output is (a, b), where a is a boolean and b is either a map or None.
* edge_labels - default False, otherwise allows only permutations respecting edge labels.
OUTPUT:
* either a boolean or, if certificate is True, a tuple consisting of a boolean and a map or None
EXAMPLES:
Graphs:

sage: from sage.groups.perm gps.permgroup_named import SymmetricGroup
sage: D = graphs.DodecahedralGraph ()

sage: E = copy (D)

sage: gamma = SymmetricGroup (20).random_element ()

sage: E.relabel (gamma)

(continues on next page)
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sage: D.is_isomorphic (E)

True

sage: D = graphs.DodecahedralGraph ()

sage: S = SymmetricGroup (20)

sage: gamma = S.random_element ()

sage: E = copy (D)

sage: E.relabel (gamma)

sage: a,b = D.is_isomorphic(E, certificate=True); a
True

sage: from sage.plot.graphics import GraphicsArray
sage: from sage.graphs.generic_graph pyx import spring_layout_fast
sage: position_D = spring_layout_fast (D)

sage: position_E = {}

sage: for vert in position_D:

..... position_E[b[vert]] = position_D[vert]
sage: GraphicsArray([D.plot (pos=position_D), E.plot (pos=position_E)]) .show()
—# long time

sage: g=graphs.HeawoodGraph ()

sage: g.is_isomorphic(qg)

True

Multigraphs:

sage: G = Graph(multiedges=True, sparse=True)

sage: G.add_edge ((0,1,1))

sage: G.add_edge((0,1,2))

sage: G.add_edge((0,1,3))

sage: G.add_edge ((0,1,4))

sage: H = Graph (multiedges=True, sparse=True)

sage: H.add_edge ((3,4))

sage: H.add_edge ((3,4))

sage: H.add_edge ((3,4))

sage: H.add_edge ((3,4))

sage: G.is_isomorphic (H)

True

Digraphs:

sage: A = DiGraph( { 0 (1,21 )

sage: B = DiGraph( { 1 [0,21 } )

sage: A.is_isomorphic (B, certificate=True)

(True, {0: 1, 1: 0, 2: 2})

Edge labeled graphs:

sage: G = Graph(sparse=True)

sage: G.add_edges( [(0,1,'a"),(1,2,'D"),(2,3,'c"),(3,4,'D"), (4,0,'a")] )
sage: H = G.relabel([1,2,3,4,0], inplace=False)
sage: G.is_isomorphic(H, edge_labels=True)

True

Edge labeled digraphs:
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sage: G = DiGraph()

sage: G.add_edges( [(0,1,'a"),(1,2,'D"),(2,3,'c"),(3,4,'D"), (4,0,'a")] )
sage: H = G.relabel([1,2,3,4,0], inplace=False)

sage: G.is_isomorphic(H, edge_labels=True)

True

sage: G.is_isomorphic (H, edge_labels=True, certificate=True)
(True, {O0: 1, 1: 2, 2: 3, 3: 4, 4: 0})

is_planar (on_embedding=None, kuratowski=False, set_embedding=False, set_pos=False)
Check whether the graph is planar.

This wraps the reference implementation provided by John Boyer of the linear time planarity algorithm by
edge addition due to Boyer Myrvold. (See reference code in planarity).

Note: The argument on_embedding takes precedence over set_embedding. This means that only the
on_embedding combinatorial embedding will be tested for planarity and no _embedding attribute
will be set as a result of this function call, unless on_embedding is None.

REFERENCE:

See also:

e “Almost planar graph™: is_apex ()

e “Measuring non-planarity”: genus (), crossing_number ()
* planar_dual ()

s faces ()

e is_polyhedral ()

INPUT:

e on_embedding — dictionary (default: None); the embedding dictionary to test planarity on (i.e.:
will return True or False only for the given embedding)

* kuratowski —boolean (default: False); whether to return a tuple with boolean as first entry. If the
graph is nonplanar, will return the Kuratowski subgraph (i.e. an edge subdivision of K5 or K3 3) as
the second tuple entry. If the graph is planar, returns None as the second entry. When set to False,
only a boolean answer is returned.

¢ set_embedding — boolean (default: False); whether to set the instance field variable that con-
tains a combinatorial embedding (clockwise ordering of neighbors at each vertex). This value will
only be set if a planar embedding is found. It is stored as a Python dict: v1: [nl,n2,n3] where
v1isavertex and nl, n2, n3 are its neighbors.

* set_pos — boolean (default: False); whether to set the position dictionary (for plotting) to reflect
the combinatorial embedding. Note that this value will default to False if set_emb is set to False.
Also, the position dictionary will only be updated if a planar embedding is found.

EXAMPLES:

sage: g = graphs.CubeGraph (4)
sage: g.is_planar()
False
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sage: g = graphs.CircularLadderGraph (4)
sage: g.ls_planar (set_embedding=True)
True
sage: g.get_embedding ()

{0: [1, 4, 31,

1: [2, 5, 0],

2: [3, 6, 11,

3: [0, 7, 2],

4: [0, 5, 71,

5: [1, 6, 4],

6: [2, 7, 51,

7: [4, 6, 31}

~
~

sage: g = graphs.PetersenGraph ()
(g.is_planar (kuratowski=True)) [1] .adjacency_matrix()
0 0 0]
0]
0]
1]
0]
1]
1]
0]
0]

O O OO ORFr O
O OO0 OoOFr OoORFr o
P O O OO OoORF O oW
O P P OOOOoOOoOOo
P P OO OO OO
H O O OoORFr O O K

e oo el o)

sage: k43 = graphs.CompleteBipartiteGraph (4, 3)

sage: result = k43.is_planar (kuratowski=True); result

(False, Graph on 6 vertices)

sage: result[l].is_isomorphic(graphs.CompleteBipartiteGraph (3, 3))

True

Multi-edged and looped graphs are partially supported:

sage: G = Graph({0: [1, 1]}, multiedges=True)
sage: G.is_planar ()

True

sage: G.is_planar (on_embedding={})

Traceback (most recent call last):

NotImplementedError: cannot compute with embeddings of multiple-edged or
—looped graphs

sage: G.is_planar (set_pos=True)

Traceback (most recent call last):

NotImplementedError: cannot compute with embeddings of multiple-edged or
—looped graphs

sage: G.is_planar (set_embedding=True)

Traceback (most recent call last):

NotImplementedError: cannot compute with embeddings of multiple-edged or
—looped graphs

sage: G.is_planar (kuratowski=True)

(True, None)

sage: G = graphs.CompleteGraph (5)
sage: G = Graph(G, multiedges=True)

(continues on next page)
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sage: G.add_edge (0, 1)

sage: G.is_planar ()

False

sage: b,k = G.is_planar (kuratowski=True)
sage: b

False

sage: k.vertices()

(o, 1, 2, 3, 4]

is_regular (k=None)
Check whether this graph is (k-)regular.

INPUT:
* k —integer (default: None); the degree of regularity to check for
EXAMPLES:

sage: G = graphs.HoffmanSingletonGraph ()
sage: G.is_regular ()

True

sage: G.is_regular (9)

False

So the Hoffman-Singleton graph is regular, but not 9-regular. In fact, we can now find the degree easily as
follows:

sage: next (G.degree_iterator())
-

The house graph is not regular:

sage: graphs.HouseGraph () .is_regular ()
False

A graph without vertices is k-regular for every k:

sage: Graph() .is_regular()
True

is_self complementary ()
Check whether the graph is self-complementary.

A (di)graph is self-complementary if it is isomorphic to its (di)graph complement. For instance, the path
graph P, and the cycle graph Cj are self-complementary.

See also:
* Wikipedia article Self-complementary_graph
* OEIS sequence A000171 for the numbers of self-complementary graphs of order n

* OEIS sequence A003086 for the numbers of self-complementary digraphs of order n.

EXAMPLES:
The only self-complementary path graph is Py:
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sage: graphs.PathGraph(4) .is_self_complementary ()
True
sage: graphs.PathGraph(5) .is_self_complementary ()
False

The only self-complementary directed path is Ps:

sage: digraphs.Path(2) .is_self_complementary ()
True
sage: digraphs.Path(3) .is_self_complementary ()
False

Every Paley graph is self-complementary:

sage: G = graphs.PaleyGraph(9)
sage: G.is_self_ complementary ()
True

is_subgraph (other, induced=True)

Check whether self is a subgraph of other.

Warning: Please note that this method does not check whether self contains a subgraph isomorphic
to other, but only if it directly contains it as a subgraph !

By default induced is True for backwards compatibility.

INPUT:
* other —a Sage (Di)Graph

* induced - boolean (default: True); if set to True check whether the graph is an induced subgraph
of other that is if the vertices of the graph are also vertices of other, and the edges of the graph
are equal to the edges of ot her between the vertices contained in the graph.

If set to False tests whether the graph is a subgraph of other that is if all vertices of the graph are
also in other and all edges of the graph are also in other.

OUTPUT:
boolean — True iff the graph is a (possibly induced) subgraph of other.
See also:

If you are interested in the (possibly induced) subgraphs isomorphic to the graph in other, you are
looking for the following methods:

* subgraph_search () —find a subgraph isomorphic to other inside of the graph
* subgraph_search_count () — count the number of such copies
* subgraph_search_iterator () —iterator over all the copies of other contained in the graph

EXAMPLES:

sage: P = graphs.PetersenGraph()
sage: G = P.subgraph (range(6))
sage: G.is_subgraph (P)

True

(continues on next page)
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sage: H = graphs.CycleGraph (5)

sage: G = graphs.PathGraph(5)

sage: G.is_subgraph (H)

False

sage: G.is_subgraph(H, induced=False)
True

sage: H.is_subgraph (G, induced=False)
False

is_transitively_ reduced()
Check whether the digraph is transitively reduced.

A digraph is transitively reduced if it is equal to its transitive reduction. A graph is transitively reduced if
it is a forest.

EXAMPLES:

sage: d = DiGraph({O: [1], 1: [2], 2: [31})
sage: d.is_transitively_reduced()
True

sage: d = DiGraph({0O: [1, 2], 1: [2]1})
sage: d.is_transitively_reduced()
False

sage: d = DiGraph({O: [1, 21, 1: [2], 2: [1})
sage: d.is_transitively_reduced()
False

is_vertex_transitive (partition=None, verbosity=0, edge_labels=False, order=False, re-

turn_group=True, orbits=False)
Returns whether the automorphism group of self is transitive within the partition provided, by default the

unit partition of the vertices of self (thus by default tests for vertex transitivity in the usual sense).

EXAMPLES:

sage: G = Graph({0:[1],1:[2]
sage: G.is_vertex_transitive
False

sage: P = graphs.PetersenGraph ()
sage: P.is_vertex_transitive ()

True

sage: D = graphs.DodecahedralGraph ()
sage: D.is_vertex_transitive ()

True

sage: R = graphs.RandomGNP (2000, .01)
sage: R.is_vertex_transitive ()

False

b
0

kirchhoff matrix (weighted=None, indegree=True, normalized=False, **kwds)
Return the Kirchhoff matrix (a.k.a. the Laplacian) of the graph.

The Kirchhoff matrix is defined to be D — M, where D is the diagonal degree matrix (each diagonal entry
is the degree of the corresponding vertex), and M is the adjacency matrix. If normalizedis True, then
the returned matrix is D~'/2(D — M)D~'/2.

(In the special case of DiGraphs, D is defined as the diagonal in-degree matrix or diagonal out-degree
matrix according to the value of indegree)
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INPUT:
e weighted — boolean (default: None);

— If True, the weighted adjacency matrix is used for M, and the diagonal matrix D takes into
account the weight of edges (replace in the definition “degree” by “sum of the incident edges™)

— Else, each edge is assumed to have weight 1
Default is to take weights into consideration if and only if the graph is weighted.
* indegree — boolean (default: True); this parameter is considered only for digraphs.
— If True, each diagonal entry of D is equal to the in-degree of the corresponding vertex
— Else, each diagonal entry of D is equal to the out-degree of the corresponding vertex.
By default, indegree is set to True
* normalized - boolean (default: False);

— If True, the returned matrix is D~'/2(D — M)D~'/2, a normalized version of the Laplacian
matrix. More accurately, the normalizing matrix used is equal to D~'/2 only for non-isolated
vertices. If vertex ¢ is isolated, then diagonal entry ¢ in the matrix is 1, rather than a division by
Zero.

— Else, the matrix D — M is returned

Note that any additional keywords will be passed on to either the adjacency_matrix or
weighted_adjacency_matrix method.

AUTHORS:
e Tom Boothby
¢ Jason Grout

EXAMPLES:

sage: G = Graph(sparse=True)
sage: G.add_edges([(O, 1, 1), (1, 2, 2), (0, 2, 3), (0, 3, 4)1)
sage: M = G.kirchhoff matrix(weighted=True); M

[ 8 -1 -3 —-4]

[-1 3 -2 0]

[-3 -2 5 0]

[-4 0 0 4]
sage: M = G.kirchhoff matrix(); M

[ 3 -1 -1 -1]

-1 2 -1 0]

[-1 -1 2 0]

[-1 0 0 1]
sage: M = G.laplacian_matrix(normalized=True); M

[ 1 -1/6%sqgrt (3) *sqrt (2) -1/6%sqrt (3) «sqrt (2) -1/
—3*xsqrt (3) 1]

[-1/6*xsgrt (3) xsqrt (2) 1 -1/2 o
. 0]

[-1/6*xsqgrt (3) xsqrt (2) -1/2 1 L
o 0]

[ -1/3xsqrt (3) 0 0 _
. 1]
sage: Graph({0: [], 1: [2]}).laplacian_matrix(normalized=True)

[ O 0 0]

(continues on next page)
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[ 0 1 -1]
[ 0 -1 1]

A weighted directed graph with loops, changing the variable indegree

sage: G = DiGraph({1l: {1: 2, 2: 3}, 2: {1l: 4}}, weighted=True, sparse=True)
sage: G.laplacian_matrix()

[ 4 -3]

(-4 3]

sage: G = DiGraph({1l: {1: 2, 2: 3}, 2: {1l: 4}}, weighted=True, sparse=True)
sage: G.laplacian_matrix (indegree=False)

[ 3 -3]

[-4 4]

A different ordering of the vertices (see adjacency_matrix() and
weighted adjacency _matrix()):

sage: G = Graph(sparse=True)

sage: G.add_edges([ (0O, 1, 1), (1, 2, 2), (0, 2, 3), (0, 3, 4)]1)

sage: M = G.kirchhoff matrix(vertices=[3, 2, 1, 0]); M

[ 1 0 0 -1]

[ 0 2 -1 -1]

[ 0 -1 2 -1]

[-1 -1 -1 3]

sage: M = G.kirchhoff matrix(weighted=True, vertices=[3, 2, 1, 0]); M
[ 4 0 0 -4]

[ 0O 5 -2 -=3]

[ 0 -2 3 -1]

[-4 -3 -1 8]

kronecker_product (other)
Returns the tensor product of self and other.

The tensor product of G and H is the graph L with vertex set V(L) equal to the Cartesian product of the
vertices V(G) and V(H), and ((u,v), (w,x)) is an edge iff - (u, w) is an edge of self, and - (v, ) is an
edge of other.

The tensor product is also known as the categorical product and the kronecker product (refering to the
kronecker matrix product). See the Wikipedia article Kronecker_product.

EXAMPLES:

sage: Z = graphs.CompleteGraph (2)

sage: C = graphs.CycleGraph(5)

sage: T = C.tensor_product(z); T

Graph on 10 vertices

sage: T.size()

10

sage: T.plot () # long time

Graphics object consisting of 21 graphics primitives

sage: D = graphs.DodecahedralGraph ()
sage: P = graphs.PetersenGraph ()
sage: T = D.tensor_product(P); T
Graph on 200 vertices

(continues on next page)
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sage: T.size()

900

sage: T.plot() # long time

Graphics object consisting of 1101 graphics primitives

laplacian_matrix (weighted=None, indegree=True, normalized=False, **kwds)
Return the Kirchhoff matrix (a.k.a. the Laplacian) of the graph.

The Kirchhoff matrix is defined to be D — M, where D is the diagonal degree matrix (each diagonal entry
is the degree of the corresponding vertex), and M is the adjacency matrix. If normalizedis True, then
the returned matrix is D~'/2(D — M)D~'/2,

(In the special case of DiGraphs, D is defined as the diagonal in-degree matrix or diagonal out-degree
matrix according to the value of indegree)

INPUT:
¢ weighted — boolean (default: None);

— If True, the weighted adjacency matrix is used for M, and the diagonal matrix D takes into
account the weight of edges (replace in the definition “degree” by “sum of the incident edges™)

— Else, each edge is assumed to have weight 1
Default is to take weights into consideration if and only if the graph is weighted.
* indegree — boolean (default: True); this parameter is considered only for digraphs.
— If True, each diagonal entry of D is equal to the in-degree of the corresponding vertex
— Else, each diagonal entry of D is equal to the out-degree of the corresponding vertex.
By default, indegree is set to True
e normalized - boolean (default: False);

— If True, the returned matrix is D~'/2(D — M)D~'/2, a normalized version of the Laplacian
matrix. More accurately, the normalizing matrix used is equal to D~'/2 only for non-isolated
vertices. If vertex ¢ is isolated, then diagonal entry ¢ in the matrix is 1, rather than a division by
Zero.

— Else, the matrix D — M is returned

Note that any additional keywords will be passed on to either the adjacency_matrix or
weighted_adjacency_matrix method.

AUTHORS:
* Tom Boothby
¢ Jason Grout

EXAMPLES:

sage: G = Graph(sparse=True)
sage: G.add_edges([(O, 1, 1), (1, 2, 2), (0, 2, 3), (0, 3, 4)1)
sage: M = G.kirchhoff matrix(weighted=True); M

[ 8 -1 -3 -4]
[-1 3 -2 0]
[-3 -2 5 0]
[-4 0 0 4]
sage: M = G.kirchhoff matrix(); M
[ 3 -1 -1 -1]

(continues on next page)
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-1 2 -1 0]

[-1 -1 2 0]

[-1 0 0 1]

sage: M = G.laplacian_matrix(normalized=True); M

[ 1 -1/6%sqgrt (3) *sqrt (2) —-1/6*sqrt (3) «xsqrt (2) -1/
—3*xsqrt (3) 1]

[-1/6*xsqgrt (3) xsqrt (2) 1 -1/2 L
o 0]

[-1/6*xsqgrt (3) xsqrt (2) -1/2 1 L
. 0]

[ -1/3*sqrt (3) 0 0 L
. 1]

sage: Graph({0: [], 1: [2]}).laplacian_matrix(normalized=True)

[ O 0 0]

[ O 1 =11

[ 0 -1 1]

A weighted directed graph with loops, changing the variable indegree

sage: G = DiGraph({1l: {1: 2, 2: 3}, 2: {1l: 4}}, weighted=True, sparse=True)
sage: G.laplacian_matrix/()

[ 4 -3]

[-4 3]

sage: G = DiGraph({1l: {1: 2, 2: 3}, 2: {1l: 4}}, weighted=True, sparse=True)
sage: G.laplacian_matrix(indegree=False)

[ 3 -3]
(-4 4]
A different ordering of the vertices (see adjacency matrix () and

weighted _adjacency _matrix()):

sage: G = Graph(sparse=True)

sage: G.add_edges([(O, 1, 1), (1, 2, 2), (0, 2, 3), (0, 3, 4)1)
sage: M = G.kirchhoff_matrix(vertices=[3, 2, 1, 0]); M

[ 1 0 0 -1]

[ 0 2 -1 -1]

[ 0 -1 2 -1]

[-1 -1 -1 3]

sage: M = G.kirchhoff matrix(weighted=True, vertices=[3, 2, 1, 0]); M
[ 4 0 0 -4]

[ 0O 5 -2 -3]

[ 0 -2 3 -1]

[-4 -3 -1 8]

latex_options ()
Return an instance of GraphLatex for the graph.

Changes to this object will affect the LaTeX version of the graph. For a full explanation of how to use
LaTeX to render graphs, see the introduction to the graph_ Iatex module.

EXAMPLES:

sage: g = graphs.PetersenGraph ()
sage: opts = g.latex_options()
sage: opts

(continues on next page)
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LaTeX options for Petersen graph: {}

sage: opts.set_option('tkz_style', 'Classic')

sage: opts

LaTeX options for Petersen graph: {'tkz_style': 'Classic'}

layout (layout=None, pos=None, dim=2, save_pos=False, **options)

Return a layout for the vertices of this graph.

INPUT:
e layout - string (default: None); specifies a layout algorithm among "acyclic",
"acyclic_dummy", "circular", "ranked", "graphviz", "planar", "spring", or
"tree"

* pos —dictionary (default: None); a dictionary of positions
e dim — integer (default: 2); the number of dimensions of the layout, 2 or 3
* save_pos — boolean (default: False); whether to save the positions
* xxoptions — layout options (see below)
If layout is set, the specified algorithm is used to compute the positions.
Otherwise, if pos is specified, use the given positions.
Otherwise, try to fetch previously computed and saved positions.
Otherwise use the default layout (usually the spring layout).
If save_pos = True, the layout is saved for later use.

EXAMPLES:

sage: g = digraphs.ButterflyGraph (1)
sage: D2 = g.layout(); D2 # random

{('0', 0): [2.69..., 0.43...],
('o"', 1): [1.35..., 0.86...],
('1', 0): [0.89..., -0.42...7,
('1', 1) [2.26..., -0.87...]}

sage: g.layout (layout="acyclic_dummy", save_pos=True)

(
{¢'0', 0): [0.3..., 0],
('o', 1): [0.3..., 11,
('1', 0): [0.6..., 01,
("1', 1): [0.6..., 11}
sage: D3 = g.layout (dim=3); D3 # random
{('o', 0): [0.68..., 0.50..., -0.24...71,
('o', 1): [1.02..., -0.02..., 0.93...1,
("1, 0) [2.06..., -0.49..., 0.23...1,
("1" 1) [r.74..., 0.01..., -0.92...1}

Some safety tests:

sage: sorted(D2.keys()) == sorted(D3.keys()) == sorted(qg)
True

sage: isinstance (D2, dict) and isinstance (D3, dict)

True

sage: [c in RDF for c in D2[('0', 0)]]
[True, True]

(continues on next page)
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sage: [c in RDF for c in D3[('0', 0)1]
[True, True, True]

Here is the list of all the available layout options (x xoptions):

sage: from sage.graphs.graph plot import layout_options

sage: for key, value in sorted(layout_options.items()):

e print ("option {} : {}".format (key, wvalue))

option by_component : Whether to do the spring layout by connected component -
—— a boolean.

option dim : The dimension of the layout -- 2 or 3.

option heights : A dictionary mapping heights to the list of vertices at this_

—height.

option iterations : The number of times to execute the spring layout,
—algorithm.

option layout : A layout algorithm —-- one of : "acyclic", "circular" (plots,

—the graph with vertices evenly distributed on a circle), "ranked", "graphviz
—", "planar", "spring" (traditional spring layout, using the graph's current
—positions as initial positions), or "tree" (the tree will be plotted in,,
—~levels, depending on minimum distance for the root).

option prog : Which graphviz layout program to use -- one of "circo", "dot",
—"fdp", "neato", or "twopi".

option save_pos : Whether or not to save the computed position for the graph.
option spring : Use spring layout to finalize the current layout.

option tree_orientation : The direction of tree branches -- 'up', 'down',
—'left' or 'right'.

option tree_root : A vertex designation for drawing trees. A vertex of the_
—tree to be used as the root for the " layout='tree' " option. If no root is_
—specified, then one is chosen close to the center of the tree. Ignored,
—unless "~ layout='tree' "

Some of them only apply to certain layout algorithms. For details, see layout_acyclic(),
layout_planar (), layout_circular (), layout_spring(),...

Warning: unknown optional arguments are silently ignored

Warning: graphviz and dot2tex are currently required to obtain a nice 'acyclic' layout.
See layout_graphviz () forinstallation instructions.

A subclass may implement another layout algorithm "blah", by implementing a method .
layout_blah. It may override the default layout by overriding Iayout_default (), and similarly
override the predefined layouts.

Todo: use this feature for all the predefined graphs classes (like for the Petersen graph, ...), rather than
systematically building the layout at construction time.

layout_circular (dim=2, center=(0, 0), radius=1, shift=0, angle=0, **options)
Return a circular layout for this graph

INPUT:

e dim —integer (default: 2); the number of dimensions of the layout, 2 or 3
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e center —tuple (default: (0, 0)); position of the center of the circle
e radius — (default: 1); the radius of the circle

e shift — (default: 0); rotation of the circle. A value of shift=1 will replace in the drawing the i-th
element of the list by the (¢ — 1)-th. Non-integer values are admissible, and a value of « corresponds
to a rotation of the circle by an angle of @27 /n (where n is the number of vertices set on the circle).

* angle — (default: 0); rotate the embedding of all vertices. For instance, when angle == 0, the
first vertex get position (center[0] + radius, center[1]). Witha value of /2, the first
vertex get position (center[0], center[1l] + radius).

* x*xoptions — other parameters not used here
OUTPUT: a dictionary mapping vertices to positions
EXAMPLES:

sage: G = graphs.CirculantGraph(7, [1, 3])
sage: G.layout_circular ()
{0: (0.0, 1.0),

( ’
1: (-0.78..., 0.62...),
2: (-0.97..., -0.22...),
3: (-0.43..., -0.90...),
4: (0.43..., -0.90...),
5: (0.97..., -0.22...),
6: (0.78..., 0.62...)}

sage: G.plot (layout="circular")
Graphics object consisting of 22 graphics primitives

layout_default (by_component=True, **options)
Return a spring layout for this graph.

INPUT:

* by_components — boolean (default: True);

* x*xoptions — options for method spring layout_fast ()
OUTPUT: a dictionary mapping vertices to positions
EXAMPLES:

sage: g = graphs.LadderGraph(3) #T0DO!!!!
sage: g.layout_spring()

{0: [0.73..., -0.29...],
1: [1.37..., 0.30...1,
2: [2.08..., 0.89...],
3: [1.23..., -0.83...],
4: [1.88..., -0.30...7,
5: [2.53..., 0.22...]1}

sage: g = graphs.LadderGraph (7)
sage: g.plot (layout="spring")
Graphics object consisting of 34 graphics primitives

layout_extend_randomly (pos, dim=2)
Extend randomly a partial layout

INPUT:
* pos — adictionary mapping vertices to positions

* dim —integer (default: 2); the number of dimensions of the layout, 2 or 3
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OUTPUT: a dictionary mapping vertices to positions

The vertices not referenced in pos are assigned random positions within the box delimited by the other

vertices.
EXAMPLES:
sage: H = digraphs.ButterflyGraph (1)
sage: H.layout_extend_randomly ({('0', 0): (0, 0), ('1', 1): (1, 1)})
{¢o', 0): (0, 0),
('o', 1) [0.0446..., 0.332...1,
(*y', 0): [0.111..., 0.514...7,
("1" 1) (1, 1)}

layout_graphviz (dim=2, prog="dot’, **options)
Call graphviz to compute a layout of the vertices of this graph.
INPUT:
* dim —integer (default: 2); the number of dimensions of the layout, 2 or 3
* prog —one of “dot”, “neato”, “twopi”, “circo”, or “fdp”

* x*xoptions — other parameters used by method graphviz_string()

EXAMPLES:

sage: g = digraphs.ButterflyGraph (2)

sage: g.layout_graphviz () # optional - dot2tex graphviz
O P I AU R
4

’

4

~

~

~

’

4

~
~

T I T I [
sage: g.plot (layout="graphviz") # optional - dotZtex graphviz
Graphics object consisting of 29 graphics primitives

~

Note: the actual coordinates are not deterministic

By default, an acyclic layout is computed using graphviz’s dot layout program. One may specify an
alternative layout program:

sage: g.plot (layout = "graphviz", prog = "dot") # optional - dotltex,,
—graphviz

Graphics object consisting of 29 graphics primitives

sage: g.plot (layout = "graphviz", prog = "neato") # optional - dotltex_
—graphviz

Graphics object consisting of 29 graphics primitives

sage: g.plot (layout = "graphviz", prog = "twopi") # optional - dotltex_
—graphviz

Graphics object consisting of 29 graphics primitives

sage: g.plot (layout = "graphviz", prog = "fdp") # optional - dotltex,

—graphviz

Graphics object consisting of 29 graphics primitives

(continues on next page)
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sage: g = graphs.BalancedTree (5,2)

sage: g.plot (layout = "graphviz", prog = "circo") # optional - dotltex_
—graphviz

Graphics object consisting of 62 graphics primitives

Todo: Put here some cool examples showcasing graphviz features.

This requires graphviz and the dot 2tex spkg. Here are some installation tips:

¢ Install graphviz >= 2.14 so that the programs dot, neato, etc. are in your path. The graphviz
suite can be download from http://graphviz.org.

e Install dot2tex with sage —-i dot2tex

Todo: Use the graphviz functionality of Networkx 1.0 once it will be merged into Sage.

layout_planar (set_embedding=False, on_embedding=None, external_face=None, test=False, cir-

cular=False, **options)
Compute a planar layout of the graph using Schnyder’s algorithm.

If the graph is not planar, an error is raised.
INPUT:

* set_embedding - boolean (default: False); whether to set the combinatorial embedding
used (see get_embedding ())

* on_embedding - dictionary (default: None); provide a combinatorial embedding
* external_face —ignored
* test — boolean (default: False); whether to perform sanity tests along the way

e circular —ignored

EXAMPLES:

sage: g = graphs.PathGraph (10)

sage: g.set_planar_positions(test=True)
True

sage: g = graphs.BalancedTree (3, 4)
sage: g.set_planar_positions(test=True)
True

sage: g = graphs.CycleGraph(7)

sage: g.set_planar_positions(test=True)

True

sage: g = graphs.CompleteGraph (5)

sage: g.set_planar_positions(test=True, set_embedding=True)
Traceback (most recent call last):

ValueError: Complete graph is not a planar graph

layout_ranked (heights=None, dim=2, spring=False, **options)
Return a ranked layout for this graph

INPUT:
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* heights — dictionary (default: None); a dictionary mapping heights to the list of vertices at this
height

e dim - integer (default: 2); the number of dimensions of the layout, 2 or 3

¢ spring —boolean (default: False);

* x*xoptions — options for method spring layout_fast ()
OUTPUT: a dictionary mapping vertices to positions

Returns a layout computed by randomly arranging the vertices along the given heights

EXAMPLES:
sage: g = graphs.LadderGraph (3)
sage: g.layout_ranked(heights={i: (i, i+3) for i in range(3)})
{0: [0.668..., 0],
1: [0.667..., 17,
2: [0.677..., 21,
3: [1.34..., 07,
4: [1.33..., 11,
5: [1.33..., 2]}

sage: g = graphs.LadderGraph (7)
sage: g.plot (layout="ranked", heights={i: (i, i+7) for i in range(7)})
Graphics object consisting of 34 graphics primitives

layout_spring (by_component=True, **options)
Return a spring layout for this graph.

INPUT:

¢ by_components —boolean (default: True);

* xxoptions —options for method spring layout_fast ()
OUTPUT: a dictionary mapping vertices to positions
EXAMPLES:

sage: g = graphs.LadderGraph(3) #T0DO!!!!
sage: g.layout_spring()

{0: [0.73..., -0.29...1,
1: [1.37..., 0.30...7],
2: [2.08..., 0.89...],
3: [1.23..., -0.83...1,
4: [1.88..., -0.30...1,
5: [2.53..., 0.22...]}

sage: g = graphs.LadderGraph (7)
sage: g.plot (layout="spring")
Graphics object consisting of 34 graphics primitives

layout_tree (tree_orientation="down’, tree_root=None, dim=2, **options)
Return an ordered tree layout for this graph.

The graph must be a tree (no non-oriented cycles).
INPUT:

* tree_root — a vertex (default: None); the root vertex of the tree. By default (None) a vertex is
chosen close to the center of the tree.

* tree_orientation - string (default: 'down'); the direction in which the tree is growing, can
be 'up', 'down', "left"' or 'right'
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e dim —integer (default: 2); the number of dimensions of the layout, 2 or 3
* xxoptions — other parameters not used here

If the tree has been given a planar embedding (fixed circular order on the set of neighbors of every vertex)
using set_embedding, the algorithm will create a layout that respects this embedding.

OUTPUT: a dictionary mapping vertices to positions
EXAMPLES:

sage: G = graphs.RandomTree (80)
sage: G.plot (layout="tree", tree_orientation="right")
Graphics object consisting of 160 graphics primitives

sage: T = graphs.RandomLobster (25, 0.3, 0.3)

sage: T.show(layout='tree', tree_orientation='up')

sage: G = graphs.HoffmanSingletonGraph ()

sage: T = Graph{()

sage: T.add_edges (G.min_spanning_tree(starting_vertex=0))
sage: T.show(layout='tree', tree_root=0)

sage: G = graphs.BalancedTree (2, 2)
sage: G.layout_tree(tree_root=0)

{0: (1.5, 0),
1: (2.5, -1),
2: (0.5, -1),
3: (3.0, -2),
4: (2.0, -2),
5: (1.0, -2),
6: (0.0, -2)}

sage: G = graphs.BalancedTree (2, 4)
sage: G.plot (layout="tree", tree_root=0, tree_orientation="up")
Graphics object consisting of 62 graphics primitives

Using the embedding when it exists:

sage: T = Graph([(0O, 1), (0, 6), (0, 3), (1, 2), (1, 5), (3, 4), (3, 7), (3
~8)1)

sage: T.set_embedding({0: [1, 6, 3], 1: [2, 5, O
e 4: [3]1, 5: [11, 6: [01, 7: [3], 8: [3]
sage: T.layout_tree()

{0: (2.166..., 0),
1: (3.5, -1),
2: (4.0, -2),
3: (1.0, -1),
4: (2.0, -2),
5: (3.0, -2),
6: (2.0, -1),
7: (1.0, -2),
8: (0.0, -2)}

sage: T.plot (layout="tree", tree_root=3)
Graphics object consisting of 18 graphics primitives

lex BF'S (reverse=Fualse, tree=Fualse, initial_vertex=None)
Perform a Lex BFS on the graph.

A Lex BFS ( or Lexicographic Breadth-First Search ) is a Breadth First Search used for the recognition of
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Chordal Graphs. For more information, see the Wikipedia article Lexicographic_breadth-first_search.
INPUT:

* reverse — boolean (default: False); whether to return the vertices in discovery order, or the
reverse

* tree — boolean (default: False); whether to return the discovery directed tree (each vertex being
linked to the one that saw it for the first time)

e initial_vertex — (default: None); the first vertex to consider
ALGORITHM:

This algorithm maintains for each vertex left in the graph a code corresponding to the vertices already
removed. The vertex of maximal code (according to the lexicographic order) is then removed, and the
codes are updated.

This algorithm runs in time O(n?) ( where n is the number of vertices in the graph ), which is not optimal.
An optimal algorithm would run in time O(m) ( where m is the number of edges in the graph ), and require
the use of a doubly-linked list which are not available in python and can not really be written efficiently.
This could be done in Cython, though.

EXAMPLES:

A Lex BFS is obviously an ordering of the vertices:

sage: g = graphs.PetersenGraph ()
sage: len(g.lex_BFS()) == g.order()
True

For a Chordal Graph, a reversed Lex BFS is a Perfect Elimination Order:

sage: g = graphs.PathGraph(3) .lexicographic_product (graphs.CompleteGraph(2))
sage: g.lex_ BFS (reverse=True)
[z, o, <2, 1, 1, 1), (1, 0), (0, 0), (0, 1)]

And the vertices at the end of the tree of discovery are, for chordal graphs, simplicial vertices (their
neighborhood is a complete graph):

sage: g = graphs.ClawGraph() .lexicographic_product (graphs.CompleteGraph (2))
sage: v = g.lex BFS()[-1]

sage: peo, tree = g.lex_BFS(initial_vertex = v, tree=True)

sage: leaves = [v for v in tree if tree.in_degree(v) ==0]

sage: all([g.subgraph(g.neighbors(v)).is_clique() for v in leaves])

True

lexicographic_product (other)
Returns the lexicographic product of self and other.

The lexicographic product of G and H is the graph L with vertex set V(L) = V(G) x V(H), and
((u,v), (w, z)) is an edge iff :

* (u,w) is an edge of G, or
* u =w and (v, z) is an edge of H.

EXAMPLES:

sage: Z graphs.CompleteGraph (2)
sage: C = graphs.CycleGraph (5)
sage: L = C.lexicographic_product (Z); L

(continues on next page)
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Graph on 10 vertices
sage: L.plot () # long time
Graphics object consisting of 36 graphics primitives

sage: D = graphs.DodecahedralGraph ()

sage: P = graphs.PetersenGraph ()

sage: L = D.lexicographic_product (P); L

Graph on 200 vertices

sage: L.plot () # long time

Graphics object consisting of 3501 graphics primitives

line_graph (labels=True)

Returns the line graph of the (di)graph.
INPUT:

e labels — boolean (default: True); whether edge labels should be taken in consideration. If
labels=True, the vertices of the line graph will be triples (u, v, label), and pairs of vertices
otherwise.

The line graph of an undirected graph G is an undirected graph H such that the vertices of H are the edges
of G and two vertices e and f of H are adjacent if e and f share a common vertex in G. In other words, an
edge in H represents a path of length 2 in G.

The line graph of a directed graph G is a directed graph H such that the vertices of H are the edges of G
and two vertices e and f of H are adjacent if e and f share a common vertex in G and the terminal vertex of
e is the initial vertex of f. In other words, an edge in H represents a (directed) path of length 2 in G.

Note: As a Graph object only accepts hashable objects as vertices (and as the vertices of the line graph
are the edges of the graph), this code will fail if edge labels are not hashable. You can also set the argument
labels=False toignore labels.

See also:

e The 1ine graph module.
e line _graph_forbidden_subgraphs () — the forbidden subgraphs of a line graph.

* is line graph () —tests whether a graph is a line graph.

EXAMPLES:

sage: g = graphs.CompleteGraph (4)
sage: h = g.line_graph()

sage: h.vertices|()

(0, 1, None),

[

(0, 2, None),
(0, 3, None),
(1, 2, None),
(1, 3, None),
(2, 3, None)]
sage: h.am()
[01 111 0]
[1 0110 1]
[1 1001 1]
[110011]

(continues on next page)
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(10110 1]
(01 111 0]
sage: h2 = g.line_graph (labels=False)

sage: h2.vertices|()
0, 3), (1, 2), (1, 3), (2, 3)]
(

(
(
h.am()

g = DiGraph([[1..4], lambda i,j: 1 < j])
sage: h = g.line_graph()
h.vertices ()
(1, 2, None),
, None),
, None),
None) ,
None) ,
, None) ]
sage: h.edges|()

~

NN
~

S W o W
~

[((1, 2, None), (2, 3, None), None),
((1, 2, None), (2, 4, None), None),
((1, 3, None), (3, 4, None), None),
((2, 3, None), (3, 4, None), None)]

longest_path (s=None, t=None, use_edge_labels=False, algorithm="MILP’, solver=None, ver-
bose=0)
Return a longest path of self.
INPUT:

e s —a vertex (default: None); forces the source of the path (the method then returns the longest path
starting at s). The argument is set to None by default, which means that no constraint is set upon the
first vertex in the path.

e t —a vertex (default: None); forces the destination of the path (the method then returns the longest
path ending at t). The argument is set to None by default, which means that no constraint is set upon
the last vertex in the path.

* use_edge_labels —boolean (default: False); whether to compute a path with maximum weight
where the weight of an edge is defined by its label (a label set to None or {} being considered as a
weight of 1), or to compute a path with the longest possible number of edges (i.e., edge weights are
setto 1)

* algorithm - string (default: "MILP"); the algorithm to use among "MILP" and "backtrack".
Two remarks on this respect:

— While the MILP formulation returns an exact answer, the backtrack algorithm is a randomized
heuristic.

— As the backtrack algorithm does not support edge  weighting, setting
use_edge_labels=True will force the use of the MILP algorithm.

e solver — string (default: None); specifies the Linear Program (LP) solver to be used. If set to
None, the default one is used. For more information on LP solvers and which default solver is used,
see the method solve of the class MixedIntegerLinearProgram.

* verbose —integer (default: 0); sets the level of verbosity. Set to O by default, which means quiet.

Note: The length of a path is assumed to be the number of its edges, or the sum of their labels (when
use_edge_labels == True).
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OUTPUT:

A subgraph of self corresponding to a (directed if self is directed) longest path.
use_edge_labels == True,apair weight, path isreturned.

ALGORITHM:

Mixed Integer Linear Programming (this problem is known to be NP-Hard).
EXAMPLES:

Petersen’s graph being hypohamiltonian, it has a longest path of length n — 2:

If

sage: g = graphs.PetersenGraph ()
sage: lp g.longest_path()
sage: lp.order() >= g.order ()
True

2

The heuristic totally agrees:

sage: g = graphs.PetersenGraph ()
sage: g.longest_path(algorithm="backtrack") .edges (labels=False)
(e, 1y, (1, 2), (2, 3), (3, 4), (4, 9, (5, 7), (5, 8), (6, 8), (6, 9)]

Let us compute longest paths on random graphs with random weights. Each time, we ensure the resulting

graph is indeed a path:
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sage: for i in range(20):

et print ("Error!")
e break

el g = graphs.RandomGNP (15, 0.3)
e for u, v in g.edge_iterator (labels=False):
et g.set_edge_label (u, v, random())
e lp = g.longest_path()
et if (not 1lp.is_forest () or
et not max (lp.degree())
e not lp.is_connected()):

<= 2 or

loop_edges (labels=True)
Return a list of all loops in the (di)graph

INPUT:

e labels —boolean (default: True); whether returned edges have labels ( (u, v, 1)) ornot ( (u, v))

EXAMPLES:

sage: G = Graph(loops=True); G
Looped graph on 0 vertices
sage: G.has_loops|()

False

sage: G.allows_loops ()

True

sage: G.add_edges ([ (0, 0), (1,
sage: G.loop_edges ()

sage: G.allows_loops ()
True

sage: G.has_loops|()
True

sage: G.allow_loops (False)
sage: G.has_loops|()
False

sage: G.loop_edges ()
[]

sage: G.edges|()

[(2, 3, None)]

sage: D = DiGraph (loops=True) ;
Looped digraph on 0 vertices
sage: D.has_loops()

False

sage: D.allows_loops ()

True

sage: D.add_edge((0, 0))
sage: D.has_loops()

True

sage: D.loops()

[(0, O, None)]

sage: D.allow_loops(False); D
Digraph on 1 vertex

sage: D.has_loops()

False

L, (2, 2),

[(0O, O, None), (1, 1, None), (2, 2, None),
sage: G.loop_edges (labels=False)
(0, 0), (1, 1), (2, 2), (3, 3)1

D

(continues on next page)

1.1. Generic graphs (common to directed/undirected)

139




Sage Reference Manual: Graph Theory, Release 8.6

(continued from previous page)

sage: D.edges|()

[]

sage: G = graphs.PetersenGraph ()

sage: G.loops()

[]

sage: D = DiGraph (4, loops=True)

sage: D.add_edges ([ (0, 0), (1, 1), (2, 2), (3, 3), (2, 3)]1)

sage: D.loop_edges ()

[(0, O, None), (1, 1, None), (2, 2, None), (3, 3, None)]

sage: G = Graph (4, loops=True, multiedges=True, sparse=True)

sage: G.add_edges((i, 1) for 1 in range(4))

sage: G.loop_edges ()

[(0, 0O, None), (1, 1, None), (2, 2, None), (3, 3, None)]

sage: G.add_edges ([ (0, 0), (1, 1)1)

sage: G.loop_edges (labels=False)

(o, 0), (0, 0), (1, 1), (1, 1), (2, 2), (3, 3)]
loop_vertices ()

Return a list of vertices with loops

EXAMPLES:

sage: G = Graph({O0: [0O], 1: [1, 2, 3], 2 [3]1}, loops=True)

sage: G.loop_vertices()

(0, 1]

loops (labels=True)
Return a list of all loops in the (di)graph

INPUT:

* labels —boolean (default: True); whether returned edges have labels ( (u, v, 1)) ornot ( (u, v))

EXAMPLES:

sage: G = Graph(loops=True); G

Looped graph on 0 vertices

sage: G.has_loops()

False

sage: G.allows_loops ()

True

sage: G.add_edges ([ (0, 0), (1, 1), (2, 2), (3, 3), (2, 3)1)
sage: G.loop_edges ()

[(0, 0O, None), (1, 1, None), (2, 2, None), (3, 3, None)]
sage: G.loop_edges (labels=False)

[0, 0), (1, 1), (2, 2), (3, 3)]

sage: G.allows_loops ()

True

sage: G.has_loops()

True

sage: G.allow_loops (False)

sage: G.has_loops()

False

sage: G.loop_edges ()

(continues on next page)
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[]

sage: G.edges|()
[ (2, 3, None)]
sage: D = DiGraph(loops=True); D

Looped digraph on 0 vertices

sage: D.has_loops()

False

sage: D.allows_loops ()

True

sage: D.add_edge((0, 0))

sage: D.has_loops()

True

sage: D.loops|()

[(0, 0, None)]

sage: D.allow_loops (False); D

Digraph on 1 vertex

sage: D.has_loops()

False

sage: D.edges ()

[]

sage: G = graphs.PetersenGraph ()

sage: G.loops|()

[]

sage: D = DiGraph (4, loops=True)

sage: D.add_edges ([ (0, 0), (1, 1), (2, 2), (3, 3), (2, 3)1)
sage: D.loop_edges ()

[(0O, O, None), (1, 1, None), (2, 2, None), (3, 3, None)]
sage: G = Graph(4, loops=True, multiedges=True, sparse=True)
sage: G.add_edges((i, i) for i in range(4))

sage: G.loop_edges ()

[(0O, O, None), (1, 1, None), (2, 2, None), (3, 3, None)]
sage: G.add_edges([(0, 0), (1, 1)1)

sage: G.loop_edges (labels=False)

[0, 0), (0, 0), (1, 1), (1, 1), (2, 2), (3, 3)]

Return a maximum edge cut of the graph.
For more information, see the Wikipedia article Maximum_cut.

INPUT:

max_cut (value_only=True, use_edge_labels=False, vertices=False, solver=None, verbose=0)

* value_only — boolean (default: False); whether to return only the size of the maximum edge

cut, or to also return the list of edges of the maximum edge cut

use_edge_labels — boolean (default: False); whether to compute a weighted maximum cut

where the weight of an edge is defined by its label (if an edge has no label, 1 is assumed), or to

compute a cut of maximum cardinality (i.e., edge weights are set to 1)

nected by the cut. This implies value_only=False.

vertices — boolean (default: False); whether to return the two sets of vertices that are discon-

solver — string (default: None); specifies a Linear Program (LP) solver to be used. If set to None,

the default one is used. For more information on LP solvers and which default solver is used, see the
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method solve of the class MixedIntegerLinearProgram.
* verbose —integer (default: 0); sets the level of verbosity. Set to O by default, which means quiet.
EXAMPLES:

Quite obviously, the max cut of a bipartite graph is the number of edges, and the two sets of vertices are
the two sides:

sage: g = graphs.CompleteBipartiteGraph (5, 6)

sage: [ value, edges, [ setA, setB ]] = g.max_cut (vertices=True)

sage: value == 5x6

True

sage: bsetA, bsetB = map(list,g.bipartite_sets())

sage: (bsetA == setA and bsetB == setB ) or ((bsetA == setB and bsetB == setA
—))

True

The max cut of a Petersen graph:

sage: g=graphs.PetersenGraph ()
sage: g.max_cut ()
12

merge_vertices (vertices)
Merge vertices.

This function replaces a set .S of vertices by a single vertex vy,e,,, such that the edge uwy,,, exists if and
only if 3v' € S: (u,v') € G.

The new vertex is named after the first vertex in the list given in argument. If this first name is None, a
new vertex is created.

In the case of multigraphs, the multiplicity is preserved.
INPUT:

* vertices —the list of vertices to be merged

Note: If u and v are distinct vertices in vertices, any edges between u and v will be lost.

EXAMPLES:

sage: g = graphs.CycleGraph(3)
sage: g.merge_vertices ([0, 11])
sage: g.edges|()

[ (0, 2, None)]

sage: P = graphs.PetersenGraph()
sage: P.merge_vertices ([5, 71)
sage: P.vertices()

(o, 1, 2, 3, 4, 5, 6, 8, 9]

When the first vertex in vertices is None, a new vertex is created:

sage: g = graphs.CycleGraph (5)

sage: g.vertices()

(o, 1, 2, 3, 4]

sage: g.merge_vertices([None, 1, 31)

(continues on next page)
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sage: g.edges (labels=False)
(0, 4), (0, 5, (2, 5, (4, 5)]

With a Multigraph

sage: g = graphs.CycleGraph(3)
sage: g.allow_multiple_edges (True)
sage: g.merge_vertices ([0, 11])
sage: g.edges (labels=False)

(0, 2), (0, 2)]

min_spanning_tree (weight_function=None, algorithm="Prim_Boost’,

check=False)
Return the edges of a minimum spanning tree.

starting_vertex=None,

At the moment, no algorithm for directed graph is implemented: if the graph is directed, a minimum

spanning tree of the corresponding undirected graph is returned.

We expect all weights of the graph to be convertible to float. Otherwise, an exception is raised.

INPUT:

e weight_function —function (default: None); a function that takes as input an edge e and outputs
its weight. An edge has the form (u, v, 1), where u and v are vertices, 1 is a label (that can be
of any kind). The weight_function can be used to transform the label into a weight (note that, if
the weight returned is not convertible to a float, an error is raised). In particular:

if weight_function is not None, the weight of an edge e is weight_function (e);

if weight_function is None (default) and g is weighted (that is, g.
weighted () ==True), for each edge e= (u, v, 1), we set weight 1;

if weight_functionis None and g is not weighted, we set all weights to 1 (hence, the output
can be any spanning tree).

* algorithm — string (default: "Prim_Boost"); the algorithm to use in computing a minimum
spanning tree of G. The following algorithms are supported:

"Prim_Boost" — Prim’s algorithm (Boost implementation)

"Prim_fringe" —a variant of Prim’s algorithm that ignores the labels on the edges
"Prim_edge" —a variant of Prim’s algorithm

"Kruskal" — Kruskal’s algorithm

"Kruskal_Boost" — Kruskal’s algorithm (Boost implementation)

"Boruvka" — Boruvka’s algorithm

NetworkX —uses NetworkX’s minimum spanning tree implementation

* starting_vertex — a vertex (default: None); the vertex from which to begin the search for a
minimum spanning tree (available only for Prim_fringe and Prim_edge).

¢ check — boolean (default: False); whether to first perform sanity checks on the input graph G. If
appropriate, check is passed on to any minimum spanning tree functions that are invoked from the
current method. See the documentation of the corresponding functions for details on what sort of
sanity checks will be performed.

OUTPUT:

The edges of a minimum spanning tree of G, if one exists, otherwise returns the empty list.
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See also:

* sage.graphs.spanning_tree.kruskal ()
* sage.graphs.spanning_tree.boruvka ()

* sage.graphs.base.boost_graph.min_spanning tree/()

EXAMPLES:
Kruskal’s algorithm:

sage: g = graphs.CompleteGraph (5)

sage: len(g.min_spanning_tree())

4

sage: weight = lambda e: 1 / ((e[0] + 1) % (e[l] + 1))

sage: sorted(g.min_spanning_tree (weight_function=weight))

[(O, 4, None), (1, 4, None), (2, 4, None), (3, 4, None)]

sage: sorted(g.min_spanning_tree (weight_function=weight, algorithm='Kruskal _
—Boost "))

[(O, 4, None), (1, 4, None), (2, 4, None), (3, 4, None)]

sage: g = graphs.PetersenGraph ()

sage: g.allow_multiple_edges (True)

sage: g.add_edges(g.edge_iterator())

sage: sorted(g.min_spanning_tree())

[(0, 1, None), (0, 4, None), (0, 5, None), (1, 2, None), (1, 6, None), (3, 8,
—None), (5, 7, None), (5, 8, None), (6, 9, None)]

Boruvka’s algorithm:

sage: g.min_spanning_tree (algorithm='Boruvka')
[(0, 1, None), (1, 2, None), (2, 3, None), (0, 4, None), (0, 5, None), (1, o,
—None), (2, 7, None), (3, 8, None), (4, 9, None)]

—

Prim’s algorithm:

sage: g = graphs.CompleteGraph (5)

sage: sorted(g.min_spanning_tree(algorithm='Prim_edge', starting_vertex=2,
—weight_function=weight))

[(O, 4, None), (1, 4, None), (2, 4, None), (3, 4, None)]

sage: sorted(g.min_spanning_tree (algorithm='Prim_fringe', starting_vertex=2,
—weight_function=weight))

[(O, 4, None), (1, 4, None), (2, 4, None), (3, 4, None)]

sage: sorted(g.min_spanning_tree (weight_function=weight, algorithm='Prim Boost
"))

[(O, 4, None), (1, 4, None), (2, 4, None), (3, 4, None)]

NetworkX algorithm:

sage: sorted(g.min_spanning_tree (algorithm='NetworkX"))
[(0, 1, None), (0, 2, None), (0, 3, None), (0, 4, None)]

More complicated weights:

sage: G = Graph([(0,1,{'name':"'a', 'weight':1}), (0,2, {'name':'b', 'weight':3}),
— (1,2,{'name':'b', '"weight':1})1])

sage: sorted(G.min_spanning_tree (weight_function=lambda e: e[2] ['weight']))
[(O, 1, {'name': 'a', 'weight': 1}), (1, 2, {'name': 'b', 'weight': 1})]
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If the graph is not weighted, edge labels are not considered, even if they are numbers:

sage: g = Graph([(1, 2, 1), (1, 3, 2), (2, 3, 1)1)
sage: sorted(g.min_spanning_tree())
(1, 2, 1y, (1, 3, 2)1

In order to use weights, we need either to set variable weighted to True, or to specify a weight function:

sage: g.weilghted (True)

sage: sorted(g.min_spanning_tree())
(i, 2, 1y, (2, 3, 1)]

sage: g.welghted(False)

sage: sorted(g.min_spanning_tree())

((x, 2, 1), (1, 3, 2)]
sage: sorted(g.min_spanning_ tree (weight_function=lambda e: e[2]))
((x, 2, 1), (2, 3, 1)1

multicommodity_ flow (terminals, integer=True, use_edge_labels=False, vertex_bound=False,

solver=None, verbose=0)
Solve a multicommodity flow problem.

In the multicommodity flow problem, we are given a set of pairs (s;, ¢;), called terminals meaning that s;
is willing some flow to ¢;.

Even though it is a natural generalisation of the flow problem this version of it is NP-Complete to solve
when the flows are required to be integer.

For more information, see the Wikipedia article Multi-commodity_flow_problem.
INPUT:

* terminals —alist of pairs (s;, ;) or triples (s;, t;, w;) representing a flow from s; to ¢; of intensity
w;. When the pairs are of size 2, an intensity of 1 is assumed.

e integer boolean (default: True); whether to require an integer multicommodity flow

* use_edge_labels — boolean (default: False); whether to compute a multicommodity flow
where each edge has a capacity defined by its label (if an edge has no label, capacity 1 is assumed),
or to use default edge capacity of 1

e vertex_bound — boolean (default: False); whether to require that a vertex can stand at most 1
commodity of flow through it of intensity 1. Terminals can obviously still send or receive several units
of flow even though vertex_bound is set to True, as this parameter is meant to represent topological
properties.

* solver — string (default: None); specifies a Linear Program (LP) solver to be used. If set to None,
the default one is used. For more information on LP solvers and which default solver is used, see the
method solve of the class MixedIntegerLinearProgram.

* verbose — integer (default: 0); sets the level of verbosity. Set to O by default (quiet).
ALGORITHM:
(Mixed Integer) Linear Program, depending on the value of integer.
EXAMPLES:

An easy way to obtain a satisfiable multicommodity flow is to compute a matching in a graph, and to
consider the paired vertices as terminals

sage: g = graphs.PetersenGraph ()
sage: matching = [(u,v) for u,v,_ in g.matching()]

(continues on next page)
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(continued from previous page)

sage: h = g.multicommodity_flow (matching)
sage: len (h)
5

We could also have considered g as symmetric and computed the multicommodity flow in this version
instead. In this case, however edges can be used in both directions at the same time:

sage: h = DiGraph(g) .multicommodity_flow (matching)
sage: len (h)
5

An exception is raised when the problem has no solution

sage: h = g.multicommodity_flow ([ (u,v,3) for u,v in matching])
Traceback (most recent call last):

EmptySetError: the multicommodity flow problem has no solution

multiple_edges (to_undirected=False, labels=True, sort=False)

Return any multiple edges in the (di)graph.

INPUT:
e to_undirected —boolean (default False)
¢ labels —boolean (default True); whether to include labels
e sort - boolean (default False); whether to sort the result

EXAMPLES:

sage: G = Graph(multiedges=True, sparse=True); G
Multi-graph on 0 vertices

sage: G.has_multiple_edges()

False

sage: G.allows_multiple_edges|()

True

sage: G.add_edges ([ (0, 1)] = 3)

sage: G.has_multiple_edges()

True

sage: G.multiple_edges (sort=True)

[(0O, 1, None), (0, 1, None), (0, 1, None)]
sage: G.allow_multiple_edges (False); G
Graph on 2 vertices

sage: G.has_multiple_edges()

False

sage: G.edges|()

[(0, 1, None)]

sage: D = DiGraph(multiedges=True, sparse=True); D
Multi-digraph on 0 vertices

sage: D.has_multiple_edges()

False

sage: D.allows_multiple_edges()

True

sage: D.add_edges ([ (0, 1)] * 3)

sage: D.has_multiple_edges|()

True

(continues on next page)
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(continued from previous page)

sage: D.multiple_edges (sort=True)

[(O, 1, None), (0, 1, None), (0, 1, None)]
sage: D.allow_multiple_edges (False); D
Digraph on 2 vertices

sage: D.has_multiple_edges|()

False

sage: D.edges|()

[(0, 1, None)]

sage: G = DiGraph({l: {2: 'h'}, 2: {1: 'g'}}, sparse=True)
sage: G.has_multiple_edges|()

False

sage: G.has_multiple_edges (to_undirected=True)

True

sage: G.multiple_edges|()

[]

sage: G.multiple_edges (to_undirected=True, sort=True)

[((1, 2, 'h"), (2, 1, 'g")]

multiway_cut (vertices, value_only=False, use_edge_labels=False, solver=None, verbose=0)

Return a minimum edge multiway cut.

A multiway cut for a vertex set S in a graph or a digraph G is a set C' of edges such that any two vertices
u,v in S are disconnected when removing the edges of C' from G. ( cf. http://www.d.kth.se/~viggo/
wwwcompendium/node92.html )

Such a cut is said to be minimum when its cardinality (or weight) is minimum.
INPUT:
* vertices —iterable; the set of vertices

* value_only —boolean (default: False); whether to return only the size of the minimum multiway
cut, or to return the list of edges of the multiway cut

* use_edge_labels —boolean (default: False); whether to compute a weighted minimum multi-
way cut where the weight of an edge is defined by its label (if an edge has no label, 1 is assumed), or
to compute a cut of minimum cardinality (i.e., edge weights are set to 1)

* solver — string (default: None); specifies a Linear Program (LP) solver to be used. If set to None,
the default one is used. For more information on LP solvers and which default solver is used, see the
method solve of the class MixedIntegerLinearProgram.

* verbose —integer (default: 0); sets the level of verbosity. Set to 0 by default, which means quiet.
EXAMPLES:

Of course, a multiway cut between two vertices correspond to a minimum edge cut:

sage: g = graphs.PetersenGraph ()
sage: g.edge_cut (0,3) == g.multiway_cut([0,3], value_only = True)
True

As Petersen’s graph is 3-regular, a minimum multiway cut between three vertices contains at most 2 x 3
edges (which could correspond to the neighborhood of 2 vertices):

sage: g.multiway_cut ([0,3,9], value_only = True) == 2x3
True
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In this case, though, the vertices are an independent set. If we pick instead vertices 0, 9, and 7, we can save
4 edges in the multiway cut:

sage: g.multiway_cut([0,7,9], value_only
True

True) == 2«3 - 1

This example, though, does not work in the directed case anymore, as it is not possible in Petersen’s graph
to mutualise edges:

sage: g = DiGraph(g)
sage: g.multiway_cut([0,7,9], value_only
True

True) == 3%3

Of course, a multiway cut between the whole vertex set contains all the edges of the graph:

sage: C = g.multiway_cut (g.vertices())
sage: set (C) == set (g.edges())
True

name (new=None)
Return or set the graph’s name.

INPUT:

* new —string (default: None); by default (new == None), the method returns the name of the graph.
When name is set, the string representation of that object becomes the new name of the (di)graph
(new == "'' removes any name).

EXAMPLES:

sage: d = {0: [1,4,5], 1: [2,6]1, 2: [3,7]1, 3: [4,8]1, 4: [9], 5: [7, 8], 6: [8,
—91, 7: [9]1}

sage: G = Graph(d); G

Graph on 10 vertices

sage: G.name ("Petersen Graph"); G
Petersen Graph: Graph on 10 vertices
sage: G.name (new=""); G

Graph on 10 vertices

sage: G.name ()

sage: G.name(42); G

42: Graph on 10 vertices

sage: G.name ()

l42'

neighbor_iterator (vertex)
Return an iterator over neighbors of vertex.

EXAMPLES:

sage: G = graphs.CubeGraph (3)
sage: for i in G.neighbor_iterator ('010"):
....: print(i)

sage: D = G.to_directed()
sage: for i in D.neighbor_iterator ('010"):
....: print(i)

(continues on next page)
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011
000
110

sage: D = DiGraph({0O: [1, 2], 3: [0]1})
sage: list (D.neighbor_iterator (0))
(1, 2, 31

neighbors (vertex)
Return a list of neighbors (in and out if directed) of vertex.

G[vertex] also works.

EXAMPLES:

sage: P = graphs.PetersenGraph ()
sage: sorted(P.neighbors(3))

(2, 4, 8]

sage: sorted(P[4])

[0, 3, 9]

networkx_graph (copy=True)
Return a new NetworkX graph from the Sage graph.

INPUT:

* copy — boolean (default: False); if False, and the underlying implementation is a NetworkX
graph, then the actual object itself is returned

EXAMPLES:

sage: G = graphs.TetrahedralGraph ()
sage: N = G.networkx_graph ()

sage: type (N)

<class 'networkx.classes.graph.Graph'>

nowhere_zero_flow (k=None, solver=None, verbose=0)
Return a k-nowhere zero flow of the (di)graph.

A flow on a graph G = (V, E) is a pair (D, f) such that D is an orientation of G and f is a function on F
satisfying

S fw)y= Y fow), Yo e V.

ueENL (v) wENg(v)

A nowhere zero flowonagraph G = (V,E)isaflow (D, f) such that f(e) # 0 for every e € E.
For a positive integer k, a k-flow on a graph G = (V, E) is a flow (D, f) such that f : E — Z and
—(k—1) < f(e) <k —1forevery e € E. A k-flow is positive if f(e) > 0 for every e € E. A k-flow
which is nowhere zero is called a k-nowhere zero flow (or k-NZF).

The following are equivalent.
* (G admits a positive k-flow.
* G admits a k-NZF.
 Every orientation of G admits a k-NZF.

Furthermore, a (di)graph admits a k-NZF if and only if it is bridgeless and every bridgeless graph admits
a 6-NZF [Sey1981]. See the Wikipedia article Nowhere-zero_flow for more details.
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ALGORITHM:

If self is not directed, we search for a k-NZF on any orientation of self and then build a positive k-NZF
by reverting edges with negative flow.

INPUT:
* k —integer (default: 6); when set to a positive integer > 2, search for a k-nowhere zero flow

* solver — (default: None); specifies a Linear Program solver to be used. If set to None, the default
one is used. For more information on LP solvers and which default solver is used, see the method
solve of the class MixedIntegerLinearProgram.

* verbose —integer (default: 0); sets the level of verbosity of the LP solver, where 0 means quiet.
OUTPUT:

A digraph with flow values stored as edge labels if a k-nowhere zero flow is found. If self is undirected,
the edges of this digraph indicate the selected orientation. If no feasible solution is found, an error is raised.

EXAMPLES:

The Petersen graph admits a (positive) S-nowhere zero flow, but no 4-nowhere zero flow:

sage: g = graphs.PetersenGraph ()
sage: h = g.nowhere_zero_flow (k=5)
sage: sorted(set (h.edge_labels()))
(1, 2, 3, 4]

sage: h = g.nowhere_zero_flow (k=3)
Traceback (most recent call last):

EmptySetError: the problem has no feasible solution

The de Bruijn digraph admits a 2-nowhere zero flow:

sage: h = g.nowhere_zero_flow (k=2)

sage: g = digraphs.DeBruijn (2, 3)
)))

sage: sorted(set (h.edge_labels (
(-1, 1]

num_edges ()

Return the number of edges.
Note that num_edges () also returns the number of edges in G.

EXAMPLES:

sage: G = graphs.PetersenGraph ()
sage: G.size()
15

num_faces (embedding=None)

Return the number of faces of an embedded graph.
INPUT:

e embedding — dictionary (default: None); a combinatorial embedding dictionary. Format: {v1:
[v2,v3], v2: [vl], v3: [v1]} (clockwise ordering of neighbors at each vertex). If set
to None (default) the method will use the embedding stored as self._embedding. If none is
stored, the method will compute the set of faces from the embedding returned by is_planar () (if
the graph is, of course, planar).

EXAMPLES:
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sage: T = graphs.TetrahedralGraph ()
sage: T.num_faces|()
4

num_verts ()
Return the number of vertices.

Note that 1en (G) and num_verts () also return the number of vertices in GG.

EXAMPLES:

sage: G = graphs.PetersenGraph ()
sage: G.order ()
10

sage: G = graphs.TetrahedralGraph ()
sage: len(G)
4

number_of_ loops ()
Return the number of edges that are loops

EXAMPLES:

sage: G = Graph (4, loops=True)

sage: G.add_edges ([ (0, 0), (1, 1), (2, 2), (3, 3), (2, 3)1)
sage: G.edges (labels=False)

[0, 0), (L, 1), (2, 2), (2, 3), (3, 3)]

sage: G.number_of_loops()

4

sage: D = DiGraph (4, loops=True)

sage: D.add_edges ([ (0, 0), (1, 1), (2, 2), (3, 3), (2, 3)1)
sage: D.edges (labels=False)

[0, 0), (1, 1), (2, 2), (2, 3), (3, 3)]

sage: D.number_of_loops()

order ()
Return the number of vertices.

Note that 1en (G) and num_verts () also return the number of vertices in G.

EXAMPLES:

sage: G = graphs.PetersenGraph ()
sage: G.order ()
10

sage: G = graphs.TetrahedralGraph ()
sage: len (G)
4

periphery (by_weight=False, algorithm=None, weight_function=None, check_weight=True)
Return the set of vertices in the periphery of the (di)graph.

The periphery is the set of vertices whose eccentricity is equal to the diameter of the (di)graph, i.e., achiev-
ing the maximum eccentricity.
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For more information and examples on how to use input variables, see shortest_paths () and
eccentricity /()

INPUT:

* by_weight — boolean (default: False);if True, edge weights are taken into account; if False, all
edges have weight 1

* algorithm - string (default: None); see method eccentricity () for the list of available algo-
rithms

e weight_function — function (default: None); a function that takes as input an edge (u, v,
1) and outputs its weight. If not None, by_weight is automatically set to True. If None and
by_weight is True, we use the edge label 1 as a weight.

e check_weight — boolean (default: True); if True, we check that the weight_function
outputs a number for each edge

EXAMPLES:

sage: G = graphs.DiamondGraph ()
sage: G.periphery ()

[0, 3]

sage: P = graphs.PetersenGraph()
sage: P.subgraph (P.periphery()) == P
True

sage: S = graphs.StarGraph(19)

sage: S.periphery ()

(., 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]
sage: G = Graph{()

sage: G.periphery ()

[]

sage: G.add_vertex()

0

sage: G.periphery ()

(0]

planar_dual (embedding=None)

Return the planar dual of an embedded graph.

A combinatorial embedding of a graph is a clockwise ordering of the neighbors of each vertex. From this
information one can obtain the dual of a plane graph, which is what the method returns. The vertices of
the dual graph correspond to faces of the primal graph.

INPUT:

* embedding — dictionary (default: None); a combinatorial embedding dictionary. Format: {v1:
[v2,v3], Vv2: [vl], Vv3: [v1]} (clockwise ordering of neighbors at each vertex). If set
to None (default) the method will use the embedding stored as self._embedding. If none is
stored, the method will compute the set of faces from the embedding returned by is_planar () (if
the graph is, of course, planar).

EXAMPLES:

sage: C = graphs.CubeGraph (3)
sage: C.planar_dual ()
Graph on 6 vertices

sage: graphs.IcosahedralGraph() .planar_dual() .is_isomorphic (graphs.
—DodecahedralGraph())
True
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The planar dual of the planar dual is isomorphic to the graph itself:

sage: g = graphs.BuckyBall ()

sage: g.planar_dual () .planar_dual() .is_isomorphic(g)
True
See also:

e faces ()
* set_embedding ()
* get_embedding ()

e is_planar()

Todo: Implement the method for graphs that are not 3-vertex-connected, or at least have a faster 3-vertex-
connectivity test (trac ticket #24635).

plot (**options)
Return a Graphics object representing the (di)graph.

INPUT:
* pos — an optional positioning dictionary
e layout — string (default: None); specifies a kind of layout to use, takes precedence over pos
— 'circular' - plots the graph with vertices evenly distributed on a circle

— 'spring' - uses the traditional spring layout, using the graph’s current positions as initial
positions

— 'tree' — the (di)graph must be a tree. One can specify the root of the tree using the keyword
tree_root, otherwise a root will be selected at random. Then the tree will be plotted in levels,
depending on minimum distance for the root.

e vertex_labels —boolean (default: True); whether to print vertex labels

* edge_labels — boolean (default: False); whether to print edge labels. If True, the result of
str (1) is printed on the edge for each label [. Labels equal to None are not printed (to set edge
labels, see set_edge label ()).

* edge_labels_background — the color of the edge labels background. The default is “white”.
To achieve a transparent background use “transparent”.

* vertex_size —size of vertices displayed

* vertex_shape — the shape to draw the vertices, for example "o" for circle or "s" for square.
Whole list is available at https://matplotlib.org/api/markers_api.html. (Not available for multiedge
digraphs.)

* graph_border —boolean (default: False); whether to include a box around the graph

* vertex_colors — dictionary (default: None); optional dictionary to specify vertex colors: each
key is a color recognizable by matplotlib, and each corresponding entry is a list of vertices. If a vertex
is not listed, it looks invisible on the resulting plot (it doesn’t get drawn).

* edge_colors —dictionary (default: None); a dictionary specifying edge colors: each key is a color
recognized by matplotlib, and each entry is a list of edges.
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* partition —a partition of the vertex set (default: None); if specified, plot will show each cell in a
different color. vertex_colors takes precedence.

* talk — boolean (default: False); if True, prints large vertices with white backgrounds so that
labels are legible on slides

e iterations — integer; how many iterations of the spring layout algorithm to go through, if appli-
cable

* color_by_label — aboolean or dictionary or function (default: False); whether to color each
edge with a different color according to its label; the colors are chosen along a rainbow, unless they
are specified by a function or dictionary mapping labels to colors; this option is incompatible with
edge_color and edge_colors.

* heights — dictionary (default: None); if specified, this is a dictionary from a set of floating point
heights to a set of vertices

* edge_style —keyword arguments passed into the edge-drawing routine. This currently only works
for directed graphs, since we pass off the undirected graph to networkx

* tree_root — a vertex (default: None); if specified, this vertex is used as the root for
the layout="tree" option. Otherwise, then one is chosen at random. Ignored unless
layout='tree'.

* tree_orientation - string (default: "down"); one of “up” or “down”. If “up” (resp., “down”),
then the root of the tree will appear on the bottom (resp., top) and the tree will grow upwards (resp.
downwards). Ignored unless layout="tree".

* save_pos — boolean (default: False); save position computed during plotting

Note:
* This method supports any parameter accepted by sage .plot .graphics.Graphics.show ().

* See the documentation of the sage. graphs.graph_plot module for information and examples
of how to define parameters that will be applied to all graph plots.

* Default parameters for this method and a specific graph can also be set through the opt i ons mech-
anism. For more information on this different way to set default parameters, see the help of the
options decorator.

e See also the sage.graphs.graph_latex module for ways to use LaTeX to produce an image
of a graph.

EXAMPLES:

sage: from sage.graphs.graph plot import graphplot_options
sage: sorted(graphplot_options.items())
[...]

sage: from math import sin, cos, pi

sage: P = graphs.PetersenGraph ()

sage: d = {'#FF0000': [0, 5], '#FF9900': [1, 6], '#FFFFO0O': [2, 7], '#00FFO0O
—': [3, 8], "#0O00OFF': [4, 91}

sage: pos_dict = {}

sage: for i in range(5):

....: x = float(cos(pi/2 + ((2%pi)/5)*1i))

ee..: vy = float(sin(pi/2 + ((2%pi)/5)*1i))

....: pos_dict[i] = [x,V]

(continues on next page)
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(continued from previous page)

sage: for i in range(5, 10):

....: x = float (0.5%cos (pi/2 + ((2%pi)/5)*i))
...t vy = float (0.5%sin(pi/2 + ((2%pi)/5)*1i))
ee..: pos_dict[i] = [x,V]

sage: pl = P.plot (pos=pos_dict, vertex_colors=d)
sage: pl.show()

sage: C = graphs.CubeGraph (8)
sage: P = C.plot (vertex_labels=False, vertex_size=0, graph_border=True)
sage: P.show ()

sage: G = graphs.HeawoodGraph ()

sage: for u, v, 1 in G.edges (sort=False):

et G.set_edge_label (u, v, '"(' + str(u) + ',' + str(v) + ")")
sage: G.plot (edge_labels=True) .show()

sage: D = DiGraph( { O: [1, 10, 191, 1: [8, 21, 2: [3, 61, 3: [19, 41, 4: [17,
- 5], 5: [6, 151, 6: [71, 7: [8, 141, 8: [9], 9: [10, 13], 10: [11], 11: [12,
- 181, 12: [l1e6, 13], 13: [141, 14: [15]1, 15: [1e6], 1l6: [17], 17: [18], 18:
—[19]1, 19: []1} , sparse=True)

sage: for u,v,1l in D.edges (sort=False):

et D.set_edge_label(u, v, '(' + str(u) + ',"' + str(v) + ")")

sage: D.plot (edge_labels=True, layout='circular') .show ()

[

sage: from sage.plot.colors import rainbow

sage: C = graphs.CubeGraph(5)

sage: R = rainbow(5)

sage: edge_colors = {R[i]: [] for i in range(5)}

sage: for u, v, 1 in C.edges(sort=False):

e for i in range(5):

e if uli] !'= vI[i]:

e edge_colors[R[1i]].append((u, v, 1))

sage: C.plot (vertex_labels=False, vertex_size=0, edge_colors=edge_colors).
—show ()

sage: D = graphs.DodecahedralGraph ()
sage: Pi = [[6,5,15,14,7], [1l6,13,8,2,41, [(12,17,9,3,1], [0,19,18,10,11]]
sage: D.show(partition=P1i)

sage: G = graphs.PetersenGraph ()
sage: G.allow_loops (True)

sage: G.add_edge (0, 0)

sage: G.show ()

sage: D = DiGraph({O: [0, 11, 1: [2], 2: [3]}, loops=True)

sage: D.show()

sage: D.show(edge_colors={(0, 1, 0): [(0O, 1, None), (1, 2, None)l, (0, 0, 0):
—[(2, 3, None)l})

sage: pos = {0: [0.0, 1.5], 1: [-0.8, 0.3], 2: [-0.6, -0.8], 3: [0.6, -0.81],
—4: [0.8, 0.31}

sage: g = Graph({O0: [1], 1: [2], 2: [31, 3: [4]1, 4: [01})

sage: g.plot (pos=pos, layout='spring', iterations=0)

Graphics object consisting of 11 graphics primitives

1.1. Generic graphs (common to directed/undirected) 155




Sage Reference Manual: Graph Theory, Release 8.6

sage: G = Graph()
sage: P = G.plot ()
sage: P.axes|()
False

sage: G = DiGraph()
sage: P = G.plot ()
sage: P.axes()
False

sage: G = graphs.PetersenGraph ()
sage: G.get_pos|()

{0: (0.0..., 1.0...),
1: (-0.95..., 0.30...),
2: (-0.58..., -0.80...),
3: (0.58..., -0.80...),
4: (0.95..., 0.30...),
5: (0.0..., 0.5...),
6: (-0.47 , 0.15 ),
7: (-0.29 , —0.40 ),
8: (0.29 , —0.40 ),
9: (0.47..., 0.15...)}
sage: P = G.plot (save_pos=True, layout='spring')

The following illustrates the format of a position dictionary.

sage: G.get_pos () # currently random across platforms, see #9593

{0: [1.17..., -0.855...1],
1: [1.81..., -0.0990...1,
2: [1.35..., 0.184...],
3: [1.51..., 0.644...],
4: [2.00..., -0.507...7,
5: [0.597..., -0.236...1,
6: [2.04..., 0.687...],
7: [1.46..., -0.473...7,
8: [0.902..., 0.773...1,
9: [2.48..., -0.119...]}

sage: T = list (graphs.trees(7))

sage: t = T[3]

sage: t.plot (heights={0: [0], 1: [4, 5, 11, 2: [2], 3: [3, 61})
Graphics object consisting of 14 graphics primitives

sage: T = list (graphs.trees(7))

sage: t = T[3]

sage: t.plot (heights={0: [0], 1: [4, 5, 11, 2: [2], 3: [3, 61})
Graphics object consisting of 14 graphics primitives

sage: t.set_edge_label (0, 1, -7)

sage: t.set_edge_label (0, 5, 3)

sage: t.set_edge_label (0, 5, 99)

sage: t.set_edge_label(l, 2, 1000)

sage: t.set_edge_label (3, 2, 'spam')

sage: t.set_edge_label(2, 6, 3/2)

sage: t.set_edge_label (0, 4, 66)

sage: t.plot (heights={0: [0], 1: [4, 5, 11, 2: [2], 3: [3, 6]}, edge_

—labels=True)
Graphics object consisting of 20 graphics primitives
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sage: T = list (graphs.trees(7))

sage: t = T[3]

sage: t.plot (layout='tree')

Graphics object consisting of 14 graphics primitives

sage: t = DiGraph('JCC???@A??2G0O??C0O??2G0??")

sage: t.plot (layout='tree', tree_root=0, tree_orientation="up")
Graphics object consisting of 22 graphics primitives

sage: D = DiGraph({O0: [1, 2, 31, 2: [1, 41, 3: [01})

sage: D.plot ()

Graphics object consisting of 16 graphics primitives

sage: D = DiGraph(multiedges=True, sparse=True)

sage: for i1 in range(5):

et D.add_edge((i, 1 + 1, 'a'"))

e D.add_edge((i, i - 1, 'b'"))

sage: D.plot (edge_labels=True, edge_colors=D._color_by_label())

Graphics object consisting of 34 graphics primitives

sage: D.plot (edge_labels=True, color_by_label={'a': 'blue', 'b': 'red'}, edge_
—style="dashed")

Graphics object consisting of 34 graphics primitives

sage: g = Graph({}, loops=True, multiedges=True, sparse=True)

sage: g.add_edges([ (0O, 0O, 'a'), (0, 0O, 'b"), (0, 1, 'c¢c"), (O, 1, 'd"),
et (0, 1, 'e"y, (O, 1, '£"), (O, 1, 'E"), (2, 1, 'g"), (2, 2, 'h")])
sage: g.plot (edge_labels=True, color_by_label=True, edge_style='dashed")
Graphics object consisting of 26 graphics primitives

sage: S = SupersingularModule (389)

sage: H = S.hecke_matrix(2)

sage: D = DiGraph (H, sparse=True)

sage: P = D.plot ()

sage: G=Graph({'a':['a','b','b','b",'e"],'b':['c','d",'e"],'c':["c",'d",'d",'d
—'],'d":['e']}, sparse=True)

sage: G.show(pos={'a':[0,1],'b":[1,1],"'c":[2,0],'d":[1,0],"'e":[0,0]11})

plot3d (bgcolor=(1, 1, 1), vertex_colors=None, vertex_size=0.06, vertex_labels=False,
edge_colors=None, edge_size=0.02, edge_size2=0.0325, pos3d=None, color_by_label=False,
engine="jmol’, **kwds)
Plot a graph in three dimensions.
See also the sage.graphs.graph_latex module for ways to use LaTeX to produce an image of a
graph.

INPUT:
* bgcolor —rgb tuple (default: (1,1,1))
e vertex_size — float (default: 0.06)

* vertex_labels —aboolean (default: False); whether to display vertices using text labels instead
of spheres

e vertex_colors — dictionary (default: None); optional dictionary to specify vertex colors: each
key is a color recognizable by tachyon (rgb tuple (default: (1, 0, 0))), and each corresponding
entry is a list of vertices. If a vertex is not listed, it looks invisible on the resulting plot (it does not get
drawn).
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* edge_colors —dictionary (default: None); a dictionary specifying edge colors: each key is a color
recognized by tachyon (default: (0, 0, 0) ), and each entry is a list of edges.

* color_by_label — a boolean or dictionary or function (default: False) whether to color each
edge with a different color according to its label; the colors are chosen along a rainbow, unless they
are specified by a function or dictionary mapping labels to colors; this option is incompatible with
edge_color and edge_colors.

e edge_size — float (default: 0.02)
* edge_size?2 —float (default: 0.0325); used for Tachyon sleeves
* pos3d - a position dictionary for the vertices
e layout, iterations, ... —layout options; see layout ()
* engine —string (default: ' jmol"); the renderer to use among:
— '"jmol"' - default
- 'tachyon'
* xres —resolution
e yres —resolution
* xxkwds — passed on to the rendering engine

EXAMPLES:

sage: G = graphs.CubeGraph (5)
sage: G.plot3d(iterations=500, edge_size=None, vertex_size=0.04) # long time
Graphics3d Object

We plot a fairly complicated Cayley graph:

sage: A5 = AlternatingGroup(5); A5

Alternating group of order 5!/2 as a permutation group

sage: G = Ab.cayley_graph()

sage: G.plot3d(vertex_size=0.03, edge_size=0.01, vertex_colors={(1,1,1):_
—~1list (G)}, bgcolor=(0,0,0), color_by_ label=True, iterations=200) # long time
Graphics3d Object

Some Tachyon examples:

sage: D = graphs.DodecahedralGraph ()
sage: P3D = D.plot3d(engine='tachyon')
sage: P3D.show () # long time

sage: G = graphs.PetersenGraph ()
sage: G.plot3d(engine='tachyon', vertex_colors={(0,0,1): 1list(G)}).show() #
—long time

[

sage: C = graphs.CubeGraph (4)
sage: C.plot3d(engine='tachyon', edge_colors={(0,1,0): C.edges(sort=False)},
—vertex_colors={(1,1,1): 1list(C)}, bgcolor=(0,0,0)).show() # long time

sage: K = graphs.CompleteGraph (3)
sage: K.plot3d(engine='tachyon', edge_colors={(1,0,0): [(0,1,None)], (0,1,0):,
—~[(0,2,None)], (0,0,1): [(1,2,None)]}).show() # long time
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A directed version of the dodecahedron

sage: D = DiGraph({O: [1, 10, 191, 1: [8, 21, 2: [3, 61, 3: [19, 41, 4: [17,.
—-5], 5: [6, 151, 6: (71, 7: [8, 141, 8: [91, 9: [10, 131, 10: [117, 11: [12,_
-181, 12: [l16, 131, 13: [14], 14: [15], 15: [1e6], 16: [17], 17: [18], 18:
<~ [191, 19: [1})

sage: D.plot3d() .show() # long time

sage: P = graphs.PetersenGraph() .to_directed()
sage: from sage.plot.colors import rainbow
sage: R = rainbow(P.size (), 'rgbtuple')

sage: edge_colors = {R[i]: [e] for i, e in enumerate (P.edge_iterator())}

sage: P.plot3d(engine='tachyon', edge_colors=edge_colors) .show() # long time
sage: G:Graph({’al:[’a|,lbl,lbY,’b‘,lel],lbl:[|cllld|’Ye’],YC’:[YCY,’d|,Id|,Yd
—'],'d":['e']},sparse=True)

sage: G.show3d()
Traceback (most recent call last):

NotImplementedError: 3D plotting of multiple edges or loops not implemented

Using the partition keyword:

sage: G = graphs.WheelGraph(7)
sage: G.plot3d(partition=[[0], [1, 2, 3, 4, 5, 611)
Graphics3d Object

See also:

* plot ()

* graphviz_string()

radius (by_weight=False, algorithm=None, weight_function=None, check_weight=True)

Return the radius of the (di)graph.

The radius is defined to be the minimum eccentricity of any vertex, where the eccentricity is the maximum
distance to any other vertex. For more information and examples on how to use input variables, see
shortest_paths () and eccentricity ()

INPUT:

* by_weight — boolean (default: False);if True, edge weights are taken into account; if False, all
edges have weight 1

* algorithm - string (default: None); see method eccentricity () for the list of available algo-
rithms

e weight_function — function (default: None); a function that takes as input an edge (u, v,
1) and outputs its weight. If not None, by_weight is automatically set to True. If None and
by_weight is True, we use the edge label 1 as a weight.

¢ check_weight — boolean (default: True); if True, we check that the weight_function
outputs a number for each edge

EXAMPLES:

The more symmetric a graph is, the smaller (diameter - radius) is:
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sage: G = graphs.BarbellGraph(9, 3)
sage: G.radius ()

3

sage: G.diameter ()

6

sage: G = graphs.OctahedralGraph ()
sage: G.radius ()

2

sage: G.diameter ()

2

random_edge ( **kwds)
Return a random edge of self.

INPUT:

* xxkwds — arguments to be passed down to the edge_iterator () method

EXAMPLES:

The returned value is an edge of self:

sage: g = graphs.PetersenGraph ()

sage: u,v = g.random_edge (labels=False)
sage: g.has_edge (u,v)

True

As the edges () method would, this function returns by default a triple (u,
1 is the label of edge (u, v):

v,

1) of values, in which

sage:
(3, 4,

g.random_edge ()
None)

random_edge_iterator (*args, **kwds)
Return an iterator over random edges of self.

The returned iterator enables to amortize the cost of accessing random edges, as can be done with multiple

calls to method random_edge ().

INPUT:

* xargs and » xkwds — arguments to be passed down to the edge_iterator () method.

EXAMPLES:

The returned value is an iterator over the edges of self:

sage: g = graphs.PetersenGraph ()

sage: it = g.random_edge_iterator ()

sage: [g.has_edge(next (it)) for _ in range (5)]
[True, True, True, True, True]

As the edges () method would, this function returns by default a triple (u,
1 is the label of edge (u,v):

\

1) of values, in which

sage: print (next (g.random_edge_iterator())) # random

(0, 5, None)

sage: print (next (g.random_edge_iterator (labels=False))) # random
(5, 7)

160

Chapter 1. Graph objects and methods




Sage Reference Manual: Graph Theory, Release 8.6

random_subgraph (p, inplace=False)
Return a random subgraph containing each vertex with probability p.

INPUT:
* p — the probability of choosing a vertex

e inplace —boolean (default: False); using inplace=True will simply delete the extra vertices
and edges from the current graph. This will modify the graph.

EXAMPLES:

sage: P = graphs.PetersenGraph ()
sage: P.random_subgraph(.25)
Subgraph of (Petersen graph): Graph on 4 vertices

random_vertex ( **kwds)
Return a random vertex of self.

INPUT:

* xxkwds — arguments to be passed down to the vertex iterator () method

EXAMPLES:

The returned value is a vertex of self:

sage: g = graphs.PetersenGraph ()
sage: Vv g.random_vertex ()
sage: v in g

True

random_vertex_iterator (*args, **kwds)
Return an iterator over random vertices of self.

The returned iterator enables to amortize the cost of accessing random vertices, as can be done with
multiple calls to method random_vertex().

INPUT:

* xargs and  xkwds — arguments to be passed down to the vertex iterator () method

EXAMPLES:

The returned value is an iterator over the vertices of self:

sage: g = graphs.PetersenGraph ()

sage: it = g.random_vertex_iterator ()
sage: [next(it) in g for _ in range(5)]
[True, True, True, True, True]

relabel (perm=None, inplace=True, return_map=False, check_input=True, com-

plete_partial_function=True, immutable=None)
Relabels the vertices of self

INPUT:
* perm — a function, dictionary, list, permutation, or None (default: None)
* inplace —aboolean (default: True)
e return_map — a boolean (default: False)

* check_input (boolean) — whether to test input for correctness. This can potentially be very time-
consuming !.
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* complete_partial_function (boolean) — whether to automatically complete the permutation
if some elements of the graph are not associated with any new name. In this case, those elements are
not relabeled This can potentially be very time-consuming !.

¢ immutable (boolean) — with inplace=False, whether to create a mutable/immutable relabelled
copy. immutable=None (default) means that the graph and its copy will behave the same way.

If perm is a function £, then each vertex v is relabeled to £ (v).

If permis a dictionary d, then each vertex v (which should be a key of d) is relabeled to d [v]. Similarly,
if perm is a list or tuple 1 of length n, then the first vertex returned by G.vertices () is relabeled to
1[0],thesecondto1[1],...

If perm is a permutation, then each vertex v is relabeled to perm (v). Caveat: this assumes that the
vertices are labelled {0, 1,...,n — 1}; since permutations act by default on the set {1,2,...,n}, this is
achieved by identifying n and 0.

If perm is None, the graph is relabeled to be on the vertices {0,1,...,n — 1}. This is not any kind of
canonical labeling, but neither a random relabeling.

If inplace is True, the graph is modified in place and None is returned. Otherwise a relabeled copy of
the graph is returned.

If return_map is True a dictionary representing the relabelling map is returned (incompatible with
inplace==False).

EXAMPLES:

sage: G = graphs.PathGraph (3)
sage: G.am()

[0 1 0]

(1 0 1]

[0 1 0]

Relabeling using a dictionary. Note that the dictionary does not define the new label of vertex 0:

sage: G.relabel({1:2,2:1}, inplace=False) .am()
[0 0 1]
[0 0 1]
[1 1 0]

This is because the method automatically “extends” the relabeling to the missing vertices (whose label
will not change). Checking that all vertices have an image can require some time, and this feature can be
disabled (at your own risk):

sage: G.relabel({1:2,2:1}, inplace=False, complete_partial_function = False).
—am ()
Traceback (most recent call last):

KeyError: 0

Relabeling using a list:

sage: G.relabel([0,2,1], inplace=False).am()
[0 0 1]
[0 0 1]
[1 1 0]

Relabeling using a tuple:
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sage: G.relabel((0,2,1), inplace=False).am()
[0 0 1]
[0 0 1]
[1 1 0]

Relabeling using a Sage permutation:

sage: G = graphs.PathGraph (3)
sage: from sage.groups.perm gps.permgroup_named import SymmetricGroup
sage: S = SymmetricGroup (3)

sage: gamma = S('(1,2)")

sage: G.relabel (gamma, inplace=False).am()
[0 0 1]

[0 0 1]

[1 1 0]

A way to get a random relabeling:

sage: set_random_seed(0) # Results are reproducible

sage: D = DiGraph({1: [2], 3: [41})

sage: D.relabel (Permutations(D.vertices()) .random_element ())
sage: D.sources|()

[1, 4]

Relabeling using an injective function:

sage: G.edges|()

[(O, 1, None), (1, 2, None)]

sage: H = G.relabel(lambda i: i+10, inplace=False)
sage: H.vertices()

[10, 11, 12]

sage: H.edges()

[(10, 11, None), (11, 12, None)]

Relabeling using a non injective function has no meaning:

sage: G.edges|()

[(O, 1, None), (1, 2, None)]

sage: G.relabel (lambda i: 0, inplace=False)
Traceback (most recent call last):

NotImplementedError: Non injective relabeling

But this test can be disabled, which can lead to ... problems:

sage: G.edges()

[(0O, 1, None), (1, 2, None)]

sage: G.relabel (lambda i: 0, check_input = False)
sage: G.edges()

[]

Relabeling to simpler labels:

sage: G = graphs.CubeGraph (3)

sage: G.vertices()

(rooo*, r'oo1€r+, 'o1o0', 'o11€', rioo', 'io1rv, '1i1o', '111"]
sage: G.relabel ()

(continues on next page)
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sage: G.vertices()
(o, 1, 2, 3, 4, 5, 6, 7]

Recovering the relabeling with return_map:

sage: G = graphs.CubeGraph (3)

sage: expecting = {'0O0O': O, '001': 1, '010': 2, '0O11': 3, '100': 4, '101': 5,
— '110': 6, '111': 7}
sage: G.relabel (return_map=True) == expecting
True
sage: G = graphs.PathGraph (3)
sage: G.relabel (lambda i: i+10, return_map=True)
{0: 10, 1: 11, 2: 12}

remove_loops (vertices=None)
Remove loops on vertices in vertices.
If vertices is None, removes all loops.
EXAMPLES:
sage: G = Graph (4, loops=True)
sage: G.add_edges([(0, 0), (1, 1), (2, 2), (3, 3), (2, 3)])
sage: G.edges (labels=False)
[0, 0), (L, 1), (2, 2), (2, 3), (3, 3)]
sage: G.remove_loops ()
sage: G.edges (labels=False)
[(2, 3)]
sage: G.allows_loops ()
True
sage: G.has_loops()
False
sage: D = DiGraph (4, loops=True)
sage: D.add_edges([(0, 0), (1, 1), (2, 2), (3, 3), (2, 3)])
sage: D.edges (labels=False)
(0, 0), (L, 1), (2, 2), (2, 3), (3, 3)]
sage: D.remove_loops ()
sage: D.edges (labels=False)
[(2, 3)]
sage: D.allows_loops ()
True
sage: D.has_loops()
False

remove_multiple_edges ()
Remove all multiple edges, retaining one edge for each.
See also:
See also allow multiple edges ()
EXAMPLES:
sage: G = Graph(multiedges=True, sparse=True)
sage: G.add_edges([(0,1), (0,1), (0,1), (0,1), (1,2)])

(continues on next page)
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sage: G.edges (labels=False)
(o, 1), (0, 1), (0, 1), (0, 1), (1, 2)]

sage: G.remove_multiple_edges()
sage: G.edges (labels=False)
[0, 1), (1, 2)]

sage: D = DiGraph(multiedges=True, sparse=True)

sage: D.add_edges([ (0, 1, 1), (0O, 1, 2), (0, 1, 3), (0, 1, 4), (1, 2, None)l)
sage: D.edges (labels=False)

(e, 1, 0, 1), (0, 1), (0, 1), (1, 2)]

sage: D.remove_multiple_edges ()

sage: D.edges (labels=False)

[0, 1), (1, 2)]

set_edge_label (u, v, 1)

Set the edge label of a given edge.

Note: There can be only one edge from u to v for this to make sense. Otherwise, an error is raised.

INPUT:
e u, v —the vertices (and direction if digraph) of the edge
e 1 — the new label

EXAMPLES:

sage: SD = DiGraph({1:[18,21, 2:[5,31, 3:[4,61, 4:[7,21, 5:[4]1, 6:[13,12],
7:[(18,8,101, 8:[6,9,10]1, 9:[6], 10:(11,13], 11:[12), 12:[13], 13:[17,141,.

—14:[16,15], 15:([21, 16:[13], 17:[15,13]1, 18:[13]1}, sparse=True)

sage: SD.set_edge_label 18, 'discrete')

sage: SD.set_edge_label (4, 7, 'discrete')

sage: SD.set_edge_label 2, 5 'h =20")

sage: SD.set_edge_label (7, 18, 'h = 0")

sage: SD.set_edge_label (7, 10, 'aut')

sage: SD.set_edge_label (8, 10, '"aut')

sage: SD.set_edge_label (8, 9, 'label')

sage: SD.set_edge_label 8 6, 'nmo label')

sage: SD.set_edge_label 17, 'k > h'")

sage: SD.set_edge_label 14, 'k = h'")

sage: SD.set_edge_label 15, 'v_k finite'")

sage: SD.set_edge_label 15, 'v_k m.c.r. W

sage: posn = {1l:[ 3,73], 2:[0,21, 3:1[0, 3], 4:[3,91, 5:[03,31, 6:[16,

131, 7:[6,11, 8:[6,6], 9:[6,11], 10:[9,1], 11:[10,61, 12:[13,61, 13:[16,

21, 14:[10,-61, 15:[0,-10], 16:[14,-61, 17.[16,710], 18:[6,-41}

sage: SD.plot (pos=posn, vertex_size=400, vertex_colors={'#FFFFFEF
':list(range(1,19))}, edge_labels=True).show() # long time

sage: G = graphs.HeawoodGraph ()
sage: for u,v,l in G.edges(sort=False):
e G.set_edge_label (u, v, '"(' + str(u) + ',' + str(v) + ")")
sage: G.edges|()
[(0, 1, "(0,1)"),
(0, 5, '(0,5)"),

(continues on next page)
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(0, 13, '(0,13)"),

(11, 12, '(11,12)"),
(12, 13, '(12,13)")]

sage: g = Graph({0: [0, 1, 1, 2]}, loops=True, multiedges=True, sparse=True)
sage: g.set_edge_label (0, 0, 'test')
sage: g.edges|()

[(0, 0, 'test'), (0, 1, None), (0, 1, None), (0, 2, None)]
sage: g.add_edge (0, 0, 'test2'")

sage: g.set_edge_label (0,0, 'test3")

Traceback (most recent call last):

RuntimeError: cannot set edge label, since there are multiple edges from 0 to
—0

sage: dg = DiGraph({0O: [1], 1: [0]}, sparse=True)
sage: dg.set_edge_label (0, 1, 5)
sage: dg.set_edge_label(l, 0, 9)
sage: dg.outgoing_edges (1)

[((1, 0, 9)]

sage: dg.incoming_edges (1)

[(0, 1, 5)]

sage: dg.outgoing_edges (0)

[(0, 1, 5)]

sage: dg.incoming_edges (0)

[((1, 0, 9)]

sage: G = Graph({0: {1: 1}}, sparse=True)
sage: G.num_edges ()

1

sage: G.set_edge_label (0, 1, 1)

sage: G.num_edges ()

1

set_embedding (embedding)

Set a combinatorial embedding dictionary to _embedding attribute.

Dictionary is organized with vertex labels as keys and a list of each vertex’s neighbors in clockwise order.
Dictionary is error-checked for validity.

INPUT:

* embedding — a dictionary

EXAMPLES:

sage: G = graphs.PetersenGraph ()

sage: G.set_embedding({O0: [1, 5, 41, 1: [0, 2, 61, 2: [1, 3, 71, 3: [8, 2, 41,
- 4: [0, 9, 31, 5: [0, 8, 71, 6: [8, 1, 91, 7: [9, 2, 51, 8: [3, 5, 61, 9:,
—[4, 6, 71})

sage: G.set_embedding({'s': [1, 5, 41, 1: [0, 2, 6], 2: [1, 3, 71, 3: [8, 2,

—4], 4: [0, 9, 31, 5: [0, 8, 71, 6: (8, 1, 91, 7: [9, 2, 5], 8: [3, 5, 6],
—9: [4, 6, T1})
Traceback (most recent call last):

ValueError: vertices in ['s'] from the embedding do not belong to the graph
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set_latex_options (**kwds)
Set multiple options for rendering a graph with LaTeX.

INPUT:
¢ kwds — any number of option/value pairs to set many graph latex options at once (a variable number,
in any order). Existing values are overwritten, new values are added. Existing values can be cleared

by setting the value to None. Possible options are documented at sage . graphs.graph_latex.
GraphLatex.set_option ().

This method is a convenience for setting the options of a graph directly on an instance of the graph. For a
full explanation of how to use LaTeX to render graphs, see the introduction to the graph_ 1atex module.

EXAMPLES:

sage: g = graphs.PetersenGraph ()
sage: g.set_latex_options (tkz_style='Welsh')

sage: opts = g.latex_options()
sage: opts.get_option('tkz_ style')
'Welsh'

set_planar_positions (test=False, **layout_options)
Compute a planar layout for self using Schnyder’s algorithm, and save it as default layout.

EXAMPLES:

sage: g = graphs.CycleGraph(7)
sage: g.set_planar_positions (test=True)
True

This method is deprecated since Sage-4.4.1.alpha2. Please use instead:

sage: g.layout(layout = “planar”, save_pos = True) {O: [1, 4], 1: [5, 1], 2: [0, 5], 3: [1, 0], 4: [1,
2],5:[2,1],6: [4,1]}

set_pos (pos, dim=2)
Set the position dictionary.

The position dictionary specifies the coordinates of each vertex.
INPUT:

* pos —a position dictionary for the vertices of the (di)graph

e dim - integer (default: 2); the number of coordinates per vertex

EXAMPLES:

Note that set_pos () will allow you to do ridiculous things, which will not blow up until plotting:

sage: G = graphs.PetersenGraph ()
sage: G.get_pos|()
{0 (..., oo0)y

9: (..., ...)}

sage: G.set_pos('spam')
sage: P = G.plot ()
Traceback (most recent call last):

TypeError: string indices must be integers...
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set_vertex (vertex, object)

Associate an arbitrary object with a vertex.
INPUT:

e vertex — which vertex

* object — object to associate to vertex

EXAMPLES:

sage: T = graphs.TetrahedralGraph ()

sage: T.vertices()

(o, 1, 2, 3]

sage: T.set_vertex(l, graphs.FlowerSnark())
sage: T.get_vertex (1)

Flower Snark: Graph on 20 vertices

set_vertices (vertex_dict)

Associate arbitrary objects with each vertex, via an association dictionary.
INPUT:
e vertex_dict — the association dictionary

EXAMPLES:

sage: d = {0: graphs.DodecahedralGraph(), 1: graphs.FlowerSnark(), 2: graphs.
—MoebiusKantorGraph (), 3: graphs.PetersenGraph ()}

sage: d[2]

Moebius—-Kantor Graph: Graph on 16 vertices

sage: T = graphs.TetrahedralGraph ()

sage: T.vertices ()

(0, 1, 2, 3]

sage: T.set_vertices(d)

sage: T.get_vertex (1)

Flower Snark: Graph on 20 vertices

shortest_path (u, v, by_weight=False, algorithm=None, weight_function=None,

check_weight=True)
Return a list of vertices representing some shortest path from u to v.

If there is no path from w to v, the returned list is empty.
For more information and more examples, see shortest_paths () (the inputs are very similar).
INPUT:

* u, v — the start and the end vertices of the paths

* by_weight — boolean (default: False); if True, the edges in the graph are weighted, otherwise
all edges have weight 1

* algorithm - string (default: None); one of the following algorithms:

— '"BFS': performs a BFS from u. Does not work with edge weights.

'BFS_Bid: performs a BFS from u and from v. Does not work with edge weights.

— 'Dijkstra_NetworkX':the Dijkstra algorithm, implemented in NetworkX. Works only with
positive weights.

'Dijkstra_Bid_NetworkX': performs a Dijkstra visit from u and from v (NetworkX im-
plementation). Works only with positive weights.
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— 'Dijkstra_Bid': a Cython implementation that performs a Dijkstra visit from u and from v.
Works only with positive weights.

— 'Bellman-Ford_Boost': the Bellman-Ford algorithm, implemented in Boost. Works also
with negative weights, if there is no negative cycle.

— None (default): Sage chooses the best algorithm: 'BFS_Bid' if by_weight is False,
'Dijkstra_Bid"' otherwise.

Note:  If there are negative weights and algorithm is None, the result is not reliable. This
occurs because, for performance reasons, we cannot check whether there are edges with neg-
ative weights before running the algorithm. If there are, the user should explicitly input
algorithm='Bellman-Ford_Boost"'.

* weight_function — function (default: None); a function that takes as input an edge (u, v,
1) and outputs its weight. If not None, by_weight is automatically set to True. If None and
by_weight is True, we use the edge label 1 as a weight.

e check_weight — boolean (default: True); if True, we check that the weight_function outputs a
number for each edge

EXAMPLES:

sage: D = graphs.DodecahedralGraph ()

sage: D.shortest_path (4, 9)

(4, 17, 16, 12, 13, 9]

sage: D.shortest_path(4, 9, algorithm='BFS'")

(4, 3, 2, 1, 8, 9]

sage: D.shortest_path (4, 8, algorithm='Dijkstra NetworkX")

(4, 3, 2, 1, 8]

sage: D.shortest_path (4, 8, algorithm='Dijkstra_Bid NetworkX")

(4, 3, 2, 1, 8]

sage: D.shortest_path (4, 9, algorithm='Dijkstra_ Bid")

(4, 3, 19, 0, 10, 9]

sage: D.shortest_path (5, 5)

[5]

sage: D.delete_edges (D.edges_incident (13))

sage: D.shortest_path (13, 4)

[]

sage: G = Graph({0: {1: 1}, 1: {2: 1}, 2: {3: 1}, 3: {4: 2}, 4: {0: 2}},.,
—sparse = True)

sage: G.plot (edge_labels=True) .show() # long time

sage: G.shortest_path (0, 3)

[0, 4, 3]

sage: G.shortest_path(0, 3, by_weight=True)

[0, 1, 2, 3]

sage: G.shortest_path(0, 3, by_weight=True, algorithm='Dijkstra NetworkX")
(o, 1, 2, 31

sage: G.shortest_path(0, 3, by_weight=True, algorithm='Dijkstra Bid NetworkX")
(o, 1, 2, 31

shortest_path_all_pairs (by_weight=False, algorithm=None, weight_function=None,

check_weight=True)
Return a shortest path between each pair of vertices.

INPUT:

* by_weight — boolean (default: False); if True, the edges in the graph are weighted, otherwise
all edges have weight 1
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* algorithm - string (default: None); one of the following algorithms:

— 'BFS':the computation is done through a BFS centered on each vertex successively. Works only
if by_weight==False.

— 'Floyd-Warshall-Cython': the Cython implementation of the Floyd-Warshall algorithm.
Works only if by_weight==False.

— 'Floyd-Warshall-Python': the Python implementation of the Floyd-Warshall algorithm.
Works also with weighted graphs, even with negative weights (but no negative cycle is allowed).

— 'Dijkstra_NetworkX': the Dijkstra algorithm, implemented in NetworkX. It works with
weighted graphs, but no negative weight is allowed.

— 'Dijkstra_Boost': the Dijkstra algorithm, implemented in Boost (works only with positive
weights).

— 'Johnson_Boost ': the Johnson algorithm, implemented in Boost (works also with negative
weights, if there is no negative cycle).

— None (default): Sage chooses the best algorithm: 'BFS' if by_weight is False,
'Dijkstra_Boost"' if all weights are positive, 'Floyd-Warshall-Cython' otherwise.

* weight_function — function (default: None); a function that takes as input an edge (u, v,
1) and outputs its weight. If not None, by_weight is automatically set to True. If None and
by_weight is True, we use the edge label 1 as a weight.

* check_weight — boolean (default: True); if True, we check that the weight_function outputs a
number for each edge

OUTPUT:

A tuple (dist, pred). They are both dicts of dicts. The first indicates the length dist [u] [v]
of the shortest weighted path from u to v. The second is a compact representation of all the paths - it
indicates the predecessor pred[u] [v] of v in the shortest path from w to v. If the algorithm used is
Johnson_Boost, predecessors are not computed.

Note: Only reachable vertices are present in the dictionaries.

Note: There is a Cython version of this method that is usually much faster for large graphs, as most of
the time is actually spent building the final double dictionary. Everything on the subject is to be found in
the distances_all_pairs module.

EXAMPLES:

Some standard examples (see shortest_paths () for more examples on how to use the input vari-
ables):

sage: G = Graph( { O: {1: 1}, 1: {2: 1}, 2: {3: 1}, 3: {4: 2}, 4: {0: 2} 1},
—sparse=True)

sage: G.plot (edge_labels=True) .show() # long time

sage: dist, pred = G.shortest_path_all pairs(by_weight = True)

sage: dist

{0: {0: 0, 1: 1, 2: 2, 3: 3, 4: 2}y, 1: {0: 1, 1: 0, 2: 1, 3: 2, 4: 3}, 2: {0:
-2, 1:1, 2: 0, 3: 1, 4: 3}y, 3: {0: 3, 1: 2, 2: 1, 3: 0, 4: 2}, 4: {0: 2, 1:
—~3, 2: 3, 3: 2, 4: 0}}

sage: pred

{0: {0: None, 1: 0, 2: 1, 3: 2, 4: 0}, 1: {O: 1, 1: None, 2: 1, 3: 2, 4: 0},

[

[

—~2: {0: 1, I: 2, 2: None, 3: 2, 4: 3}, 3: {0: 1, 1: 2, 2: 3, 3:continees od nexBpage)
—~4: {0: 4, 1: 0, 2: 3, 3: 4, 4: None}}
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sage: pred[0]

{0: None, 1: 0, 2: 1, 3: 2, 4: 0}

sage: G = Graph( { 0: {1: {'weight':1}}, 1: {2: {'weight':1}}, 2: {3: {'weight
':1}}, 3: {4: {'weight':2}}, 4: {0: {'weight':2}} }, sparse=True)

sage: dist, pred = G.shortest_path_all pairs(weight_function = lambda e:e[2] [

—'weight'])

sage: dist

{0: {O: 0, 1: 1, 2: 2, 3: 3, 4: 2}, 1: {O0: 1, 1: 0, 2: 1, 3: 2, 4: 3}, 2: {0:

-2, 1: 1, 2: 0, 3: 1, 4: 3}, 3: {0: 3, 1: 2, 2: 1, 3: 0, 4: 2}, 4: {0: 2, 1:_

3, 2: 3, 3: 2, 4: 0}}

sage: pred

{0: {0: None, 1: 0, 2: 1, 3: 2, 4: 0}, 1: {O: 1, 1: None, 2: 1, 3: 2, 4: 0},

—~2: {0: 1, 1: 2, 2: None, 3: 2, 4: 3}, 3: {0: 1, 1: 2, 2: 3, 3: None, 4: 3},

—~4: {0: 4, 1: 0, 2: 3, 3: 4, 4: None}}

So for example the shortest weighted path from 0 to 3 is obtained as follows. The predecessor of 3

is pred[0] [3] == 2, the predecessor of 2 is pred[0] [2] == 1, and the predecessor of 1 is
pred[0] [1] == O.

sage: G = Graph( { O0: {l1:None}, 1: {2:None}, 2: {3: 1}, 3: {4: 2}, 4: {0: 2} }
—, sparse=True )

sage: G.shortest_path_all pairs()

({0: {O: 0, 1: 1, 2: 2, 3: 2, 4: 1},

1: {0: 1, 1: 0, 2: 1, 3: 2, 4: 2},

2: {0: 2, 1: 1, 2: 0, 3: 1, 4: 2},

3: {0: 2, 1: 2, 2: 1, 3: 0, 4: 1},

4: {0: 1, 1: 2, 2: 2, 3: 1, 4: 0}},

{0: {0: None, 1: O, 2: 1, 3: 4, 4: 0},

1: {0: 1, 1: None, 2: 1, 3: 2, 4: 0},

2: {0: 1, 1: 2, 2: None, 3: 2, 4: 3},

3: {0: 4, 1: 2, 2: 3, 3: None, 4: 3},

4. {0: 4, 1: 0, 2: 3, 3: 4, 4: None}})

sage: G.shortest_path_all pairs(weight_function=lambda e: (e[2] if e[2] is not
—None else 1))

({0: {O: 0, 1: 1, 2: 2, 3: 3, 4: 2},

1: {0: 1, 1: 0, 2: 1, 3: 2, 4: 3},

2: {0: 2, 1: 1, 2: 0, 3: 1, 4: 3},

3: {0: 3, 1: 2, 2: 1, 3: 0, 4: 2},

4: {0: 2, 1: 3, 2: 3, 3: 2, 4: 0}},

{0: {0: None, 1: 0, 2: 1, 3: 2, 4: 0},

1: {0: 1, 1: None, 2: 1, 3: 2, 4: 0},

2: {0: 1, 1: 2, 2: None, 3: 2, 4: 3},

3: {0: 1, 1: 2, 2: 3, 3: None, 4: 3},

4 {0: 4, 1: 0, 2: 3, 3: 4, 4: None}l})

Checking that distances are equal regardless of the algorithm used:

sage: g =
sage: dl,
sage: dz,
sage: d3,
sage: d4,
sage: d5,
sage: d6,
sage: dl =
True

graphs Grid2dGraph (5, 5)

= g.shortest_path_all_pairs
.shortest_path_all_pairs
.shortest_path_all pairs
.shortest_path_all_pairs
.shortest_path_all_pairs
.shortest_path all_palrs
d2 == d3 == d4 == d5 == do6

algorithm="BFS")

algorithm="Dijkstra Netwo
algorithm="Dijkstra_ Boost
algorithm="Johnson_Boost"

Q Q Q9 Q9 Q

rkX")
n)
)

algorithm="Floyd-Warshall-Cython")
algorithm="Floyd-Warshall-Python")
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Checking that distances are equal regardless of the algorithm used:

sage: g = digraphs.RandomDirectedGNM(6,12)
sage: dl, = g.shortest_path_all_pairs(algorithm="BFS")

sage: d2, _ = g.shortest_path_all_pairs(algorithm="Floyd-Warshall-Cython")
sage: d3, _ = g.shortest_path_all_pairs(algorithm="Floyd-Warshall-Python")
sage: d4, _ = g.shortest_path_all pairs(algorithm="Dijkstra NetworkX")
sage: d5, _ = g.shortest_path_all_pairs(algorithm="Dijkstra_ Boost")

sage: d6, _ = g.shortest_path_all_pairs(algorithm="Johnson_ Boost")

sage: dl == d2 == d3 == d4 == d5 == dé6

True

Checking that weighted distances are equal regardless of the algorithm used:

sage: g = graphs.CompleteGraph (5)

sage: import random

sage: for v, w in g.edges(labels=False, sort=False):
e g.add_edge (v, w, random.uniform(l, 10))

sage: dl, _ = g.shortest_path_all_pairs(algorithm="Floyd-Warshall-Python")
sage: d2, _ = g.shortest_path_all_pairs(algorithm="Dijkstra NetworkX")
sage: d3, _ = g.shortest_path_all_pairs(algorithm="Dijkstra Boost")

sage: d4, _ = g.shortest_path_all_pairs(algorithm="Johnson_Boost")

sage: dl == d2 == d3 == d4

True

Checking a random path is valid:

sage: dist, path = g.shortest_path_all pairs(algorithm="BFS")
sage: u,v = g.random_vertex (), g.random_vertex()

sage: p = [V]

sage: while p[0] is not None:

et p.insert (0,path[u]l [p[0]1])

sage: len(p) == dist[u][v] + 2

Negative weights:

sage: g = DiGraph([(0,1,-2),(1,0,1)], weighted=True)
sage: g.shortest_path_all_pairs(by_weight=True)
Traceback (most recent call last):

ValueError: the graph contains a negative cycle

Unreachable vertices are not present in the dictionaries:

sage: g = DiGraph([(0,1,1),(1,2,2)1)
sage: g.shortest_path_all pairs(algorithm='BES")
({0: {0O: O, 1: 1, 2: 2}, 1: {1: 0, 2: 1}, 2: {2: 0}},

{0: {0: None, 1: O, 2: 1}, 1: {1: None, 2: 1}, 2: {2: None}})
sage: g.shortest_path_all pairs(algorithm='Dijkstra NetworkX'")
({0: {0O: O, 1: 1, 2: 2}, 1: {1: 0, 2: 1}, 2: {2: 0}},

{0: {0: None, 1: 1, 2: 1}, 1: {1: None, 2: 2}, 2: {2: None}})
sage: g.shortest_path_all pairs(algorithm='Dijkstra_Boost')
({0: {0O: O, 1: 1, 2: 2}, 1: {1: 0, 2: 1}, 2: {2: 0}},

{0: {0: None, 1: 0O, 2: 1}, 1: {1: None, 2: 1}, 2: {2: None}})
sage: g.shortest_path_all pairs(algorithm='Floyd-Warshall-Python")
({0: {0O: O, 1: 1, 2: 2}, 1: {1: 0, 2: 1}, 2: {2: 0}},

{0: {0: None, 1: O, 2: 1}, 1: {1: None, 2: 1}, 2: {2: None}})

(continues on next page)
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sage: g.shortest_path_all pairs(algorithm='Floyd-Warshall-Cython")
({0: {O: 0, 1: 1, 2: 2}, 1: {1: 0, 2: 1}, 2: {2: 0}},
{0: {0: None, 1: O, 2: 1}, 1: {1: None, 2: 1}, 2: {2: None}})

In order to change the default behavior if the graph is disconnected, we can use default values with dictio-
naries:

sage: G = 2xgraphs.PathGraph (2)

sage: d,_ = G.shortest_path_all_pairs()

sage: import itertools

sage: from sage.rings.infinity import Infinity

sage: for u,v in itertools.combinations (G.vertex_iterator(), 2):

e print ("dist ({}, {}) = {}".format (u,v, dlu].get(v,+Infinity)))
dist (0, 1) =1

dist (0, 2) = +Infinity

dist (0, 3) = +Infinity

dist (1, 2) = +Infinity

dist (1, 3) = +Infinity

dist (2, 3) =1

shortest_path_length (4, v, by_weight=False, algorithm=None, weight_function=None,
check_weight=True)
Return the minimal length of a path from u to v.

If there is no path from u to v, returns Infinity.

For more information and more examples, we refer to shortest_path () and shortest_paths (),
which have very similar inputs.

INPUT:
* u, v — the start and the end vertices of the paths

* by_weight — boolean (default: False); if True, the edges in the graph are weighted, otherwise
all edges have weight 1

* algorithm - string (default: None); one of the following algorithms:
— 'BFS': performs a BFS from u. Does not work with edge weights.
— 'BFS_Bid: performs a BFS from u and from v. Does not work with edge weights.

— 'Dijkstra_NetworkX':the Dijkstra algorithm, implemented in NetworkX. Works only with
positive weights.

— 'Dijkstra_Bid_NetworkX': performs a Dijkstra visit from u and from v (NetworkX im-
plementation). Works only with positive weights.

— 'Dijkstra_Bid': a Cython implementation that performs a Dijkstra visit from u and from v.
Works only with positive weights.

— 'Bellman-Ford_Boost': the Bellman-Ford algorithm, implemented in Boost. Works also
with negative weights, if there is no negative cycle.

— None (default): Sage chooses the best algorithm: 'BFS_Bid' if by_weight is False,
'Dijkstra_Bid"' otherwise.

Note: If there are negative weights and algorithm is None, the result is not reliable. This
occurs because, for performance reasons, we cannot check whether there are edges with neg-
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ative weights before running the algorithm. If there are, the user should explicitly input
algorithm='Bellman-Ford_Boost"'.

e weight_function — function (default: None); a function that takes as input an edge (u, v,
1) and outputs its weight. If not None, by_weight is automatically set to True. If None and
by_weight is True, we use the edge label 1 as a weight.

e check_weight — boolean (default: True); if True, we check that the weight_function outputs a
number for each edge

EXAMPLES:

Standard examples:

sage: D = graphs.DodecahedralGraph ()

sage: D.shortest_path_length(4, 9)

5

sage: D.shortest_path_length(4, 9, algorithm='BFS')

5

sage: D.shortest_path_length(4, 9, algorithm='Dijkstra NetworkX")

5

sage: D.shortest_path_length(4, 9, algorithm='Dijkstra Bid NetworkX'")
5

sage: D.shortest_path_length(4, 9, algorithm='Dijkstra Bid")

5

sage: D.shortest_path_length(4, 9, algorithm='Bellman-Ford Boost")

5

sage: D.shortest_path_length(5, 5)

0

sage: D.delete_edges (D.edges_incident (13))

sage: D.shortest_path_length (13, 4)

+Infinity

sage: G = Graph({0: {1: 1}, 1: {2: 1}, 2: {3: 1}, 3: {4: 2}, 4: {0: 2}},.,
—sparse = True)

sage: G.plot (edge_labels=True) .show() # long time

sage: G.shortest_path_length(0, 3)

2

sage: G.shortest_path_length(0, 3, by_weight=True)

3

sage: G.shortest_path_length(0, 3, by_weight=True, algorithm='Dijkstra_
—NetworkX")

3

sage: G.shortest_path_length(0, 3, by_weight=True, algorithm='Dijkstra_ Bid
—NetworkX")

3

If Dijkstra is used with negative weights, usually it raises an error:

sage: G = DiGraph({O: {1: 1}, 1: {2: 1}, 2: {3: 1}, 3: {4: 2}, 4: {0: =2}},.,
—sparse = True)

sage: G.shortest_path_length(4, 1, by _weight=True, algorithm=None)

Traceback (most recent call last):

ValueError: the graph contains an edge with negative weight

sage: G.shortest_path_length(4, 1, by_weight=True, algorithm='Bellman-Ford_
—~Boost ")

-1

However, sometimes the result may be wrong, and no error is raised:
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sage: G = DiGraph([(0,1,1),(1,2,1),(0,3,1000), (3,4,-3000), (4,2,1000)1])
sage: G.shortest_path_length(0, 2, by_weight=True, algorithm='Bellman-Ford_
—~Boost ")

-1000

sage: G.shortest_path_length(0, 2, by_weight=True)

2

shortest_path_lengths (1, by _weight=False, algorithm=None, weight_function=None,
check_weight=True)
Return the length of a shortest path from u to any other vertex.

Returns a dictionary of shortest path lengths keyed by targets, excluding all vertices that are not reachable
from wu.

For more information on the input variables and more examples, we refer to shortest_paths () which
has the same input variables.

INPUT:
 u — the starting vertex

* by_weight — boolean (default: False); if True, the edges in the graph are weighted, otherwise
all edges have weight 1

* algorithm - string (default: None); one of the following algorithms:
— 'BFS': performs a BFS from u. Does not work with edge weights.

— 'Dijkstra_NetworkX':the Dijkstra algorithm, implemented in NetworkX (works only with
positive weights).

'Dijkstra_Boost': the Dijkstra algorithm, implemented in Boost (works only with positive
weights).

— 'Bellman-Ford_Boost': the Bellman-Ford algorithm, implemented in Boost (works also
with negative weights, if there is no negative cycle).

— None (default): Sage chooses the best algorithm: 'BFS' if by weight is False,
'Dijkstra_Boost ' if all weights are positive, 'Bellman-Ford_Boost ' otherwise.

e weight_function — function (default: None); a function that takes as input an edge (u, v,
1) and outputs its weight. If not None, by_weight is automatically set to True. If None and
by_weight is True, we use the edge label 1 as a weight.

e check_weight — boolean (default: True); if True, we check that the weight_function outputs a
number for each edge

EXAMPLES:

Unweighted case:

sage: D = graphs.DodecahedralGraph ()

sage: D.shortest_path_lengths (0)

{0: 0, 1: 1, 2: 2, 3: 2, 4: 3, 5: 4, 6: 3, 7: 3, 8: 2, 9: 2, 10: 1, 11: 2,
—~12: 3, 13: 3, 14: 4, 15: 5, 16: 4, 17: 3, 18: 2, 19: 1}

Weighted case:

sage: G = Graph( { O: {1: 1}, 1: {2: 1}, 2: {3: 1}, 3: {4: 2}, 4: {0: 2} 1},
—sparse=True)
sage: G.plot (edge_labels=True) .show() # long time

(continues on next page)
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(continued from previous page)

sage: G.shortest_path_lengths (0, by_weight=True)
{0: 0, 1: 1, 2: 2, 3: 3, 4: 2}

Using a weight function:

sage: D = DiGraph([(0,1, {'weight':1}), (1,2, {'weight':3}), (0,2, {'weight':5})1)
sage: weight_function = lambda e:e[2]['weight']

sage: D.shortest_path_lengths(l, algorithm='Dijkstra NetworkX',6 by_
—weilght=False)

{1: 0, 2: 1}

sage: D.shortest_path_lengths (0, weight_function=weight_function)

{0: 0, 1: 1, 2: 4}

sage: D.shortest_path_lengths(l, weight_function=weight_function)

{1: 0, 2: 3}

Negative weights:

sage: D = DiGraph([(0,1, {'weight':-1}), (1,2, {'weight':3}), (0,2, {'weight':5})1)
sage: D.shortest_path_lengths (0, weight_function=weight_function)
{0: 0, 1: -1, 2: 2}

Negative cycles:

sage: D = DiGraph([(0,1, {'weight':-5}), (1,2, {'weight':3}), (2,0, {'weight':1})1])
sage: D.shortest_path_lengths (0, weight_function=weight_function)
Traceback (most recent call last):

ValueError: the graph contains a negative cycle

Checking that distances are equal regardless of the algorithm used:

sage: g = graphs.Grid2dGraph(5,5)
sage: dl = g.shortest_path_lengths
sage: d2 = g.shortest_path_lengths

, algorithm="BFS")

(( )
(( ), algorithm="Dijkstra_ NetworkX")
(( )
(( )

sage: d3 = g.shortest_path_lengths , algorithm="Dijkstra_Boost")
sage: d4 = g.shortest_path_lengths ,0), algorithm="Bellman-Ford Boost")
sage: dl == d2 == d3 == d4
True
shortest_paths (u, by_weight=False, algorithm=None, weight_function=None,

check_weight=True, cutoff=None)
Return a dictionary associating to each vertex v a shortest path from u to v, if it exists.

If u and v are not connected, vertex v is not present in the dictionary.
INPUT:
* u — the starting vertex

* by_weight — boolean (default: False); if True, the edges in the graph are weighted, otherwise
all edges have weight 1

* algorithm - string (default: None); one of the following algorithms:
— 'BFS': performs a BFS from u. Does not work with edge weights.

— 'Dijkstra_NetworkX':the Dijkstra algorithm, implemented in NetworkX (works only with
positive weights).
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— 'Dijkstra_Boost': the Dijkstra algorithm, implemented in Boost (works only with positive
weights).

— 'Bellman-Ford_Boost': the Bellman-Ford algorithm, implemented in Boost (works also
with negative weights, if there is no negative cycle).

— None (default): Sage chooses the best algorithm: 'BFS' if by_weight is False,
'Dijkstra_Boost"' if all weights are positive, 'Bellman-Ford_Boost ' otherwise.

* weight_function — function (default: None); a function that takes as input an edge (u, v,
1) and outputs its weight. If not None, by_weight is automatically set to True. If None and
by_weight is True, we use the edge label 1 as a weight.

e check_weight — boolean (default: True); if True, we check that the weight_function outputs a
number for each edge

* cutoff —integer (default: None); integer depth to stop search (used only if algorithm=="BFS")
EXAMPLES:

Standard example:

sage: D = graphs.DodecahedralGraph ()

sage: D.shortest_paths (0)

{0: (oj, 1. (o0, 11, 2: (0, 1, 21, 3: [0, 19, 31, 4: [0, 19, 3, 41, 5: [0, 1,
-2, 6, 51, 6: [0, 1, 2, €], 7: [O, 1, 8, 7], 8: [0, 1, 8], 9: [0, 10, 91,
-10: [0, 0], 11: [0, 10, 11}, 12: [O, 10, 11, 127, 13: [0, 10, 9, 131, 1l4:
[0, 1, 8, 7, 143}, 15: [0, 19, 18, 17, 16, 15], 16: [O, 19, 18, 17, 1le6], 17:_
—[0, 19, 18, 171, 18: [0, 19, 18], 19: [0, 19]}

All these paths are obviously induced graphs:

sage: all (D.subgraph(p) .is_isomorphic (graphs.PathGraph(len(p))) for p in D.
—shortest_paths (0) .values())
True

sage: D.shortest_paths (0, cutoff=2)

{0: (oj, 1. (0, 11, 2: (0, 1, 21, 3: [0, 19, 31, 8: [0, 1, 81, 9: [O, 10, 91,
-10: [0, 10, 11: [O, 10, 11}, 18: [0, 19, 18], 19: [0, 191}

sage: G = Graph( { 0: {1: 1}, 1: {2: 1}, 2: {3: 1}, 3: {4: 2}, 4: {0: 2} 1},
—sparse=True)

sage: G.plot (edge_labels=True) .show() # long time

sage: G.shortest_paths (0, by_weight=True)

{0: oj, 1. (o, 13, 2: [0, 1, 21, 3: [0, 1, 2, 31, 4: [0, 41}

Weighted shortest paths:

sage: D = DiGraph([(O,1,1), (1,2,3),(0,2,5)1)
sage: D.shortest_paths (0)

{0: [O], 1: [0, 11, 2: [0, 2]}

sage: D.shortest_paths (0, by_weight=True)
{0: (O], 1: [O, 1], 2: [O, 1, 2]}

Using a weight function (this way, by_weight is set to True):

sage: D = DiGraph([ (0,1, {'weight':1}), (1,2, {'weight':3}), (0,2, {'weight':5})1)
sage: weight_function = lambda e:e[2]['weight']

sage: D.shortest_paths (0, weight_function=weight_function)

{0: (0], 1: [0, 11, 2: [0, 1, 21}
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If the weight function does not match the label:

sage: D.shortest_paths (0, weight_function=lambda e:e[2])
Traceback (most recent call last):

ValueError: the weight function cannot find the weight of (0, 1, {'weight': 1}

=)

However, if check_weight is set to False, unexpected behavior may occur:

sage: D.shortest_paths (0, algorithm='Dijkstra NetworkX', weight_
—function=lambda e:e[2], check_weight=False)
Traceback (most recent call last):

TypeError: unsupported operand type(s) for +: 'int' and 'dict'

Negative weights:

sage: D = DiGraph([(0,1,1),(1,2,-2),(0,2,4)])
sage: D.shortest_paths (0, by_weight=True)
{0: [oj, 1: o, 11, 2: [0, 1, 21}

Negative cycles:

sage: D.add_edge(2,0,0)
sage: D.shortest_paths (0, by_weight=True)
Traceback (most recent call last):

ValueError: the graph contains a negative cycle

show (method="matplotlib’, **kwds)
Show the (di)graph.

INPUT:

* method - string (default: "matplotlib"); method to use to display the graph, either
"matplotlib™", or "js" to visualize it in a browser using d3.js.

* Any other argument supported by the drawing functions:

- "matplotlib" —see GenericGraph.plot and sage.plot.graphics.Graphics.
show ()

- "js" —see gen_html_code ()

EXAMPLES:

sage: C = graphs.CubeGraph (8)

sage: P = C.plot (vertex_labels=False, vertex_size=0, graph_border=True)
sage: P.show () # long time (3s on sage.math, 2011)

show3d (bgcolor=(1, 1, 1), vertex_colors=None, vertex_size=0.00, edge_colors=None, edge_size=0.02,

edge_size2=0.0325, pos3d=None, color_by_label=False, engine="jmol’, **kwds)
Plot the graph using Tachyon, and show the resulting plot.

INPUT:
* bgcolor —rgb tuple (default: (1,1,1))

e vertex_size —float (default: 0.06)
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* vertex_labels—aboolean (default: False); whether to display vertices using text labels instead
of spheres

* vertex_colors — dictionary (default: None); optional dictionary to specify vertex colors: each
key is a color recognizable by tachyon (rgb tuple (default: (1,0, 0))), and each corresponding
entry is a list of vertices. If a vertex is not listed, it looks invisible on the resulting plot (it doesn’t get
drawn).

* edge_colors —dictionary (default: None); a dictionary specifying edge colors: each key is a color
recognized by tachyon (default: (0, 0, 0)), and each entry is a list of edges.

* color_by_label — a boolean or dictionary or function (default: False) whether to color each
edge with a different color according to its label; the colors are chosen along a rainbow, unless they
are specified by a function or dictionary mapping labels to colors; this option is incompatible with
edge_color and edge_colors.

* edge_size — float (default: 0.02)
¢ edge_size?2 —float (default: 0.0325); used for Tachyon sleeves
* pos3d — a position dictionary for the vertices
e layout, iterations, ... —layout options; see layout ()
* engine — string (default: ' jmol '); the renderer to use among:
— '"jmol" - default
— 'tachyon'
e xres —resolution
e yres —resolution
* «xkwds — passed on to the rendering engine

EXAMPLES:

sage: G = graphs.CubeGraph (5)
sage: G.show3d(iterations=500, edge_size=None, vertex_size=0.04) # long time

We plot a fairly complicated Cayley graph:

sage: A5 = AlternatingGroup(5); A5

Alternating group of order 5!/2 as a permutation group

sage: G = Ab.cayley_graph()

sage: G.show3d(vertex_size=0.03, edge_size=0.01, edge_size2=0.02, vertex_
—colors={(1,1,1): 1ist(G)}, bgcolor=(0,0,0), color_by_label=True,

—iterations=200) # long time

Some Tachyon examples:

sage: D = graphs.DodecahedralGraph ()
sage: D.show3d(engine='tachyon') # long time

sage: G = graphs.PetersenGraph ()
sage: G.show3d(engine='tachyon', vertex_colors={(0,0,1): 1list(G)}) # long time

sage: C = graphs.CubeGraph (4)
sage: C.show3d(engine='tachyon', edge_colors={(0,1,0): C.edges(sort=False)},
—vertex_colors={(1,1,1): list(C)}, bgcolor=(0,0,0)) # long time
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sage: K = graphs.CompleteGraph (3)
sage: K.show3d(engine='tachyon', edge_colors={(1,0,0): [(0, 1, None)l, (0, 1,
—0): [(0, 2, None)], (0, O, 1): [(1, 2, None)l}) # long time

size ()

Return the number of edges.
Note that num_edges () also returns the number of edges in G.

EXAMPLES:

sage: G = graphs.PetersenGraph ()
sage: G.size()
15

spanning_trees_count (root_vertex=None)

Return the number of spanning trees in a graph.

In the case of a digraph, counts the number of spanning out-trees rooted in root_vertex. Default is to
set first vertex as root.

This computation uses Kirchhoff’s Matrix Tree Theorem [1] to calculate the number of spanning trees.
For complete graphs on n vertices the result can also be reached using Cayley’s formula: the number of
spanning trees are n(n — 2).

For digraphs, the augmented Kirchhoff Matrix as defined in [2] is used for calculations. Here the result is
the number of out-trees rooted at a specific vertex.

INPUT:

* root_vertex — a vertex (default: None); the vertex that will be used as root for all spanning out-
trees if the graph is a directed graph. Otherwise, the first vertex returned by vertex_iterator ()
is used. This argument is ignored if the graph is not a digraph.

See also:
spanning_trees () —enumerates all spanning trees of a graph
REFERENCES:
e [1] http://mathworld.wolfram.com/Matrix TreeTheorem.html
* [2] Lih-Hsing Hsu, Cheng-Kuan Lin, “Graph Theory and Interconnection Networks”
AUTHORS:
¢ Anders Jonsson (2009-10-10)
EXAMPLES:

sage: G = graphs.PetersenGraph ()
sage: G.spanning_trees_count ()
2000

sage: n = 11

sage: G = graphs.CompleteGraph (n)
sage: ST = G.spanning_trees_count ()
sage: ST == n ~ (n - 2)

True
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sage: M = matrix(3, 3, [0, 1, O, O, O, 1, 1, 1, 01])
sage: D = DiGraph (M)

sage: D.spanning_trees_count ()

1

sage: D.spanning_trees_count (0)

1

sage: D.spanning_trees_count (2)

2

spectral_radius (G, prec=1e-10)
Return an interval of floating point number that encloses the spectral radius of this graph

The input graph G must be strongly connected.
INPUT:
* prec — (default 1e—10) an upper bound for the relative precision of the interval

The algorithm is iterative and uses an inequality valid for non-negative matrices. Namely, if A is a non-
negative square matrix with Perron-Frobenius eigenvalue A then the following inequality is valid for any
vector

Note: The speed of convergence of the algorithm is governed by the spectral gap (the distance to the sec-
ond largest modulus of other eigenvalues). If this gap is small, then this function might not be appropriate.

The algorithm is not smart and not parallel! It uses basic interval arithmetic and native floating point
arithmetic.

EXAMPLES:

sage: from sage.graphs.base.static_sparse_graph import spectral_radius

sage: G = DiGraph([(0,0), (0,1), (1,0)]1, loops=True)
sage: phi = (RR(1) + RR(5).sqgrt() ) / 2

sage: phi # abs tol le-14

1.618033988749895

sage: e_min, e_max = spectral_radius (G, le-14)
sage: e_min, e_max # abs tol le-14
(1.618033988749894, 1.618033988749896)

sage: (e_max — e_min) # abs tol le-14

le-14

sage: e_min < phi < e_max

True

This function also works for graphs:

sage: G = Graph([(0,1),(0,2),(1,2),(1,3),(2,4),(3,4)1)

sage: e_min, e_max = spectral_radius (G, le-14)

sage: e = max(G.adjacency_matrix().charpoly () .roots(AA, multiplicities=False))
sage: e_min < e < e_max

True

sage: G.spectral_radius() # abs tol 1e-9
(2.48119430408, 2.4811943041)
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A larger example:

sage: G = DiGraph()

sage: G.add_edges((i,i+1l) for i in range (200))
sage: G.add_edge (200,0)

sage: G.add_edge(1,0)

sage: e_min, e_max = spectral_radius(G, 0.00001)
sage: p = G.adjacency_matrix(sparse=True) .charpoly ()
sage: p

x"201 - x7199 - 1

sage: r = p.roots(AA, multiplicities=False) [0]
sage: e_min < r < e_max

True

A much larger example:

sage: G = DiGraph(100000)
sage: r = list (range(100000))
sage: while not G.is_strongly_connected() :

el shuffle(r)
et G.add_edges (enumerate(r), loops=False)
sage: spectral_radius (G, 1le-10) # random

(1.9997956006500042, 1.9998043797692782)

The algorithm takes care of multiple edges:

sage: G = DiGraph(2,loops=True,multiedges=True)
sage: G.add_edges([(0,0), (0,0), (0,1), (1,0)1)
sage: spectral_radius (G, le-14) # abs tol le-14
(2.414213562373094, 2.414213562373095)

sage: max (G.adjacency_matrix () .eigenvalues (AA))
2.4142135623730957

Some bipartite graphs:

sage: G = Graph([(0,1),(0,3),(2,3)1)
sage: G.spectral_radius() # abs tol 1le-10
(1.6180339887253428, 1.6180339887592732)

sage: G = DiGraph ([(0,1), (0,3),(2,3),(3,0), (1,0),(1,2)])
sage: G.spectral_radius() # abs tol le-10
(1.5537739740270458, 1.553773974033029)

sage: G = graphs.CompleteBipartiteGraph(l, 3)
sage: G.spectral_radius/() # abs tol 1le-10
(1.7320508075688772, 1.7320508075688774)

spectrum (laplacian=False)
Return a list of the eigenvalues of the adjacency matrix.

INPUT:
e laplacian - boolean (default: False); if True, use the Laplacian matrix (see
kirchhoff matrix())
OUTPUT:

A list of the eigenvalues, including multiplicities, sorted with the largest eigenvalue first.

See also:
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The method spectral_radius () returns floating point approximation of the maximum eigenvalue.

EXAMPLES:

sage: P = graphs.PetersenGraph ()
sage: P.spectrum()

(3, 1, 1, 1, 1, 1, -2, -2, -2, -2]
sage: P.spectrum(laplacian=True)
[5, 5, 5, 5, 2, 2, 2, 2, 2, 0]
sage: D = P.to_directed()
sage: D.delete_edge (7, 9)
sage: D.spectrum()
[2.9032119259..., 1, 1, 1, 1, 0.8060634335..., —-1.7092753594..., -2, -2, -2]

sage: C = graphs.CycleGraph(8)

sage: C.spectrum()

(2, 1.4142135623..., 1.4142135623..., 0, 0, -1.4142135623..., —-1.4142135623...
—y *2]

A digraph may have complex eigenvalues. Previously, the complex parts of graph eigenvalues were being
dropped. For a 3-cycle, we have:

sage: T = DiGraph({O0: [1], 1: [2], 2: [01})

sage: T.spectrum()

[1, -0.5000000000... + 0.8660254037...+xI, -0.5000000000... — 0.8660254037...
—x1]

steiner_tree (vertices, weighted=False, solver=None, verbose=0)
Return a tree of minimum weight connecting the given set of vertices.

Definition :

Computing a minimum spanning tree in a graph can be done in nlog(n) time (and in linear time if all
weights are equal) where n = V' + E. On the other hand, if one is given a large (possibly weighted) graph
and a subset of its vertices, it is NP-Hard to find a tree of minimum weight connecting the given set of
vertices, which is then called a Steiner Tree.

See the Wikipedia article Steiner_tree_problem for more information.
INPUT:
* vertices — the vertices to be connected by the Steiner Tree.

* weighted — boolean (default: False); whether to consider the graph as weighted, and use each
edge’s label as a weight, considering None as a weight of 1. If weighted=False (default) all
edges are considered to have a weight of 1.

e solver - string (default: None); specify a Linear Program (LP) solver to be used. If set to None,
the default one is used. For more information on LP solvers and which default solver is used, see the
method solve of the class MixedIntegerLinearProgram.

e verbose —integer (default: 0), sets the level of verbosity. Set to 0 by default, which means quiet.

Note:

* This problem being defined on undirected graphs, the orientation is not considered if the current graph
is actually a digraph.

* The graph is assumed not to have multiple edges.
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ALGORITHM:

Solved through Linear Programming.
COMPLEXITY:

NP-Hard.

Note that this algorithm first checks whether the given set of vertices induces a connected graph, returning
one of its spanning trees if weighted is set to False, and thus answering very quickly in some cases

EXAMPLES:

The Steiner Tree of the first 5 vertices in a random graph is, of course, always a tree:

sage: g = graphs.RandomGNP (30, .5)

sage: first5 = g.vertices() [:5]
sage: st = g.steiner_tree(first)H)
sage: st.is_tree()

True

And all the 5 vertices are contained in this tree

sage: all(v in st for v in first))
True

An exception is raised when the problem is impossible, i.e. if the given vertices are not all included in the
same connected component:

sage: g = 2 * graphs.PetersenGraph ()
sage: st = g.steiner_tree([5, 15])
Traceback (most recent call last):

EmptySetError: the given vertices do not all belong to the same connected
—component. This problem has no solution !

strong_product (other)

Returns the strong product of self and other.

The strong product of G and H is the graph L with vertex set V(L) = V(G) x V(H), and ((u,v), (w, x))
is an edge of L iff either :

* (u,w) is an edge of G and v = z, or
* (v, ) is an edge of H and u = w, or
* (u,w) is an edge of G and (v, x) is an edge of H.

In other words, the edges of the strong product is the union of the edges of the tensor and Cartesian
products.

EXAMPLES:

sage: Z = graphs.CompleteGraph (2)

sage: C = graphs.CycleGraph(5)

sage: S = C.strong_product(zZ); S

Graph on 10 vertices

sage: S.plot () # long time

Graphics object consisting of 36 graphics primitives
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sage: D = graphs.DodecahedralGraph ()

sage: P = graphs.PetersenGraph ()

sage: S = D.strong_product(P); S

Graph on 200 vertices

sage: S.plot () # long time

Graphics object consisting of 1701 graphics primitives

subdivide_edge (*args)
Subdivide an edge k times.

INPUT:

The following forms are all accepted to subdivide 8 times the edge between vertices 1 and 2 labeled with
"my_label".

* G.subdivide_edge( 1, 2, 8 )
* G.subdivide_edge( (1, 2), 8 )

* G.subdivide_edge( (1, 2, "my_label"), 8 )

Note:
« If the given edge is labelled with [, all the edges created by the subdivision will have the same label

* If no label is given, the label used will be the one returned by the method edge_Ilabel () on the
pair u, v

EXAMPLES:
Subdividing 5 times an edge in a path of length 3 makes it a path of length 8:

sage: g = graphs.PathGraph(3)

sage: edge = next (g.edge_iterator())

sage: g.subdivide_edge (edge, 5)

sage: g.1is_isomorphic (graphs.PathGraph(8))
True

Subdividing a labelled edge in two ways:

sage: g = Graph()
sage: g.add_edge (0,

1, "labell")
sage: g.add_edge(l, 2
)
1

, "label2")
)
, 2, 'label2')]

sage: print (g.edges(
[(0, 1, 'labell'), (

Specifying the label:

sage: g.subdivide_edge (0, 1, "labell", 3)

sage: print (g.edges())

[(0, 3, 'labell'"), (1, 2, 'label2'), (1, 5, 'labell'), (3, 4, 'labell'), (4
—5, 'labell')]

o

The lazy way:

sage: g.subdivide_edge (1, 2, "label2", 5)

sage: print (g.edges|())

[(0, 3, 'labell'), (1, 5, 'labell'), (1, 6, 'label2'), (2, 10, 'label2'), (3
—~4, 'labell'), (4, 5, 'labell'), (6, 7, 'label2'), (7, 8, 'label2'), (8, 9,

e

—'label2'), (9, 10, 'label2')] (continues on next page)
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|

If too many arguments are given, an exception is raised

sage: g.subdivide_edge(0,1,1,1,1,1,1,1,1,1,1)
Traceback (most recent call last):

ValueError: this method takes at most 4 arguments

The same goes when the given edge does not exist:

sage: g.subdivide_edge (0, 1, "fake label", 5)
Traceback (most recent call last):

ValueError: the given edge does not exist

See also:

* subdivide_edges () — subdivides multiples edges at a time

subdivide_edges (edges, k)

Subdivide k times edges from an iterable container.

For more information on the behaviour of this method, please refer to the documentation of
subdivide_edge ().

INPUT:
* edges —a list of edges

* k —integer; common length of the subdivisions

Note: If a given edge is labelled with [, all the edges created by its subdivision will have the same label.

EXAMPLES:

If we are given the disjoint union of several paths:

sage: paths = [2, 5, 9]

sage: paths = map (graphs.PathGraph, paths)
sage: g = Graph()

sage: for P in paths:

et g=9g + P

Subdividing edges in each of them will only change their lengths:

sage: edges = [next (P.edge_iterator()) for P in g.connected_components_
—subgraphs () ]

sage: k = 6

sage: g.subdivide_edges (edges, k)

Let us check this by creating the graph we expect to have built through subdivision:

sage: paths2 = [2 + k, 5 + k, 9 + k]

sage: paths2 = map(graphs.PathGraph, paths2)
sage: g2 = Graph()

sage: for P in paths2:

(continues on next page)
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et g2 = g2 + P
sage: g.1ls_isomorphic(g2)
True

See also:
* subdivide_edge () —subdivides one edge

subgraph (vertices=None, edges=None, inplace=False, vertex_property=None, edge_property=None,
algorithm=None, immutable=None)
Return the subgraph containing the given vertices and edges.

If either vertices or edges are not specified, they are assumed to be all vertices or edges. If edges are not
specified, returns the subgraph induced by the vertices.

INPUT:

e inplace —boolean (default: False); using inplace=True will simply delete the extra vertices
and edges from the current graph. This will modify the graph.

e vertices — asingle vertex or an iterable container of vertices, e.g. a list, set, graph, file or numeric
array. If not passed (i.e., None), defaults to the entire graph.

* edges — as with vertices, edges can be a single edge or an iterable container of edges (e.g., a
list, set, file, numeric array, etc.). By default (edges=None), all edges are assumed and the returned
graph is an induced subgraph. In the case of multiple edges, specifying an edge as (u, v) means to
keep all edges (u, v), regardless of the label.

* vertex_property — function (default: None); a function that inputs a vertex and outputs a
boolean value, i.e., a vertex v in vertices is keptif vertex_property (v) == True

* edge_property — function (default: None); a function that inputs an edge and outputs a boolean
value, i.e., a edge e in edges is kept if edge_property (e) == True

* algorithm - string (default: None); one of the following:

— If algorithm="delete" or inplace=True, then the graph is constructed by deleting
edges and vertices

— If algorithm="add", then the graph is constructed by building a new graph from the appro-
priate vertices and edges. Implies inplace=False.

— If algorithm=None, then the algorithm is chosen based on the number of vertices in the
subgraph.

e immutable — boolean (default: None); whether to create a mutable/immutable subgraph.
immutable=None (default) means that the graph and its subgraph will behave the same way.

EXAMPLES:

sage: G = graphs.CompleteGraph (9)

sage: H = G.subgraph([0, 1, 2]); H

Subgraph of (Complete graph): Graph on 3 vertices
sage: G

Complete graph: Graph on 9 vertices

sage: J = G.subgraph (edges=[(0, 1)])

sage: J.edges (labels=False)

[(0, 1)1

sage: J.vertices () == G.vertices()

True

(continues on next page)
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sage: G.subgraph ([0, 1, 2], inplace=True); G
Subgraph of (Complete graph): Graph on 3 vertices
sage: G.subgraph() == G

True

sage: D = digraphs.Complete (9)
sage: H = D.subgraph ([0, 1, 2]); H
h): Digraph on 3 vertices
(0

1), (0, 2)1)

Subgraph of (Complete digrap
sage: H = D.subgraph (edges=[
sage: H.edges (labels=False)
[0, 1), (0, 2)]

sage: H.vertices () == D.vertices()
True
sage: D

Complete digraph: Digraph on 9 vertices

sage: D.subgraph([0, 1, 2], inplace=True); D

Subgraph of (Complete digraph): Digraph on 3 vertices
sage: D.subgraph() ==

True

A more complicated example involving multiple edges and labels:

sage: G = Graph(multiedges=True, sparse=True)
sage: G.add_edges([(O, 1, 'a'), (0, 1, 'b"), (1, O, 'c"), (O, 2, 'd"), (0, 2,
='e'), (2, 0, "£"), (1, 2, 'g")])
sage: G.subgraph(edges=[(0, 1), (0, 2,'d"), (0, 2, 'not in graph')]) .edges()
[¢¢, 1, a3y, (0, 1, '), (0, 1, 'c"), (0, 2, 'd")]
sage: J = G.subgraph(vertices=[0, 1], edges=[(0, 1, 'a"), (0, 2, 'c')])

J.

sage: edges ()

[(0, 1, 'a")]

sage: J.vertices()

[0, 1]

sage: G.subgraph (vertices=G) == G
True

sage: D = DiGraph(multiedges=True, sparse=True)

sage: D.add_edges([ (0, 1, 'a'), (O, 1, 'b"), (1, 0O, 'c'"), (O, 2, 'd"), (0, 2,
—'e'), (2, 0, "£Y), (1, 2, 'g")])

sage: D.subgraph(edges=[(0, 1), (0, 2, 'd"), (0, 2, 'not in graph')]) .edges)
[¢o, 1, 'a'y, (0, 1, 'y, (0, 2, 'd")]

sage: H = D.subgraph(vertices=[0, 1], edges=[(0, 1, 'a"), (0, 2, 'c')])

sage: H.edges|()

[(0, 1, 'a")]
sage: H.vertices()
[0, 1]

Using the property arguments:

sage: P = graphs.PetersenGraph ()

sage: S = P.subgraph (vertex_property=lambda v: not (v % 2))
sage: S.vertices()

[0, 2, 4, 6, 8]

sage: C = graphs.CubeGraph(2)
sage: S C.subgraph (edge_property=(lambda e: e[0][0] == e[1][0]))

(continues on next page)
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sage: C.edges|()

[(¢'oo', 'oi1', None), ('00', 'i10', None), ('0O1', '11', None), ('10', '11°',
—None) ]

sage: S.edges|()

[('oo', 'o1', None), ('10', '1l1l', None)]

The algorithm is not specified, then a reasonable choice is made for speed:

sage: g = graphs.PathGraph(1000)
sage: g.subgraph(list (range(10))) # uses the 'add' algorithm
Subgraph of (Path graph): Graph on 10 vertices

subgraph_search (G, induced=False)
Return a copy of Gin self.

INPUT:

* G — the (di)graph whose copy we are looking for in self

* induced - boolean (default: False); whether or not to search for an induced copy of Gin self
OUTPUT:

If induced=False, return a copy of G in this graph. Otherwise, return an induced copy of G in self.
If G is the empty graph, return the empty graph since it is a subgraph of every graph. Now suppose G is
not the empty graph. If there is no copy (induced or otherwise) of G in self, we return None.

Note: This method does not take vertex/edge labels into account.

See also:

e subgraph_search_count () — counts the number of copies of H inside of G

e subgraph_search_iterator () —iterator over the copies of H inside of G

ALGORITHM:
See the documentation of SubgraphSearch.
EXAMPLES:

The Petersen graph contains the path graph Ps:

sage: g = graphs.PetersenGraph ()

sage: hl = g.subgraph_search(graphs.PathGraph(5)); hl
Subgraph of (Petersen graph): Graph on 5 vertices
sage: hl.vertices(); hl.edges(labels=False)

(o, 1, 2, 3, 4]

[0, 1y, (1, 2), (2, 3), (3, 4)]

sage: Il = g.subgraph_search(graphs.PathGraph(5), induced=True); Il
Subgraph of (Petersen graph): Graph on 5 vertices
sage: Il.vertices(); Il.edges(labels=False)

(0, 1, 2, 3, 8]

(0, 1), (1, 2), (2, 3), (3, 8)]

It also contains the claw K 3:
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sage: h2 = g.subgraph_search (graphs.ClawGraph()); h2

Subgraph of (Petersen graph): Graph on 4 vertices

sage: h2.vertices(); h2.edges(labels=False)

(0, 1, 4, 5]

(0, 1), (0, 4), (0, 5)]

sage: I2 = g.subgraph_search(graphs.ClawGraph(), induced=True); I2
Subgraph of (Petersen graph): Graph on 4 vertices

sage: I2.vertices(); I2.edges(labels=False)

(0, 1, 4, 5]

(o, 1), (0, 4), (0, 5)]

Of course the induced copies are isomorphic to the graphs we were looking for:

sage: Il.is_isomorphic (graphs.PathGraph(5))
True
sage: I2.is_isomorphic(graphs.ClawGraph())
True

However, the Petersen graph does not contain a subgraph isomorphic to Ks:

sage: g.subgraph_search (graphs.CompleteGraph(3)) is None
True

Nor does it contain a nonempty induced subgraph isomorphic to Fg:

sage: g.subgraph_search (graphs.PathGraph(6), induced=True) is None
True

The empty graph is a subgraph of every graph:

sage: g.subgraph_search (graphs.EmptyGraph () )

Graph on 0 vertices

sage: g.subgraph_search (graphs.EmptyGraph (), induced=True)
Graph on 0 vertices

The subgraph may just have edges missing:

sage: k3 = graphs.CompleteGraph(3); p3 = graphs.PathGraph (3)
sage: k3.relabel(list('abc'))

sage: s = k3.subgraph_search (p3)

sage: s.edges (labels=False)

[(ta', 'D"), ('b", 'c')]

Of course, P is not an induced subgraph of K3, though:

sage: k3 = graphs.CompleteGraph(3); p3 = graphs.PathGraph (3)
sage: k3.relabel(list ('abc'))

sage: k3.subgraph_search (p3, induced=True) is None

True

subgraph_search_count (G, induced=False)

Return the number of labelled occurrences of G in self.
INPUT:
* G — the (di)graph whose copies we are looking for in self

* induced - boolean (default: False); whether or not to count induced copies of G in self
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Note: This method does not take vertex/edge labels into account.

ALGORITHM:
See the documentation of SubgraphSearch.

See also:

* subgraph _search () —finds an subgraph isomorphic to H inside of a graph G

e subgraph_search_iterator () —iterator over the copies of a graph H inside of a graph G

EXAMPLES:

Counting the number of paths P in a PetersenGraph:

sage: g = graphs.PetersenGraph ()
sage: g.subgraph_search_count (graphs.PathGraph (5))
240

Requiring these subgraphs be induced:

sage: g.subgraph_search_count (graphs.PathGraph(5), induced=True)
120

If we define the graph T} (the transitive tournament on k vertices) as the graph on {0, ..., k — 1} such that
17 € T} iif ¢ < 7, how many directed triangles can be found in 75 ? The answer is of course O:

sage: TS5 = digraphs.TransitiveTournament (5)
sage: T5.subgraph_search_count (digraphs.Circuit (3))
0

If we count instead the number of 75 in T5, we expect the answer to be (g)

sage: T3 = digraphs.TransitiveTournament (3)

sage: T5.subgraph_search_count (T3)

10

sage: binomial (5, 3)

10

sage: T3.is_isomorphic(T5.subgraph (vertices=[0, 1, 2]))
True

The empty graph is a subgraph of every graph:

sage: g.subgraph_search_count (graphs.EmptyGraph ())
1

subgraph_search_iterator (G, induced=False)

Return an iterator over the labelled copies of G in self.
INPUT:
* G — the graph whose copies we are looking for in self

¢ induced - boolean (default: False); whether or not to iterate over the induced copies of Gin self

Note: This method does not take vertex/edge labels into account.
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ALGORITHM:
See the documentation of SubgraphSearch.
OUTPUT:

Iterator over the labelled copies of G in self, as lists. For each value (v1,va, ..., vy) returned, the first
vertex of (G is associated with v1, the second with v, etc.

Note: This method also works on digraphs.

See also:

e subgraph_search () — finds an subgraph isomorphic to H inside of G

e subgraph_search_count () —counts the number of copies of H inside of G

EXAMPLES:
Iterating through all the labelled Ps of Ps:

sage: g = graphs.PathGraph (5)
sage: for p in g.subgraph_search_iterator (graphs.PathGraph(3)):
et print (p)

N PO W N

szeged_index ()
Return the Szeged index of the graph.

For any uv € E(G), let Ny, (uwv) = {w € G : d(u,w) < d(v,w)}, ny(uv) = | Ny (uv)]
The Szeged index of a connected graph is then defined as [1]: 3, c () Pu(uv) X 1y (uv)
See the Wikipedia article Szeged_index for more details.

EXAMPLES:

True for any connected graph [1]:

sage: g=graphs.PetersenGraph ()
sage: g.wiener_index ()<= g.szeged_index()
True

True for all trees [1]:

sage: g=Graph ()
sage: g.add_edges (graphs.CubeGraph (5) .min_spanning_tree())

sage: g.wiener_index () == g.szeged_index()
True
REFERENCE:

[1] Klavzar S., Rajapakse A., Gutman I. (1996). The Szeged and the Wiener index of graphs. Applied
Mathematics Letters, 9 (5), pp. 45-49.
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tensor_product (other)
Returns the tensor product of self and other.

The tensor product of G and H is the graph L with vertex set V(L) equal to the Cartesian product of the
vertices V/(G) and V(H), and ((u,v), (w,x)) is an edge iff - (u, w) is an edge of self, and - (v, x) is an
edge of other.

The tensor product is also known as the categorical product and the kronecker product (refering to the
kronecker matrix product). See the Wikipedia article Kronecker_product.

EXAMPLES:

sage: Z = graphs.CompleteGraph (2)

sage: C = graphs.CycleGraph(5)

sage: T = C.tensor_product(z); T

Graph on 10 vertices

sage: T.size()

10

sage: T.plot () # long time

Graphics object consisting of 21 graphics primitives

sage: D = graphs.DodecahedralGraph ()
sage: P = graphs.PetersenGraph ()
sage: T = D.tensor_product(P); T
Graph on 200 vertices

sage: T.size()

900

sage: T.plot () # long time

Graphics object consisting of 1101 graphics primitives

to_dictionary (edge_labels=False, multiple_edges=False)
Return the graph as a dictionary.

INPUT:

* edge_labels —boolean (default: False); whether to include edge labels in the output

* multiple_edges — boolean (default: False); whether to include multiple edges in the output
OUTPUT:

The output depends on the input:

e Ifedge_labels == Falseandmultiple_edges == False, the outputis a dictionary as-
sociating to each vertex the list of its neighbors.

* If edge_labels == Falseandmultiple_edges == True, the output is a dictionary the
same as previously with one difference: the neighbors are listed with multiplicity.

e If edge_labels == True and multiple_edges == False, the output is a dictionary as-
sociating to each vertex w [a dictionary associating to each vertex v incident to u the label of edge
(u,v)].

e If edge_labels == Trueandmultiple_edges == True, the output is a dictionary asso-

ciating to each vertex u [a dictionary associating to each vertex v incident to u [the list of labels of all
edges between u and v]].

Note: When used on directed graphs, the explanations above can be understood by replacing the word
“neighbors” by “out-neighbors”
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EXAMPLES:
sage: g = graphs.PetersenGraph() .to_dictionary()
sage [ (key, sorted(glkey])) for key in g]
[(0, [1, 4, 51),

(1, [0, 2, 61),

(2, 11, 3, 71),

(3, [2, 4, 8]),

(4, [0, 3, 91),

(5, [0, 7, 81),

(6, [1, 8, 91),

(7, 12, 5, 91),

(8, [3, 5, 6]),

(9, [4, 6, 71)]
sage: graphs.PetersenGraph() .to_dictionary (multiple_edges=True)
{0: (1, 4, 51, 1: [0, 2, 6],

2: [1, 3, 71, 3: [2, 4, 8],

4: [0, 3, 9], 5: [0, 7, 8],

6: [1, 8, 91, 7: [2, 5, 91,

8: [3, 5, 61, 9: [4, 6, 71}
sage: graphs.PetersenGraph() .to_dictionary (edge_labels=True)
{0: {1: None, 4: None, 5: None},

1l: {0: None, 2: None, 6: None},

2: {1: None, 3: None, 7: None},

3: {2: None, 4: None, 8: None},

4: {0: None, 3: None, 9: None},

5: {0: None, 7: None, 8: None},

6: {1: None, 8: None, 9: None},

7: {2: None, 5: None, 9: None},

8: {3: None, 5: None, 6: None},

9: {4: None, 6: None, 7: None}}
sage: graphs.PetersenGraph() .to_dictionary (edge_labels=True,multiple_
—edges=True)

{0: {1: [None], 4 [None], 5: [Nonel},

1: {0: [Nonel], 2 [None], 6: [Nonel},

2: {1: [None], 3 [None], 7: [Nonel},

3: {2: [None], 4: [None], 8: [Nonel},

4: {0: [None], 3: [None], 9: [Nonel},

5: {0: [None], 7 [None], 8: [Nonel},

6: {1: [None], 8 [None], 9: [Nonel},

7: {2: [None], 5 [None], 9: [Nonel},

8: {3: [None], 5 [None], 6: [Nonel},

9: {4: [None], 6 [None], 7: [None]}}

to_simple (fo_undirected=True, keep_label="any’, immutable=None)
Returns a simple version of itself.

In particular, loops and multiple edges are removed, and the graph might optionally be converted to an

undirected graph.
INPUT:

to_undirected - boolean - if True, the graph is also converted to an undirected graph.

keep_label ('any', 'min', 'max"'): if there are multiple edges with different labels, this vari-
able defines which label should be kept: any label (' any '), the smallest label ('min "), or the largest
("max").

immutable (boolean) — whether to create a mutable/immutable copy. immutable=None (default)
means that the graph and its copy will behave the same way.
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EXAMPLES:

sage: G = DiGraph(loops=True,multiedges=True, sparse=True)

sage: G.add_edges( [ (0,0,None), (1,1,None), (2,2,None), (2,3,1), (2,3,2), (3,
—~2,None) ] )

sage: G.edges (labels=False)

(o, 0), (1, 1), (2, 2), (2, 3), (2, 3), (3, 2)]

sage: H=G.to_simple()

sage: H.edges (labels=False)

[(2, 3)]

sage: H.is_directed()

False

sage: H.allows_loops ()

False

sage: H.allows_multiple_edges()

False

sage: G.to_simple(to_undirected=False, keep_label='min') .edges ()
[(2, 3, 1), (3, 2, None)]

sage: G.to_simple(to_undirected=False, keep_label="max') .edges ()
[(2, 3, 2), (3, 2, None)]

transitive_closure (loops=True)
Return the transitive closure of the (di)graph.

The transitive closure of a graph G has an edge (z, y) if and only if there is a path between z and y in G.

The transitive closure of any (strongly) connected component of a (di)graph is a complete graph. The
transitive closure of a directed acyclic graph is a directed acyclic graph representing the full partial order.

Note: If the (di)graph allows loops, its transitive closure will by default have one loop edge per vertex.
This can be prevented by disallowing loops in the (di)graph (self.allow_loops (False)).

EXAMPLES:

sage: g = graphs.PathGraph (4)

sage: g.transitive_closure ()

Transitive closure of Path graph: Graph on 4 vertices

sage: g.transitive_closure () .is_isomorphic (graphs.CompleteGraph (4))
True

sage: g = DiGraph({O: [1, 21, 1: [31, 2: [4, 51})

sage: g.transitive_closure () .edges (labels=False)

(¢, 1), (o, 2y, (0, 3), (0, 4), (0, 5, (1, 3), (2, 4), (2, 5)]

On an immutable digraph:

sage: digraphs.Path(5) .copy (immutable=True) .transitive_closure ()
Transitive closure of Path: Digraph on 5 vertices

The transitive closure of a (di)graph allowing loops has by default a loop edge per vertex. Parameter
loops allows to prevent that:

sage: G = digraphs.Circuit (3)
sage: G.transitive_closure() .loop_edges (labels=False)
[]

sage: G.allow_loops (True)

sage: G.transitive_closure() .loop_edges (labels=False)
[0, 0), (1, 1), (2, 2)]
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sage: G = graphs.CycleGraph (3)

sage: G.transitive_closure() .loop_edges (labels=False)
[]

sage: G.allow_loops (True)

sage: G.transitive_closure() .loop_edges (labels=False)
[(0, 0), (1, 1), (2, 2)]

transitive_reduction ()

Return a transitive reduction of a graph.

A transitive reduction H of G has a path from z to y if and only if there was a path from x to y in G.
Deleting any edge of H destroys this property. A transitive reduction is not unique in general. A transitive
reduction has the same transitive closure as the original graph.

A transitive reduction of a complete graph is a tree. A transitive reduction of a tree is itself.

EXAMPLES:

sage: g = graphs.PathGraph (4)

sage: g.transitive_reduction() == g
True

sage: g = graphs.CompleteGraph (5)

sage: h = g.transitive_reduction(); h.size()
4
sage: g = DiGraph({O: [1, 21, 1: [2, 3, 4, 51, 2: [4, 51})
sage: g.transitive_reduction() .size ()
5
traveling_ salesman_problem (use_edge_labels=False, maximize=Fualse, solver=None,

constraint_generation=None, verbose=0, ver-

bose_constraints=False)
Solve the traveling salesman problem (TSP)

Given a graph (resp. a digraph) G with weighted edges, the traveling salesman problem consists in finding
a Hamiltonian cycle (resp. circuit) of the graph of minimum cost.

This TSP is one of the most famous NP-Complete problems, this function can thus be expected to take
some time before returning its result.

INPUT:

* use_edge_labels —boolean (default: False); whether to solve the weighted traveling salesman
problem where the weight of an edge is defined by its label (a label set to None or { } being considered
as a weight of 1), or the non-weighted version (i.e., the Hamiltonian cycle problem)

* maximize — boolean (default: False); whether to compute a minimum (default) or a maximum
(when maximize == True) weight tour (or Hamiltonian cycle). This parameter is considered
only if use_edge_labels == True.

* solver —string (default: None); specifies a Linear Program (LP) solver to be used. If set to None,
the default one is used. For more information on LP solvers and which default solver is used, see the
method solve of the class MixedIntegerLinearProgram.

e constraint_generation—boolean (default: None); whether to use constraint generation when
solving the Mixed Integer Linear Program.

When constraint_generation = None, constraint generation is used whenever the graph
has a density larger than 70%.

* verbose —integer (default: 0); sets the level of verbosity. Set to 0 by default, which means quiet.
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* verbose_constraints — boolean (default: False); whether to display which constraints are
being generated

OUTPUT:

A solution to the TSP, as a Graph object whose vertex set is V (), and whose edges are only those of the
solution.

ALGORITHM:

This optimization problem is solved through the use of Linear Programming.

Note: This function is correctly defined for both graph and digraphs. In the second case, the returned
cycle is a circuit of optimal cost.

EXAMPLES:

The Heawood graph is known to be Hamiltonian:

sage: g = graphs.HeawoodGraph ()

sage: tsp = g.traveling_salesman_problem()
sage: tsp

TSP from Heawood graph: Graph on 14 vertices

The solution to the TSP has to be connected:

sage: tsp.is_connected()
True

It must also be a 2-regular graph:

sage: tsp.is_regular (k=2)
True

And obviously it is a subgraph of the Heawood graph:

sage: tsp.is_subgraph (g, induced=False)
True

On the other hand, the Petersen Graph is known not to be Hamiltonian:

sage: g = graphs.PetersenGraph ()
sage: tsp = g.traveling_salesman_problem()
Traceback (most recent call last):

EmptySetError: the given graph is not Hamiltonian

One easy way to change it is obviously to add to this graph the edges corresponding to a Hamiltonian
cycle. If we do this by setting the cost of these new edges to 2, while the others are set to 1, we notice that
not all the edges we added are used in the optimal solution

sage: for u, v in g.edge_iterator (labels=None) :
et g.set_edge_label (u, v, 1)

sage: cycle = graphs.CycleGraph(10)

sage: for u,v in cycle.edges (labels=None, sort=False):
et if not g.has_edge(u, v):

e g.add_edge (u, v)

(continues on next page)
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et g.set_edge_label (u, v, 2)

sage: tsp = g.traveling_salesman_problem(use_edge_labels=True)
sage: sum( tsp.edge_labels() ) < 2 x 10
True

If we pick 1/2 instead of 2 as a cost for these new edges, they clearly become the optimal solution:

sage: for u, v in cycle.edges (labels=None, sort=False):
et g.set_edge_label (u,v,1/2)

sage: tsp = g.traveling_salesman_problem(use_edge_labels=True)
sage: sum(tsp.edge_labels()) == (1/2) = 10
True

Search for a minimum and a maximum weight Hamiltonian cycle:

sage: G = Graph([(O, 1, 1), (O, 2, 2), (0, 3, 1), (1, 2, 1), (1, 3, 2), (2, 3,
= 1)1)

sage: tsp = G.traveling_salesman_problem(use_edge_labels=True, maximize=False)
sage: print (sum(tsp.edge_labels()))

4

sage: tsp = G.traveling_salesman_problem(use_edge_labels=True, maximize=True)
sage: print (sum(tsp.edge_labels()))

6

triangles_count (algorithm=None)

Return the number of triangles in the (di)graph.
For digraphs, we count the number of directed circuit of length 3.
INPUT:

* algorithm — string (default: None); specifies the algorithm to use (note that only 'iter' is
available for directed graphs):

— 'sparse_copy' — counts the triangles in a sparse copy of the graph (see sage.graphs.
base.static_sparse_graph). Calls static_sparse graph.triangles_count

— 'dense_copy' — counts the triangles in a dense copy of the graph (see sage.graphs.
base.static _dense graph). Calls static_dense graph.triangles_count

— 'matrix' uses the trace of the cube of the adjacency matrix
— 'iter' iterates over the pairs of neighbors of each vertex. No copy of the graph is performed

— None — for undirected graphs, uses "sparse_copy" or "dense_copy" depending on
whether the graph is stored as dense or sparse. For directed graphs, uses 'iter'.

EXAMPLES:

The Petersen graph is triangle free and thus:

sage: G = graphs.PetersenGraph ()
sage: G.triangles_count ()
0

Any triple of vertices in the complete graph induces a triangle so we have:
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sage: G = graphs.CompleteGraph(15)
sage: G.triangles_count () == binomial (15, 3)
True

The 2-dimensional DeBruijn graph of 2 symbols has 2 directed C's:

sage: G = digraphs.DeBruijn(2,2)
sage: G.triangles_count ()
2

The directed n-cycle is trivially triangle free for n > 3:

sage: G = digraphs.Circuit (10)
sage: G.triangles_count ()
0

union (other, immutable=None)
Return the union of self and other.

If the graphs have common vertices, the common vertices will be identified.

If one of the two graphs allows loops (or multiple edges), the resulting graph will allow loops (or multiple
edges).

If both graphs are weighted the resulting graphs is weighted.
If both graphs are immutable, the resulting graph is immutable, unless requested otherwise.
INPUT:

e immutable - boolean (default: None); whether to create a mutable/immutable union.
immutable=None (default) means that the graphs and their union will behave the same way.

See also:

* disjoint_union ()

* join()

EXAMPLES:

sage: G = graphs.CycleGraph(3)

sage: H = graphs.CycleGraph (4)

sage: J = G.union(H); J

Graph on 4 vertices

sage: J.vertices()

(0, 1, 2, 31

sage: J.edges (labels=False)

(o, 1), o, 2), (0, 3), (1, 2), (2, 3)]

vertex_boundary (verticesl, vertices2=None)
Return a list of all vertices in the external boundary of verticesl, intersected with vertices?2.

If vertices?2 is None, then vertices?2 is the complement of verticesl. This is much faster if
verticesl is smaller than vertices?2.

The external boundary of a set of vertices is the union of the neighborhoods of each vertex in the set. Note
that in this implementation, since vertices?2 defaults to the complement of verticesl, if a vertex v
has a loop, then vertex_boundary (v) will not contain v.

In a digraph, the external boundary of a vertex v are those vertices u with an arc (v, u).

1.1. Generic graphs (common to directed/undirected) 199



Sage Reference Manual: Graph Theory, Release 8.6

EXAMPLES:

sage: G = graphs.CubeGraph (4)

sage: 1 = ['0111', '©00OOO', '0OOO1', 'OO11', 'OO10', '0O101', '0O100', '1111°',
—'1l101', '1011', '1001"']

sage: G.vertex_boundary(['0000", "1111'], 1)

(‘or11', 'ooozx€r', 'o01€0', 'o0100', '1101', '1011"]

sage: D = DiGraph({0: [1, 2], 3: [O0]})
sage: D.vertex_boundary ([0]
(1,

2]

vertex_connectivity (G, value_only=True, sets=False, k=None, solver=None, verbose=0)
Return the vertex connectivity of the graph.

For more information, see the Wikipedia article Connectivity_(graph_theory) and the Wikipedia article
K-vertex-connected_graph.

Note:

When the graph is directed, this method actually computes the strong connectivity, (i.e. a directed
graph is strongly k-connected if there are k vertex disjoint paths between any two vertices u, v). If
you do not want to consider strong connectivity, the best is probably to convert your DiGraph object
to a Graph object, and compute the connectivity of this other graph.

By convention, a complete graph on n vertices is n — 1 connected. In this case, no certificate can
be given as there is no pair of vertices split by a cut of order £ — 1. For this reason, the certificates
returned in this situation are empty.

INPUT:

G — the input Sage (Di)Graph
value_only —boolean (default: True)
— When set to True (default), only the value is returned.
— When set to False, both the value and a minimum vertex cut are returned.

sets - boolean (default: False); whether to also return the two sets of vertices that are discon-
nected by the cut (implies value_only=False)

k —integer (default: None); when specified, check if the vertex connectivity of the (di)graph is larger
or equal to k. The method thus outputs a boolean only.

solver - string (default: None); specify a Linear Program (LP) solver to be used. If set to
None, the default one is used. For more information on LP solvers, see the method solve
of the class MixedIntegerLinearProgram. Use method sage.numerical .backends.
generic_backend.default_mip_solver () to know which default solver is used or to set
the default solver.

verbose —integer (default: 0); sets the level of verbosity. Set to 0 by default, which means quiet.

EXAMPLES:

A basic application on a PappusGraph:

sage: from sage.graphs.connectivity import vertex_ connectivity
sage: g=graphs.PappusGraph ()
sage: vertex_connectivity (qg)

(continues on next page)
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3
sage: g.vertex_connectivity ()
3

In a grid, the vertex connectivity is equal to the minimum degree, in which case one of the two sets is of
cardinality 1:

sage: g = graphs.GridGraph([ 3,3 1)

sage: [value, cut, [ setA, setB ]] = vertex_connectivity (g, sets=True)
sage: len(setA) == 1 or len(setB) ==
True

A vertex cut in a tree is any internal vertex:

sage: tree = graphs.RandomTree (15)

sage: val, [cut_vertex] = vertex_connectivity(tree, value_only=False)
sage: tree.degree(cut_vertex) > 1

True

When value_only = True, this function is optimized for small connectivity values and does not need
to build a linear program.

It is the case for connected graphs which are not connected:

sage: g = 2 % graphs.PetersenGraph ()
sage: vertex_connectivity(qg)
0

Or if they are just 1-connected:

sage: g = graphs.PathGraph (10)
sage: vertex_connectivity (g)
1

For directed graphs, the strong connectivity is tested through the dedicated function:

sage: g = digraphs.ButterflyGraph (3)
sage: vertex_connectivity (g)
0

A complete graph on 10 vertices is 9-connected:

sage: g = graphs.CompleteGraph (10)
sage: vertex_connectivity(qg)
9

A complete digraph on 10 vertices is 9-connected:

sage: g = DiGraph (graphs.CompleteGraph (10))
sage: vertex_connectivity (g)
9

When parameter k is set, we only check for the existence of a vertex cut of order at least k:

sage: g = graphs.PappusGraph ()
sage: vertex_connectivity (g, k=3)

(continues on next page)
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True
sage: vertex_connectivity (g, k=4)
False

vertex_cut (s, t, value_only=True, vertices=False, solver=None, verbose=0)
Return a minimum vertex cut between non-adjacent vertices s and ¢ represented by a list of vertices.

A vertex cut between two non-adjacent vertices is a set U of vertices of self such that the graph ob-
tained by removing U from self is disconnected. For more information, see the Wikipedia article
Cut_(graph_theory).

INPUT:

* value_only —boolean (default: True); whether to return only the size of the minimum cut, or to
also return the set U of vertices of the cut

e vertices — boolean (default: False); whether to also return the two sets of vertices that are
disconnected by the cut. Implies value_only setto False.

* solver —string (default: None); specifies a Linear Program (LP) solver to be used. If set to None,
the default one is used. For more information on LP solvers and which default solver is used, see the
method solve of the class MixedIntegerLinearProgram.

* verbose — integer (default: 0); sets the level of verbosity. Set to 0 by default, which means quiet.
OUTPUT:
Real number or tuple, depending on the given arguments (examples are given below).
EXAMPLES:
A basic application in the Pappus graph:

sage: g = graphs.PappusGraph ()
sage: g.vertex_cut (1, 16, value_only=True)
3

In the bipartite complete graph K5 g, a cut between the two vertices in the size 2 part consists of the other
8 vertices:

sage: g = graphs.CompleteBipartiteGraph (2, 8)

sage: [value, vertices] = g.vertex_cut (0, 1, wvalue_only=False)
sage: print (value)

8

sage: vertices == list(range (2, 10))

True

Clearly, in this case the two sides of the cut are singletons:

sage: [value, vertices, [setl, set2]] = g.vertex_cut(0, 1, vertices=True)
sage: len(setl) == 1

True

sage: len(set2) == 1

True

vertex_disjoint_paths (s, t, solver=None, verbose=0)
Return a list of vertex-disjoint paths between two vertices.

The vertex version of Menger’s theorem asserts that the size of the minimum vertex cut between two
vertices s and ¢ (the minimum number of vertices whose removal disconnects s and t) is equal to the
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maximum number of pairwise vertex-independent paths from s to ¢.
This function returns a list of such paths.
INPUT:

* s, t —two vertices of the graph.

* solver — string (default: None); specifies a Linear Program (LP) solver to be used. If set to None,
the default one is used. For more information on LP solvers and which default solver is used, see the
method solve of the class MixedIntegerLinearProgram.

* verbose —integer (default: 0); sets the level of verbosity. Set to 0 by default, which means quiet.
EXAMPLES:

In a complete bipartite graph

sage: g graphs.CompleteBipartiteGraph (2, 3)
sage: g.vertex_disjoint_paths (0, 1)
(eo, 2, 11, [0, 3, 1], [0, 4, 1]]

vertex iterator (vertices=None)
Return an iterator over the given vertices.

Returns False if not given a vertex, sequence, iterator or None. None is equivalent to a list of every
vertex. Note that for v in G syntax is allowed.

INPUT:
* vertices —iterated vertices are these intersected with the vertices of the (di)graph

EXAMPLES:

sage: P graphs.PetersenGraph ()
sage: for v in P.vertex_iterator():
e print (v)

sage: G graphs.TetrahedralGraph ()
sage: for i in G:
el print (i)

Note that since the intersection option is available, the vertex_iterator() function is sub-optimal, speed-
wise, but note the following optimization:

sage: timeit V = P.vertices() # not tested
100000 loops, best of 3: 8.85 [microls per loop
sage: timeit V = list (P.vertex_iterator()) # not tested

100000 loops, best of 3: 5.74 [micro]s per loop

vertices (sort=True, key=None)
Return a list of the vertices.
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INPUT:
* sort —boolean (default: True); if True, vertices are sorted according to the default ordering

* key — a function (default: None); a function that takes a vertex as its one argument and returns a
value that can be used for comparisons in the sorting algorithm (we must have sort=True)

OUTPUT:
The list of vertices of the (di)graph.

Warning: Since any object may be a vertex, there is no guarantee that any two vertices will be
comparable. With default objects for vertices (all integers), or when all the vertices are of the same
simple type, then there should not be a problem with how the vertices will be sorted. However, if you
need to guarantee a total order for the sorting of the edges, use the key argument, as illustrated in the
examples below.

EXAMPLES:

sage: P = graphs.PetersenGraph ()
sage: P.vertices()
(6, 1, 2, 3, 4, 5, 6, 7, 8, 9]

If you do not care about sorted output and you are concerned about the time taken to sort, consider the
following alternative:

sage: timeit V = P.vertices() # not tested
625 loops, best of 3: 3.86 [micro]s per loop
sage: timeit V = P.vertices (sort=False) # not tested
625 loops, best of 3: 2.06 [micro]s per loop
sage: timeit V = list(P.vertex_iterator()) # not tested
625 loops, best of 3: 2.05 [micro]ls per loop
sage: timeit ('V = list(P)"') # not tested

625 loops, best of 3: 1.98 [micro]s per loop

We illustrate various ways to use a key to sort the list:

sage: H = graphs.HanoiTowerGraph (3, 3, labels=False)
sage: H.vertices()

(o, 1, 2, 3, 4, ... 22, 23, 24, 25, 26]
sage: H.vertices (key=lambda x: -x)
(26, 25, 24, 23, 22, ... 4, 3, 2, 1, 0]

sage: G = graphs.HanoiTowerGraph (3, 3)
sage: G.vertices()

[(0, 0, 0), (0, O
sage: G.vertices(
[(0, O, 0), (1, O

(0, 0, 2), (0, 1, O
lambda x: (x[1], x[
(2, 0, 0), (0, 0, 1

1)y
key =
0),

’

The discriminant of a polynomial is a function that returns an integer. We build a graph whose vertices
are polynomials, and use the discriminant function to provide an ordering. Note that since functions are
first-class objects in Python, we can specify precisely the function from the Sage library that we wish to
use as the key:

sage: t = polygen(QQ, 't")
sage: K = Graph ({5xt: [t"2], t72: [t"2+2], t"2+2: [4%t"2-6], 4+t"2-6: [5+t]})

(continues on next page)
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sage: dsc = sage.rings.polynomial.polynomial_rational_flint.Polynomial_
—rational_flint.discriminant
sage: verts = K.vertices (key=dsc)

sage: verts

[(t"2 + 2, t72, 5+t, 4xt"2 - 6]

sage: [x.discriminant () for x in verts]
[-8, 0, 1, 96]

weighted (new=None)
Whether the (di)graph is to be considered as a weighted (di)graph.

INPUT:

* new — boolean (default: None); if it is provided, then the weightedness flag is set accordingly. This
is not allowed for immutable graphs.

Note: Changing the weightedness flag changes the ==-class of a graph and is thus not allowed for
immutable graphs.

Edge weightings can still exist for (di)graphs G where G.weighted () isFalse.

EXAMPLES:

Here we have two graphs with different labels, but weighted () is False for both, so we just check for
the presence of edges:

sage: G = Graph({0: {1: 'a'}}, sparse=True)
sage: H = Graph({0: {1: 'b'}}, sparse=True)
sage: G == H

True

Now one is weighted and the other is not, and thus the graphs are not equal:

sage: G.weighted (True)
sage: H.weighted()
False

sage: G == H

False

However, if both are weighted, then we finally compare ‘a’ to ‘b’:

sage: H.weighted (True)
sage: G == H
False

weighted_adjacency matrix (sparse=True, vertices=None)
Return the weighted adjacency matrix of the graph.

By default, each vertex is represented by its position in the list returned by method vertices ().
INPUT:
* sparse —boolean (default: True); whether to use a sparse or a dense matrix

* vertices - list (default: None); when specified, each vertex is represented by its position in the
list vertices, otherwise each vertex is represented by its position in the list returned by method
vertices ()
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EXAMPLES:

sage: G = Graph(sparse=True, weighted=True)

sage: G.add_edges([ (O, 1, 1), (1, 2, 2), (0, 2, 3), (0, 3, 4)]1)
sage: M G.weighted_adjacency_matrix(); M

[0 1
(10
[3 2
(4 0
sage: H
sage: H ==

True

sage: G.weighted_adjacency_matrix(vertices=[3, 2, 1, 01)
[0 0 0 4]

0 2 3]
2 0 1]
31 0]

O O N W

4]
0]
0]
0]

Graph (data=M, format='weighted adjacency_matrix', sparse=True)

wiener_index (by_weight=False, algorithm=None, weight_function=None, check_weight=True)
Return the Wiener index of the graph.

The graph is expected to have no cycles of negative weight.

The Wiener index of a graph G is W(G) = £ >°, < d(u, v) where d(u,v) denotes the distance between
vertices u and v (see [KRG96b]).

For more information on the input variables and more examples, we refer to shortest_paths () and
shortest_path_all_pairs (), which have very similar input variables.

INPUT:

* by_weight — boolean (default: False); if True, the edges in the graph are weighted, otherwise
all edges have weight 1

* algorithm - string (default: None); one of the following algorithms:
— For by_weight==False only:
% 'BFS' - the computation is done through a BFS centered on each vertex successively.

#* 'Floyd-Warshall-Cython' - the Cython implementation of the Floyd-Warshall algo-
rithm. Usually slower than 'BFS"'.

For graphs without negative weights:
# 'Dijkstra_Boost': the Dijkstra algorithm, implemented in Boost.

# 'Dijkstra_NetworkX': the Dijkstra algorithm, implemented in NetworkX. Usually
slower than 'Dijkstra_Boost'.

For graphs with negative weights:
% 'Johnson_Boost ': the Johnson algorithm, implemented in Boost.

# 'Floyd-Warshall-Python' - the Python implementation of the Floyd-Warshall algo-
rithm. Usually slower than ' Johnson_Boost'.

None (default): Sage chooses the best algorithm: 'BFS' for unweighted graphs,
'Dijkstra_Boost ' if all weights are positive, ' Johnson_Boost ', otherwise.

e weight_function — function (default: None); a function that takes as input an edge (u, v,
1) and outputs its weight. If not None, by_weight is automatically set to True. If None and
by_weight is True, we use the edge label 1 as a weight.
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* check_weight — boolean (default: True); if True, we check that the weight_function outputs a
number for each edge

EXAMPLES:

sage: G = Graph( { O0: {1: None}, 1: {2: None}, 2: {3: 1}, 3: {4: 2}, 4: {0: 2}
— }, sparse=True)

sage: G.wiener_index()

15

sage: G.wiener_index (weight_function=lambda e: (e[2] if e[2] is not None else
—1))

20

sage: G.wiener_index (weight_function=lambda e: (e[2] if e[2] is not None else
—200))

820

sage: G.wiener_index(algorithm='BFS")

15

sage: G.wiener_index(algorithm='Floyd-Warshall-Cython'")

15

sage: G.wiener_index(algorithm='Floyd-Warshall-Python')

15

sage: G.wiener_index(algorithm='Dijkstra_ Boost')

15

sage: G.wiener_index(algorithm='Johnson_ Boost')

15

sage: G.wiener_index(algorithm='Dijkstra_NetworkX'")

15

sage.graphs.generic_graph.graph isom equivalent_non_edge_labeled graph (g,

par-
ti-

tion=None,

stan-

dard_label=None,

re-
turn_relabeling=False,
re-
turn_edge_labels=False,
in-

place=False,

ig-

nore_edge_labels=False)
Helper function for canonical labeling of edge labeled (di)graphs.

Translates to a bipartite incidence-structure type graph appropriate for computing canonical labels of edge la-
beled and/or multi-edge graphs. Note that this is actually computationally equivalent to implementing a change
on an inner loop of the main algorithm- namely making the refinement procedure sort for each label.

If the graph is a multigraph, it is translated to a non-multigraph, where each edge is labeled with a dictionary
describing how many edges of each label were originally there. Then in either case we are working on a graph
without multiple edges. At this point, we create another (bipartite) graph, whose left vertices are the original
vertices of the graph, and whose right vertices represent the edges. We partition the left vertices as they were
originally, and the right vertices by common labels: only automorphisms taking edges to like-labeled edges are
allowed, and this additional partition information enforces this on the bipartite graph.

INPUT:
* g — Graph or DiGraph
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* partition — (default:None) if given, the partition of the vertices is as well relabeled
* standard_label — (default:None) the standard label is not considered to be changed

e return_relabeling — (default: False) if True, a dictionary containing the relabeling is returned

* return_edge_labels — (default: False) if True, the different edge_labels are returned (useful if in-

place is True)

e inplace — (default:False) if True, g is modified, otherwise the result is returned. Note that attributes of

g are not copied for speed issues, only edges and vertices.
OUTPUT:
« if not inplace: the unlabeled graph without multiple edges
* the partition of the vertices
* if return_relabeling: a dictionary containing the relabeling
* if return_edge_labels: the list of (former) edge labels is returned

EXAMPLES:

sage: from sage.graphs.generic_graph import graph_isom_equivalent_non_edge_
—labeled_graph

sage: G = Graph(multiedges=True, sparse=True)
sage: G.add_edges( (0,1,i) for i in range (10) )
sage: G.add_edge(l,2, 'string')
sage: G.add_edge(2,123)

sage: g = graph_isom_equivalent_non_edge_labeled_graph(G, partition=[[0,123],I[1,
—=211);

[Graph on 6 vertices, [[O0, 31, [1, 21, [4]1, [5]]]

sage: g = graph_isom_equivalent_non_edge_labeled_graph(G); g

[Graph on 6 vertices, [[0, 1, 2, 31, [4], [511]

sage: g[0].edges()

[(O, 4, None), (1, 4, None), (1, 5, None), (2, 3, None), (2, 5, None)]

sage: g = graph_isom_equivalent_non_edge_labeled_graph (G, standard_label='string',
—return_edge_labels=True); g

[Graph on 6 vertices, [[O0, 1, 2, 31, [5], (411, [I[I[None, 111, [[O, 17, [1, 11, I
- 11, [3, 11, (4, 11, [5, 11, [e, 11, [7, 11, [8, 11, [9, 111, [['string', 1111
sage: g[0].edges()

[(O, 4, None), (1, 2, None), (1, 4, None), (2, 5, None), (3, 5, None)]

sage: graph_isom_equivalent_non_edge_labeled_graph (G, inplace=True)
rero, 1, 2, 31, [41, [511]

sage: G.edges()

[(O, 4, None), (1, 4, None), (1, 5, None), (2, 3, None), (2, 5, None)]

sage.graphs.generic_graph.tachyon_vertex_plot (g, bgcolor=(1, 1, 1), vertex_colors=None,

vertex_size=0.06, pos3d=None, **kwds)
Helper function for plotting graphs in 3d with Tachyon.

Returns a plot containing only the vertices, as well as the 3d position dictionary used for the plot.
INPUT:
* pos3d-a 3D layout of the vertices

* various rendering options
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EXAMPLES:

sage: G = graphs.TetrahedralGraph ()

sage: from sage.graphs.generic_graph import tachyon_vertex_plot
sage: T,p = tachyon_vertex_plot (G, pos3d=G.layout (dim=3))

sage: type(T)

<class 'sage.plot.plot3d.tachyon.Tachyon'>

sage: type (p)

<... 'dict'>

1.2 Undirected graphs

This module implements functions

Algorithmically hard stuff

and operations involving undirected graphs.

chromatic_index ()

Return the chromatic index of the graph.

chromatic_number ()

Return the minimal number of colors needed to color the vertices of the graph.

chromatic_polynomial ()

Compute the chromatic polynomial of the graph G.

chromatic_quasisymmetr]

i Refurn ¢hieichrathatic quasisymmetric function of self.

chromatic _symmetric_ ful

nRefurn the chromatic symmetric function of self.

coloring()

Return the first (optimal) proper vertex-coloring found.

convexity properties()

Return a ConvexityProperties object corresponding to self.

has_homomorphism_to ()

Checks whether there is a homomorphism between two graphs.

independent_set ()

Return a maximum independent set.

independent_set_of_repi

rReturh an independent set of representatives.

is_perfect ()

Tests whether the graph is perfect.

matching_polynomial ()

Computes the matching polynomial of the graph G.

minor ()

Return the vertices of a minor isomorphic to H in the current graph.

pathwidth ()

Computes the pathwidth of self (and provides a decomposition)

rank_decomposition ()

Compute an optimal rank-decomposition of the given graph.

topological_minor ()

Return a topological H-minor from self if one exists.

treewidth ()

Computes the tree-width of G (and provides a decomposition)

tutte _polynomial ()

Return the Tutte polynomial of the graph G.

vertex_cover ()

Return a minimum vertex cover of self represented by a set of vertices.

Basic methods

bipartite_color ()

Return a dictionary with vertices as the keys and the color class as the values.

bipartite sets ()

Return (X,Y’) where X and Y are the nodes in each bipartite set of graph G.

graphé_string()

Return the graph6 representation of the graph as an ASCII string.

is_directed()

Since graph is undirected, returns False.

join ()

Return the join of self and other.

sparse6_string/()

Return the sparse6 representation of the graph as an ASCII string.

to_directed()

Return a directed version of the graph.

to_undirected()

Since the graph is already undirected, simply returns a copy of itself.

write _to_eps ()

Write a plot of the graph to filename in eps format.

Clique-related methods

1.2. Undirected graphs
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clique_complex ()

Return the clique complex of self.

clique _maximum/ ()

Return the vertex set of a maximal order complete subgraph.

clique_number ()

Return the order of the largest clique of the graph

clique _polynomial ()

Return the clique polynomial of self.

cliques_containing ver

- Return the cliques containing each vertex, represented as a dictionary of lists of
lists, keyed by vertex.

cliques_qget_clique_bip

n Refura @ bipartite graph constructed such that maximal cliques are the right
vertices and the left vertices are retained from the given graph. Right and left
vertices are connected if the bottom vertex belongs to the clique represented by
a top vertex.

cliques_get_max_clique| Returh the clique graph.

cliques_maximal ()

Return the list of all maximal cliques.

cliques_maximum ()

Returns the vertex sets of ALL the maximum complete subgraphs.

cliques_number_of ()

Return a dictionary of the number of maximal cliques containing each vertex,
keyed by vertex.

cliques_vertex_clique_niRetwn d)dictionary of sizes of the largest maximal cliques containing each ver-

tex, keyed by vertex.

Connectivity, orientations, trees

bounded_outdegree_orientComputes)an orientation of self such that every vertex v has out-degree less

than b(v)
bridges () Return a list of the bridges (or cut edges).
cleave () Return the connected subgraphs separated by the input vertex cut.

degree_constrained_sub

iy Returns a degree-constrained subgraph.

ear_decomposition ()

Return an Ear decomposition of the graph.

gomory_hu_tree ()

Return a Gomory-Hu tree of self.

minimum_outdegree_oriepnReturns:an orientation of self with the smallest possible maximum outdegree.

orientations ()

Return an iterator over orientations of self.

random_orientation/()

Return a random orientation of a graph G.

random_spanning_tree ()

Return a random spanning tree of the graph.

spanning_trees ()

Returns a list of all spanning trees.

spgr_tree ()

Return an SPQR-tree representing the triconnected components of the graph.

strong_orientation ()

Returns a strongly connected orientation of the current graph.

strong_orientations_ it ¢ Returns/an iterator over all strong orientations of a graph G.

Distances

’ centrality degree()

Return the degree centrality of a vertex.

Graph properties

apex_vertices ()

Return the list of apex vertices.

is_apex()

Test if the graph is apex.

is_arc_transitive ()

Check if self is an arc-transitive graph

is_asteroidal_triple_ frdestif the input graph is asteroidal triple-free

1s _biconnected()

Test if the graph is biconnected.

is_block_graph ()

Return whether this graph is a block graph.

is _cactus ()

Check whether the graph is cactus graph.

is_cartesian_product ()

Test whether the graph is a Cartesian product.

Continued on next page
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Table 2 — continued from previous page

is circumscribable ()

Test whether the graph is the graph of a circumscribed polyhedron.

is_cograph ()

Check whether the graph is cograph.

is_distance_reqgular/()

Test if the graph is distance-regular

is_edge_transitive ()

Check if self is an edge transitive graph.

is even _hole free()

Tests whether self contains an induced even hole.

is forest ()

Tests if the graph is a forest, i.e. a disjoint union of trees.

is_half transitive()

Check if self is a half-transitive graph.

is_inscribable ()

Test whether the graph is the graph of an inscribed polyhedron.

is_line_graph ()

Tests wether the graph is a line graph.

is_long _antihole_ free(

Tests whether the given graph contains an induced subgraph that is isomorphic
to the complement of a cycle of length at least 5.

is_long _hole free()

Tests whether g contains an induced cycle of length at least 5.

is _odd _hole free()

Tests whether self contains an induced odd hole.

is overfull/()

Tests whether the current graph is overfull.

is_partial_ cube()

Test whether the given graph is a partial cube.

is_polyhedral ()

Check whether the graph is the graph of the polyhedron.

is_prime ()

Test whether the current graph is prime.

is_semi_symmetric()

Check if self is semi-symmetric.

is_split()

Returns True if the graph is a Split graph, False otherwise.

is_strongly reqgular()

Check whether the graph is strongly regular.

is tree()

Tests if the graph is a tree

is_triangle free()

Returns whether self is triangle-free

is_weakly_chordal ()

Tests whether the given graph is weakly chordal, i.e., the graph and its comple-
ment have no induced cycle of length at least 5.

odd_girth()

Returns the odd girth of self.

Leftovers

cores ()

Return the core number for each vertex in an ordered list.

fractional_chromatic_1ii

nRetufn the fractional chromatic index of the graph.

has_perfect_matching ()

Return whether this graph has a perfect matching.

lhara zeta function_in

ve€Compate the inverse of the Thara zeta function of the graph.

kirchhoff symanzik_pol)

v Retura the) Kirchhoff-Symanzik polynomial of a graph.

lovasz_theta ()

Return the value of Lovdasz theta-function of graph

magnitude function ()

Return the magnitude function of the graph as a rational function.

matching ()

Return a maximum weighted matching of the graph represented by the list of
its edges.

maximum_average_degree

( Return the Maximum Average Degree (MAD) of the current graph.

modular_decomposition (

Return the modular decomposition of the current graph.

perfect_matchings ()

Return an iterator over all perfect matchings of the graph.

seidel_adjacency_matri}

k Return the Seidel adjacency matrix of self.

seidel_switching()

Return the Seidel switching of self w.r.t. subset of vertices s.

two_factor_petersen ()

Return a decomposition of the graph into 2-factors.

twograph ()

Return the two-graph of self

AUTHORS:

¢ Robert L. Miller (2006-10-22): initial version

* William Stein (2006-12-05):

Editing

* Robert L. Miller (2007-01-13): refactoring, adjusting for NetworkX-0.33, fixed plotting bugs (2007-01-
23): basic tutorial, edge labels, loops, multiple edges and arcs (2007-02-07): graph6 and sparse6 formats,
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matrix input
* Emily Kirkmann (2007-02-11): added graph_border option to plot and show
* Robert L. Miller (2007-02-12): vertex color-maps, graph boundaries, graph6 helper functions in Cython
* Robert L. Miller Sage Days 3 (2007-02-17-21): 3d plotting in Tachyon
* Robert L. Miller (2007-02-25): display a partition

* Robert L. Miller (2007-02-28): associate arbitrary objects to vertices, edge and arc label display (in 2d),
edge coloring

¢ Robert L. Miller (2007-03-21): Automorphism group, isomorphism check, canonical label
* Robert L. Miller (2007-06-07-09): NetworkX function wrapping

* Michael W. Hansen (2007-06-09): Topological sort generation

¢ Emily Kirkman, Robert L. Miller Sage Days 4: Finished wrapping NetworkX

* Emily Kirkman (2007-07-21): Genus (including circular planar, all embeddings and all planar embed-
dings), all paths, interior paths

* Bobby Moretti (2007-08-12): fixed up plotting of graphs with edge colors differentiated by label
* Jason Grout (2007-09-25): Added functions, bug fixes, and general enhancements

* Robert L. Miller (Sage Days 7): Edge labeled graph isomorphism

* Tom Boothby (Sage Days 7): Miscellaneous awesomeness

* Tom Boothby (2008-01-09): Added graphviz output

* David Joyner (2009-2): Fixed docstring bug related to GAP.

* Stephen Hartke (2009-07-26): Fixed bug in blocks_and_cut_vertices() that caused an incorrect result when
the vertex 0 was a cut vertex.

¢ Stephen Hartke (2009-08-22): Fixed bug in blocks_and_cut_vertices() where the list of cut_vertices is not
treated as a set.

* Anders Jonsson (2009-10-10): Counting of spanning trees and out-trees added.

* Nathann Cohen (2009-09) [Cliquer, Connectivity, Flows and everything that] uses Linear Programming and
class numerical. MIP

* Nicolas M. Thiery (2010-02): graph layout code refactoring, dot2tex/graphviz interface
¢ David Coudert (2012-04) : Reduction rules in vertex_cover.

¢ Birk Eisermann (2012-06): added recognition of weakly chordal graphs and long-hole-free =/  long-
antihole-free graphs

* Alexandre P. Zuge (2013-07): added join operation.

e Amritanshu Prasad (2014-08): added clique polynomial
e Julian Riith (2018-06-21): upgrade to NetworkX 2

¢ David Coudert (2018-10-07): cleaning

1.2.1 Graph Format
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Supported formats

Sage Graphs can be created from a wide range of inputs. A few examples are covered here.

* NetworkX dictionary format:

sage: d = {0: [1,4,5], 1: [2,6], 2:
5: [7, 8], 6: [8,9], 7: [9]}
sage: G = Graph(d); G
Graph on 10 vertices
sage: G.plot () .show()

(3,71,

# or G.show()

(4,81, 4: [9], \

* A NetworkX graph:

sage: import networkx

sage:
sage:

G = Graph (K)
G.degree ()

sage: K = networkx.complete_bipartite_graph(12,7)

(7, 7, 7, 71, 717, 7, 1, 717, 7, 7, 717, 7, 12, 12,

12, 12, 12, 12, 12]

* graph6 or sparse6 format:

sage: s = ':I AKGsaOs cI]Gb~'

sage: G = Graph(s, sparse=True); G
Looped multi-graph on 10 vertices
sage: G.plot () .show() # or G.show()

Note that the \ character is an escape character in Python, and also a character used by graph6 strings:

sage: G = Graph('The\nQ@QGUA")
Traceback (most recent call last):

—too short

RuntimeError: the string (Ihe) seems corrupt: for n = 10, the string is_

In Python, the escaped character \ is represented by \\:

sage: G = Graph('The\\n@GUA")
sage: G.plot () .show/() # or G.show/()

* adjacency matrix: In an adjacency matrix, each column and each row represent a vertex. If a 1 shows up

in row 4, column j, there is an edge (4, j).

1)

sage: M = Matrix([(0,1,0,0,1,1,0,0,0,0), (1
(0,1,0,1,0,0,0,1,0,0), ¢(0,0,1,0,1,0,0,0,1,
(,0,0,0,0,0,0,1,1,0), ¢(0,1,0,0,0,0,0,0,1,
(0,0,0,1,0,1,1,0,0,0), ¢(0,0,0,0,1,0,1,1,0,
sage: M

[01 001 1000 0]

[101 000100 0]

(01 0100010 0]

[001 010001 0]

[10O0100O0O0O0 1]

[100O0O0O0O0T1T1 0]

[01 000O0O0O0T1 1]

(001001000 1]

(000101100 0]

[000O01 0110 0]

:LIOIOIOVIVOIOIO)I \
(1,0,0,1,0,0,0,0,0,1), \
(0,0,1,0,0,1,0,0,0,1), \

(continues on next page)
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(continued from previous page)

sage: G = Graph(M); G
Graph on 10 vertices
sage: G.plot () .show() # or G.show()

¢ incidence matrix: In an incidence matrix, each row represents a vertex and each column represents an

~
~

~
~

~
~

O R OO O OoOFr O oo
~ 0~
|
~

~ 0~
~ 0~

~

~

~
P O OO oOoOkFr OO o O
~

o~

~

edge.

sage: M = Matrix([(-1, O, O, O, 1, O, O, O, O, O,-1, 0O, O,
..... (1,-1, 0, 0, 0, 0, 0, 0, 0, O, O0,-1, O,
..... (o0, 1,-1, 0, 0, 0, 0, 0, 0, O, 0, 0,-1,
..... (o0 0 1,-1, 0, 0, 0, 0, 0, 0, 0, 0, O,
..... (o0 0, 0, 1,-1, 0, 0, 0, 0, 0, 0, 0, O,
..... (o0, o 0, 0 0,-1, 0, O, O, 1, 1, O, O,
..... (o0, o0, 0, 0 0 0, 0, 1,-1, 0, 0, 1, O,
..... (o, 0, 0, 0 0 1,-1, 0, 0, 0, 0, 0, 1,
..... (o, 0, 0, 0, 0, 0, 0, O, 1,-1, 0O, 0, O,
..... (o, o0, 0 0 0 0 1,-1, 0, 0, 0, 0, O,
sage: M

[~-L 0 0O 0O L 0 00 O O0-1 0 0 0 O0]

[1-1 0 0 0 0 0O O O O O0-1 0 0 O]

(o 1-1 o0 0 0 0 O O O O O0O-1 0 o]

(o o 1-1 0 0 0O O O O O O O0-1 o0]

o o o0 1-r 0 0 O O O O O O O -1]

o o o o o0-1 0 0O O 1 1 0 0 0 o0]

(o o o o o0 o o0 1-r 0 O 1 0 0 O]

o o o o o0 1 -1 0 O O 0 O 1 o0 o0]

o o o o o0 o o o 1-1 0 0 0 1 o0]

(o o o o o0 o0 1-1 0 O O 0o 0 0 1]

sage: G = Graph(M); G

Graph on 10 vertices

sage: G.plot () .show() # or G.show/()

sage: DiGraph (matrix(2,[0,0,-1,1]), format="incidence _matrix")
Traceback (most recent call last):

ValueError: there must be two nonzero entries (-1 & 1) per column

* alist of edges:

sage: g = Graph([(1,3),(3,8),(5,2)1])
sage: g
Graph on 5 vertices

e an igraph Graph:
sage: import igraph # optional - python_igraph
sage: g = Graph(igraph.Graph([(1,3),(3,2),(0,2)]1)) # optional — python_ igraph
sage: g # optional - python_igraph

Graph on 4 vertices

1.2.2 Generators

Use graphs (n) to iterate through all non-isomorphic graphs of given size:

sage: for g in graphs(4):
et print (g.degree_sequence ())

(continues on next page)
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(continued from previous page)

[0, 0, 0, 0]
[1, 1, 0, O]
[2, 1, 1, 0]
[3, 1, 1, 1]
(1, 1, 1, 1]
[2, 2, 1, 1]
[2, 2, 2, 0]
[3, 2, 2, 1]
(2, 2, 2, 2]
[3, 3, 2, 2]
[3, 3, 3, 3]

Similarly graphs () will iterate through all graphs. The complete graph of 4 vertices is of course the smallest graph
with chromatic number bigger than three:

sage: for g in graphs():

e if g.chromatic_number () > 3:
et break
sage: g.is_isomorphic (graphs.CompleteGraph (4))

For some commonly used graphs to play with, type:

sage: graphs. [tab] # not tested

and hit {tab}. Most of these graphs come with their own custom plot, so you can see how people usually visualize
these graphs.

sage: G = graphs.PetersenGraph ()

sage: G.plot () .show() # or G.show/()
sage: G.degree_histogram/()

[0, 0, 0, 10]

sage: G.adjacency_matrix()

[0 1100 0]

[1
[0
[0
[1
[1
[0
[0
[0
[0

o

O O O OO0 o+ O
O O OO0 OFr OFr o
oOr OO0 O OoOFr oo
P O OO O OoORFr OO
O R P O OO OO o
P P OOOOOoOOoO R
P O OOoORr OO F O
OO O PFEP ORFr OoOoOo
OOk P O OO

sage: S = G.subgraph([0,1,2,31)

sage: S.plot () .show() # or S.show()
sage: S.density()

1/2

sage: G = GraphQuery (display_cols=["'graph6'], num_vertices=7, diameter=5)
sage: L = G.get_graphs_1list ()
sage: graphs_list.show_graphs (L)
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1.2.3 Labels

Each vertex can have any hashable object as a label. These are things like strings, numbers, and tuples. Each edge is
given a default label of None, but if specified, edges can have any label at all. Edges between vertices u and v are
represented typically as (u, v, 1), where 1 is the label for the edge.

Note that vertex labels themselves cannot be mutable items:

sage: M = Matrix( [[0,01,[0,01] )
sage: G = Graph({ 0 : { M : None } })
Traceback (most recent call last):

TypeError: mutable matrices are unhashable

However, if one wants to define a dictionary, with the same keys and arbitrary objects for entries, one can make that
association:

sage: d = {0 : graphs.DodecahedralGraph(), 1 : graphs.FlowerSnark(), \
2 : graphs.MoebiusKantorGraph(), 3 : graphs.PetersenGraph() }

sage: d[2]

Moebius-Kantor Graph: Graph on 16 vertices

sage: T = graphs.TetrahedralGraph ()

sage: T.vertices ()

[0, 1, 2, 3]

sage: T.set_vertices(d)

sage: T.get_vertex (1)

Flower Snark: Graph on 20 vertices

1.2.4 Database

There is a database available for searching for graphs that satisfy a certain set of parameters, including number of
vertices and edges, density, maximum and minimum degree, diameter, radius, and connectivity. To see a list of all
search parameter keywords broken down by their designated table names, type

sage: graph_db_info()
{...}

For more details on data types or keyword input, enter

sage: GraphQuery? # not tested

The results of a query can be viewed with the show method, or can be viewed individually by iterating through the
results

sage: Q = GraphQuery (display_cols=["'graph6'],num_vertices=7, diameter=5)
sage: Q.show ()
Graph6

(continues on next page)
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(continued from previous page)

FGC{o
FIAHO

Show each graph as you iterate through the results:

sage: for g in Q:
et show (g)

1.2.5 Visualization

To see a graph G you are working with, there are three main options. You can view the graph in two dimensions via
matplotlib with show ().

sage: G = graphs.RandomGNP (15, .3)
sage: G.show()

And you can view it in three dimensions via jmol with show3d ().

sage: G.show3d()

Or it can be rendered with IATEX. This requires the right additions to a standard TgX installation. Then standard Sage
commands, such as view (G) will display the graph, or latex (G) will produce a string suitable for inclusion in a
IATEX document. More details on this are at the sage. graphs. graph_Ilatex module.

sage: from sage.graphs.graph latex import check_tkz_graph

sage: check_tkz_graph() # random - depends on TeX installation
sage: latex(G)

\begin{tikzpicture}

\end{tikzpicture}

1.2.6 Mutability

Graphs are mutable, and thus unusable as dictionary keys, unless data_structure="static_sparse" isused:

sage: G = graphs.PetersenGraph ()
sage: {G:1}[G]
Traceback (most recent call last):

TypeError: This graph is mutable, and thus not hashable. Create an immutable copy by,
— g.copy (immutable=True)

sage: G_immutable = Graph (G, immutable=True)
sage: G_immutable == G

True

sage: {G_immutable:1}[G_immutable]

1
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1.2.7 Methods

class sage.graphs.graph.Graph (data=None, pos=None, loops=None, format=None,
weighted=None, implementation="c_graph’,
data_structure=’sparse’, vertex_labels=True, name=None,

multiedges=None,  convert_empty_dict_labels_to_None=None,
sparse=True, immutable=False)

Bases: sage.graphs.generic_graph.GenericGraph

Undirected graph.

A graph is a set of vertices connected by edges. See the Wikipedia article Graph_(mathematics) for more
information. For a collection of pre-defined graphs, see the graph_generators module.

A Graph object has many methods whose list can be obtained by typing g. <tab> (i.e. hit the ‘tab’ key) or by
reading the documentation of graph, generic_graph, and digraph.

INPUT:

By default, a Graph object is simple (i.e. no loops nor multiple edges) and unweighted. This can be easily
tuned with the appropriate flags (see below).

e data — can be any of the following (see the format argument):

1.
2.
3.

Graph () —build a graph on 0 vertices.

Graph (5) —return an edgeless graph on the 5 vertices 0,. .. ,4.

Graph ([list_of_vertices, list_of _edges]) - returns a graph with given ver-
tices/edges.
To bypass auto-detection, prefer the more explicit Graph([V, E],

format='vertices_and_edges').

. Graph (list_of_edges) — return a graph with a given list of edges (see documentation of

add_edges ()).

To bypass auto-detection, prefer the more explicit Graph (L, format='list_of_edges"').

. Graph ({1: [2, 3, 4], 3: [4]}) —return a graph by associating to each vertex the list

of its neighbors.

To bypass auto-detection, prefer the more explicit Graph (D, format='dict_of_lists"').

. Graph ({1: {2: 'a', 3:'b'} ,3:{2:'c'}}) —return a graph by associating a list of

neighbors to each vertex and providing its edge label.
To bypass auto-detection, prefer the more explicit Graph (D, format='dict_of_dicts"').

For graphs with multiple edges, you can provide a list of labels instead, e.g.: Graph ({1: {2:
[tal', 'a2'], 3:['b']} ,3:{2:['c']}}).

. Graph (a_symmetric_matrix) — return a graph with given (weighted) adjacency matrix (see

documentation of ad jacency matrix()).

To bypass auto-detection, prefer the more explicit Graph (M,
format='adjacency_matrix'). To take weights into  account, use
format='weighted_adjacency_matrix' instead.

. Graph (a_nonsymmetric_matrix) — return a graph with given incidence matrix (see docu-

mentation of incidence _matrix()).

To bypass auto-detection, prefer the more explicit Graph (M,
format='incidence_matrix').
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9. Graph ([V, £f]) — return a graph from a vertex set V and a symmetric function £. The graph
contains an edge u, v whenever £ (u, v) is True.. Example: Graph ([ [1..10], lambda x,
y: abs(x-y).is_square()])

10. Graph (':I'ESQobGkgegW~") —return a graph from a graph6 or sparse6 string (see documenta-
tion of graphé_string () or sparse6_string()).

11. Graph (a_seidel_matrix, format='seidel_adjacency_matrix') — return a graph
with a given Seidel adjacency matrix (see documentation of seidel_adjacency _matrix()).

12. Graph (another_graph) —return a graph from a Sage (di)graph, pygraphviz graph, NetworkX
graph, or igraph graph.

* pos — a positioning dictionary (cf. documentation of 1ayout ()). For example, to draw 4 vertices on a

square:
{0: [-1,-11,
e [ 1,-11,
. [ 1’ 11’
3: [-1, 11}

* name — (must be an explicitly named parameter, i.e., name="complete") gives the graph a name

* loops - boolean (default: None); whether to allow loops (ignored if data is an instance of the
Graph class)

* multiedges - boolean (default: None); whether to allow multiple edges (ignored if data is an in-
stance of the Graph class).

* weighted — boolean (default: None); whether graph thinks of itself as weighted or not. See
weighted ().

e format — if set to None (default), Graph tries to guess input’s format. To avoid this possi-
bly time-consuming step, one of the following values can be specified (see description above):

"int", "graph6", "sparse6", "rule", "list_of_edges", "dict_of_lists",
"dict_of_dicts", "adjacency_matrix", "weighted_adjacency_matrix",
"seidel_adjacency_matrix","incidence_matrix", "NX", "igraph".

e sparse — boolean (default: True); sparse=True is an alias for data_structure="sparse",
and sparse=False is an alias for data_structure="dense".

e data_structure — one of the following (for more information, see overview)
— "dense" —selects the dense_graph backend.
— "sparse" —selects the sparse graph backend.

— "static_sparse" — selects the static sparse backend (this backend is faster than the
sparse backend and smaller in memory, and it is immutable, so that the resulting graphs can be used
as dictionary keys).

e immutable — boolean (default: False); whether to create a immutable graph. Note that
immutable=True is actually a shortcut for data_structure="'static_sparse'. SettoFalse
by default.

* vertex_labels — boolean (default: True); whether to allow any object as a vertex (slower), or only
the integers 0, ...,n — 1, where n is the number of vertices.

* convert_empty_dict_labels_to_None - this arguments sets the default edge labels used by
NetworkX (empty dictionaries) to be replaced by None, the default Sage edge label. It is set to True
iff a NetworkX graph is on the input.
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EXAMPLES:

We illustrate the first seven input formats (the other two involve packages that are currently not standard in
Sage):

1. An integer giving the number of vertices:

sage: g = Graph(5); g
Graph on 5 vertices
sage: g.vertices()

(0, 1, 2, 3, 4]

sage: g.edges|()

[]

2. A dictionary of dictionaries:

sage: g = Graph({O0:{1:'x",2:'2z",3:"a'}, 2:{5:'out'}}); g
Graph on 5 vertices

The labels (‘x’, ‘z’, ‘a’, ‘out’) are labels for edges. For example, ‘out’ is the label for the edge on 2 and 5.
Labels can be used as weights, if all the labels share some common parent.:

sage: a,b,c,d,e, f = sorted(SymmetricGroup (3))
sage: Graph({b:{d:'c',e:'p'}, c:{d:'p',e:'c"}})
Graph on 4 vertices

3. A dictionary of lists:

sage: g = Graph({0:[1,2,3]1, 2:[41}); g
Graph on 5 vertices

4. A list of vertices and a function describing adjacencies. Note that the list of vertices and the function must
be enclosed in a list (i.e., [list of vertices, function]).

Construct the Paley graph over GF(13).:

sage: g=Graph ([GF(13), lambda i,j: i!=3j and (i-Jj).is_square()])
sage: g.vertices|()

(o, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]
sage: g.adjacency_matrix/()

[01 01 10000110 1]
(101011000011 0]

(01 0101100001 1]

[101 010110000 1]

(11 0101011000 0]

(01 1010101100 0]

(001 101010110 0]
(000110101011 0]
(000011010101 1]
[L0OO0OO0OO1101O0101]
(110000110101 0]

(01 1000011010 1]
(101100001101 0]

Construct the line graph of a complete graph.:

sage: g=graphs.CompleteGraph (4)
sage: line_graph=Graph([g.edges (labels=false), \
lambda 1, j: len(set (i) .intersection(set(j)))>0], \

(continues on next page)
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loops=False)
sage: line_graph.vertices()
(¢, 1, (o, 2y, (0, 3), (1, 2), (1, 3), (2, 3)]
sage: line_graph.adjacency_matrix/()

(01 1 110]
(10110 1]
(11001 1]
[1 1001 1]
(10110 1]
(01 1 110]

5. A graph6 or sparse6 string: Sage automatically recognizes whether a string is in graph6 or sparse6 format:

sage: s = ':I AKGsaOs cI]Gb~'
sage: Graph (s, sparse=True)
Looped multi-graph on 10 vertices

sage: G = Graph('G?22?2?2")
sage: G = Graph("G'?G?C")
Traceback (most recent call last):

RuntimeError: the string seems corrupt: valid characters are
?Q@ABCDEFGHIJKLMNOPQRSTUVWXYZ [\]"_"abcdefghijklmnopgrstuvwxyz{ |}~
sage: G = Graph('G???227272")

Traceback (most recent call last):

RuntimeError: the string (G????7?7?) seems corrupt: for n = 8, the string is
—too long

sage: G = Graph(":I'AKGsaOs cI]Gb~")
Traceback (most recent call last):

RuntimeError: the string seems corrupt: valid characters are
?Q@ABCDEFGHIJKLMNOPQRSTUVWXYZ [\]"_"abcdefghijklmnopgrstuvwxyz{ |}~

There are also list functions to take care of lists of graphs:

sage: s = ':IgMogoCUOgeb\n:I AKGsaOs cI]Gb~\n:I EDOAEQ?PccSsge\\N\n'

sage: graphs_list.from_sparseb6 (s)

[Looped multi-graph on 10 vertices, Looped multi-graph on 10 vertices, Looped,
—multi-graph on 10 vertices]

6. A Sage matrix: Note: If format is not specified, then Sage assumes a symmetric square matrix is an
adjacency matrix, otherwise an incidence matrix.

* an adjacency matrix:

sage: M = graphs.PetersenGraph() .am(); M
[0O1 0011000 0]
[1 01000100 0]
[0O1 0100010 0]
[0O0O1 010001 0]
[T 0O01000O0O0T1]
[T 0O0O0O0O0O01T1 0]
[01 00 O0O0O0O0OT1T1]
[0O01 001000 1]

(continues on next page)
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[0001 011
[00OO0O01O01
sage: Graph (M)
Graph on 10 vertices

]

00O
1 0 0]

sage: Graph (matrix([[1,2],[2,4]1]),loops=True,sparse=True)
Looped multi-graph on 2 vertices

sage: M = Matrix([[O,1,-11,[1,0,-1/21,[-1,-1/2,011); M

[ 0 1 =11
[ 1 0 -1/2]
[ -1 -1/2 0]

sage: G = Graph (M, sparse=True); G
Graph on 3 vertices

sage: G.weighted()

True

an incidence matrix:

sage: M = Matrix(e6, [-1,0,0,0,1, 1,-1,0,0,0, O,1,-1,0,0, ©0,0,1,-1,0, O,O0,
(*)Olllill OIOIOIOIO]); M

[-1 0 0 0 1]
[1 -1 0 0 0]
[0 1 -1 0 0]
[0 0 1 -1 0]
[0 0O 0 1 -1]
[ 0O 0 0 0 0]

sage: Graph (M)
Graph on 6 vertices

sage: Graph (Matrix ([[1],[1]1,[111))
Traceback (most recent call last):

ValueError: there must be one or two nonzero entries per column in an_
—incidence matrix, got entries [1, 1, 1] in column 0

sage: Graph(Matrix([[1],[1]1,[0]11))

Graph on 3 vertices

sage: M = Matrix([[O,1,-1],(1,0,-1]1,[-1,-1,01]1); M

[ 0 1 -1]
[ 1 0 -1]
[-1 -1 O]

sage: Graph (M, sparse=True)
Graph on 3 vertices

sage: M = Matrix([[O,1,1],[1,0,11,([-1,-1,011); M

[ 0 1 1]
[ 1 0 1]
[-1 -1 0]

sage: Graph (M)
Traceback (most recent call last):

ValueError: there must be one or two nonzero entries per column in an_,
—~incidence matrix, got entries [1, 1] in column 2

Check that trac ticket #9714 is fixed:
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10.

11.

sage: MA = Matrix([[1,2,0], [0,2,01, [0,0,111)
sage: GA = Graph(MA, format='adjacency_matrix')

sage: MI = GA.incidence_matrix(oriented=False)
sage: MI

[2 1100 0]

[01 122 0]

[0O0O0O0O0 2]
sage: Graph (MI) .edges (labels=None)
(e, o), (0, 1), (0, 1), (1, 1), (1, 1), (2, 2)]

sage: M = Matrix([[1], [-11]1); M
[ 1]

[-1]

sage: Graph (M) .edges ()

[(0, 1, None)]

. A Seidel adjacency matrix:

sage: from sage.combinat.matrices.hadamard matrix import \

....: regular_symmetric_hadamard_matrix_with_constant_diagonal as rshcd
sage: m=rshcd(16,1)- matrix.identity(16)

sage: Graph (m, format="seidel adjacency matrix").is_strongly_

—regular (parameters=True)

(16, 6, 2, 2)

. List of edges, or labelled edges:

sage: g = Graph([(1,3),(3,8),(5,2)1])
sage: g
Graph on 5 vertices

sage: g = Graph([ (1,2, "Peace"), (7,-9,"and"), (77,2, "Love")])

sage: g

Graph on 5 vertices

sage: g = Graph([(O0, 2, 'O"), (O, 2, '1"), (3, 3, '2")], loops=True,
—multiedges=True)

sage: g.loops|()

[(3, 3, '"2")]

A NetworkX MultiGraph:

sage: import networkx

sage: g = networkx.MultiGraph({0:[1,2,31, 2:[41})
sage: Graph (g)

Graph on 5 vertices

A NetworkX graph:

sage: import networkx

sage: g = networkx.Graph ({0:[1,2,3], 2:[4]})
sage: DiGraph (g)

Digraph on 5 vertices

An igraph Graph (see also igraph_graph ()):

sage: import igraph # optional - python_igraph
sage: g = igraph.Graph([ (0, 1), (0, 2)]) # optional - python_igraph

(continues on next page)
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sage: Graph (g) # optional - python_igraph
Graph on 3 vertices

If vertex_labels is True, the names of the vertices are given by the vertex attribute 'name’', if

available:

sage: g = igraph.Graph([(0,1), (0,2)], vertex_attrs={'name':['a','b','c']}) #.,
—optional - python_igraph

sage: Graph(g) .vertices/() #

—optional - python_igraph

['a', 'b', 'c']

sage: g = igraph.Graph([(0,1), (0,2)], vertex_attrs={'label':['a','b',"'c'1}) #
—optional - python_igraph

sage: Graph(g) .vertices /() #,
—optional - python_igraph
(0, 1, 2]

If the igraph Graph has edge attributes, they are used as edge labels:

sage: g = igraph.Graph([(0,1), (0,2)], edge_attrs={'name':['a','b'], 'weight
—':[1,31}) # optional - python_igraph

sage: Graph(g) .edges ()

[ # optional - python_igraph

[(0, 1, {'name': 'a', 'weight': 1}), (0, 2, {'nmame': 'b', 'weight': 3})]

When defining an undirected graph from a function £, it is very important that £ be symmetric. If it is not,
anything can happen:

sage: f_sym = lambda x,y: abs(x-y) == 1
sage: f_nonsym = lambda x,y: (x-y) == 1

sage: G_sym = Graph([[4,6,1,5,3,7,2,0], f_sym])

sage: G_sym.is_isomorphic (graphs.PathGraph(8))

True

sage: G_nonsym = Graph([[4,6,1,5,3,7,2,0], f_nonsym])
sage: G_nonsym.size()

4

sage: G_nonsym.is_isomorphic(G_sym)

False

By default, graphs are mutable and can thus not be used as a dictionary key:

sage: G = graphs.PetersenGraph ()
sage: {G:1}[G]
Traceback (most recent call last):

TypeError: This graph is mutable, and thus not hashable. Create an immutable copy,,
—by “g.copy (immutable=True) "

When providing the optional arguments data_structure="static_sparse" or immutable=True
(both mean the same), then an immutable graph results.

sage: G_imm = Graph (G, immutable=True)
sage: H_imm = Graph(G, data_structure='static_sparse')

sage: G_imm == H_imm ==
True

sage: {G_imm:1}[H_imm]
1
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apex_vertices (k=None)
Return the list of apex vertices.

A graph is apex if it can be made planar by the removal of a single vertex. The deleted vertex is called an
apex of the graph, and a graph may have more than one apex. For instance, in the minimal nonplanar
graphs K5 or K3 3, every vertex is an apex. The apex graphs include graphs that are themselves planar,
in which case again every vertex is an apex. The null graph is also counted as an apex graph even though
it has no vertex to remove. If the graph is not connected, we say that it is apex if it has at most one non
planar connected component and that this component is apex. See the Wikipedia article Apex_graph for
more information.

See also:

* is_apex()

e is_planar()

INPUT:

* k — integer (default: None); when set to None, the method returns the list of all apex of the graph,
possibly empty if the graph is not apex. When set to a positive integer, the method ends as soon as k
apex vertices are found.

OUTPUT:

By default, the method returns the list of all apex of the graph. When parameter k is set to a positive
integer, the returned list is bounded to k apex vertices.

EXAMPLES:

K and K3 3 are apex graphs, and each of their vertices is an apex:

sage: G = graphs.CompleteGraph (5)

sage: G.apex_vertices()

(0, 1, 2, 3, 4]

sage: G = graphs.CompleteBipartiteGraph (3, 3)
sage: G.is_apex|()

True

sage: G.apex_vertices()

(0, 1, 2, 3, 4, 5]

sage: G.apex_vertices (k=3)

(0, 1, 2]

A4
times4-grid is apex and each of its vertices is an apex. When adding a universal vertex, the resulting graph
is apex and the universal vertex is the unique apex vertex

sage: G = graphs.Grid2dGraph(4,4)

sage: G.apex_vertices() == G.vertices()
True
sage: G.add_edges ([ ('universal',v) for v in GJ])

sage: G.apex_vertices()
['"universal']

The Petersen graph is not apex:

sage: G = graphs.PetersenGraph ()
sage: G.apex_vertices()

(]
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A graph is apex if all its connected components are apex, but at most one is not planar:

sage: M = graphs.Grid2dGraph (3, 3)
sage: K5 graphs.CompleteGraph (5)
sage: (M+KD) .apex_vertices()

(9, 10, 11, 12, 13]

sage: (M+K5+K5) .apex_vertices()

[]

Neighbors of an apex of degree 2 are apex:

sage: G = graphs.Grid2dGraph(5,5)
sage: G.add_path([(1,1),'x"', (3,3)1)
sage: G.is_planar ()

False

sage: G.degree('x")

2

sage: G.apex_vertices()

['x', (2, 2), (3, 3), (1, 1)]

bipartite_color ()
Return a dictionary with vertices as the keys and the color class as the values.

Fails with an error if the graph is not bipartite.

EXAMPLES:

sage: graphs.CycleGraph (4) .bipartite_color ()
{0: 1, 1: 0, 2: 1, 3: 0}

sage: graphs.CycleGraph (5) .bipartite_color ()
Traceback (most recent call last):

RuntimeError: Graph is not bipartite.

bipartite_sets ()
Return (X,Y’) where X and Y are the nodes in each bipartite set of graph G.

Fails with an error if graph is not bipartite.

EXAMPLES:

sage: graphs.CycleGraph (4) .bipartite_sets/()
({0, 2}, {1, 3})

sage: graphs.CycleGraph (5) .bipartite_sets()
Traceback (most recent call last):

RuntimeError: Graph is not bipartite.

bounded_outdegree_orientation (bound, solver=None, verbose=False)
Computes an orientation of self such that every vertex v has out-degree less than b(v)

INPUT:

* bound — Maximum bound on the out-degree. Can be of three different types :

* An integer k. In this case, computes an orientation whose maximum out-degree is less than k.
* A dictionary associating to each vertex its associated maximum out-degree.

* A function associating to each vertex its associated maximum out-degree.
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* solver — (default: None); specify a Linear Program (LP) solver to be used. If set to None, the
default one is used. For more information on LP solvers and which default solver is used, see the
method solve of the class MixedIntegerLinearProgram.

* verbose — integer (default: 0); sets the level of verbosity. Set to 0 by default, which means quiet.

OUTPUT:

A DiGraph representing the orientation if it exists. A ValueError exception is raised otherwise.
ALGORITHM:

The problem is solved through a maximum flow :

Given a graph G, we create a DiGraph D defined on E(G) U V(G) U {s,t}. We then link s to all of
V(G) (these edges having a capacity equal to the bound associated to each element of V' (G)), and all the
elements of E(G) to t . We then link each v € V(G) to each of its incident edges in G. A maximum
integer flow of value | E(G)| corresponds to an admissible orientation of G. Otherwise, none exists.

EXAMPLES:

d(v)k

There is always an orientation of a graph G' such that a vertex v has out-degree at most [ =5

sage: g = graphs.RandomGNP (40, .4)
sage: b = lambda v: ceil (g.degree(v)/2)

sage: D = g.bounded_outdegree_orientation (b)
sage: all( D.out_degree(v) <= b(v) for v in g )
True

Chvatal’s graph, being 4-regular, can be oriented in such a way that its maximum out-degree is 2:

sage: g = graphs.ChvatalGraph ()

sage: D = g.bounded_outdegree_orientation (2)
sage: max (D.out_degree())
2

For any graph G, it is possible to compute an orientation such that the maximum out-degree is at most the
maximum average degree of GG divided by 2. Anything less, though, is impossible.

sage: g = graphs.RandomGNP(40, .4) sage: mad = g.maximum_average_degree()

Hence this is possible

sage: d = g.bounded_outdegree_orientation(ceil (mad/2))

While this is not:

sage: try:

et g.bounded_outdegree_orientation (ceil (mad/2-1))
et print ("Error")

....: except ValueError:

et pass

bridges (G, labels=True)
Return a list of the bridges (or cut edges).

A bridge is an edge whose deletion disconnects the undirected graph. A disconnected graph has no bridge.
INPUT:

* labels —boolean (default: True); if False, each bridge is a tuple (u, v) of vertices
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EXAMPLES:

sage: from sage.graphs.connectivity import bridges
sage: from sage.graphs.connectivity import is_connected
sage: g = 2 % graphs.PetersenGraph ()

sage: g.add_edge(l, 10)

sage: is_connected(qg)

True

sage: bridges(qg)

[(1, 10, None)]

sage: g.bridges ()

[(1, 10, None)]

centrality_ degree (v=None)

Return the degree centrality of a vertex.

The degree centrality of a vertex v is its degree, divided by |V(G)| — 1. For more information, see the
Wikipedia article Centrality.

INPUT:

* v —a vertex (default: None); set to None (default) to get a dictionary associating each vertex with its
centrality degree.

See also:

* centrality _closeness()

* centrality_betweenness ()

EXAMPLES:

sage: (graphs.ChvatalGraph()) .centrality_degree()

{0: 4/11, 1: 4/11, 2: 4/11, 3: 4/11, 4: 4/11, 5: 4/11,
6: 4/11, 7: 4/11, 8: 4/11, 9: 4/11, 10: 4/11, 11: 4/11}

sage: D graphs.DiamondGraph ()

sage: D.centrality_degree ()

{0: 2/3, 1: 1, 2: 1, 3: 2/3}

sage: D.centrality_degree (v=1)

1

chromatic_index (solver=None, verbose=0)

Return the chromatic index of the graph.
The chromatic index is the minimal number of colors needed to properly color the edges of the graph.
INPUT:

e solver — (default: None); specify the Linear Program (LP) solver to be used. If set to None, the
default one is used. For more information on LP solvers and which default solver is used, see the
method solve of the class MixedIntegerLinearProgram.

* verbose —integer (default: 0); sets the level of verbosity. Set to 0 by default, which means quiet.

This method is a frontend for method sage. graphs.graph_coloring.edge coloring () that
uses a mixed integer-linear programming formulation to compute the chromatic index.

See also:

» Wikipedia article Edge_coloring for further details on edge coloring

* sage.graphs.graph_coloring.edge_coloring()
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e fractional chromatic_index()

* chromatic_number ()

EXAMPLES:

The clique K, has chromatic index n when n is odd and n — 1 when n is even:

sage: graphs.CompleteGraph (4) .chromatic_index ()

3
sage: graphs.CompleteGraph (5) .chromatic_index ()
5
sage: graphs.CompleteGraph (6) .chromatic_index ()
5

The path P,, with n > 2 has chromatic index 2:

sage: graphs.PathGraph (5) .chromatic_index ()
2

The windmill graph with parameters &, n has chromatic index (k — 1)n:

sage: k,n = 3,4

sage: G = graphs.WindmillGraph (k,n)
sage: G.chromatic_index () == (k-1)=#*n
True

chromatic_number (algorithm="DLX’, solver=None, verbose=0)
Return the minimal number of colors needed to color the vertices of the graph.

INPUT:
* algorithm - Select an algorithm from the following supported algorithms:

- If algorithm="DLX" (default), the chromatic number is computed using the dancing link
algorithm. It is inefficient speedwise to compute the chromatic number through the dancing link
algorithm because this algorithm computes all the possible colorings to check that one exists.

— Ifalgorithm="CP", the chromatic number is computed using the coefficients of the chromatic
polynomial. Again, this method is inefficient in terms of speed and it only useful for small graphs.

- If algorithm="MILP", the chromatic number is computed using a mixed integer linear pro-
gram. The performance of this implementation is affected by whether optional MILP solvers have
been installed (see the MILP module, or Sage’s tutorial on Linear Programming).

* solver — (default: None); specify a Linear Program (LP) solver to be used. If set to None, the
default one is used. For more information on LP solvers and which default solver is used, see the
method solve () of the class MixedIntegerLinearProgram.

* verbose — integer (default: 0); sets the level of verbosity for the MILP algorithm. Its default value
is 0, which means quiet.

See also:
For more functions related to graph coloring, see the module sage. graphs.graph_coloring.

EXAMPLES:

sage: G = Graph({O0: [1, 2, 31, 1: [2]})
sage: G.chromatic_number (algorithm="DLX")
3

(continues on next page)
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sage: G.chromatic_number (algorithm="MILP")
3

sage: G.chromatic_number (algorithm="CP")

3

A bipartite graph has (by definition) chromatic number 2:

sage: graphs.RandomBipartite (50,50,0.7) .chromatic_number ()
2

A complete multipartite graph with k parts has chromatic number k:

sage: all (graphs.CompleteMultipartiteGraph([5]+*1) .chromatic_number () == i for_
—~1i in range(2,5))
True

The complete graph has the largest chromatic number from all the graphs of order n. Namely its chromatic

number is n:
sage: all (graphs.CompleteGraph (i) .chromatic_number() == i for i in range(10))
True

The Kneser graph with parameters (n, 2) for n > 3 has chromatic number n — 2:

sage: all (graphs.KneserGraph (i, ?2) .chromatic_number() == i-2 for i in range (4,
—6))
True

The Flower Snark graph has chromatic index 4 hence its line graph has chromatic number 4:

sage: graphs.FlowerSnark () .line_graph() .chromatic_number ()
4

chromatic_polynomial (G, return_tree_basis=False)
Compute the chromatic polynomial of the graph G.

The algorithm used is a recursive one, based on the following observations of Read:
* The chromatic polynomial of a tree on n vertices is xX(x-1)"(n-1).

e If e is an edge of G, G’ is the result of deleting the edge e, and G” is the result of contracting e, then
the chromatic polynomial of G is equal to that of G’ minus that of G’*.

EXAMPLES:

sage: graphs.CycleGraph (4) .chromatic_polynomial ()

XM = 4%xx”3 + 6%xx"2 — 3%x

sage: graphs.CycleGraph (3) .chromatic_polynomial ()

X"3 = 3xx"2 + 2#*x

sage: graphs.CubeGraph (3) .chromatic_polynomial ()

x"8 — 12xx”7 + 66%x76 — 214xx"5 + 441xx"4 - 572xx"3 + 423%x"2 — 133%x
sage: graphs.PetersenGraph() .chromatic_polynomial ()

X710 — 15%x79 + 105%xx78 — 455xx"7 + 1353xx"6 - 2861xx"5 + 4275%x"4 — 4305%x"3
—+ 2606*xx"2 — 704%*x

sage: graphs.CompleteBipartiteGraph(3,3) .chromatic_polynomial ()

X"6 — 9%x”5 + 36%x74 — T5xx"3 4+ T8xx"2 — 31lxx

sage: for i in range(2,7):

(continues on next page)
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e graphs.CompleteGraph (i) .chromatic_polynomial () .factor ()
(x — 1) = x

(x — 2) * (x — 1) * x

(x = 3) » (x — 2) » (x — 1) = X

(x — 4) % (x — 3) * (x = 2) » (x — 1) * x

(X = 5) » (x —4) » (x — 3) » (x — 2) * (x — 1) « x

sage: graphs.CycleGraph (5) .chromatic_polynomial () .factor ()

(x — 2) * (x — 1) » x * (X"2 — 2+x + 2)

sage: graphs.OctahedralGraph() .chromatic_polynomial () .factor ()
(x — 2) * (x — 1) * x * (X"3 — 9%xx"2 + 29%x — 32)
sage: graphs.WheelGraph (5) .chromatic_polynomial () .factor ()

(x — 2) » (x — 1) » x * (x"2 — 5+«x + 7)

sage: graphs.WheelGraph (6) .chromatic_polynomial () .factor ()

(x — 3) * (x — 2) » (x — 1) » x » (x*2 — 4xx + 5)

sage: C(x)=graphs.LCFGraph (24, [12,7,-7]1, 8).chromatic_polynomial() # long,

—~time (6s on sage.math, 2011)
sage: C(2) # long time

By definition, the chromatic number of a graph G is the least integer k such that the chromatic polynomial
of G is strictly positive at k:

sage: G = graphs.PetersenGraph ()

sage: P = G.chromatic_polynomial ()

sage: min(i for i in range(ll) if P (i) > 0) == G.chromatic_number ()
True

sage: G = graphs.RandomGNP (10,0.7)

sage: P = G.chromatic_polynomial ()

sage: min(i for i in range(ll) if P (i) > 0) == G.chromatic_number ()
True

chromatic_quasisymmetric_function (r=None, R=None)
Return the chromatic quasisymmetric function of self.

Let G be a graph whose vertex set is totally ordered. The chromatic quasisymmetric function X () was
first described in /SW12]. We use the equivalent definition given in /[BC15]:
Xo(t)= Y, Mg o,

U:(Ulv-")o'n)

where we sum over all ordered set partitions of the vertex set of G such that each block o; is an independent
(i.e., stable) set of GG, and where asc(c) denotes the number of edges {u, v} of G such that u < v and v
appears in a later part of ¢ than w.

INPUT:
* t — (optional) the parameter ¢; uses the variable ¢ in Z[t] by default
e R — (optional) the base ring for the quasisymmetric functions; uses the parent of ¢ by default

EXAMPLES:

sage: G = Graph([[1,2,3], [[1,3], [2,3111])

sage: G.chromatic_quasisymmetric_function ()
(2*«t"2+42+t+2)«M[1, 1, 1] + M[1l, 2] + t"2«M[2, 1]
sage: G = graphs.PathGraph (4)

sage: XG = G.chromatic_quasisymmetric_function(); XG

(continues on next page)
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(E73+11+t 2+11xt+1)*M[1, 1, 1, 1] + (3%t"2+3=%t)=*M[1, 1, 2]
+ (3*xt7"2+3xt)«M[1, 2, 1] + (3»t"2+3*t)=*xM[2, 1, 1]

+ (t"2+t) *M[2, 2]

sage: XG.to_symmetric_function ()

(E"3+11+t72+11+t+1)*m[1, 1, 1, 1] + (3*t"24+3xt)+m[2, 1, 1]
+ (t"2+t)*m[2, 2]

sage: G = graphs.CompleteGraph (4)

sage: G.chromatic_gquasisymmetric_function ()

(LN 6+3+t"5+5+xt " 4+6+t"3+5%xt"2+3%t+1) «M[1, 1, 1, 1]

Not all chromatic quasisymmetric functions are symmetric:

sage: G = Graph([[1,2], [1,5], [3,41, [3,511)
sage: G.chromatic_quasisymmetric_function () .is_symmetric()
False

We check that at ¢ = 1, we recover the usual chromatic symmetric function:

sage: p = SymmetricFunctions (QQ) .p ()
sage: G = graphs.CycleGraph (5)
sage: XG = G.chromatic_quasisymmetric_function(t=1); XG
120«M[21, 1, 1, 1, 1] + 30%M[1, 1, 1, 2] + 30«M[1, 1, 2, 1]
+ 30+«M([1, 2, 1, 11 + 10*«M[1, 2, 2] + 30xM[2, 1, 1, 1]
+ 10«M[2, 1, 2] + 10«M[2, 2, 1]
sage: p(XG.to_symmetric_function())
ell, 1, 1, 1, 11 - 5xp[2, 1, 1, 1] + 5xp[2, 2, 1]
+ 5xp[3, 1, 11 — 5%pl[3, 2] — 5+pl4, 1] + 4%pl[5]

sage: G = graphs.ClawGraph ()

sage: XG = G.chromatic_quasisymmetric_function(t=1); XG
24%M([1, 1, 1, 1] + e6*M[1, 1, 2] + 6xM[1, 2, 1] + M[1, 3]
+ 6xM[2, 1, 1] + M[3, 1]

sage: p(XG.to_symmetric_function())

pll, 1, 1, 11 - 3xp[2, 1, 1] + 3%p[3, 1] - pl[4]

REFERENCES:

chromatic_symmetric_function (R=None)
Return the chromatic symmetric function of self.

Let G be a graph. The chromatic symmetric function X was described in [Stanley95], specifically
Theorem 2.5 states that

X = Z (—1)|F‘p,\(F),
FCE(G)

where \(F) is the partition of the sizes of the connected components of the subgraph induced by the edges
F and p,, is the powersum symmetric function.
INPUT:

* R — (optional) the base ring for the symmetric functions; this uses Z by default

EXAMPLES:

sage: s SymmetricFunctions (ZZ) .s ()
sage: G = graphs.CycleGraph(5)
sage: XG = G.chromatic_symmetric_function(); XG

(continues on next page)
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pl1, 1, 1, 1, 1] - 5xpl2, 1, 1, 1] + 5xp[2, 2, 1]

+ 5xp[3, 1, 1] - 5%pl[3, 2] — 5+pl4, 1] + 4%pl[5]

sage: s (XG)

30%s[1, 1, 1, 1, 11 + 10«s[2, 1, 1, 11 + 10«s[2, 2, 1]

Not all graphs have a positive Schur expansion:

sage: G = graphs.ClawGraph ()
sage: XG = G.chromatic_symmetric_function(); XG

pll, 1, 1, 1] - 3xpl2, 1, 1] + 3xp[3, 1] - pl4]
sage: s (XG)
8xs([1, 1, 1, 11 + 5%s[2, 1, 11 - s[2, 2] + s[3, 1]

We show that given a triangle {e1, es, e3}, we have X¢ = Xg—e, + XG—es — XGoe1—es"

sage: G = Graph([[1,2],[1,31,102,311])

sage: XG = G.chromatic_symmetric_function ()
sage: Gl = copy (G)

sage: Gl.delete_edge([1,2])

sage: XGl = Gl.chromatic_symmetric_function ()
sage: G2 = copy (G)

sage: G2.delete_edge([1,3])

sage: XG2 = G2.chromatic_symmetric_function ()
sage: G3 = copy(Gl)

sage: G3.delete_edge([1,3])

sage: XG3 = G3.chromatic_symmetric_function ()
sage: XG == XGl + XG2 - XG3

True

REFERENCES:

cleave (G, cut_vertices=None, virtual_edges=True, solver=None, verbose=0)
Return the connected subgraphs separated by the input vertex cut.

Given a connected (multi)graph G and a vertex cut X, this method computes the list of subgraphs of G
induced by each connected component ¢ of G \ X plus X, i.e., G[cU X].

INPUT:
* G- aGraph.

e cut_vertices - iterable container of vertices (default: None); a set of vertices represent-
ing a vertex cut of G. If no vertex cut is given, the method will compute one via a call to
vertex_connectivity/().

e virtual_edges — boolean (default: True); whether to add virtual edges to the sides of the cut or
not. A virtual edge is an edge between a pair of vertices of the cut that are not connected by an edge
in G.

* solver — string (default: None); specifies a Linear Program (LP) solver to be used. If set to None,
the default one is used. For more information on LP solvers and which default solver is used, see
the method sage .numerical .mip.MixedIntegerLinearProgram.solve () of theclass
sage.numerical . .mip.MixedIntegerLinearProgram.

* verbose —integer (default: 0); sets the level of verbosity. Set to 0 by default, which means quiet.
OUTPUT: A triple (S, C, f), where

e Sis alist of the graphs that are sides of the vertex cut.
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» (' is the graph of the cocycles. For each pair of vertices of the cut, if there exists an edge between
them, C' has one copy of each edge connecting them in G per sides of the cut plus one extra copy.
Furthermore, when virtual_edges == True, if a pair of vertices of the cut is not connected by
an edge in G, then it has one virtual edge between them per sides of the cut.

 fis the complement of the subgraph of G induced by the vertex cut. Hence, its vertex set is the vertex
cut, and its edge set is the set of virtual edges (i.e., edges between pairs of vertices of the cut that are
not connected by an edge in G). When virtual_edges == False, the edge set is empty.

EXAMPLES:

If there is an edge between cut vertices:

sage: from sage.graphs.connectivity import cleave

sage: G = Graph(2)

sage: for _ in range(3):

e G.add_clique ([0, 1, G.add_vertex (), G.add_vertex()])
sage: S1,Cl,fl = cleave (G, cut_vertices=[0, 1])

sage: [g.order () for g in S1]

[4, 4, 4]

sage: Cl.order (), Cl.size()

(2, 4)

sage: fl.vertices(), fl.edges()

([0, 11, 1)

If virtual_edges == False and there is an edge between cut vertices:

sage: G.subgraph ([0, 1]).complement () == Graph([[O0, 11, [11])

True

sage: S2,C2,f2 = cleave (G, cut_vertices=[0, 1], virtual_edges=False)
sage: (S1 == S2, Cl == C2, fl == £f2)

(True, True, True)

If cut vertices doesn’t have edge between them:

sage: G.delete_edge (0, 1)

sage: S1,Cl,fl = cleave(G, cut_vertices=[0, 1])
sage: [g.order () for g in S1]

[4, 4, 4]

sage: Cl.order(), Cl.size()

(2, 3)

sage: fl.vertices(), fl.edges()
(1o, 11, [(0, 1, None)l)

If virtual_edges == False and the cut vertices are not connected by an edge:
sage: G.subgraph ([0, 1]).complement () == Graph([[O0, 11, [11])
False

sage: S2,C2,f2 = cleave (G, cut_vertices=[0, 1], virtual_edges=False)
sage: [g.order() for g in S2]

(4, 4, 4]

sage: C2.order (), C2.size()

(2, 0)

sage: f2.vertices(), f2.edges()

([0, 11, [

sage: (S1 == S2, Cl == C2, fl == £f2)

(False, False, False)

If GG is a biconnected multigraph:
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G = graphs.CompleteBipartiteGraph (2, 3)
G.add_edge (2, 3)
sage: G.allow_multiple_edges (True)
G.add_edges (G.edge_iterator())
.add_edges ([ (0, 1), (0, 1), (0, 1)1)
sage: S,C,f = cleave (G, cut_vertices=[0, 11])
sage: for g in S:
e print (g.edges (labels=0))
(¢, 1), ¢, 1), (0, 1), (0, 2y, (0, 2), (0, 3), (0, 3), (1, 2), (1, 2), (1
=3), (1, 3), (2, 3), (2, 3)]
(¢, 1), (o, 1), (0, 1), (0, 4), (0, 4), (1, 4), (1, 4)]

0]
V]
Q
0
(0]

clique_complex ()
Return the clique complex of self.

This is the largest simplicial complex on the vertices of self whose 1-skeleton is self.
This is only makes sense for undirected simple graphs.

EXAMPLES:

sage: g = Graph({0:[1,2],1:[2],4:[1})
sage: g.clique_complex ()
Simplicial complex with vertex set (0, 1, 2, 4) and facets {(4,), (0, 1, 2)}

sage: h = Graph({0:[1,2,3,41,1:[2,3,41,2:[31})

sage: x = h.clique_complex()

sage: x

Simplicial complex with vertex set (0, 1, 2, 3, 4) and facets {(0, 1, 4), (0,
-1, 2, 3)}

sage: 1 = x.graph()

sage: i==h

True

sage: x==1i.clique_complex ()
True

clique_maximum (algorithm="Cliquer’, solver=None, verbose=0)
Return the vertex set of a maximal order complete subgraph.

INPUT:
* algorithm - the algorithm to be used :
— Ifalgorithm = "Cliquer" (default), wraps the C program Cliquer [NisOst2003].
— Ifalgorithm = "MILP", the problem is solved through a Mixed Integer Linear Program.
(see MixedIntegerLinearProgram)

- Ifalgorithm = "mcgd",uses the MCQD solver (http://www.sicmm.org/~konc/maxclique/).
Note that the MCQD package must be installed.

* solver — (default: None); specify a Linear Program (LP) solver to be used. If set to None, the
default one is used. For more information on LP solvers and which default solver is used, see the
method solve of the class MixedIntegerLinearProgram.

* verbose — integer (default: 0); sets the level of verbosity. Set to O by default, which means quiet.

Parameters solver and verbose are used only when algorithm="MILP".
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Note: Currently only implemented for undirected graphs. Use to_undirected to convert a digraph to an
undirected graph.

ALGORITHM:

This function is based on Cliquer [NisOst2003].
EXAMPLES:

Using Cliquer (default):

sage: C = graphs.PetersenGraph ()
sage: C.clique_maximum/()

[7, 9]

sage: C = Graph('DJ{")

sage: C.clique_maximum/()

(1, 2, 3, 4]

Through a Linear Program:

sage: len(C.clique_maximum(algorithm="MILP"))
4

clique_number (algorithm="Cliquer’, cliqgues=None, solver=None, verbose=0)
Return the order of the largest clique of the graph

This is also called as the clique number.

Note: Currently only implemented for undirected graphs. Use t o_undirected to convert a digraph to
an undirected graph.

INPUT:
* algorithm - the algorithm to be used :
— Ifalgorithm = "Cliquer", wraps the C program Cliquer [NisOst2003].

— If algorithm = "networkx", uses the NetworkX’s implementation of the Bron and Ker-
bosch Algorithm [BroKer1973].

— Ifalgorithm = "MILP", the problem is solved through a Mixed Integer Linear Program.
(see MixedIntegerLinearProgram)

- Ifalgorithm = "mcgd",uses the MCQD solver (http://www.sicmm.org/~konc/maxclique/).
Note that the MCQD package must be installed.

e cliques — an optional list of cliques that can be input if already computed. Ignored unless
algorithm=="networkx".

* solver — (default: None); specify a Linear Program (LP) solver to be used. If set to None, the
default one is used. For more information on LP solvers and which default solver is used, see the
method solve of the class MixedIntegerLinearProgram.

* verbose — integer (default: 0); sets the level of verbosity. Set to 0 by default, which means quiet.
ALGORITHM:
This function is based on Cliquer /NisOst2003 ] and [BroKer1973].
EXAMPLES:
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sage: C = Graph('DJ{")

sage: C.clique_number ()

4

sage: G = Graph({0:[1,2,31, 1:[2], 3:[0,11})
sage: G.show(figsize=[2,2])

sage: G.clique_number ()

3

By definition the clique number of a complete graph is its order:

sage: all (graphs.CompleteGraph (i) .clique_number () == i for i in range(l,15))
True

A non-empty graph without edges has a clique number of 1:

sage: all((ixgraphs.CompleteGraph(l)).clique_number() == 1 for i in range (1,
—15))
True

A complete multipartite graph with k parts has clique number k:

sage: all((irgraphs.CompleteMultipartiteGraph (ix[5])).clique_number () == 1i_
—~for i in range(l,6))
True

clique_polynomial (t=None)

Return the clique polynomial of self.

This is the polynomial where the coefficient of ¢" is the number of cliques in the graph with n vertices.
The constant term of the clique polynomial is always taken to be one.

EXAMPLES:

sage: g = Graph{()

sage: g.clique_polynomial ()

1

sage: g = Graph({0:[1]1})

sage: g.clique_polynomial ()
t"2 + 2+t + 1

sage: g = graphs.CycleGraph (4)
sage: g.clique_polynomial ()
4xt"2 + 4+t + 1

cliques_containing_vertex (vertices=None, cligues=None)

Return the cliques containing each vertex, represented as a dictionary of lists of lists, keyed by vertex.

Returns a single list if only one input vertex.

Note: Currently only implemented for undirected graphs. Use to_undirected to convert a digraph to an
undirected graph.

INPUT:
* vertices — the vertices to inspect (default is entire graph)

e cliques - list of cliques (if already computed)

EXAMPLES:

1.2

Undirected graphs 237




Sage Reference Manual: Graph Theory, Release 8.6

sage: C = Graph('DJ{")
sage: C.cliques_containing_ vertex /()

{0: [[4, 011, 1: [[4, 1, 2, 311, 2: [l4, 1, 2, 311, 3: [14, 1, 2, 311, 4: [14,
-~ 01, [4, 1, 2, 311}

sage: E = C.cliques_maximal ()

sage: E

(ro, 41, (1, 2, 3, 41]
sage: C.cliques_containing_vertex (cliques=E)

{0: [[O, 411, 1: [[1, 2, 3, 411, 2: [[1, 2, 3, 411, 3: [[1, 2, 3, 411, 4: [0,
— 471, [1, 2, 3, 411}

sage: F = graphs.Grid2dGraph (2, 3)
sage: F.cliques_containing_vertex

0
{0, 0): [[(0, 1), (0, 0)1, [(1, 0), (O, O0)11,
(0, 1): [[(O, 1), ( 0)l, ¢, 1y, (0, 291, [0, 1), (1, 1)II,
(0, 2): [[(O, 1), ( 2)1, (1, 2), (0, 2)]11,
(L, 0): [[(L, O), (O, O)I, [(1, O), (1, 1)I11,
(L, 1): [[(O, 1), (1, 1)1, [(x, 2), (1, 1)1, [(1, O), (1, 1)I11,
(L, 2y« [[(x, 20, (1, Y], [(1, 2), (O, 2)]]}
sage: F.cliques_containing_vertex (vertices=[(0, 1), (1, 2)1)
{0, 1): [[(0, 1), (0, O)1, [(0, 1, (0, 2)1, [0, 1), (1, )11, (1, 2): [[(1,
— 2), (L, 1)1, [(1, 2), (0, 2)]]}
sage: G = Graph({0:[1,2,3], 1:[2}, 3:[0,111)
sage: G.show(figsize=[2,2])
sage: G.cliques_containing_ vertex()
{0: 1o, 1, 21, 10, 1, 311, 1: (IO, 1, 21, [O, 1, 311, 2: [[O, 1, 211, 3: [I[0O,

- 1, 311}

cliques_get_clique_bipartite (**kwds)

Return a bipartite graph constructed such that maximal cliques are the right vertices and the left vertices
are retained from the given graph. Right and left vertices are connected if the bottom vertex belongs to the
clique represented by a top vertex.

Note: Currently only implemented for undirected graphs. Use to_undirected to convert a digraph to an
undirected graph.

EXAMPLES:

sage: (graphs.ChvatalGraph()).cliques_get_clique_bipartite()
Bipartite graph on 36 vertices

sage: ((graphs.ChvatalGraph()).cliques_get_clique_bipartite()).

—~show (figsize=[2,2], vertex_size=20, vertex_labels=False)
sage: G = Graph({0:[1,2,3], 1:[2], 3:[0,11})

sage: G.show(figsize=[2,2])

sage: G.cliques_get_clique_bipartite ()

Bipartite graph on 6 vertices

sage: (G.cliques_get_clique_bipartite()) .show(figsize=[2,2])

cliques_get_max_ clique_graph ()

Return the clique graph.

Vertices of the result are the maximal cliques of the graph, and edges of the result are between maximal
cliques with common members in the original graph.

For more information, see the Wikipedia article Clique_graph.

Note: Currently only implemented for undirected graphs. Use to_undirected to convert a digraph to an
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undirected graph.

EXAMPLES:

sage: (graphs.ChvatalGraph()).cliques_get_max_clique_graph ()
Graph on 24 vertices

sage: ((graphs.ChvatalGraph()) .cliques_get_max_clique_graph()) .
—show (figsize=[2,2], vertex_size=20, vertex_labels=False)
sage: G = Graph({0:[1,2,3], 1:[2], 3:[0,11})

sage: G.show(figsize=[2,2])

sage: G.cliques_get_max_cligque_graph()

Graph on 2 vertices

sage: (G.cliques_get_max_clique_graph()) .show(figsize=[2,2])

cliques_maximal (algorithm="native’)
Return the list of all maximal cliques.

Each clique is represented by a list of vertices. A clique is an induced complete subgraph, and a maximal
clique is one not contained in a larger one.

INPUT:

* algorithm — can be set to "native" (default) to use Sage’s own implementation, or
to "NetworkX" to use NetworkX’ implementation of the Bron and Kerbosch Algorithm
[BroKer1973].

Note: This method sorts its output before returning it. If you prefer to save the extra time, you can call
sage.graphs.independent_sets.IndependentSets directly.

Note: Sage’s implementation of the enumeration of maximal independent sets is not much faster than
NetworkX’ (expect a 2x speedup), which is surprising as it is written in Cython. This being said, the
algorithm from NetworkX appears to be sligthly different from this one, and that would be a good thing to
explore if one wants to improve the implementation.

ALGORITHM:

This function is based on NetworkX’s implementation of the Bron and Kerbosch Algorithm /BroKer1973].
REFERENCE:

EXAMPLES:

sage: graphs.ChvatalGraph() .cliques_maximal ()
(ro, 11, [0, 41, [0, 61, [0, 91, (1, 2], [1, 5
(2, 61, (2, 81, [3, 41, [3, 71, [3, 91, 1[4, 5
[5, 111, [6, 101, [6, 111, [7, 81, [7, 111, [

sage: G = Graph({0:[1,2,31, 1:[2], 3:[0,11})

sage: G.show(figsize=[2, 21])

sage: G.cliques_maximal ()

(o, 1, 23, [0, 1, 31]

sage: C = graphs.PetersenGraph ()

sage: C.cliques_maximal ()

(o, 11, [0, 41, [0, 51, [, 2], [1, 6], (2, 31, [2, 71, [3, 41,
(3, 81, 1[4, 91, [5, 71, [5, 8], [6, 8], [6, 91, [7, 9]]

sage: C = Graph('DJ{")

1, [, 71, [2, 31,
1, [4, 8], [5, 107,
8, 101, [9, 101, [9, 11]]

(continues on next page)

1.2. Undirected graphs 239



Sage Reference Manual: Graph Theory, Release 8.6
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sage:
[0,

C.cliques_maximal ()
a1, (1, 2, 3, 4]]

Comparing the two implementations:

sage: g = graphs.RandomGNP (20, .7)

sage: sl = Set (map(Set, g.cliques_maximal (algorithm="NetworkX")))
sage: s2 = Set (map(Set, g.cliques_maximal (algorithm="native")))
sage: sl == s2

True

cliques_maximum (graph)
Returns the vertex sets of ALL the maximum complete subgraphs.

Returns the list of all maximum cliques, with each clique represented by a list of vertices. A clique is an
induced complete subgraph, and a maximum clique is one of maximal order.

Note: Currently only implemented for undirected graphs. Use to_undirected () to convert a digraph
to an undirected graph.

ALGORITHM:

This function is based on Cliquer [NisOst2003].

EXAMPLES:

sage: graphs.ChvatalGraph () .cliques_maximum() # indirect doctest
(o, 1, f[o, 41, [0, 61, (O, 91, (1, 2], [1, 5], [1, 71, [2, 31,
(2, 61, (2, 81, [3, 41, (3, 71, [3, 91, 1[4, 51, 1[4, 8], [5, 101,
(s, 111, [6, 101, [e6, 111, (7, 81, [7, 111, [8, 101, [9, 101, [9, 11]1]

sage: G = Graph({0:[1,2,3], 1:[2], 3:[0,11})

sage: G.show(figsize=[2,2])

sage: G.cliques_maximum ()

(ro, 1, 21, [0, 1, 31]

sage: C = graphs.PetersenGraph ()

sage: C.cliques_maximum ()

(o, 1, fro, 41, [0, 51, I[1, 2], [1, 6], 31, [2, 71, [3, 41,
[3, 81, [4, 91, [5, 71, [5, 81, [6, 8], 91, [7, 91]

sage: C = Graph('DJ{")

sage: C.cliques_maximum /()

(11, 2, 3, 411

cliques_number_ of (vertices=None, cligues=None)
Return a dictionary of the number of maximal cliques containing each vertex, keyed by vertex.

This returns a single value if only one input vertex.

Note: Currently only implemented for undirected graphs. Use to_undirected to convert a digraph to an
undirected graph.

INPUT:
* vertices — the vertices to inspect (default is entire graph)

e cliques —list of cliques (if already computed)
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EXAMPLES:

sage: C = Graph('DJ{")

sage: C.cliques_number_of ()

{0: 1, 1: 1, 2: 1, 3: 1, 4: 2}

sage: E = C.cliques_maximal ()

sage: E

(ro, 41, 1, 2, 3, 411

sage: C.cliques_number_of (cliques=E)
{0: 1, 1: 1, 2: 1, 3: 1, 4: 2}

sage: F = graphs.Grid2dGraph(2, 3)
sage: F.cliques_number_of ()
{0, 0): 2, (0, 1): 3, (0, 2): 2, (1, 0): 2, (1, 1): 3, (1, 2): 2}
sage: F.cliques_number_of (vertices=[(0, 1), (1, 2)1)
{0, 1): 3, (1, 2): 2}
sage: G = Graph({0:[1,2,3], 1:[2], 3:[0,11})
sage: G.show(figsize=[2,2])
G.

sage: cliques_number_of ()
{0: 2, 1: 2, 2: 1, 3: 1}

cliques_vertex_clique_number (algorithm="cliquer’, vertices=None, cliqgues=None)
Return a dictionary of sizes of the largest maximal cliques containing each vertex, keyed by vertex.

Returns a single value if only one input vertex.

Note: Currently only implemented for undirected graphs. Use to_undirected to convert a digraph to an
undirected graph.

INPUT:
* algorithm—either cliquer or networkx
— cliquer — This wraps the C program Cliquer [NisOst2003].
— networkx — This function is based on NetworkX’s implementation of the Bron and Kerbosch
Algorithm [BroKer1973].
e vertices — the vertices to inspect (default is entire graph). Ignored wunless
algorithm=='networkx'

e cliques - list of cliques (if already computed). Ignored unless algorithm=="'networkx"'.

EXAMPLES:

sage: C = Graph('DJ{")

sage: C.cliques_vertex_clique_number ()

{0: 2, 1: 4, 2: 4, 3: 4, 4: 4}

sage: E = C.cliques_maximal ()

sage: E

(ro, 41, (1, 2, 3, 411

sage: C.cliques_vertex_clique_number (cliques=E,algorithm="networkx")
{0: 2, 1: 4, 2: 4, 3: 4, 4: 4}

sage: F = graphs.Grid2dGraph (2, 3)
sage: F.cliques_vertex_clique_number (algorithm="networkx™)
{0, 0): 2, (0, 1): 2, (0, 2): 2, (1, 0): 2, (1, 1): 2, (1, 2): 2}
sage: F.cliques_vertex_clique_number (vertices=[(0, 1), (1, 2)1)
{(0, 1): 2, (1, 2): 2}

G

sage: = Graph({0:[1,2,31, 1:[2]1, 3:[0,11})

(continues on next page)
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sage: G.show(figsize=[2,2])
sage: G.cliques_vertex_clique_number ()
{0: 3, 1: 3, 2: 3, 3: 3}

coloring (algorithm="DLX’, hex_colors=False, solver=None, verbose=0)

Return the first (optimal) proper vertex-coloring found.
INPUT:
* algorithm - Select an algorithm from the following supported algorithms:
— Ifalgorithm="DLX" (default), the coloring is computed using the dancing link algorithm.

— If algorithm="MILP", the coloring is computed using a mixed integer linear program. The
performance of this implementation is affected by whether optional MILP solvers have been
installed (see the MILP module).

* hex_colors —boolean (default: False); if True, return a dictionary which can easily be used for
plotting.

* solver — (default: None); specify a Linear Program (LP) solver to be used. If set to None, the
default one is used. For more information on LP solvers and which default solver is used, see the
method solve () of the class MixedIntegerLinearProgram.

* verbose — integer (default: 0); sets the level of verbosity for the MILP algorithm. Its default value
is 0, which means quiet.

See also:
For more functions related to graph coloring, see the module sage.graphs.graph_coloring.

EXAMPLES:

sage: G = Graph("Fooba")

sage: P G.coloring(algorithm="MILP"); P

(rz, 1, 31, [0, 6, 5], [4]]

sage: P G.coloring(algorithm="DLX"); P

(L, 2, 31, [0, 5, 6], [4]]

sage: G.plot (partition=P)

Graphics object consisting of 16 graphics primitives
sage: G.coloring(hex_colors=True, algorithm="MILP")

[ w |

{"#0000ff': [4], '"#00ff00': [0, 6, 5], '"#ff0000': [2, 1, 31}
sage: H = G.coloring(hex_colors=True, algorithm="DLX")

sage: H

{"#0000ff': [4], '#00ff00': [1, 2, 31, '"#f£f0000': [0, 5, 6]}

sage: G.plot (vertex_colors=H)
Graphics object consisting of 16 graphics primitives

convexity properties ()

Return a ConvexityProperties object corresponding to self.

This object contains the methods related to convexity in graphs (convex hull, hull number) and caches
useful information so that it becomes comparatively cheaper to compute the convex hull of many different
sets of the same graph.

See also:

In order to know what can be done through this object, please refer to module sage.graphs.
convexity_ properties.
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Note: If you want to compute many convex hulls, keep this object in memory ! When it is created, it
builds a table of useful information to compute convex hulls. As a result

sage: g = graphs.PetersenGraph ()

sage: g.convexity_properties().hull([1l, 3])
(1, 2, 3]
sage: g.convexity_properties () .hull([3, 71])
(2, 3, 7]

Is a terrible waste of computations, while

sage: g = graphs.PetersenGraph ()
sage: CP = g.convexity_properties/()
sage: CP.hull([1, 3])

(1, 2, 3]

sage: CP.hull([3, 7])

(2, 3, 71

Makes perfect sense.

cores (k=None, with_labels=False)

Return the core number for each vertex in an ordered list.
(for homomorphisms cores, see the Graph.has_homomorphism_to () method)
DEFINITIONS:

* K-cores in graph theory were introduced by Seidman in 1983 and by Bollobas in 1984 as a method of
(destructively) simplifying graph topology to aid in analysis and visualization. They have been more
recently defined as the following by Batagelj et al:

Given a graph ‘G* with vertices set ‘V‘ and edges set ‘E*, the ‘k‘-core of ‘G* is the graph obtained
from ‘G* by recursively removing the vertices with degree less than ‘k‘, for as long as there are any.

This operation can be useful to filter or to study some properties of the graphs. For instance, when
you compute the 2-core of graph G, you are cutting all the vertices which are in a tree part of graph.
(A tree is a graph with no loops). See the Wikipedia article K-core.

[PSW1996] defines a k-core of G as the largest subgraph (it is unique) of G' with minimum degree at
least k.

¢ Core number of a vertex

The core number of a vertex v is the largest integer & such that v belongs to the k-core of G.

Degeneracy

The degeneracy of a graph G, usually denoted 6*(G), is the smallest integer k such that the graph
G can be reduced to the empty graph by iteratively removing vertices of degree < k. Equivalently,
0*(G) = k if k is the smallest integer such that the k-core of G is empty.

IMPLEMENTATION:
This implementation is based on the NetworkX implementation of the algorithm described in [BZ].

INPUT:

* k —integer (default: None);

— If k = None (default), returns the core number for each vertex.
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— If k is an integer, returns a pair (ordering, core), where core is the list of vertices in
the k-core of self, and ordering is an elimination order for the other vertices such that each
vertex is of degree strictly less than & when it is to be eliminated from the graph.

e with_labels — boolean (default: False); when set to False, and k = None, the method
returns a list whose 7 th element is the core number of the 7 th vertex. When set to True, the method
returns a dictionary whose keys are vertices, and whose values are the corresponding core numbers.

See also:

* Graph cores is also a notion related to graph homomorphisms. For this second meaning, see Graph .
has_homomorphism to ().

REFERENCES:
EXAMPLES:

sage: (graphs.FruchtGraph()) .cores()
(3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 31
sage: (graphs.FruchtGraph()) .cores (w
{0: 3, 1: 3, 2: 3, 3: 3, 4: 3, 5: 3, 6: 3, 7: 3, 8: 3, 9: 3, 10: 3, 11: 3}
sage: a = random_matrix(zz, 20, x=2, sparse=True, density=.1)

sage: b = Graph(20)

sage: b.add_edges(a.nonzero_positions(), loops=False)

sage: cores = b.cores(with_labels=True); cores

{0: 3, 1: 3, 2: 3, 3: 3, 4: 2, 5: 2, 6: 3, 7: 1, 8: 3, 9: 3, 10: 3, 11: 3,
—~12: 3, 13: 3, 14: 2, 15: 3, 16: 3, 17: 3, 18: 3, 19: 3}

sage: [v for v,c in cores.items () if ¢ >= 2] # the vertices in the 2-core
(o, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]

ith_labels=True)

[

Checking the 2-core of a random lobster is indeed the empty set:

sage: g = graphs.RandomLobster (20, .5, .5)

sage: ordering, core = g.cores(2)
sage: len(core) == 0
True

degree_constrained_subgraph (bounds, solver=None, verbose=0)

Returns a degree-constrained subgraph.

Given a graph G and two functions f, g : V(G) — Z such that f < g, a degree-constrained subgraph in
G is a subgraph G’ C @ such that for any vertex v € G, f(v) < dg/(v) < g(v).

INPUT:
* bounds — (default: None); Two possibilities:

— A dictionary whose keys are the vertices, and values a pair of real values (min,max) corre-
sponding to the values (f(v), g(v)).

— A function associating to each vertex a pair of real values (min,max) corresponding to the
values (f(v), g(v)).

e solver — (default: None); specify a Linear Program (LP) solver to be used. If set to None, the
default one is used. For more information on LP solvers and which default solver is used, see the
method solve of the class MixedIntegerLinearProgram.

* verbose —integer (default: 0); sets the level of verbosity. Set to O by default, which means quiet.
OUTPUT:

* When a solution exists, this method outputs the degree-constained subgraph as a Graph object.
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¢ When no solution exists, returns False.

Note:
¢ This algorithm computes the degree-constrained subgraph of minimum weight.
« If the graph’s edges are weighted, these are taken into account.

* This problem can be solved in polynomial time.

ear__

EXAMPLES:

Is there a perfect matching in an even cycle?

sage: g = graphs.CycleGraph (6)

sage: bounds = lambda x: [1,1]

sage: m = g.degree_constrained_subgraph (bounds=bounds)
sage: m.size()

3

decomposition ()
Return an Ear decomposition of the graph.

An ear of an undirected graph G is a path P where the two endpoints of the path may coincide (i.e., form a
cycle), but where otherwise no repetition of edges or vertices is allowed, so every internal vertex of P has
degree two in P.

An ear decomposition of an undirected graph G is a partition of its set of edges into a sequence of ears,
such that the one or two endpoints of each ear belong to earlier ears in the sequence and such that the
internal vertices of each ear do not belong to any earlier ear.

For more information, see the Wikipedia article Ear_decomposition.
This method implements the linear time algorithm presented in [Sch2013].
OUTPUT:
* A nested list representing the cycles and chains of the ear decomposition of the graph.
EXAMPLES:

Ear decomposition of an outer planar graph of order 13:

sage: g = Graph('L1CG{OQ?GBOMW?")
sage: g.ear_decomposition ()
rto, 3, 2, 1, 01,

o, 7, 4, 31,

o, 11, 9, 8, 71,

[1, 12, 21,

[3, 6, 5, 471,

(4, 61,

[7, 10, 81,

[7, 111,

[8, 1111

’

Ear decomposition of a biconnected graph:

sage: g = graphs.CubeGraph(2)
sage: g.ear_decomposition ()
[[IOOI’ lOll, '11', llol’ IOOI]]
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Ear decomposition of a connected but not biconnected graph:

sage: G = Graph{()

sage: G.add_cycle([0,1,2])
sage: G.add_edge (0, 3)

sage: G.add_cycle([3,4,5,6])
sage: G.ear_decomposition ()
[to, 2, 1, 01, I3, 6, 5, 4, 311

The ear decomposition of a multigraph with loops is the same as the ear decomposition of the underlying

simple graph:

sage: g = graphs.BullGraph()

sage: g.allow_multiple_edges (True)
sage: g.add_edges (g.edges())

sage: g.allow_loops (True)

sage: u = g.random_vertex()

sage: g.add_edge(u, u)

sage: g

Bull graph: Looped multi-graph on 5 vertices

sage: h = g.to_simple()

sage: g.ear_decomposition() == h.ear_decomposition ()
True

fractional chromatic_index (solver="PPL’, verbose_constraints=False, verbose=0)
Return the fractional chromatic index of the graph.

The fractional chromatic index is a relaxed version of edge-coloring. An edge coloring of a graph being
actually a covering of its edges into the smallest possible number of matchings, the fractional chromatic
index of a graph G is the smallest real value x ¢(G) such that there exists a list of matchings Mj, ..., M}, of
G and coefficients ag, ..., ay, with the property that each edge is covered by the matchings in the following
relaxed way

Ve e E(G), Y a;>1
ecM;
For more information, see the Wikipedia article Fractional_coloring.

ALGORITHM:

The fractional chromatic index is computed through Linear Programming through its dual. The LP solved
by sage is actually:

Maximize : Z Te
e€EE(Q)
Such that :
VM matching C G, Z Ty <1
eeM
INPUT:
* solver — (default: "PPL"); specify a Linear Program (LP) solver to be used. If set to None, the

default one is used. For more information on LP solvers and which default solver is used, see the
method solve of the class MixedIntegerLinearProgram.

Note: The default solver used here is "PPL" which provides exact results, i.e. a rational number,
although this may be slower that using other solvers. Be aware that this method may loop endlessly
when using some non exact solvers as reported in trac ticket #23658 and trac ticket #23798.
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* verbose_constraints — boolean (default: False); whether to display which constraints are
being generated.

* verbose —integer (default: 0); sets the level of verbosity of the LP solver.
EXAMPLES:

The fractional chromatic index of a C5 is 5/2:

sage: g = graphs.CycleGraph(5)
sage: g.fractional_chromatic_index ()
5/2

gomory_ hu_tree (algorithm=None)

Return a Gomory-Hu tree of self.

Given a tree T' with labeled edges representing capacities, it is very easy to determine the maximum flow
between any pair of vertices : it is the minimal label on the edges of the unique path between them.

Given a graph GG, a Gomory-Hu tree T" of G is a tree with the same set of vertices, and such that the maxi-
mum flow between any two vertices is the same in G as in 7. See the Wikipedia article Gomory—Hu_tree.
Note that, in general, a graph admits more than one Gomory-Hu tree.

See also 15.4 (Gomory-Hu trees) from [SchrijverCombOpt].
INPUT:

* algorithm — select the algorithm used by the edge_cut () method. Refer to its documentation
for allowed values and default behaviour.

OUTPUT:

A graph with labeled edges
EXAMPLES:

Taking the Petersen graph:

sage: g = graphs.PetersenGraph ()
sage: t = g.gomory_hu_tree()

Obviously, this graph is a tree:

sage: t.is_tree()
True

Note that if the original graph is not connected, then the Gomory-Hu tree is in fact a forest:

sage: (2*g).gomory_hu_tree().is_forest ()
True

sage: (2xg).gomory_hu_tree() .1is_connected()
False

On the other hand, such a tree has lost nothing of the initial graph connectedness:

sage: all(t.flow(u,v) == g.flow(u,v) for u,v in Subsets(g.vertices(), 2))
True

Just to make sure, we can check that the same is true for two vertices in a random graph:
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sage: g = graphs.RandomGNP (20, .3)
sage: t = g.gomory_hu_tree()
sage: g.flow(0,1) == t.flow(0,1)
True

And also the min cut:

sage: g.edge_connectivity () == min(t.edge_labels())
True

graph6_string()
Return the graph6 representation of the graph as an ASCII string.

This is only valid for simple (no loops, no multiple edges) graphs on at most 2'8 — 1 = 262143 vertices.

Note: As the graph6 format only handles graphs with vertex set {0, ...,n — 1}, a relabelled copy
will be encoded, if necessary.

See also:
e dig6_string () — asimilar string format for directed graphs

EXAMPLES:

sage: G = graphs.KrackhardtKiteGraph ()
sage: G.graph6_string()
'IvUqwK@?G'

has_homomorphism_to (H, core=False, solver=None, verbose=0)
Checks whether there is a homomorphism between two graphs.

A homomorphism from a graph G to a graph H is a function ¢ : V(G) — V(H) such that for any edge
wv € E(G) the pair ¢(u)¢p(v) is an edge of H.

Saying that a graph can be k-colored is equivalent to saying that it has a homomorphism to K}, the
complete graph on k elements.

For more information, see the Wikipedia article Graph_homomorphism.
INPUT:
¢ H — the graph to which self should be sent.

e core — boolean (default: False; whether to minimize the size of the mapping’s image (see note
below). This is set to False by default.

* solver — (default: None); specify a Linear Program (LP) solver to be used. If set to None, the
default one is used. For more information on LP solvers and which default solver is used, see the
method solve of the class MixedIntegerLinearProgram.

* verbose —integer (default: 0); sets the level of verbosity. Set to 0 by default, which means quiet.

Note: One can compute the core of a graph (with respect to homomorphism) with this method

sage: g = graphs.CycleGraph(10)

sage: mapping = g.has_homomorphism_to (g, core = True)

sage: print ("The size of the core is {}".format (len (set (mapping.values()))))
The size of the core is 2
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OUTPUT:

This method returns False when the homomorphism does not exist, and returns the homomorphism
otherwise as a dictionary associating a vertex of H to a vertex of G.

EXAMPLES:

Is Petersen’s graph 3-colorable:

sage: P = graphs.PetersenGraph ()
sage: P.has_homomorphism_to (graphs.CompleteGraph(3)) is not False
True

An odd cycle admits a homomorphism to a smaller odd cycle, but not to an even cycle:

sage: g = graphs.CycleGraph(9)

sage: g.has_homomorphism_to (graphs.CycleGraph(5)) is not False
True

sage: g.has_homomorphism_to (graphs.CycleGraph(7)) is not False
True

sage: g.has_homomorphism_to (graphs.CycleGraph(4)) is not False
False

has_perfect_matching (algorithm="Edmonds’, solver=None, verbose=0)
Return whether this graph has a perfect matching.

INPUT:
* algorithm - string (default: "Edmonds™")

— "Edmonds" uses Edmonds’ algorithm as implemented in NetworkX to find a matching of max-
imal cardinality, then check whether this cardinality is half the number of vertices of the graph.

— "LP_matching" uses a Linear Program to find a matching of maximal cardinality, then check
whether this cardinality is half the number of vertices of the graph.

— "LP" uses a Linear Program formulation of the perfect matching problem: put a binary variable
b[e] on each edge e, and for each vertex v, require that the sum of the values of the edges
incident to v is 1.

* solver — (default: None); specify a Linear Program (LP) solver to be used; if set to None, the
default one is used

* verbose — integer (default: 0); sets the level of verbosity: set to 0 by default, which means quiet
(only useful when algorithm == "LP_matching" oralgorithm == "LP")

For more information on LP solvers and which default solver is used, see the method solve of the class
MixedIntegerLinearProgram.

OUTPUT:

A boolean.

EXAMPLES:

sage: graphs.PetersenGraph () .has_perfect_matching()
True

sage: graphs.WheelGraph (6) .has_perfect_matching()
True

sage: graphs.WheelGraph (5) .has_perfect_matching()

(continues on next page)
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False

sage: graphs.PetersenGraph() .has_perfect_matching(algorithm="LP_matching")
True

sage: graphs.WheelGraph (6) .has_perfect_matching(algorithm="1LP_matching")
True

sage: graphs.WheelGraph (5) .has_perfect_matching(algorithm="1LP_matching")
False

sage: graphs.PetersenGraph() .has_perfect_matching(algorithm="LP_matching")
True

sage: graphs.WheelGraph (6) .has_perfect_matching(algorithm="LP_matching")
True

sage: graphs.WheelGraph (5) .has_perfect_matching(algorithm="1LP_matching")
False

ihara zeta function_inverse ()
Compute the inverse of the Thara zeta function of the graph.

This is a polynomial in one variable with integer coefficients. The Thara zeta function itself is the inverse
of this polynomial.

See the Wikipedia article Thara zeta function for more information.
ALGORITHM:

This is computed here as the (reversed) characteristic polynomial of a square matrix of size twice the
number of edges, related to the adjacency matrix of the line graph, see for example Proposition 9 in
[ScottStorm] and Def. 4.1 in [Terras].

The graph is first replaced by its 2-core, as this does not change the Ihara zeta function.

EXAMPLES:

sage: G = graphs.CompleteGraph (4)
sage: factor (G.ihara_zeta_function_inverse())
(2t = 1) = (£t + 1)"2 = (£t = 1)"3 * (2*«t"2 + t + 1)"3

sage: G = graphs.CompleteGraph (5)
sage: factor (G.ihara_zeta_function_inverse())
(-1) = (3*t — 1) = (£t + 1)75 = (£t - 1)"6 = (3*t"2 + t + 1)"4

sage: G = graphs.PetersenGraph ()

sage: factor(G.ihara_zeta_function_inverse())

(=1) * (2t — 1) * (t + 1)"5 = (t — 1)"6 * (2*t"2 + 2+t + 1)"4
* (2«t"2 — t + 1)"5

sage: G = graphs.RandomTree (10)
sage: G.ihara_zeta_function_inverse ()
1

REFERENCES:

independent_set (algorithm="Cliquer’, value_only=False, reduction_rules=True, solver=None,

verbosity=0)
Return a maximum independent set.

An independent set of a graph is a set of pairwise non-adjacent vertices. A maximum independent set is
an independent set of maximum cardinality. It induces an empty subgraph.

Equivalently, an independent set is defined as the complement of a vertex cover.
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For more information, see the Wikipedia article Independent_set_(graph_theory) and the Wikipedia article
Vertex_cover.

INPUT:
* algorithm — the algorithm to be used
- Ifalgorithm = "Cliquer" (default), the problem is solved using Cliquer [NisOst2003].
(see the C1iquer modules)
— Ifalgorithm = "MILP", the problem is solved through a Mixed Integer Linear Program.
(see MixedIntegerLinearProgram)

e If algorithm = "mcgd", uses the MCQD solver (http://www.sicmm.org/~konc/maxclique/).
Note that the MCQD package must be installed.

* value_only — boolean (default: False); if set to True, only the size of a maximum independent
set is returned. Otherwise, a maximum independent set is returned as a list of vertices.

e reduction_rules — (default: True); specify if the reductions rules from kernelization must be
applied as pre-processing or not. See [ACFLSS04] for more details. Note that depending on the
instance, it might be faster to disable reduction rules.

* solver — (default: None); specify a Linear Program (LP) solver to be used. If set to None, the
default one is used. For more information on LP solvers and which default solver is used, see the
method solve () of the class MixedIntegerLinearProgram.

* verbosity — non-negative integer (default: 0); set the level of verbosity you want from the linear
program solver. Since the problem of computing an independent set is [N P-complete, its solving may
take some time depending on the graph. A value of 0 means that there will be no message printed by
the solver. This option is only useful if algorithm="MILP".

Note: While Cliquer/MCAD are usually (and by far) the most efficient implementations, the MILP
formulation sometimes proves faster on very “symmetrical” graphs.

EXAMPLES:
Using Cliquer:

sage: C = graphs.PetersenGraph ()
sage: C.independent_set ()
(0, 3, 6, 71

As a linear program:

sage: C = graphs.PetersenGraph ()
sage: len(C.independent_set (algorithm="MILP"))
4

independent_set_of_representatives (family, solver=None, verbose=0)

Return an independent set of representatives.

Given a graph G and a family F' = {F; : i € [1, ..., k]} of subsets of g.vertices (), an Independent
Set of Representatives (ISR) is an assignation of a vertex v; € Fj to each set F; such that v;! = v; if i < j
(they are representatives) and the set U, v; is an independent set in G.

It generalizes, for example, graph coloring and graph list coloring.
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(See [AhaBerZiv07] for more information.)
INPUT:
e family — A list of lists defining the family F' (actually, a Family of subsets of G.vertices ()).

* solver — (default: None); specify a Linear Program (LP) solver to be used. If set to None, the
default one is used. For more information on LP solvers and which default solver is used, see the
method solve of the class MixedIntegerLinearProgram.

* verbose —integer (default: 0); sets the level of verbosity. Set to 0 by default, which means quiet.
OUTPUT:

« A list whose ith element is the representative of the i element of the fami 1y list. If there is no
ISR, None is returned.

EXAMPLES:

For a bipartite graph missing one edge, the solution is as expected:

sage: g = graphs.CompleteBipartiteGraph (3, 3)

sage: g.delete_edge(1,4)

sage: g.independent_set_of_representatives ([[0,1,2],([3,4,511)
(1, 4]

The Petersen Graph is 3-colorable, which can be expressed as an independent set of representatives prob-
lem : take 3 disjoint copies of the Petersen Graph, each one representing one color. Then take as a partition
of the set of vertices the family defined by the three copies of each vertex. The ISR of such a family defines
a 3-coloring:

sage: g = 3 *x graphs.PetersenGraph ()

sage: n = g.order()/3

sage: £ = [[i,i+n,i+2+n] for i in range(n)]

sage: isr = g.independent_set_of_representatives (f)
sage: ¢ = [floor(i/n) for i in isr]

sage: color_classes = [[1,[1,1[]1]

sage: for v,i in enumerate(c):
e color_classes([i].append(v)
sage: for classs in color_classes:

e g.subgraph (classs) .size() == 0
True
True
True
REFERENCE:
is_apex ()
Test if the graph is apex.

A graph is apex if it can be made planar by the removal of a single vertex. The deleted vertex is called an
apex of the graph, and a graph may have more than one apex. For instance, in the minimal nonplanar
graphs K or K3 3, every vertex is an apex. The apex graphs include graphs that are themselves planar,
in which case again every vertex is an apex. The null graph is also counted as an apex graph even though
it has no vertex to remove. If the graph is not connected, we say that it is apex if it has at most one non
planar connected component and that this component is apex. See the Wikipedia article Apex_graph for
more information.

See also:

* apex_vertices ()
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e is_planar()

EXAMPLES:

K5 and K3 3 are apex graphs, and each of their vertices is an apex:

sage: G = graphs.CompleteGraph (5)

sage: G.is_apex|()

True

sage: G = graphs.CompleteBipartiteGraph (3, 3)
sage: G.is_apex|()

True

The Petersen graph is not apex:

sage: G = graphs.PetersenGraph ()
sage: G.is_apex|()
False

A graph is apex if all its connected components are apex, but at most one is not planar:

sage: M = graphs.Grid2dGraph (3, 3)
sage: K5 = graphs.CompleteGraph (5)
sage: (M+Kb) .is_apex()

True

sage: (M+K5+K5) .is_apex/()

False

is _arc transitive()
Check if self is an arc-transitive graph

A graph is arc-transitive if its automorphism group acts transitively on its pairs of adjacent vertices.

Equivalently, if there exists for any pair of edges uv,u’v’ € E(G) an automorphism ¢, of G such that
¢1(u) = ' and ¢1(v) = v’, as well as another automorphism ¢2 of G such that ¢ (u) = v’ and ¢2(v) =
ul

See also:
* Wikipedia article arc-transitive_graph
e is_edge _transitive ()
e is half transitive()

* is_semi_symmetric()

EXAMPLES:

sage: P = graphs.PetersenGraph ()
sage: P.is_arc_transitive ()

True

sage: G = graphs.GrayGraph ()
sage: G.is_arc_transitive ()
False

is_asteroidal_triple_free (G, certificate=False)
Test if the input graph is asteroidal triple-free
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An independent set of three vertices such that each pair is joined by a path that avoids the neighborhood
of the third one is called an asteroidal triple. A graph is asteroidal triple-free (AT-free) if it contains no
asteroidal triples. See the module's documentation for more details.

This method returns True is the graph is AT-free and False otherwise.
INPUT:
e G—aGraph

* certificate — boolean (default: False); by default, this method returns True if the graph is
asteroidal triple-free and False otherwise. When certificate==True, this method returns in
addition a list of three vertices forming an asteroidal triple if such a triple is found, and the empty list
otherwise.

EXAMPLES:

The complete graph is AT-free, as well as its line graph:

sage: G = graphs.CompleteGraph (5)
sage: G.is_asteroidal_triple_free()
True

sage: G.is_asteroidal_triple_free(certificate=True)
(True, [1)

sage: LG = G.line_graph{()

sage: LG.is_asteroidal_triple_free()
True

sage: LLG = LG.line_graph()

sage: LLG.is_asteroidal_triple_free()
False

The PetersenGraph is not AT-free:

sage: from sage.graphs.asteroidal_triples import =
sage: G = graphs.PetersenGraph()

sage: G.1is_asteroidal_triple_free()

False

sage: G.is_asteroidal_triple_free(certificate=True)
(False, [0, 2, 6])

is_biconnected ()

Test if the graph is biconnected.

A biconnected graph is a connected graph on two or more vertices that is not broken into disconnected
pieces by deleting any single vertex.

See also:

* is_connected()
e blocks_and_cut_vertices ()
* blocks _and _cuts_tree()

» Wikipedia article Biconnected_graph

EXAMPLES:

sage: G = graphs.PetersenGraph()
sage: G.is_biconnected()
True

(continues on next page)
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sage:
sage:
False
sage:
sage:
True

G.add_path ([0, 'a",'b"])
G.is_biconnected()

G.add_edge ('

b, 1)
(

G.1is_biconnected()

is_block_graph ()
Return whether this graph is a block graph.

A block graph is a connected graph in which every biconnected component (block) is a clique.

See also:

» Wikipedia article Block_graph for more details on these graphs

* RandomBlockGraph () — generator of random block graphs

e blocks_and_cut_vertices ()

e pblocks_and_cuts_tree()

EXAMPLES:

sage:
sage:
True

sage:
sage:
True

sage:
True

sage:
True

sage:
False
sage:
False

G = graphs.RandomBlockGraph (6, 2, kmax=4)
G.is_block_graph()

from sage.graphs.isgci import graph_classes
G in graph_classes.Block

graphs.CompleteGraph (4) .is_block_graph ()

graphs.RandomTree (6) .1s_block_graph ()

graphs.PetersenGraph () .is_block_graph ()

Graph (4) .is_block_graph()

is_cactus()
Check whether the graph is cactus graph.

A graph is called cactus graph if it is connected and every pair of simple cycles have at most one common

vertex.

There are other definitions, see the Wikipedia article Cactus_graph.

EXAMPLES:

sage: g = Graph({1: [2], 2: [3, 41, 3: [4, 5, 6, 71, 8: [3, 51, 9: [6, 71})
sage: g.is_cactus()

True

sage: c6 = graphs.CycleGraph (6)

sage: naphthalene = c6 + cb6

sage: naphthalene.is_cactus/() # Not connected

False

sage: naphthalene.merge_vertices ([0, 6])

sage: naphthalene.is_cactus/()

(continues on next page)
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True

sage: naphthalene.merge_vertices ([1, 7])
sage: naphthalene.is_cactus ()

False

is_cartesian_product (g, certificate=False, relabeling=False)
Test whether the graph is a Cartesian product.

INPUT:

e certificate — boolean (default: False); if certificate False (default) the method
only returns True or False answers. If certificate True, the True answers are replaced
by the list of the factors of the graph.

¢ relabeling—boolean (default: False);if relabeling True (implies certificate
True), the method also returns a dictionary associating to each vertex its natural coordinates as a
vertex of a product graph. If g is not a Cartesian product, None is returned instead.

See also:

* sage.graphs.generic_graph.GenericGraph.cartesian_product ()

* graph_products —amodule on graph products.

Note: This algorithm may run faster whenever the graph’s vertices are integers (see relabel ()). Give
it a try if it is too slow !

EXAMPLES:

The Petersen graph is prime:

sage: from sage.graphs.graph decompositions.graph products import is_
—cartesian_product

sage: g = graphs.PetersenGraph ()
sage: is_cartesian_product (g)
False

A 2d grid is the product of paths:

sage: g = graphs.Grid2dGraph(5,5)

sage: pl, p2 = is_cartesian_product (g, certificate = True)
sage: pl.is_isomorphic (graphs.PathGraph(5))

True

sage: p2.is_isomorphic (graphs.PathGraph(5))

True

Forgetting the graph’s labels, then finding them back:

sage: g.relabel ()
sage: b,D = g.is_cartesian_product (g, relabeling=True)
sage: b
True
sage: D # random isomorphism
{0: (20, 0), 1: (20, 1), 2: (20, 2), 3: (20, 3), 4: (20, 4),
5: (15, 0), 6: (15, 1), 7: (15, 2), 8: (15, 3), 9: (15, 4),
10: (10, 0), 11: (10, 1), 12: (10, 2), 13: (10, 3), 14: (10, 4),

(continues on next page)
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15: (5, 0), 16: (5, 1), 17: (5, 2), 18: (5, 3), 19: (5, 4),
20: (0, 0), 21: (O, 1), 22: (0, 2), 23: (0, 3), 24: (0, 4)}

And of course, we find the factors back when we build a graph from a product:

sage: g = graphs.PetersenGraph() .cartesian_product (graphs.CycleGraph(3))

sage: gl, g2 = is_cartesian_product (g, certificate = True)

sage: any( x.is_isomorphic (graphs.PetersenGraph()) for x in [gl,g2])
True

sage: any( x.is_isomorphic (graphs.CycleGraph(3)) for x in [gl,g2])
True

is_circumscribable (solver="ppl’, verbose=0)
Test whether the graph is the graph of a circumscribed polyhedron.

A polyhedron is circumscribed if all of its facets are tangent to a sphere. By a theorem of Rivin
([HRS1993]), this can be checked by solving a linear program that assigns weights between 0 and 1/2
on each edge of the polyhedron, so that the weights on any face add to exactly one and the weights on any
non-facial cycle add to more than one. If and only if this can be done, the polyhedron can be circumscribed.

INPUT:

* solver — (default: "ppl"); specify a Linear Program (LP) solver to be used. If set to None, the
default one is used. For more information on LP solvers and which default solver is used, see the
method solve of the class MixedIntegerLinearProgram.

* verbose —integer (default: 0); sets the level of verbosity. Set to 0 by default, which means quiet.

EXAMPLES:

sage: C = graphs.CubeGraph (3)
sage: C.is_circumscribable ()
True

sage: O = graphs.OctahedralGraph ()
sage: O.is_circumscribable ()
True

sage: TT = polytopes.truncated_tetrahedron () .graph()
sage: TT.is_circumscribable ()
False

Stellating in a face of the octahedral graph is not circumscribable:

sage: f = set(flatten(choice(O.faces())))
sage: O.add_edges([[6, 1] for 1 in f])
sage: O.is_circumscribable ()

False

See also:

e is_polyhedral ()

e is inscribable ()

Todo: Allow the use of other, inexact but faster solvers.
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is_cograph ()

Check whether the graph is cograph.

A cograph is defined recursively: the single-vertex graph is cograph, complement of cograph is cograph,
and disjoint union of two cographs is cograph. There are many other characterizations, see the Wikipedia
article Cograph.

EXAMPLES:

sage: graphs.HouseXGraph () .is_cograph ()
True

sage: graphs.HouseGraph () .is_cograph ()
False

Todo: Implement faster recognition algorithm, as for instance the linear time recognition algorithm using
LexBFS proposed in [Bre2008].

is directed()

Since graph is undirected, returns False.

EXAMPLES:

sage: Graph() .is_directed()
False

is_distance_regular (G, parameters=False)

Test if the graph is distance-regular

A graph G is distance-regular if for any integers j, k the value of |{z : dg(z,u) = j,x € V(G)} N{y :
da(y,v) = j,y € V(G)}| is constant for any two vertices u, v € V(G) at distance ¢ from each other. In
particular G is regular, of degree by (see below), as one can take u = v.

Equivalently a graph is distance-regular if there exist integers b;, ¢; such that for any two vertices u, v at
distance ¢ we have

cby=|{x:de(z,u)=i+1,2€ V(G)}NNg()},0<i<d-1
cc;=H{x:dg(z,u)=i—1,2 € V(G)} N Ng(v)}, 1 <i<d,

where d is the diameter of the graph. For more information on distance-regular graphs, see the Wikipedia
article Distance-regular_graph.

INPUT:

* parameters — boolean (default: False); if set to True, the function returns the pair (b, c) of
lists of integers instead of a boolean answer (see the definition above)

See also:

e is_regular()

e is_strongly_regular()

EXAMPLES:

sage: g graphs.PetersenGraph ()

sage: g.ils_distance_regular()

True

sage: g.is_distance_regular (parameters = True)

([3, 2, Nonel], [None, 1, 1])
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Cube graphs, which are not strongly regular, are a bit more interesting:

sage:
True
sage:
True

graphs.CubeGraph (4) .is_distance_regular ()

graphs.0ddGraph (5) .is_distance_regular ()

Disconnected graph:

sage:
True

(2+xgraphs.CubeGraph(4)) .is_distance_regular ()

is_edge_transitive ()

Check if self is an edge transitive graph.

A graph is edge-transitive if its automorphism group acts transitively on its edge set.

Equivalently, if there exists for any pair of edges uv,u'v' € E(G) an automorphism ¢ of G such that

¢(uv) = u'v’ (note this does not necessarily mean that ¢(u) = v’ and ¢(v) = v’).

See also:

» Wikipedia article Edge-transitive_graph

* is arc _transitive ()

e is half transitive()

* is_semi_symmetric()

EXAMPLES:

sage: P = graphs.PetersenGraph ()
sage: P.is_edge_transitive()
True

sage: C = graphs.CubeGraph (3)
sage: C.is_edge_transitive()
True

sage: G = graphs.GrayGraph ()
sage: G.is_edge_transitive()
True

sage: P = graphs.PathGraph (4)
sage: P.is_edge_transitive()
False

is_even_hole_free (certificate=False)
Tests whether sel f contains an induced even hole.

A Hole is a cycle of length at least 4 (included). It is said to be even (resp. odd) if its length is even (resp.

odd).

Even-hole-free graphs always contain a bisimplicial vertex, which ensures that their chromatic number is

at most twice their clique number /ABCHRSO0S].
INPUT:

e certificate — boolean (default: False); when certificate
returns True or False. If certificate

False.

False, this method only
True, the subgraph found is returned instead of
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EXAMPLES:

Is the Petersen Graph even-hole-free

sage: g = graphs.PetersenGraph ()
sage: g.ls_even_hole_free ()
False

As any chordal graph is hole-free, interval graphs behave the same way:

sage: g = graphs.RandomIntervalGraph (20)
sage: g.is_even_hole_free ()
True

It is clear, though, that a random Bipartite Graph which is not a forest has an even hole:

sage: g = graphs.RandomBipartite (10, 10, .5)
sage: g.is_even_hole_free() and not g.is_forest ()
False

We can check the certificate returned is indeed an even cycle:

sage: if not g.is_forest():

e cycle = g.is_even_hole_free(certificate=True)
et if cycle.order () % 2 ==

e print ("Error !")

et if not cycle.is_isomorphic(

et graphs.CycleGraph (cycle.order ())):
e print ("Error !'")

sage: print ("Everything is Fine !")
Everything is Fine !

REFERENCE:

is_forest (certificate=False, output="vertex’)
Tests if the graph is a forest, i.e. a disjoint union of trees.

INPUT:

e certificate — boolean (default: False); whether to return a certificate. The method only re-
turns boolean answers when certificate = False (default). When it is set to True, it either
answers (True, None) when the graphisaforestor (False, cycle) when itcontains acycle.

e output —either 'vertex' (default) or 'edge'; whether the certificate is given as a list of vertices
(output = 'vertex')oralist of edges (output = 'edge').

EXAMPLES:

sage: seven_acre_wood = sum(graphs.trees(7), Graph())
sage: seven_acre_wood.is_forest ()
True

With certificates:

sage: g = graphs.RandomTree (30)

sage: g.is_forest (certificate=True)

(True, None)

sage: (2xg + graphs.PetersenGraph() + g).is_forest (certificate=True)
(False, [62, 63, 68, 66, 61])
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is _half transitive ()

Check if self is a half-transitive graph.
A graph is half-transitive if it is both vertex and edge transitive but not arc-transitive.

See also:
* Wikipedia article half-transitive_graph
e is_edge_transitive()
e is arc transitive()

* is_semi_symmetric()

EXAMPLES:

The Petersen Graph is not half-transitive:

sage: P = graphs.PetersenGraph ()
sage: P.is_half_ transitive()
False

The smallest half-transitive graph is the Holt Graph:

sage: H = graphs.HoltGraph ()
sage: H.is_half_ transitive()
True

is_inscribable (solver="ppl’, verbose=0)

Test whether the graph is the graph of an inscribed polyhedron.

A polyhedron is inscribed if all of its vertices are on a sphere. This is dual to the notion of circumscribed
polyhedron: A Polyhedron is inscribed if and only if its polar dual is circumscribed and hence a graph is
inscribable if and only if its planar dual is circumscribable.

INPUT:

e solver — (default: "ppl"); specify a Linear Program (LP) solver to be used. If set to None, the
default one is used. For more information on LP solvers and which default solver is used, see the
method solve of the class MixedIntegerLinearProgram.

* verbose —integer (default: 0); sets the level of verbosity. Set to 0 by default, which means quiet.

EXAMPLES:

sage: H = graphs.HerschelGraph ()

sage: H.is_inscribable() # long time (> 1 sec)
False

sage: H.planar_dual() .is_inscribable() # long time (> 1 sec)
True

sage: C = graphs.CubeGraph (3)
sage: C.is_inscribable()
True

Cutting off a vertex from the cube yields an uninscribable graph:

sage: C = graphs.CubeGraph (3)
sage: v = next (C.vertex_iterator())
sage: triangle = [_ + v for _ in C.neighbors (v)]

(continues on next page)
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(continued from previous page)

sage: C.add_edges (Combinations (triangle, 2))
sage: C.add_edges(zip(triangle, C.neighbors(v)))
sage: C.delete_vertex(v)

sage: C.is_inscribable()

False

Breaking a face of the cube yields an uninscribable graph:

sage: C = graphs.CubeGraph (3)

sage: face = choice(C.faces())

sage: C.add_edge([face[0][0], facel[2][011)
sage: C.is_inscribable()

False

See also:

e is_polyhedral ()

* is circumscribable ()

is_1line_graph (g, certificate=False)
Tests wether the graph is a line graph.

INPUT:

e certificate (boolean)— whether to return a certificate along with the boolean result. Here is what
happens when certificate = True:

— If the graph is not a line graph, the method returns a pair (b, subgraph) where b is False
and subgraph is a subgraph isomorphic to one of the 9 forbidden induced subgraphs of a line
graph.

— If the graph is a line graph, the method returns a triple (b, R, isom) where b is True, Ris a
graph whose line graph is the graph given as input, and isom is a map associating an edge of R
to each vertex of the graph.

Note: This method wastes a bit of time when the input graph is not connected. If you have performance
in mind, it is probably better to only feed it with connected graphs only.

See also:

e The 1ine graph module.
e line_graph_forbidden_subgraphs () —the forbidden subgraphs of a line graph.

e line graph()

EXAMPLES:

A complete graph is always the line graph of a star:

sage: graphs.CompleteGraph(5).is_line_graph()
True

The Petersen Graph not being claw-free, it is not a line graph:
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sage: graphs.PetersenGraph () .is_line_graph ()
False

This is indeed the subgraph returned:

sage: C = graphs.PetersenGraph() .is_line_graph(certificate=True) [1]
sage: C.is_isomorphic(graphs.ClawGraph())
True

The house graph is a line graph:

sage: g = graphs.HouseGraph ()
sage: g.is_line_graph()
True

But what is the graph whose line graph is the house ?:

sage: is_line, R, isom = g.is_line_graph(certificate=True)
sage: R.sparse6_string/()

':DaHI~"'

sage: R.show()

sage: isom

{0: (0, 1), 1: (O, 2), 2: (1, 3), 3: (2, 3), 4: (3, 4)}

is_long_antihole_ free (g, certificate=False)
Tests whether the given graph contains an induced subgraph that is isomorphic to the complement of a
cycle of length at least 5.

INPUT:
e certificate —boolean (default: False)
Whether to return a certificate. When certificate = True, then the function returns

— (False, Antihole) if g contains an induced complement of a cycle of length at least 5
returned as Antihole.

— (True, []) if g does not contain an induced complement of a cycle of length at least 5. For
this case it is not known how to provide a certificate.

When certificate = False, the function returns just True or False accordingly.
ALGORITHM:

This algorithm tries to find a cycle in the graph of all induce@ of g, where two copies Eand P’ of P,
are eﬂaoent if there exists a (not necessarily induced) copy of P5 = ujususugus such that P = ujuousuy
and P/ = U2U3U4LUS.

This is done through a depth-first-search. For efficiency, the auxiliary graph is constructed on-the-fly and
never stored in memory.

The run time of this algorithm is O(m?) [NikolopoulosPalios07] ( where m is the number of edges of the
graph ) .

EXAMPLES:

The Petersen Graph contains an antihole:

sage: g = graphs.PetersenGraph ()
sage: g.is_long_antihole_free()
False
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The complement of a cycle is an antihole:

sage: g = graphs.CycleGraph(6) .complement ()
sage: r,a = g.is_long_antihole_free(certificate=True)

sage: r

False

sage: a.complement () .is_isomorphic (graphs.CycleGraph (6))
True

is_long_hole_free (g, certificate=False)

Tests whether g contains an induced cycle of length at least 5.
INPUT:
e certificate —boolean (default: False)
Whether to return a certificate. When certificate = True, then the function returns

— (True, [1]) if g does not contain such a cycle. For this case, it is not known how to provide a
certificate.

— (False, Hole) if g contains an induced cycle of length at least 5. Hole returns this cycle.
If certificate = False, the function returns just True or False accordingly.
ALGORITHM:

This algorithm tries to find a cycle in the graph of all induced Py of g, where two copies P and P’ of P,
are adjacent if there exists a (not necessarily induced) copy of P5 = ujususugus such that P = ujususuy
and P’ = ugusuqus.

This is done through a depth-first-search. For efficiency, the auxiliary graph is constructed on-the-fly and
never stored in memory.

The run time of this algorithm is O(m?) [NikolopoulosPalios07] ( where m is the number of edges of the
graph ) .

EXAMPLES:

The Petersen Graph contains a hole:

sage: g = graphs.PetersenGraph ()
sage: g.is_long_hole_free ()
False

The following graph contains a hole, which we want to display:

sage: g = graphs.FlowerSnark()

sage: r,h g.is_long_hole_free(certificate=True)
sage: r

False

sage: Graph (h) .is_isomorphic (graphs.CycleGraph(h.order()))
True

is_odd_hole_free (certificate=False)

Tests whether sel f contains an induced odd hole.

A Hole is a cycle of length at least 4 (included). It is said to be even (resp. odd) if its length is even (resp.
odd).

It is interesting to notice that while it is polynomial to check whether a graph has an odd hole or an odd
antihole /CRST06], it is not known whether testing for one of these two cases independently is polynomial
too.
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INPUT:

e certificate — boolean (default: False); when certificate = False, this method only
returns True or False. If certificate = True, the subgraph found is returned instead of
False.

EXAMPLES:

Is the Petersen Graph odd-hole-free

sage: g = graphs.PetersenGraph ()
sage: g.is_odd_hole_free()
False

Which was to be expected, as its girth is 5

sage: g.girth()
5

We can check the certificate returned is indeed a 5-cycle:

sage: cycle = g.is_odd_hole_free(certificate=True)
sage: cycle.is_isomorphic (graphs.CycleGraph(5))
True

As any chordal graph is hole-free, no interval graph has an odd hole:

sage: g graphs.RandomIntervalGraph (20)
sage: g.is_odd_hole_free()

True

REFERENCES:

is _overfull ()

Tests whether the current graph is overfull.
A graph G on n vertices and m edges is said to be overfull if:
* nisodd
o It satisfies 2m > (n — 1)A(G), where A(G) denotes the maximum degree among all vertices in G.
An overfull graph must have a chromatic index of A(G) + 1.
EXAMPLES:

A complete graph of order n > 1 is overfull if and only if n is odd:

sage: graphs.CompleteGraph(6) .is_overfull ()
False
sage: graphs.CompleteGraph(7) .is_overfull ()
True
sage: graphs.CompleteGraph(l) .is_overfull ()
False

The claw graph is not overfull:

sage: from sage.graphs.graph coloring import edge_coloring
sage: g graphs.ClawGraph ()

sage: g

Claw graph: Graph on 4 vertices

(continues on next page)
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(continued from previous page)

sage: edge_coloring(g, value_only=True)
3

sage: g.is_overfull()

False

The Holt graph is an example of a overfull graph:

sage: G = graphs.HoltGraph()
sage: G.is_overfull()
True

Checking that all complete graphs I, for even 0 < n < 100 are not overfull:

sage: def check_overfull_Kn_even(n):

el i=20

et while i <= n:

et if graphs.CompleteGraph (i) .is_overfull():

e print ("A complete graph of even order cannot be overfull.")

el return

e i += 2

e print ("Complete graphs of even order up to %$s are not overfull." % _
~>1’1)

sage: check_overfull_Kn_even(100) # long time

Complete graphs of even order up to 100 are not overfull.

The null graph, i.e. the graph with no vertices, is not overfull:

sage: Graph() .is_overfull ()

False

sage: graphs.CompleteGraph(0) .is_overfull ()
False

Checking that all complete graphs K, for odd 1 < n < 100 are overfull:

sage: def check_overfull_Kn_odd(n):

et i=3

el while i <= n:

et if not graphs.CompleteGraph (i) .is_overfull () :

et print ("A complete graph of odd order > 1 must be overfull.")

et return
et i+=2
et print ("Complete graphs of odd order > 1 up to %s are overfull." % n)

sage: check_overfull_Kn_odd(100) # long time
Complete graphs of odd order > 1 up to 100 are overfull.

The Petersen Graph, though, is not overfull while its chromatic index is A + 1:

sage: g = graphs.PetersenGraph ()
sage: g.is_overfull()

False

sage: from sage.graphs.graph coloring import edge_coloring
sage: max(g.degree()) + 1 == edge_coloring(g, value_only=True)
True
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is_partial_cube (G, certificate=False)
Test whether the given graph is a partial cube.

A partial cube is a graph that can be isometrically embedded into a hypercube, i.e., its vertices can be
labelled with (0,1)-vectors of some fixed length such that the distance between any two vertices in the
graph equals the Hamming distance of their labels.

Originally written by D. Eppstein for the PADS library (http://www.ics.uci.edu/~eppstein/PADS/), see
also [Eppstein2008]. The algorithm runs in O(n?) time, where n is the number of vertices. See the
documentation of partial_cube for an overview of the algorithm.

INPUT:

e certificate — boolean (default: False); this function returns True or False according to
the graph, when certificate = False. When certificate = True and the graph is a
partial cube, the function returns (True, mapping), where mapping is an isometric mapping
of the vertices of the graph to the vertices of a hypercube ((0, 1)-strings of a fixed length). When
certificate = True and the graph is not a partial cube, (False, None) is returned.

EXAMPLES:

The Petersen graph is not a partial cube:

sage: g = graphs.PetersenGraph ()
sage: g.ils_partial_cube ()
False

All prisms are partial cubes:

sage: g = graphs.CycleGraph(10) .cartesian_product (graphs.CompleteGraph (2))
sage: g.is_partial_cube ()
True

is_perfect (certificate=False)
Tests whether the graph is perfect.

A graph G is said to be perfect if x(H) = w(H) hold for any induced subgraph H C; G (and so for G
itself, too), where x (H) represents the chromatic number of H, and w(H) its clique number. The Strong
Perfect Graph Theorem [SPGT] gives another characterization of perfect graphs:

A graph is perfect if and only if it contains no odd hole (cycle on an odd number & of vertices, k£ > 3) nor
any odd antihole (complement of a hole) as an induced subgraph.

INPUT:
e certificate —boolean (default: False); whether to return a certificate.
OUTPUT:

When certificate = False, this function returns a boolean value. When certificate =
True, it returns a subgraph of self isomorphic to an odd hole or an odd antihole if any, and None
otherwise.

EXAMPLES:

A Bipartite Graph is always perfect

sage: g = graphs.RandomBipartite (8,4, .5)
sage: g.is_perfect ()
True

So is the line graph of a bipartite graph:
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sage: g = graphs.RandomBipartite(4,3,0.7)
sage: g.line_graph() .is_perfect () # long time
True

As well as the Cartesian product of two complete graphs:

sage: g = graphs.CompleteGraph (3) .cartesian_product (graphs.CompleteGraph (3))
sage: g.is_perfect ()
True

Interval Graphs, which are chordal graphs, too

sage: g = graphs.RandomIntervalGraph(7)
sage: g.is_perfect ()
True

The PetersenGraph, which is triangle-free and has chromatic number 3 is obviously not perfect:

sage: g = graphs.PetersenGraph ()
sage: g.is_perfect ()
False

We can obtain an induced 5-cycle as a certificate:

sage: g.is_perfect (certificate=True)
Subgraph of (Petersen graph): Graph on 5 vertices

REFERENCES:

is_polyhedral ()

Check whether the graph is the graph of the polyhedron.

By a theorem of Steinitz (Satz 43, p. 77 of [St1922]), graphs of three-dimensional polyhedra are exactly
the simple 3-vertex-connected planar graphs.

EXAMPLES:

sage: C = graphs.CubeGraph (3)

sage: C.is_polyhedral()

True

sage: K33=graphs.CompleteBipartiteGraph (3, 3)

sage: K33.is_polyhedral()

False

sage: graphs.CycleGraph(17) .is_polyhedral ()

False

sage: [i for i1 in range(9) if graphs.CompleteGraph (i) .is_polyhedral ()]
(4]

See also:

* vertex_connectivity()
e is_planar()

e is circumscribable()
* is inscribable ()

» Wikipedia article Polyhedral_graph
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is_prime ()
Test whether the current graph is prime.

A graph is prime if all its modules are trivial (i.e. empty, all of the graph or singletons) — see
modular_decomposition ().

EXAMPLES:
The Petersen Graph and the Bull Graph are both prime:

sage: graphs.PetersenGraph() .is_prime ()
True

sage: graphs.BullGraph() .is_prime ()
True

Though quite obviously, the disjoint union of them is not:

sage: (graphs.PetersenGraph() + graphs.BullGraph()) .is_prime/()
False

is_semi_symmetric ()
Check if self is semi-symmetric.

A graph is semi-symmetric if it is regular, edge-transitive but not vertex-transitive.

See also:

» Wikipedia article Semi-symmetric_graph
e is_edge_transitive ()
* is_arc_transitive()

e is half transitive()

EXAMPLES:

The Petersen graph is not semi-symmetric:

sage: P = graphs.PetersenGraph ()
sage: P.is_semi_symmetric ()
False

The Gray graph is the smallest possible cubic semi-symmetric graph:

sage: G = graphs.GrayGraph ()
sage: G.is_semi_symmetric ()
True

Another well known semi-symmetric graph is the Ljubljana graph:

sage: L = graphs.LjubljanaGraph ()
sage: L.is_semi_symmetric()
True

is_split ()
Returns True if the graph is a Split graph, False otherwise.

A Graph G is said to be a split graph if its vertices V(G) can be partitioned into two sets K and I such
that the vertices of K induce a complete graph, and those of I are an independent set.
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There is a simple test to check whether a graph is a split graph (see, for instance, the book “Graph Classes,
a survey” [GraphClasses] page 203) :

Given the degree sequence d; > ... > d,, of GG, a graph is a split graph if and only if :

w n

Zdi:w(w—l)—l— Z d;

i=1 i=w+1
where w = max{i : d; > i — 1}.
EXAMPLES:

Split graphs are, in particular, chordal graphs. Hence, The Petersen graph can not be split:

sage: graphs.PetersenGraph() .is_split ()
False

We can easily build some “random” split graph by creating a complete graph, and adding vertices only
connected to some random vertices of the clique:

sage: g = graphs.CompleteGraph (10)

sage: sets = Subsets (Set (range (10)))

sage: for i in range (10, 25):

et g.add_edges ([ (i,k) for k in sets.random_element ()])
sage: g.is_split ()

True

Another caracterisation of split graph states that a graph is a split graph if and only if does not contain the
4-cycle, 5-cycle or 2K, as an induced subgraph. Hence for the above graph we have:

sage: forbidden_subgraphs = [graphs.CycleGraph(4), graphs.CycleGraph(5), 2 =
—graphs.CompleteGraph (2) ]

sage: sum(g.subgraph_search_count (H, induced=True) for H in forbidden_
—subgraphs)

0

REFERENCES:

is_strongly_regular (g, parameters=False)

Check whether the graph is strongly regular.
A simple graph G is said to be strongly regular with parameters (n, k, A, ) if and only if:
* (G has n vertices
e (G is k-regular
* Any two adjacent vertices of G have A common neighbors
¢ Any two non-adjacent vertices of G have - common neighbors
By convention, the complete graphs, the graphs with no edges and the empty graph are not strongly regular.
See the Wikipedia article Strongly regular graph.
INPUT:

e parameters — boolean (default: False); whether to return the quadruple (n,k, A\, u). If
parameters = False (default), this method only returns True and False answers. If
parameters True, the True answers are replaced by quadruples (n, k, A, 1). See definition
above.
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EXAMPLES:

Petersen’s graph is strongly regular:

sage: g = graphs.PetersenGraph ()
sage: g.is_strongly_regular ()

True
sage: g.is_strongly_regular (parameters=True)
(10, 3, 0, 1)

And Clebsch’s graph is too:

sage: g = graphs.ClebschGraph ()

sage: g.is_strongly_regular ()

True

sage: g.is_strongly_regular (parameters=True)
(16, 5, 0, 2)

But Chvatal’s graph is not:

sage: g = graphs.ChvatalGraph ()
sage: g.is_strongly_regular ()
False

Complete graphs are not strongly regular. (trac ticket #14297)

sage: g = graphs.CompleteGraph (5)
sage: g.is_strongly_regular ()
False

Completements of complete graphs are not strongly regular:

sage: g = graphs.CompleteGraph (5) .complement ()
sage: g.is_strongly_regular ()
False

The empty graph is not strongly regular:

sage: g = graphs.EmptyGraph ()
sage: g.is_strongly_regular ()
False

If the input graph has loops or multiedges an exception is raised:

sage: Graph([(1,1), (2,2)]).is_strongly_regular()
Traceback (most recent call last):

ValueError: This method is not known to work on graphs with

loops. Perhaps this method can be updated to handle them, but in the
meantime if you want to use it please disallow loops using
allow_loops() .

sage: Graph([(1,2),(1,2)]).is_strongly_regular ()

Traceback (most recent call last):

ValueError: This method is not known to work on graphs with
multiedges. Perhaps this method can be updated to handle them, but in
the meantime if you want to use it please disallow multiedges using
allow_multiple_edges() .
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is_tree (certificate=False, output="vertex’)
Tests if the graph is a tree

The empty graph is defined to be not a tree.
INPUT:

e certificate — boolean (default: False); whether to return a certificate. The method only re-
turns boolean answers when certificate = False (default). When it is set to True, it either
answers (True, None) when the graphis atree or (False, cycle) when it contains a cycle.
It returns (False, None) when the graph is empty or not connected.

e output —either 'vertex' (default) or 'edge'; whether the certificate is given as a list of vertices
(output = 'vertex')oralist of edges (output = 'edge').

When the certificate cycle is given as a list of edges, the edges are given as (v;, v;11,1) where vy, va, ..., v,
are the vertices of the cycles (in their cyclic order).

EXAMPLES:

sage: all(T.is_tree() for T in graphs.trees(15))
True

With certificates:

sage: g = graphs.RandomTree (30)
sage: g.is_tree(certificate=True)
(True, None)

sage: g.add_edge(10,-1)

sage: g.add_edge(11,-1)

sage: isit, cycle = g.is_tree(certificate=True)
sage: isit

False

sage: -1 in cycle

True

One can also ask for the certificate as a list of edges:

sage: g = graphs.CycleGraph (4)
sage: g.ls_tree(certificate=True, output='edge')
(False, [(3, 2, None), (2, 1, None), (1, 0, None), (0, 3, None)l)

This is useful for graphs with multiple edges:

sage: G = Graph([ (1, 2, 'a"), (1, 2, 'b')], multiedges=True)
sage: G.is_tree(certificate=True)

(False, [1, 2])

sage: G.is_tree(certificate=True, output='edge')

(False, [(1, 2, 'a'), (2, 1, '"©")1)

is_triangle_free (algorithm="bitset’)
Returns whether self is triangle-free

INPUT:
* algorithm— (default: 'bitset ') specifies the algorithm to use among:
— 'matrix' —tests if the trace of the adjacency matrix is positive.

- 'bitset' —encodes adjacencies into bitsets and uses fast bitset operations to test if the input
graph contains a triangle. This method is generally faster than standard matrix multiplication.
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EXAMPLES:

The Petersen Graph is triangle-free:

sage: g = graphs.PetersenGraph ()
sage: g.is_triangle_free()
True

or a complete Bipartite Graph:

sage: G = graphs.CompleteBipartiteGraph (5, 6)
sage: G.is_triangle_free(algorithm="matrix'")
True
sage: G.is_triangle_free(algorithm="bitset')
True

a tripartite graph, though, contains many triangles:

sage: G = (3 » graphs.CompleteGraph(5)) .complement ()
sage: G.is_triangle_free(algorithm="matrix")

False

sage: G.is_triangle_free(algorithm="bitset')

False

is_weakly chordal (g, certificate=False)
Tests whether the given graph is weakly chordal, i.e., the graph and its complement have no induced cycle
of length at least 5.

INPUT:

e certificate —Boolean value (default: False) whether to return a certificate. If certificate
= False,return True or False according to the graph. If certificate = True, return

— (False, forbidden_subgraph) when the graph contains a forbidden subgraph H, this
graph is returned.

— (True, []) when the graph is weakly chordal. For this case, it is not known how to provide
a certificate.

ALGORITHM:

This algorithm checks whether the graph g or its complement contain an induced cycle of length at least
5.

Using is_long_hole_free() and is_long_antihole_free() yields a run time of O(m2) (where m is the number
of edges of the graph).

EXAMPLES:

The Petersen Graph is not weakly chordal and contains a hole:

sage: g = graphs.PetersenGraph ()

sage: r,s = g.is_weakly_chordal (certificate=True)
sage: r

False

sage: 1 = s.order ()

sage: s.is_isomorphic(graphs.CycleGraph(l))
True

join (other, labels="pairs’, immutable=None)
Return the join of self and other.
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INPUT:

* labels — (defaults to ‘pairs’); if set to ‘pairs’, each element v in the first graph will be named (0, v)
and each element u in other will be named (1, ) in the result. If set to ‘integers’, the elements of
the result will be relabeled with consecutive integers.

e immutable — boolean (default: None); whether to create a mutable/immutable join.
immutable=None (default) means that the graphs and their join will behave the same way.

See also:

e union()

e disjoint_union ()

EXAMPLES:

sage: G = graphs.CycleGraph (3)

sage: H = Graph(2)

sage: J = G.join(H); J

Cycle graph join Graph on 5 vertices

sage: J.vertices ()

[0, 0), (o0, 1), (0, 2), (1, 0), (1, 1)]

sage: J = G.join(H, labels='integers'); J

Cycle graph join Graph on 5 vertices

sage: J.vertices()

(0, 1, 2, 3, 4]

sage: J.edges|()

[(0, 1, None), (0, 2, None), (0, 3, None), (0, 4, None), (1, 2, None), (1, 3,

—~None), (1, 4, None), (2, 3, None), (2, 4, None)]

sage:
sage:
sage:
sage:
sage:

sage:
[ (0,
sage:

sage:
[ (0,

G = Graph(3)

G.name ("Graph on 3 vertices")
H = Graph(2)

H.name ("Graph on 2 vertices")
J = G.join(H); J

Graph on 3 vertices join Graph on 2 vertices: Graph on 5 vertices

J.vertices ()
0), (0, 1), (0, 2), (1, 0), (1, 1)]
J = G.join(H, labels='integers'); J

Graph on 3 vertices join Graph on 2 vertices: Graph on 5 vertices

J.edges ()
3, None), (0, 4, None), (1, 3, None), (1, 4, None), (2, 3, None), (2, 4,

[

—None) ]

kirchhoff symanzik_polynomial (name="'t’)

Return the Kirchhoff-Symanzik polynomial of a graph.

This is a polynomial in variables ¢. (each of them representing an edge of the graph ) defined as a sum
over all spanning trees:

Vg(t) =

>, 1l =

TCV eZE(T)
a spanning tree

This is also called the first Symanzik polynomial or the Kirchhoff polynomial.
INPUT:

¢ name — name of the variables (default: 't ")
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OUTPUT:
 apolynomial with integer coefficients
ALGORITHM:
This is computed here using a determinant, as explained in Section 3.1 of [Marcolli2009].

As an intermediate step, one computes a cycle basis C of G and a rectangular |C| x | E(G)| matrix
with entries in {—1,0, 1}, which describes which edge belong to which cycle of C and their
respective orientations.

More precisely, after fixing an arbitrary orientation for each edge e € E(G) and each cycle
C € C, one gets a sign for every incident pair (edge, cycle) which is 1 if the orientation coincide
and —1 otherwise.

EXAMPLES:
For the cycle of length 5:

sage: G = graphs.CycleGraph (5)
sage: G.kirchhoff_ symanzik_polynomial ()
t0 + tl1 + t2 + t3 + t4

One can use another letter for variables:

sage: G.kirchhoff_ symanzik_polynomial (name='u')
u0 + ul + u2 + u3 + u4

For the ‘coffee bean’ graph:

sage: G = Graph([(0,1,'a"),(0,1,'®"),(0,1,"'c")], multiedges=True)
sage: G.kirchhoff_ symanzik_polynomial ()
tO*xtl + tO0xt2 + tl*t2

For the ‘parachute’ graph:

sage: G = Graph([(0,2,'a"), (0,2,'D"), (0,1,'c"),(1,2,'d")], multiedges=True)
sage: G.kirchhoff_ symanzik_polynomial ()
t0xtl + tO0xt2 + tlxt2 + tl*t3 + t2%t3

For the complete graph with 4 vertices:

sage: G = graphs.CompleteGraph (4)

sage: G.kirchhoff_ symanzik_polynomial ()

tO*xtlxt3 + tOxt2+t3 + tlxt2+t3 + tOxtlxtd + tOxt2xtd + tlxt2xtd

+ tlxt3xtd + t2xt3xtd + tOxtlxt5 + tOxt2+t5 + tlxt2xt5 + tOxt3+t5
+ £2xt3%t5 + tOxtdxt5 + tlxtdxt5 + t3xtdxth

REFERENCES:

lovasz_theta (graph)
Return the value of Lovasz theta-function of graph

For a graph G this function is denoted by 6(G), and it can be computed in polynomial time. Mathemati-
cally, its most important property is the following:

a(G) <0(G) < x(G)

with a(G) and x(G) being, respectively, the maximum size of an independent set set of G and the
chromatic number of the complement G of G.
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For more information, see the Wikipedia article Lovasz_number.

Note:

¢ Implemented for undirected graphs only. Use t o_undirected to convert a digraph to an undirected
graph.

* This function requires the optional package csdp, which you can install with sage -1 csdp.

EXAMPLES:

sage: C = graphs.PetersenGraph()

sage: C.lovasz_theta() # optional csdp
4.0

sage: graphs.CycleGraph(5) .lovasz_theta() # optional csdp
2.236068

magnitude_function ()

Return the magnitude function of the graph as a rational function.

This is defined as the sum of all coefficients in the inverse of the matrix Z whose coefficient Z; ; indexed
by a pair of vertices (4, j) is ¢%(4, j) where d is the distance function in the graph.

By convention, if the distance from ¢ to j is infinite (for two vertices not path connected) then Z; ; = 0.

The value of the magnitude function at ¢ = 0 is the cardinality of the graph. The magnitude function
of a disjoint union is the sum of the magnitudes functions of the connected components. The magnitude
function of a Cartesian product is the product of the magnitudes functions of the factors.

EXAMPLES:

sage: g = Graph({1l:[], 2:[1})
sage: g.magnitude_function()

2

sage: g graphs.CycleGraph (4)

sage: g.magnitude_function()
4/(g”2 + 2%g + 1)

sage: g = graphs.CycleGraph (5)
sage: m g.magnitude_function(); m
5/ (29”2 + 2xgq + 1)

One can expand the magnitude as a power series in ¢ as follows:

sage: g = QQ[['g']]l.gen()
sage: m(q)
5 - 10xg + 10*xg”2 - 20%xg”4 + 40xg"5 - 40xg"6 +

One can also use the substitution ¢ = exp(—t) to obtain the magnitude function as a function of ¢:

sage: g = graphs.CycleGraph (6)

sage: m g.magnitude_function ()

sage: t = var('t")

sage: m(exp(-t))

6/ (2xe”™ (-t) + 2%xe” (-2xt) + e (-3xt) + 1)
REFERENCES:
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matching (value_only=False, algorithm="Edmonds’, use_edge_labels=False, solver=None, ver-

bose=0)
Return a maximum weighted matching of the graph represented by the list of its edges.

For more information, see the Wikipedia article Matching_(graph_theory).

Given a graph G such that each edge e has a weight w,., a maximum matching is a subset S of the edges
of G of maximum weight such that no two edges of S are incident with each other.

As an optimization problem, it can be expressed as:

Maximize : g Webe
e€G.edges()

Suchthat: Vo € G, Y brup <1
(u,v)EG.edges()
Vz € G, b, is a binary variable
INPUT:

* value_only — boolean (default: False); when set to True, only the cardinal (or the weight) of
the matching is returned

* algorithm - string (default: "Edmonds™")
— "Edmonds" selects Edmonds’ algorithm as implemented in NetworkX
— "LP" uses a Linear Program formulation of the matching problem

¢ use_edge_labels —boolean (default: False)

— when set to True, computes a weighted matching where each edge is weighted by its label (if an
edge has no label, 1 is assumed)

— when set to False, each edge has weight 1

¢ solver — (default: None); specify a Linear Program (LP) solver to be used; if set to None, the
default one is used

* verbose — integer (default: 0); sets the level of verbosity: set to 0 by default, which means quiet
(only useful when algorithm == "LP")

For more information on LP solvers and which default solver is used, see the method sage.
numerical .mip.MixedIntegerLinearProgram.solve () of the class sage.numerical.
mip.MixedIntegerLinearProgram.

ALGORITHM:

The problem is solved using Edmond’s algorithm implemented in NetworkX, or using Linear Program-
ming depending on the value of algorithm.

EXAMPLES:

Maximum matching in a Pappus Graph:

sage: g = graphs.PappusGraph ()
sage: g.matching(value_only=True)
9

Same test with the Linear Program formulation:

sage: g = graphs.PappusGraph ()
sage: g.matching(algorithm="LP", wvalue_only=True)
9
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matching polynomial (G, complement=True, name=None)
Computes the matching polynomial of the graph G.

If p(G, k) denotes the number of k-matchings (matchings with &k edges) in G, then the matching polyno-
mial is defined as [Godsil93]:

pla) =D (1) p(G, k)"
k>0
INPUT:

e complement - (default: True) whether to use Godsil’s duality theorem to compute the matching
polynomial from that of the graphs complement (see ALGORITHM).

* name - optional string for the variable name in the polynomial

Note: The complement option uses matching polynomials of complete graphs, which are cached. So
if you are crazy enough to try computing the matching polynomial on a graph with millions of vertices,
you might not want to use this option, since it will end up caching millions of polynomials of degree in the
millions.

ALGORITHM:
The algorithm used is a recursive one, based on the following observation [Godsil93]:

* If e is an edge of G, G’ is the result of deleting the edge e, and G is the result of deleting each vertex
in e, then the matching polynomial of G is equal to that of G’ minus that of G”.

(the algorithm actually computes the signless matching polynomial, for which the recursion is the
same when one replaces the substraction by an addition. It is then converted into the matching poly-
nomial and returned)

Depending on the value of complement, Godsil’s duality theorem [Godsil93] can also be used to com-

pute p(z) :

M(Zjﬁﬂ)::jizlﬂ(;ak)ﬂ(f(n—2k,$)

k>0

Where G is the complement of G, and K, the complete graph on n vertices.

EXAMPLES:

sage: g = graphs.PetersenGraph ()

sage: g.matching polynomial ()

x*10 — 15%xx78 + 75xx76 — 145xx"4 + 90xx"2 - 6

sage: g.matching polynomial (complement=False)

x*10 - 15%x78 + 75xx"6 — 145xx"4 + 90xx"2 - 6

sage: g.matching polynomial (name='tom')

tom”10 - 15xtom”8 + 75xtom™6 - 145xtom™4 + 90xtom™2 - 6
sage: g = Graph()

sage: L = [graphs.RandomGNP (8, .3) for i in range(l, 6)]

sage: prod([h.matching_polynomial() for h in L]) == sum(L, g).matching_
—polynomial () # long time (up to 10s on sage.math, 2011)

True

sage: for i in range(l, 12): # long time (10s on sage.math, 2011)

et for t in graphs.trees(i):

e if t.matching_polynomial () != t.characteristic_polynomial () :

(continues on next page)
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e raise RuntimeError ('bug for a tree A of size {0}'.format(i))
et c = t.complement ()

et if c.matching_polynomial (complement=False) != c.matching_
—polynomial () :

e raise RuntimeError ('bug for a tree B of size {0}'.format (1))

sage: from sage.graphs.matchpoly import matching_polynomial
sage: matching_polynomial (graphs.CompleteGraph (0))

1

sage: matching_polynomial (graphs.CompleteGraph (1))
X

sage: matching_polynomial (graphs.CompleteGraph(2))
x"2 - 1

sage: matching_polynomial (graphs.CompleteGraph(3))
X3 - 3*x

sage: matching_polynomial (graphs.CompleteGraph (4))

x4 - 6%x"2 + 3

sage: matching_polynomial (graphs.CompleteGraph (5))

x5 = 10*x"3 + 15%x

sage: matching_polynomial (graphs.CompleteGraph (6))

x"6 — 15xx"4 + 45%x"2 - 15

sage: matching_polynomial (graphs.CompleteGraph (7))

X7 — 21xx”5 + 105%x73 — 105%xx

sage: matching_polynomial (graphs.CompleteGraph(8))

xX"8 — 28xx76 + 210%x"4 — 420%xx"2 + 105

sage: matching_polynomial (graphs.CompleteGraph(9))

x"9 = 36xx”7 + 378%x"5 — 1260%x"3 + 945xx

sage: matching_polynomial (graphs.CompleteGraph(10))

x"10 - 45%x78 + 630*x"6 — 3150%«x"4 + 4725%«x"2 — 945

sage: matching_polynomial (graphs.CompleteGraph(11))

x*11 = 55%x79 + 990xx"7 - 6930xx"5 + 17325+x"3 — 10395%*x

sage: matching_polynomial (graphs.CompleteGraph(12))

x"12 — 66%x710 + 1485xx"8 — 13860xx"6 + 51975%x"4 — 62370%xx"2 + 10395
sage: matching_polynomial (graphs.CompleteGraph(13))

x"N13 = 78%x"11 + 2145%xx"9 — 25740xx"7 + 135135%x"5 — 270270xx"3 + 135135%x

sage: G = Graph({0:[1,2], 1:[21})
sage: matching polynomial (G)

X3 = 3%x

sage: G = Graph({0:[1,2]1})

sage: matching_polynomial (G)

X3 - 2%x

sage: G = Graph({0:[1], 2:[1})
sage: matching_polynomial (G)

X3 - x

sage: G = Graph({O0:[], 1:[1, 2:[1})
sage: matching_polynomial (G)

x"3

sage: matching_polynomial (graphs.CompleteGraph(0), complement=False)
1

sage: matching_polynomial (graphs.CompleteGraph(l), complement=False)
X

sage: matching_polynomial (graphs.CompleteGraph(2), complement=False)
x"2 - 1

(continues on next page)
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sage: matching_polynomial (graphs.CompleteGraph(3), complement=False)
X"3 - 3%x

sage: matching_polynomial (graphs.CompleteGraph(4), complement=False)
x"4 - 6xx"2 + 3

sage: matching_polynomial (graphs.CompleteGraph(5), complement=False)
x5 — 10*x"3 + 15%x

sage: matching_polynomial (graphs.CompleteGraph(6), complement=False)
x"6 — 15%x"4 + 45xx"2 - 15

sage: matching_polynomial (graphs.CompleteGraph(7), complement=False)
X7 = 21xx"5 + 105%x"3 — 105%x

sage: matching_polynomial (graphs.CompleteGraph(8), complement=False)
x"8 — 28xx76 + 210xx"4 - 420%x"2 + 105

sage: matching_polynomial (graphs.CompleteGraph(9), complement=False)
xX"9 — 36xx"7 + 378%x"5 — 1260%x"3 + 945xx

sage: matching_polynomial (graphs.CompleteGraph(10), complement=False)
x*10 - 45%xx78 + 630xx76 — 3150%xx"4 + 4725xx"2 - 945

sage: matching_polynomial (graphs.CompleteGraph(l1l), complement=False)
x"11 — 55%x79 + 990%x"7 - 6930%x"5 + 17325%x"3 — 10395xx

sage: matching_polynomial (graphs.CompleteGraph(12), complement=False)
x"12 - 66%xx710 + 1485xx78 - 13860%x"6 + 51975%x"4 — 62370xx"2 + 10395
sage: matching_polynomial (graphs.CompleteGraph(13), complement=False)
x"13 = 78xx711 4+ 2145xx"9 - 25740%x"7 + 135135%x"5 - 270270xx"3 + 135135*x

maximum_ average_degree (value_only=True, solver=None, verbose=0)
Return the Maximum Average Degree (MAD) of the current graph.

The Maximum Average Degree (MAD) of a graph is defined as the average degree of its densest subgraph.
More formally, Mad (G) = \max_{H\subseteg G} Ad (H), where Ad(G) denotes the average de-
gree of G.

This can be computed in polynomial time.
INPUT:
e value_only —boolean (default: True);
— If value_only=True, only the numerical value of the M AD is returned.
— Else, the subgraph of G realizing the M AD is returned.

* solver — (default: None); specify a Linear Program (LP) solver to be used. If set to None, the
default one is used. For more information on LP solvers and which default solver is used, see the
method solve of the class MixedIntegerLinearProgram.

* verbose — integer (default: 0); sets the level of verbosity. Set to 0 by default, which means quiet.
EXAMPLES:

In any graph, the M ad is always larger than the average degree:

sage: g = graphs.RandomGNP (20, .3)

sage: mad_g = g.maximum_average_degree ()
sage: g.average_degree () <= mad_g
True

Unlike the average degree, the Mad of the disjoint union of two graphs is the maximum of the Mad of
each graphs:

sage: h = graphs.RandomGNP (20, .3)
sage: mad_h = h.maximum_average_degree ()

(continues on next page)
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sage: (gt+h).maximum_average_degree () == max (mad_g, mad_h)
True

The subgraph of a regular graph realizing the maximum average degree is always the whole graph

sage: g = graphs.CompleteGraph (5)

sage: mad_g = g.maximum_average_degree (value_only=False)
sage: g.is_isomorphic (mad_g)
True

This also works for complete bipartite graphs

sage: g = graphs.CompleteBipartiteGraph(3,4)

sage: mad_g = g.maximum_average_degree (value_only=False)
sage: g.is_isomorphic (mad_g)
True

minimum outdegree_orientation (use_edge_labels=False, solver=None, verbose=0)

Returns an orientation of self with the smallest possible maximum outdegree.

Given a Graph G, it is polynomial to compute an orientation D of the edges of G such that the maximum
out-degree in D is minimized. This problem, though, is NP-complete in the weighted case [AMOZ06].

INPUT:
¢ use_edge_labels —boolean (default: False)

— When set to True, uses edge labels as weights to compute the orientation and assumes a weight
of 1 when there is no value available for a given edge.

— When set to False (default), gives a weight of 1 to all the edges.

* solver — (default: None); specify a Linear Program (LP) solver to be used. If set to None, the
default one is used. For more information on LP solvers and which default solver is used, see the
method solve of the class MixedIntegerLinearProgram.

* verbose —integer (default: 0); sets the level of verbosity. Set to 0 by default, which means quiet.

EXAMPLES:

Given a complete bipartite graph kK, ,,, the maximum out-degree of an optimal orientation is [n’f;‘n—‘ :

sage: g = graphs.CompleteBipartiteGraph(3,4)

sage: o = g.minimum_outdegree_orientation ()
sage: max (o.out_degree()) == ceil ((4%3)/(3+4))
True

REFERENCES:

minor (H, solver=None, verbose=0)

Return the vertices of a minor isomorphic to H in the current graph.

We say that a graph G has a H-minor (or that it has a graph isomorphic to H as a minor), if forall h € H,
there exist disjoint sets S, C V(G) such that once the vertices of each S;, have been merged to create a
new graph G’, this new graph contains H as a subgraph.

For more information, see the Wikipedia article Minor_(graph_theory).
INPUT:

e H — The minor to find for in the current graph.
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* solver — (default: None); specify a Linear Program (LP) solver to be used. If set to None, the
default one is used. For more information on LP solvers and which default solver is used, see the
method solve () of the class MixedIntegerLinearProgram.

* verbose — integer (default: 0); sets the level of verbosity. Set to 0 by default, which means quiet.
OUTPUT:
A dictionary associating to each vertex of H the set of vertices in the current graph representing it.
ALGORITHM:
Mixed Integer Linear Programming
COMPLEXITY:

Theoretically, when H is fixed, testing for the existence of a H-minor is polynomial. The known algo-
rithms are highly exponential in H, though.

Note: This function can be expected to be very slow, especially where the minor does not exist.

EXAMPLES:

Trying to find a minor isomorphic to K in the 4 x 4 grid:

sage: g = graphs.GridGraph([4,4])

sage: h = graphs.CompleteGraph (4)

sage: L = g.minor (h)

sage: gg = g.subgraph(flatten(L.values(), max_level = 1))

sage: _ = [gg.merge_vertices(l) for 1 in L.values() if len(l)>1]
sage: gg.is_isomorphic (h)

True

We can also try to prove this way that the Petersen graph is not planar, as it has a K5 minor:

sage: g = graphs.PetersenGraph ()
sage: K5_minor = g.minor (graphs.CompleteGraph(5)) # long,,
—time

And even a K3 3 minor:

sage: K33_minor = g.minor (graphs.CompleteBipartiteGraph(3,3)) # long,,
—time

(It is much faster to use the linear-time test of planarity in this situation, though.)

As there is no cycle in a tree, looking for a K3 minor is useless. This function will raise an exception in
this case:

sage: g = graphs.RandomGNP (20, .5)

sage: g = g.subgraph(edges = g.min_spanning_tree())
sage: g.is_tree()
True

sage: L = g.minor (graphs.CompleteGraph(3))
Traceback (most recent call last):

ValueError: This graph has no minor isomorphic to H !

modular_decomposition ()
Return the modular decomposition of the current graph.
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Crash course on modular decomposition:

A module M of a graph G is a proper subset of its vertices such that for all u € V(G) — M,v,w € M the
relation u ~ v < u ~ w holds, where ~ denotes the adjacency relation in G. Equivalently, M C V(G)
is a module if all its vertices have the same adjacency relations with each vertex outside of the module
(vertex by vertex).

Hence, for a set like a module, it is very easy to encode the information of the adjacencies between the
vertices inside and outside the module — we can actually add a new vertex v, to our graph representing
our module M, and let vy be adjacent to w € V(G) — M if and only if some v € M (and hence all the
vertices contained in the module) is adjacent to u. We can now independently (and recursively) study the
structure of our module M and the new graph G — M + {vps}, without any loss of information.

Here are two very simple modules :

* A connected component C' (or the union of some —but not all- of them) of a disconnected graph G,
for instance, is a module, as no vertex of C' has a neighbor outside of it.

* An anticomponent C' (or the union of some —but not all- of them) of an non-anticonnected graph G,
for the same reason (it is just the complement of the previous graph !).

These modules being of special interest, the disjoint union of graphs is called a Parallel composition,
and the complement of a disjoint union is called a Series composition. A graph whose only modules are
singletons is called Prime.

For more information on modular decomposition, in particular for an explanation of the terms “Parallel,”
“Prime” and “Series,” see the Wikipedia article Modular_decomposition.

You may also be interested in the survey from Michel Habib and Christophe Paul entitled “A survey on
Algorithmic aspects of modular decomposition” [HabPaul0].

OUTPUT:
A pair of two values (recursively encoding the decomposition) :
* The type of the current module :
- "PARALLEL"
— "PRIME"
— "SERIES"

* The list of submodules (as list of pairs (type, list), recursively...) or the vertex’s name if the
module is a singleton.

EXAMPLES:
The Bull Graph is prime:

sage: graphs.BullGraph () .modular_decomposition ()
(PRIME, [1, 2, 0, 3, 4])

The Petersen Graph too:

sage: graphs.PetersenGraph () .modular_decomposition ()
(PRIME, [1, 4, 5, 0, 3, 7, 2, 8, 9, 6])

This a clique on 5 vertices with 2 pendant edges, though, has a more interesting decomposition

sage: g = graphs.CompleteGraph (5)
sage: g.add_edge (0,5)
sage: g.add_edge (0, 6)

(continues on next page)
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sage: g.modular_decomposition ()
(SERIES, [ (PARALLEL, [ (SERIES, [4, 3, 2, 1]1), 5, 61), 01)

ALGORITHM:

This function uses python implementation of algorithm published by Marc Tedder, Derek Corneil, Michel
Habib and Christophe Paul [TedCorHabPaulOS].

See also:
e is_prime () — Tests whether a graph is prime.

REFERENCE:

odd_girth()
Returns the odd girth of self.

The odd girth of a graph is defined as the smallest cycle of odd length.
OUTPUT:

The odd girth of self.

EXAMPLES:

The McGee graph has girth 7 and therefore its odd girth is 7 as well:

sage: G = graphs.McGeeGraph ()
sage: G.odd_girth{()
7

Any complete graph on more than 2 vertices contains a triangle and has thus odd girth 3:

sage: G = graphs.CompleteGraph (10)
sage: G.odd_girth{()
3

Every bipartite graph has no odd cycles and consequently odd girth of infinity:

sage: G = graphs.CompleteBipartiteGraph(100,100)
sage: G.odd_girth()
+Infinity

See also:
e girth () —computes the girth of a graph.

REFERENCES:

The property relating the odd girth to the coefficients of the characteristic polynomial is an old result from
algebraic graph theory see

orientations (implementation="c_graph’, data_structure=None, sparse=None)
Return an iterator over orientations of self.

An orientation of an undirected graph is a directed graph such that every edge is assigned a direction.
Hence there are 2° oriented digraphs for a simple graph with s edges.

INPUT:
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e data_structure —oneof "sparse", "static_sparse", or "dense"; see the documenta-
tion of Graph or DiGraph; default is the data structure of self

e sparse - boolean (default: None); sparse=True is an alias for
data_structure="sparse", and sparse=False is an alias for
data_structure="dense". By default (None), guess the most suitable data structure.

Warning: This always considers multiple edges of graphs as distinguishable, and hence, may have

repeated digraphs.
EXAMPLES:
sage: G = Graph([[1,2,3], [(L, 2, 'a'), (1, 3, '"b')1]l, format='vertices_and_
—edges')
sage: it = G.orientations()
sage: D = next (it)

sage: D.edges|()

[(1, 2, 'a"y, (1, 3, 'b")]
sage: D = next (it)

sage: D.edges|()

[(1, 2, 'a"y, (3, 1, 'b")]

pathwidth (k=None, certificate=False, algorithm="BAB’, verbose=False, max_prefix_length=20,
max_prefix_number=1000000)
Computes the pathwidth of self (and provides a decomposition)

INPUT:

* k (integer) — the width to be considered. When k is an integer, the method checks that the graph has
pathwidth < k. If k is None (default), the method computes the optimal pathwidth.

* certificate — whether to return the path-decomposition itself.
* algorithm— (default: "BAB") Specify the algorithm to use among

— "BAB" — Use a branch-and-bound algorithm. This algorithm has no size restriction but could take
a very long time on large graphs. It can also be used to test is the input graph has pathwidth < k,
in which cas it will return the first found solution with width < kis certificate==True.

— exponential — Use an exponential time and space algorithm. This algorithm only works of
graphs on less than 32 vertices.

— MILP - Use a mixed integer linear programming formulation. This algorithm has no size restric-
tion but could take a very long time.

verbose (boolean) — whether to display information on the computations.

* max_prefix_length — (default: 20) limits the length of the stored prefixes to prevent storing too
many prefixes. This parameter is used only when algorithm=="BAB".

* max_prefix_number — (default: 10¥**6) upper bound on the number of stored prefixes used to
prevent using too much memory. This parameter is used only when algorithm=="BAB".

OUTPUT:

Return the pathwidth of self. When k is specified, it returns False when no path-decomposition
of width < k exists or True otherwise. When certificate=True, the path-decomposition is also
returned.

See also:
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* Graph.treewidth () —computes the treewidth of a graph

* vertex separation () —computes the vertex separation of a (di)graph

EXAMPLES:
The pathwidth of a cycle is equal to 2:

sage: g = graphs.CycleGraph (6)

sage: g.pathwidth ()

2

sage: pw, decomp = g.pathwidth(certificate=True)
sage: decomp.vertices()

({1, 2, 5}, {2, 3, 4}, {0, 1, 5}, {2, 4, 5}]

The pathwidth of a Petersen graph is 5:

sage: g = graphs.PetersenGraph ()
sage: g.pathwidth ()

5

sage: g.pathwidth (k=2)
False

sage: g.pathwidth (k=6)
True

sage: g.pathwidth(k=6, certificate=True)
(True, Graph on 5 vertices)

perfect_matchings (labels=False)
Return an iterator over all perfect matchings of the graph.

ALGORITHM:

Choose a vertex v, then recurse through all edges incident to v, removing one edge at a time whenever an
edge is added to a matching.

INPUT:

e labels — boolean (default: False); when True, the edges in each perfect matching are triples
(containing the label as the third element), otherwise the edges are pairs.

See also:
matching/()
EXAMPLES:

sage: G=graphs.GridGraph([2,3])
sage: list (G.perfect_matchings

))

_ (
(eeeo, 0y, (0, 1)), €0, 2), (1, 2)), (L, 0), (1, 1))1,
(e, 1y, 0, 2)), (1, 1), (1, 2)), (0O, 0), (1, 0))]I,
(e, 1y, (1, 1)), 0, 2), (1, 2)), (O, 0), (1, 0))]1]

sage: G = graphs.CompleteGraph (4)
sage: list(G.perfect_matchings (labels=True))
[[(O, 1, None), (2, 3, None)],

[(O, 2, None), (1, 3, None)l,

[(O, 3, None), (1, 2, None)l]

sage: G = Graph([[1,-1,'a']l, [2,-2, 'b'l, [1,-2,'x'], [2,-1,'y"]])
sage: list (G.perfect_matchings (labels=True))
(r(=2, 1, 'x"), (-1, 2, 'v")1, [ (-2, 2, 'b"), (-1, 1, 'a')ll

(continues on next page)
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sage: G = graphs.CompleteGraph (8)

sage: mpc = G.matching_polynomial () .coefficients (sparse=False) [0]
sage: len(list (G.perfect_matchings())) == mpc
True
sage: G = graphs.PetersenGraph () .copy (immutable=True)
sage: list (G.perfect_matchings())

[(0(0, 1), (2, 3), (4, 9, (5, 7), (6, 8)1,

(0, 1), (2, 7y, (3, 4), (5, 8), (6, 91,

[0, 4), (1, 2), (3, 8), (5 7)), (6, 91,

(o, 4), (1, 6), (2, 3), (5, 8), (7, 91,

[0, 5), (1, 2), (3, 4), (6, 8), (7, 91,

[ (0, 5) (1, 6) (2, 1) (3, 8) (4, 9)17]

’

~

’

sage: list (Graph() .perfect_matchings())

sage: G = graphs.CompleteGraph (5)
sage: list (G.perfect_matchings())

random_orientation (G)

Return a random orientation of a graph G.

An orientation of an undirected graph is a directed graph such that every edge is assigned a direction.
Hence there are 2™ oriented digraphs for a simple graph with m edges.

INPUT:
* G- aGraph.
EXAMPLES:

sage: from sage.graphs.orientations import random_orientation
sage: G = graphs.PetersenGraph ()

sage: D = random_orientation (G)

sage: D.order () == G.order(), D.size() == G.size()

(True, True)

See also:

e orientations ()

random_spanning_tree (output_as_graph=~False)

Return a random spanning tree of the graph.

This uses the Aldous-Broder algorithm (/Broder89], [Aldous90]) to generate a random spanning tree with
the uniform distribution, as follows.

Start from any vertex. Perform a random walk by choosing at every step one neighbor uniformly at random.
Every time a new vertex j is met, add the edge (4, j) to the spanning tree, where i is the previous vertex in
the random walk.

INPUT:
* output_as_graph — boolean (default: False); whether to return a list of edges or a graph

See also:
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spanning_trees_count () and spanning trees ()

EXAMPLES:

sage: G = graphs.TietzeGraph()

sage: G.random_spanning_tree (output_as_graph=True)
Graph on 12 vertices

sage: rg = G.random_spanning_tree(); rg # random

~ 0~

~

~
~

~
~

~
~

~
~

~ 0~
— ~
~

~
~
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~
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~

sage: Graph(rg) .is_tree()
True

A visual example for the grid graph:

sage: G = graphs.Grid2dGraph (6, 6)
sage: pos = G.get_pos()

sage: T = G.random_spanning_tree (True)
sage: T.set_pos (pos)

sage: T.show(vertex_labels=False)

rank_decomposition (G, verbose=False)
Compute an optimal rank-decomposition of the given graph.

This function is available as a method of the Graph class. See rank_decomposition.

INPUT:
* verbose —boolean (default: False); whether to display progress information while computing the
decomposition
OUTPUT:

A pair (rankwidth, decomposition_tree), where rankwidth is a numerical value and
decomposition_tree is a ternary tree describing the decomposition (cf. the module’s documen-
tation).

EXAMPLES:

sage: from sage.graphs.graph decompositions.rankwidth import rank_
—decomposition

sage: g = graphs.PetersenGraph ()

sage: rank_decomposition (g)

(3, Graph on 19 vertices)

On more than 32 vertices:

sage: g = graphs.RandomGNP (40, .5)
sage: rank_decomposition (g)
Traceback (most recent call last):

(continues on next page)
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RuntimeError: the rank decomposition cannot be computed on graphs of >= 32
—vertices

The empty graph:

sage: g = Graph()
sage: rank_decomposition (g)
(0, Graph on 0 vertices)

seidel_adjacency_matrix (vertices=None)
Return the Seidel adjacency matrix of self.

Returns J — I — 2A, for A the (ordinary) ad jacency matrix of self, I the identity matrix, and J
the all-1 matrix. It is closely related to t wograph ().

The matrix returned is over the integers. If a different ring is desired, use either the sage .matrix.
matrix0.Matrix.change_ring () method or the matrix () function.

INPUT:

* vertices - list of vertices (default: None); the ordering of the vertices defining how they should
appear in the matrix. By default, the ordering given by vertices () is used.

EXAMPLES:

sage: G = graphs.CycleGraph(5)

sage: G = G.disjoint_union (graphs.CompleteGraph (1))
sage: G.seldel_adjacency_matrix () .minpoly ()

x"2 - 5

seidel_switching (s, inplace=True)
Return the Seidel switching of self w.r.t. subset of vertices s.

Returns the graph obtained by Seidel switching of self with respect to the subset of vertices s. This is
the graph given by Seidel adjacency matrix DS D, for S the Seidel adjacency matrix of self, and D the
diagonal matrix with -1s at positions corresponding to s, and 1s elsewhere.

INPUT:

e s —alist of vertices of self.

e inplace — boolean (default: True); whether to do the modification inplace, or to return a copy of
the graph after switching.

EXAMPLES:

sage: G = graphs.CycleGraph (5)

sage: G G.disjoint_union (graphs.CompleteGraph(1l))

sage: G.seidel_switching([(0,1), (1,0), (0,0)1)
G
5
G

sage: .seidel_adjacency_matrix () .minpoly ()
X2 -
sage:
True

.1s_connected()

spanning_ trees ()
Returns a list of all spanning trees.

If the graph is disconnected, returns the empty list.
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Uses the Read-Tarjan backtracking algorithm /R775].
EXAMPLES:

sage: G = Graph([(1,2),(1,2),
sage: len(G.spanning_trees())
8

sage: G.spanning_trees_count ()
8

sage: G = Graph(I[(1,2),(2,3),
sage: len(G.spanning_trees())

(1,3),(1,3),(2,3),(1,4)], multiedges=True)

(3,1),(3,4),(4,5),(4,5), (4,6) ], multiedges=True)

6
sage: G.spanning_trees_count ()
6
See also:
* spanning_trees_count () — counts the number of spanning trees.
* random_spanning_tree () —returns a random spanning tree.
REFERENCES:

sparse6_string ()
Return the sparse6 representation of the graph as an ASCII string.

Only valid for undirected graphs on 0 to 262143 vertices, but loops and multiple edges are permitted.

Note: As the sparse6 format only handles graphs whose vertex set is {0,...,n — 1}, a relabelled
copy of your graph will be encoded if necessary.

EXAMPLES:

sage: G = graphs.BullGraph ()
sage: G.sparseb6_string/()
':Dalen’

sage: G = Graph(loops=True, multiedges=True, data_structure="sparse")
sage: Graph(':?', data_structure="sparse") ==
True

spgr_tree (G, algorithm="Hopcroft_Tarjan’, solver=None, verbose=0)
Return an SPQR-tree representing the triconnected components of the graph.

An SPQR-tree is a tree data structure used to represent the triconnected components of a biconnected
(multi)graph and the 2-vertex cuts separating them. A node of a SPQR-tree, and the graph associated with
it, can be one of the following four types:

» "S" —the associated graph is a cycle with at least three vertices. "S" stands for series.

e "P" —the associated graph is a dipole graph, a multigraph with two vertices and three or more edges.
"p" stands for parallel.

* "Q" — the associated graph has a single real edge. This trivial case is necessary to handle the graph
that has only one edge.

e "R" —the associated graph is a 3-connected graph that is not a cycle or dipole. "R" stands for rigid.
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This method decomposes a biconnected graph into cycles, cocycles, and 3-connected blocks summed
over cocycles, and arranges them as a SPQR-tree. More precisely, it splits the graph at each of its 2-
vertex cuts, giving a unique decomposition into 3-connected blocks, cycles and cocycles. The cocycles
are dipole graphs with one edge per real edge between the included vertices and one additional (virtual)
edge per connected component resulting from deletion of the vertices in the cut. See the Wikipedia article
SPQR_tree.

INPUT:
* G — the input graph
* algorithm - string (default: "Hopcroft_Tarjan"); the algorithm to use among:

— "Hopcroft_Tarjan" (default) — use the algorithm proposed by Hopcroft and Tar-
jan in [Hopcroft1973] and later corrected by Gutwenger and Mutzel in [Gut2001]. See
TriconnectivitySPQOR.

— "cleave" —using method cleave ()

* solver — string (default: None); specifies a Linear Program (LP) solver to be used. If set to None,
the default one is used. For more information on LP solvers and which default solver is used, see
the method sage .numerical .mip.MixedIntegerLinearProgram.solve () of theclass
sage.numerical .mip.MixedIntegerLinearProgram.

* verbose —integer (default: 0); sets the level of verbosity. Set to 0 by default, which means quiet.

OUTPUT: SPQR-tree atree whose vertices are labeled with the block’s type and the subgraph of three-
blocks in the decomposition.

EXAMPLES:

sage: from sage.graphs.connectivity import spgr_tree
sage: G = Graph(2)
sage: for i in range(3):

e G.add_clique ([0, 1, G.add_vertex (), G.add_vertex()])
sage: Tree = spqr_tree(G)

sage: Tree.order ()

4

sage: K4 = graphs.CompleteGraph (4)

sage: all(u[l].is_isomorphic(K4) for u in Tree if u[0] == 'R")
True

sage: from sage.graphs.connectivity import spqgr_tree_to_graph
sage: G.is_isomorphic (spgr_tree_to_graph (Tree))

sage: G = Graph(2)
sage: for i1 in range(3):

e G.add_path ([0, G.add_vertex(), G.add_vertex(), 1])
sage: Tree = spqgr_tree (G)

sage: Tree.order ()

4

sage: C4 = graphs.CycleGraph (4)

sage: all(uf[l].is_isomorphic(C4) for u in Tree if u[0] == 'S")
True

sage: G.is_isomorphic (spgr_tree_to_graph (Tree))

True

sage: G.allow_multiple_edges (True)
sage: G.add_edges (G.edge_iterator())
sage: Tree = spqgr_tree(G)

(continues on next page)
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sage: Tree.order ()

13

sage: all(uf[l].is_isomorphic(C4) for u in Tree if u[0] == 'S")
True

sage: G.is_isomorphic (spgr_tree_to_graph(Tree))

True

sage: G = graphs.CycleGraph (6)

sage: Tree = spqr_tree (G)

sage: Tree.order ()

1

sage: G.is_isomorphic (spgr_tree_to_graph (Tree))
True

sage: G.add_edge (0, 3)

sage: Tree = spqgr_tree(G)

sage: Tree.order ()

3

sage: G.is_isomorphic (spgr_tree_to_graph (Tree))
True

sage: G = Graph('L1CG{OR?GBoMw?")
sage: T = spqgr_tree(G, algorithm="Hopcroft Tarjan")
sage: G.is_isomorphic(spgr_tree_to_graph(T))

True

sage: T2 = spqgr_tree(G, algorithm='cleave')
sage: G.is_isomorphic(spqgr_tree_to_graph(T2))
True

sage: G = Graph([(0, 1)], multiedges=True)
sage: T = spqgr_tree(G, algorithm='cleave')

sage: T.vertices()

[('Q', Multi-graph on 2 vertices)]

sage: G.is_isomorphic(spgr_tree_to_graph(T))

True

sage: T = spqgr_tree(G, algorithm='Hopcroft Tarjan')
sage: T.vertices()

[('Q', Multi-graph on 2 vertices)]

sage: G.add_edge (0, 1)

sage: spgr_tree (G, algorithm='cleave') .vertices|()
[('P', Multi-graph on 2 vertices)]

sage: from collections import Counter

sage: G = graphs.PetersenGraph ()

sage: T = G.spqgr_tree (algorithm="Hopcroft_Tarjan")
sage: Counter (u[0] for u in T)

Counter ({'R': 1})

sage: T = G.spqr_tree(algorithm="cleave")

sage: Counter (u[0] for u in T)

Counter ({'R': 1})

sage: for u,v in G.edges(labels=False, sort=False):
et G.add_path([u, G.add_vertex(), G.add_vertex(), v])
sage: T = G.spqgr_tree(algorithm="Hopcroft_Tarjan")
sage: Counter(u[0] for u in T)

Counter ({'P': 15, 'S': 15, 'R': 1})

sage: T = G.spqgr_tree(algorithm="cleave")

sage: Counter(u[0] for u in T)

Counter ({'P': 15, 'S': 15, 'R': 1})

(continues on next page)
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sage: for u,v in G.edges(labels=False, sort=False):

et G.add_path([u, G.add_vertex (), G.add_vertex(), v])
sage: T = G.spqr_tree(algorithm="Hopcroft_ Tarjan")

sage: Counter (u[0] for u in T)

Counter({'s': 75, 'P': 60, 'R': 1})

sage: T = G.spgr_tree (algorithm="cleave") # long time

sage: Counter (u[0] for u in T) # long time
Counter({'s': 75, 'P': 60, 'R': 1})

strong_orientation ()

Returns a strongly connected orientation of the current graph.

An orientation of an undirected graph is a digraph obtained by giving an unique direction to each of its
edges. An orientation is said to be strong if there is a directed path between each pair of vertices. See also
the Wikipedia article Strongly_connected_component.

If the graph is 2-edge-connected, a strongly connected orientation can be found in linear time. If the
given graph is not 2-connected, the orientation returned will ensure that each 2-connected component has
a strongly connected orientation.

OUTPUT:

A digraph representing an orientation of the current graph.

Note:
* This method assumes the graph is connected.

* This algorithm works in O(m).

EXAMPLES:

For a 2-regular graph, a strong orientation gives to each vertex an out-degree equal to 1:

sage: g = graphs.CycleGraph (5)
sage: g.strong_orientation () .out_degree ()
(1, 1, 1, 1, 1]

The Petersen Graph is 2-edge connected. It then has a strongly connected orientation:

sage: g = graphs.PetersenGraph ()

sage: o = g.strong_orientation()
sage: len(o.strongly_connected_components())
1

The same goes for the CubeGraph in any dimension

sage: all (len(graphs.CubeGraph (i) .strong_orientation () .strongly_connected_
—components()) == 1 for i in range(2,6))
True

A multigraph also has a strong orientation

sage: g = Graph([(1,2),(1,2)], multiedges=True)
sage: g.strong_orientation()
Multi-digraph on 2 vertices
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strong_orientations_iterator (G)
Returns an iterator over all strong orientations of a graph G.

A strong orientation of a graph is an orientation of its edges such that the obtained digraph is strongly
connected (i.e. there exist a directed path between each pair of vertices).

ALGORITHM:

It is an adaptation of the algorithm published in [CGMRV16]. It runs in O(mn) amortized time, where m
is the number of edges and n is the number of vertices. The amortized time can be improved to O(m) with
a more involved method. In this function, first the graph is preprocessed and a spanning tree is generated.
Then every orientation of the non-tree edges of the graph can be extended to at least one new strong
orientation by orienting properly the edges of the spanning tree (this property is proved in [CGMRV16]).
Therefore, this function generates all partial orientations of the non-tree edges and then launches a helper
function corresponding to the generation algorithm described in [CGMRV16]. In order to avoid trivial
symetries, the orientation of an arbitrary edge is fixed before the start of the enumeration process.

INPUT:
* G —an undirected graph.
OUTPUT:

* an iterator which will produce all strong orientations of this graph.

Note: Works only for simple graphs (no multiple edges). To avoid symetries an orientation of an arbitrary
edge is fixed.

EXAMPLES:

A cycle has one possible (non-symmetric) strong orientation:

sage: g = graphs.CycleGraph (4)

sage: it = g.strong_orientations_iterator ()
sage: len(list(it))
1

A tree cannot be strongly oriented:

sage: g = graphs.RandomTree (100)
sage: len(list(g.strong_orientations_iterator()))
0

Neither can be a disconnected graph:

sage: g = graphs.CompleteGraph (6)

sage: g.add_vertex(7)

sage: len(list(g.strong_orientations_iterator()))
0

to_directed (implementation="c_graph’, data_structure=None, sparse=None)
Return a directed version of the graph.

A single edge becomes two edges, one in each direction.
INPUT:

e data_structure —one of "sparse", "static_sparse", or "dense". See the documen-
tation of Graph or DiGraph.
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e sparse — boolean (default: None); sparse=True is an alias for
data_structure="sparse", and sparse=False is an alias for
data_structure="dense".

EXAMPLES:

sage: graphs.PetersenGraph() .to_directed()
Petersen graph: Digraph on 10 vertices

to_undirected()

Since the graph is already undirected, simply returns a copy of itself.

EXAMPLES:

sage: graphs.PetersenGraph () .to_undirected()
Petersen graph: Graph on 10 vertices

topological_minor (H, vertices=False, paths=False, solver=None, verbose=0)

Return a topological H-minor from self if one exists.

We say that a graph G has a topological H-minor (or that it has a graph isomorphic to H as a topological
minor), if G contains a subdivision of a graph isomorphic to H (i.e. obtained from H through arbitrary
subdivision of its edges) as a subgraph.

For more information, see the Wikipedia article Minor_(graph_theory).
INPUT:
* H - The topological minor to find in the current graph.

¢ solver — (default: None); specify a Linear Program (LP) solver to be used. If set to None, the
default one is used. For more information on LP solvers and which default solver is used, see the
method solve of the class MixedIntegerLinearProgram.

* verbose —integer (default: 0); sets the level of verbosity. Set to 0 by default, which means quiet.
OUTPUT:

The topological H-minor found is returned as a subgraph M of self, such that the vertex v of M that
represents a vertex h € H has h as a label (see get_vertex and set_vertex), and such that every
edge of M has as a label the edge of H it (partially) represents.

If no topological minor is found, this method returns False.
ALGORITHM:

Mixed Integer Linear Programming.

COMPLEXITY:

Theoretically, when H is fixed, testing for the existence of a topological H-minor is polynomial. The
known algorithms are highly exponential in H, though.

Note: This function can be expected to be very slow, especially where the topological minor does not
exist.

(CPLEX seems to be much more efficient than GLPK on this kind of problem)

EXAMPLES:

Petersen’s graph has a topological K4-minor:
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sage: g = graphs.PetersenGraph ()
sage: g.topological_minor (graphs.CompleteGraph(4))
Subgraph of (Petersen graph): Graph on

And a topological K3 3-minor:

sage: g.topological_minor (graphs.CompleteBipartiteGraph(3,3))
Subgraph of (Petersen graph): Graph on

And of course, a tree has no topological C3-minor:

sage: g = graphs.RandomGNP (15, .3)

sage: g = g.subgraph(edges = g.min_spanning_tree())
sage: g.topological_minor (graphs.CycleGraph(3))
False

treewidth (k=None, certificate=False, algorithm=None)
Computes the tree-width of G (and provides a decomposition)

INPUT:

* k —integer (default: None); indicates the width to be considered. When k is an integer, the method
checks that the graph has treewidth < k. If k is None (default), the method computes the optimal
tree-width.

e certificate —boolean (default: False); whether to return the tree-decomposition itself.

* algorithm-—whethertouse "sage" or "tdlib" (requires the installation of the ‘tdlib’ package).
The default behaviour is to use ‘tdlib’ if it is available, and Sage’s own algorithm when it is not.

OUTPUT:

g.treewidth () returns the treewidth of g. When k is specified, it returns False
when no tree-decomposition of width < k exists or True otherwise. When
certificate=True, the tree-decomposition is also returned.

ALGORITHM:

This function virtually explores the graph of all pairs (vertex_cut,cc), where
vertex_cut is avertex cut of the graph of cardinality < k+1, and connected_component
is a connected component of the graph induced by G-vertex_cut.

We deduce that the pair (vertex_cut, cc) is feasible with tree-width k if cc is empty, or
if a vertex v from vertex_cut can be replaced with a vertex from cc, such that the pair
(vertex_cut+v, cc—v) is feasible.

Note: The implementation would be much faster if cc, the argument of the recursive function, was a
bitset. It would also be very nice to not copy the graph in order to compute connected components, for this
is really a waste of time.

See also:

path_decomposition () computes the pathwidth of a graph. See also the vertex separation
module.

EXAMPLES:

The PetersenGraph has treewidth 4:

1.2. Undirected graphs 299



Sage Reference Manual: Graph Theory, Release 8.6

sage: graphs.PetersenGraph() .treewidth ()

4

sage: graphs.PetersenGraph() .treewidth(certificate=True)
Tree decomposition: Graph on 6 vertices

The treewidth of a 2d grid is its smallest side:

sage: graphs.Grid2dGraph (2,5) .treewidth ()
2
sage: graphs.Grid2dGraph(3,5) .treewidth ()
3

tutte_polynomial (G, edge_selector=None, cache=None)

Return the Tutte polynomial of the graph G.
INPUT:

* edge_selector (optional; method) this argument allows the user to specify his own heuristic for
selecting edges used in the deletion contraction recurrence

* cache — (optional; dict) a dictionary to cache the Tutte polynomials generated in the recursive pro-
cess. One will be created automatically if not provided.

EXAMPLES:

The Tutte polynomial of any tree of order n is ™1

sage: all(T.tutte_polynomial () == x*x+x9 for T in graphs.trees(10))
True

The Tutte polynomial of the Petersen graph is:

sage: P = graphs.PetersenGraph()

sage: P.tutte_polynomial ()

X"9 + 6xx78 + 21%x"7 + 56xx"6 + 124x75%xy + y*6 + 114xx"5 + T0xx"4xy
+ 30%x"3xy"2 + 15xx72xy"3 + 10*x*xy™4 + 9xy"5 + 170%x"4 + 170%x"3xy

+ 105%xx"2%y"2 + 65xx*xy"3 + 35xy"4 + 180xx"3 + 240+*x"2xy + 171lxxxy"2
+ T5xy"3 + 120%x"2 + 168+xxy + 84xy"2 + 36%xx + 36%xy

The Tutte polynomial of G evaluated at (1,1) is the number of spanning trees of G:

sage: G = graphs.RandomGNP (10,0.6)
sage: G.tutte_polynomial() (1,1) == G.spanning_trees_count ()
True

Given that T'(x, y) is the Tutte polynomial of a graph G with n vertices and ¢ connected components, then
(—=1)"=¢z*T(1 — z,0) is the chromatic polynomial of G.

sage: G = graphs.OctahedralGraph ()
sage: T G.tutte_polynomial ()
sage: R = PolynomialRing(ZZ, 'x')
R
G

sage: ((-1)"5#%x+T(1-x,0)) .factor ()
(x = 2) * (x = 1) * x * (X"3 = 9%xx"2 + 29%x — 32)
sage: .chromatic_polynomial () .factor ()

)
(X = 2) » (x — 1) » X * (x"3 = 9%x72 + 29%x — 32)

two_factor_petersen (solver=None, verbose=0)

Return a decomposition of the graph into 2-factors.
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Petersen’s 2-factor decomposition theorem asserts that any 2r-regular graph G can be decomposed into
2-factors. Equivalently, it means that the edges of any 2r-regular graphs can be partitionned in r sets
C1,...,C, such that for all 4, the set C} is a disjoint union of cycles (a 2-regular graph).

As any graph of maximal degree A can be completed into a regular graph of degree 2 [%] this result also

means that the edges of any graph of degree A can be partitionned in r = 2 [%1 sets C'p, . . ., C, such that
for all 4, the set C; is a graph of maximal degree 2 (a disjoint union of paths and cycles).
INPUT:

¢ solver — (default: None); specify a Linear Program (LP) solver to be used. If set to None, the
default one is used. For more information on LP solvers and which default solver is used, see the
method solve of the class MixedIntegerLinearProgram.

* verbose —integer (default: 0); sets the level of verbosity. Set to O by default, which means quiet.

EXAMPLES:

The Complete Graph on 7 vertices is a 6-regular graph, so it can be edge-partitionned into 2-regular graphs:

sage: g = graphs.CompleteGraph (7)

sage: classes = g.two_factor_petersen()
sage: for c in classes:

et gg = Graph()

e gg.add_edges (c)

et print (max (gg.degree () ) <=2)
True

True

True

sage: Set (set(classes[0]) | set(classes[l]) | set(classes[2])) .cardinality ()
—== g.size()

True

sage: g = graphs.CirculantGraph (24, [7, 1171)

sage: cl = g.two_factor_petersen()

sage: g.plot (edge_colors={'black':cl[0], 'red':cl[11})
Graphics object consisting of 73 graphics primitives

twograph ()
Return the two-graph of self

Returns the two-graph with the triples 7' = {t € (%) : |(4) N E| odd} where V and E are vertices and
edges of self, respectively.

EXAMPLES:

sage: p=graphs.PetersenGraph ()

sage: p.twograph ()

Incidence structure with 10 points and 60 blocks
sage: p=graphs.chang_graphs ()

sage: T8 = graphs.CompleteGraph(8) .line_graph()
sage: C = T8.seidel_switching([ (0, 1,None), (2,3,None), (4,5,None), (6,7,None) ],
—inplace=False)

sage: T8.twograph ()==C.twograph ()

True

sage: T8.is_isomorphic (C)

False

See also:
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e descendant () — computes the descendant graph of the two-graph of self at a vertex

* twograph_descendant () — ditto, but much faster.

vertex_cover (algorithm="Cliquer’, value_only=False, reduction_rules=True, solver=None, ver-
bosity=0)
Return a minimum vertex cover of self represented by a set of vertices.

A minimum vertex cover of a graph is a set S of vertices such that each edge is incident to at least one
element of S, and such that .S is of minimum cardinality. For more information, see the Wikipedia article
Vertex_cover.

Equivalently, a vertex cover is defined as the complement of an independent set.
As an optimization problem, it can be expressed as follows:
Minimize : Z by
veG
Such that : V(u,v) € G.edges(),b, + b, >1
Va € G, b, is a binary variable
INPUT:

* algorithm — string (default: "Cliquer"). Indicating which algorithm to use. It can be one of
those values.

— "Cliquer" will compute a minimum vertex cover using the Cliquer package.
— "MILP" will compute a minimum vertex cover through a mixed integer linear program.

— "mcgd" will use the MCQD solver (http://www.sicmm.org/~konc/maxclique/). Note that the
MCQD package must be installed.

* value_only —boolean (default: False); if set to True, only the size of a minimum vertex cover
is returned. Otherwise, a minimum vertex cover is returned as a list of vertices.

e reduction_rules — (default: True); specify if the reductions rules from kernelization must be
applied as pre-processing or not. See [ACFLSS04] for more details. Note that depending on the
instance, it might be faster to disable reduction rules.

* solver — (default: None); specify a Linear Program (LP) solver to be used. If set to None, the
default one is used. For more information on LP solvers and which default solver is used, see the
method solve of the class MixedIntegerLinearProgram.

* verbosity — non-negative integer (default: 0); set the level of verbosity you want from the linear
program solver. Since the problem of computing a vertex cover is [N P-complete, its solving may take
some time depending on the graph. A value of O means that there will be no message printed by the
solver. This option is only useful if algorithm="MILP".

EXAMPLES:
On the Pappus graph:

sage: g = graphs.PappusGraph ()
sage: g.vertex_cover (value_only=True)
9

write_to_eps (filename, **options)
Write a plot of the graph to £ilename in eps format.

INPUT:

e filename — a string
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* x+xoptions — same layout options as layout ()

EXAMPLES:

sage: P = graphs.PetersenGraph ()
sage: P.write_to_eps (tmp_filename (ext="'.eps'"))

It is relatively simple to include this file in a LaTeX document. \usepackage{graphics} must
appear in the preamble, and \includegraphics{filename} will include the file. To compile the
document to pdf with pdflatex or xelatex the file needs first to be converted to pd £, for example

with ps2pdf filename.eps filename.pdf.

1.3 Directed graphs

This module implements functions and operations involving directed graphs. Here is what they can do

Graph basic operations:

layout_acyclic_dummy ()

Compute a (dummy) ranked layout so that all edges point upward.

layout_acyclic()

Compute a ranked layout so that all edges point upward.

reverse ()

Return a copy of digraph with edges reversed in direction.

reverse_edge ()

Reverse an edge.

reverse_edges ()

Reverse a list of edges.

out__degree_sequence ()

Return the outdegree sequence.

out_degree_iterator()

Same as degree_iterator, but for out degree.

out_degree ()

Same as degree, but for out degree.

in_degree_sequence ()

Return the indegree sequence of this digraph.

in degree_iterator ()

Same as degree_iterator, but for in degree.

in_degree()

Same as degree, but for in-degree.

neighbors_out ()

Return the list of the out-neighbors of a given vertex.

neighbor_out_iterator (

Return an iterator over the out-neighbors of a given vertex.

neighbors_in ()

Return the list of the in-neighbors of a given vertex.

neighbor_in_iterator ()

Return an iterator over the in-neighbors of vertex.

outgoing_edges ()

Return a list of edges departing from vertices.

outgoing_edge iterator

( Return an iterator over all departing edges from vertices

incoming_edges ()

Return a list of edges arriving at vertices.

incoming_edge_ iterator

( Return an iterator over all arriving edges from vertices

sources ()

Return the list of all sources (vertices without incoming edges) of this digraph.

sinks ()

Return the list of all sinks (vertices without outgoing edges) of this digraph.

to_undirected()

Return an undirected version of the graph.

to_directed()

Since the graph is already directed, simply returns a copy of itself.

is_directed()

Since digraph is directed, returns True.

dig6_string/()

Return the dig6 representation of the digraph as an ASCII string.

Paths and cycles:

all_paths_iterator()

Return an iterator over the paths of self.

all _simple_paths()

Return a list of all the simple paths of self starting with one of the given
vertices.

all _cycles_iterator()

Return an iterator over all the cycles of self starting with one of the given
vertices.

all _simple_cycles()

Return a list of all simple cycles of self.
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Representation theory:

] path_semigroup ()

Return the (partial) semigroup formed by the paths of the digraph.

Connectivity:

is_strongly connected(

Check whether the current DiGraph is strongly connected.

strongly_connected_comj

b Return shexdigraph lof the strongly connected components

strongly_connected comj

b Returh shesstionghdonrgcted components as a list of subgraphs.

strongly_connected_comj

p Return_thesstronglyiconnected-eomponent containing a given vertex

strongly_connected_compdReturn she)list of strongly connected components.
Return the immediate dominators of all vertices reachable from root.

i Retufh the strong articulation points of this digraph.

immediate_dominators ()

strong_articulation poj

Acyclicity:

is_directed_acyclic () | Check whether the digraph is acyclic or not.
Check whether the digraph is transitive or not.
Check whether the digraph is aperiodic or not.
Check whether the digraph is a tournament.
Return the period of the digraph.
Return the level set decomposition of the digraph.
h Retufh a list of all topological sorts of the digraph if it is acyclic

Return a topological sort of the digraph if it is acyclic

is_transitive ()

is_aperiodic()
is_tournament ()
period()

level sets ()
topological_sort_gener
topological_sort ()

Hard stuff:

] feedback_edge_set () \ Compute the minimum feedback edge (arc) set of a digraph

Miscellanous:

flow _polytope ()
degree_polynomial ()

Compute the flow polytope of a digraph
Return the generating polynomial of degrees of vertices in self.

1.3.1 Methods

class sage.graphs.digraph.DiGraph (data=None, pos=None, loops=None, for-
mat=None, weighted=None, implementa-
tion="c_graph’, data_structure="sparse’, ver-
tex_labels=True, name=None, multiedges=None, con-

vert_empty_dict_labels_to_None=None,

immutable=False)
Bases: sage.graphs.generic_graph.GenericGraph

sparse=True,

Directed graph.

A digraph or directed graph is a set of vertices connected by oriented edges. See also the Wikipedia article
Directed_graph. For a collection of pre-defined digraphs, see the digraph generators module.

A DiGraph object has many methods whose list can be obtained by typing g . <t ab> (i.e. hit the ‘tab’ key) or
by reading the documentation of digraph, generic_graph, and graph.
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INPUT:

By default, a Di Graph object is simple (i.e. no loops nor multiple edges) and unweighted. This can be easily

tuned with the appropriate flags (see below).

* data — can be any of the following (see the format argument):
1. DiGraph () — build a digraph on 0 vertices
2. DiGraph (5) —return an edgeless digraph on the 5 vertices 0,...,4

3. DiGraph ([list_of_vertices, list_of_edges]) - return a digraph with given ver-
tices/edges

To bypass auto-detection, prefer the more explicit DiGraph ([V, E],
format='vertices_and_edges').

4. DiGraph (list_of_edges) —return a digraph with a given list of edges (see documentation of
add_edges ()).

To bypass auto-detection, prefer the more explicit DiGraph (L, format='list_of_edges').

5. DiGraph ({1: [2,3,41, 3:
of its out-neighbors.

[4]}) —return a digraph by associating to each vertex the list

To bypass auto-detection, prefer the more explicit DiGraph (D, format='dict_of_lists').

6. DiGraph ({1: {2: 'a', 3: 'b'}, 3: {2: 'c'}}) —return a digraph by associ-
ating a list of out-neighbors to each vertex and providing its edge label.

To bypass auto-detection, prefer the more explicit DiGraph (D, format='dict_of_dicts").

For digraphs with multiple edges, you can provide a list of labels instead, e.g.: DiGraph ({1:
{z: ['al', 'a2'l, 3:['D"']}, 3:{2:['c']l}}).
7. DiGraph (a_matrix) —return a digraph with given (weighted) adjacency matrix (see documenta-

tion of ad jacency _matrix()).

To bypass auto-detection, prefer the more explicit DiGraph (M,
format='adjacency_matrix'). To take weights into  account, use
format='weighted_adjacency_matrix' instead.

8. DiGraph (a_nonsquare_matrix) — return a digraph with given incidence matrix (see docu-
mentation of 1ncidence matrix()).

To bypass auto-detection, prefer the more explicit
format='incidence_matrix').

DiGraph (M,

9. DiGraph ([V, f]) - return a digraph with a vertex set V and an edge wu,v when-
ever f(u,v) is True. Example: DiGraph ([ [1..10], lambda x,y: abs(x - y).
is_square()])

10. DiGraph ('FOCQ@?0CQ@_7?") — return a digraph from a dig6 string (see documentation of
dig6_string()).

11. DiGraph (another_digraph) — return a digraph from a Sage (di)graph, pygraphviz digraph,
NetworkX digraph, or igraph digraph.

* pos — dict (default: None); a positioning dictionary. For example, the spring layout from NetworkX for
the 5-cycle is:

{0: [-0.91679746, 0.88169588],
1: [ 0.47294849, 1.125 1,
2: [ 1.125 ,—0.12867615],

(continues on next page)
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(continued from previous page)

3: [ 0.12743933,-1.125 1,
4: [-1.125 ,—0.50118505]}

* name — string (default: None); gives the graph a name (e.g., name="complete’)

* loops — boolean (default: None); whether to allow loops (ignored if data is an instance of the DiGraph
class)

* multiedges —boolean (default: None); whether to allow multiple edges (ignored if data is an instance
of the DiGraph class)

* weighted — boolean (default: None); whether digraph thinks of itself as weighted or not. See self.
weighted ()

* format — string (default: None); if set to None, DiGraph tries to guess input’s format. To avoid
this possibly time-consuming step, one of the following values can be specified (see description above):

"int", "dig6", "rule", "list_of_edges", "dict_of_lists", "dict_of_dicts",
"adjacency_matrix", "weighted_adjacency_matrix", "incidence_matrix", "NX",
"igraph".

* sparse — boolean (default: True); sparse=True is an alias for data_structure="sparse",
and sparse=False is an alias for data_structure="dense"

e data_structure — string (default: "sparse"); one of the following (for more information, see
overview):

— "dense" —selects the dense_graph backend
— "sparse" —selects the sparse_graph backend

— "static_sparse" — selects the static sparse backend (this backend is faster than the
sparse backend and smaller in memory, and it is immutable, so that the resulting graphs can be used
as dictionary keys).

e immutable — boolean (default: False); whether to create a immutable digraph. Note that
immutable=True is actually a shortcut for data_structure="'static_sparse'.

e vertex_labels — boolean (default: True); whether to allow any object as a vertex (slower), or only
the integers 0, ...,n — 1, where n is the number of vertices.

e convert_empty_dict_labels_to_None — boolean (default: None); this arguments sets the de-
fault edge labels used by NetworkX (empty dictionaries) to be replaced by None, the default Sage edge
label. It is set to True iff a NetworkX graph is on the input.

EXAMPLES:

1. A dictionary of dictionaries:

sage: g = DiGraph({O: {1: 'x', 2: 'z', 3: 'a'}, 2: {5: 'out'}}); g
Digraph on 5 vertices

The labels (‘x’, ‘z’, ‘a’, ‘out’) are labels for edges. For example, ‘out’ is the label for the edge from 2 to 5.
Labels can be used as weights, if all the labels share some common parent.

2. A dictionary of lists (or iterables):

sage: g = DiGraph({O: [1, 2, 31, 2: [41}); g
Digraph on 5 vertices
sage: g = DiGraph({0: (1, 2, 3), 2: (4,)}); g
Digraph on 5 vertices
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3. A list of vertices and a function describing adjacencies. Note that the list of vertices and the function must
be enclosed in a list (i.e., [1ist of vertices, function]).

We construct a graph on the integers 1 through 12 such that there is a directed edge from ¢ to j if and only
if ¢ divides j:

sage: g = DiGraph([[1..12], lambda i,Jj: i != j and i.divides(3j)1])
sage: g.vertices()

(L, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]
sage: g.adjacency_matrix/()

(01 1 111111111]
(00010101010 1]
(00000100100 T1]
[00O0O0O0O0DO010001]
[00OO0O0OO0O0O0OO0OOT1O0 0]
[0OOOO0OO0OO0O0O0O0OOO0O01]
[00OO0OO0OO0OO0O0OO0OO0O0O0O0]
[00O0O0OO0OO0O0OO0OOO0OO0O0]
[0OO0OO0OO0OO0O0OO0OOGO0OO0O0]
[00OO0OO0OO0OO0O0OO0OOO0O0O0]
[00O0O0OO0OO0O0OO0OOO0OO0O0]
[0OOOO0OO0OO0O0OO0OOO0O0O0]

4. A Sage matrix: Note: If format is not specified, then Sage assumes a square matrix is an adjacency matrix,
and a nonsquare matrix is an incidence matrix.

* an adjacency matrix:

M = Matrix([[O, 1, 1, 1,
, 01,00, O, O, O, 01]); M
0]

sage:
‘%O,
0

o1,t0, o, 0, 0, 01,10, O, O, O,

o o o
o o o
=

0
1
0
0
0
0

O O O O+

(
[
(
(
[0 0 0]

sage: DiGraph (M)
Digraph on 5 vertices

sage:
[ 0
[ -1
[ 1
sage:
Digrap
sage:
True

M = Matrix ([[O0,1,
1 -1]
0 -1/2]

1/2 0]
G = DiGraph (M, sparse=True,weighted=True); G
h on 3 vertices
G.weighted ()

-11,0-1,0,-1/21,11,1/2,011)

; M

e an incid

ence matrix:

sage:
Digrap

M = Matrix (6, [-1,0,0,0,1,
-1, 0,0,0,0,01); M
0 0 1]
0 0 O
-1 0 0
1 -1 0
0o 1 -1
0 0 O
DiGraph (M)
h on 6 vertices

i,-1,0,0,0, 0,1,

]
]
]
]
]

71/ OI OI

0,0,1,

71/ OI

0,0,
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5. A digé6 string: Sage automatically recognizes whether a string is in dig6 format, which is a directed
version of graph6:

sage: D = DiGraph('IRAaDCIIOWEOKcPWAO')
sage: D
Digraph on 10 vertices

sage: D = DiGraph('IRAaDCIIOEOKcPWAO"')
Traceback (most recent call last):

RuntimeError: the string (IRAaDCIIOEOKcPWAo) seems corrupt: for n = 10, the
—string is too short

[

sage: D = DiGraph ("IRAaDCI'OWEOKcPWAO")
Traceback (most recent call last):

RuntimeError: the string seems corrupt: valid characters are
?Q@ABCDEFGHIJKLMNOPQRSTUVWXYZ [\]"_"abcdefghijklmnopgrstuvwxyz{ |}~

6. A NetworkX XDiGraph:

sage: import networkx

sage: g = networkx.MultiDiGraph({0: [1, 2, 31, 2: [4]})
sage: DiGraph (g)

Digraph on 5 vertices

7. A NetworkX digraph:

sage: import networkx

sage: g = networkx.DiGraph({O: [1, 2, 3], 2: [4]1})
sage: DiGraph (g)

Digraph on 5 vertices

8. An igraph directed Graph (see also igraph_graph ()):

sage: import igraph # optional - python_
—Iigraph
sage: g = igraph.Graph([(0,1), (0,2)], directed=True) # optional - python_
—Ilgraph
sage: DiGraph (g) # optional - python_
—igraph

Digraph on 3 vertices

If vertex_labels is True, the names of the vertices are given by the vertex attribute 'name’', if
available:

sage: g = igraph.Graph([(0,1), (0,2)], directed=True, vertex_attrs={'name':['a
—','"b'",'c']}) # optional - python_igraph
sage: DiGraph (g) .vertices|()

- # optional - python_igraph
[Va" VbV, lCV]
sage: g = igraph.Graph([(0,1), (0,2)], directed=True, vertex_attrs={'label':['a

—~','b'",'c'1}) # optional - python_igraph
sage: DiGraph(g) .vertices ()

[ # optional - python_ igraph
[0, 1, 2]

If the igraph Graph has edge attributes, they are used as edge labels:
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sage: g = igraph.Graph([(0,1), (0,2)1,

directed=True,

edge_attrs={'name':

—'b'], 'weight':[1,31}) # optional - python_igraph

sage: DiGraph(g) .edges ()

— # optional - python_igraph

[(0, 1, {'name': 'a', 'weight': 1}), (0, 2, {'nmame': 'b', 'weight': 3})]

[ra'y

all_cycles_iterator (starting vertices=None, simple=False, rooted=False, max_length=None,

) trivial=False) ) ) ) )
Return an iterator over all the cycles of self starting with one of the given vertices.

The cycles are enumerated in increasing length order.

INPUT:

* starting_vertices - iterable (default: None); vertices from which the cycles must start. If
None, then all vertices of the graph can be starting points. This argument is necessary if rooted is
setto True.

* simple —boolean (default: False);if set to True, then only simple cycles are considered. A cycle
is simple if the only vertex occuring twice in it is the starting and ending one.

e rooted — boolean (default: False); if set to False, then cycles differing only by their starting ver-
tex are considered the same (e.g. ['a', 'b', 'c', 'a'land ['b', 'c', 'a', 'b']).
Otherwise, all cycles are enumerated.

* max_length —non negative integer (default: None); the maximum length of the enumerated paths.
If set to None, then all lengths are allowed.

e trivial - boolean (default: False); if set to True, then the empty paths are also enumerated.
OUTPUT:
iterator

See also:
e all simple cycles()

AUTHOR:
Alexandre Blondin Masse

EXAMPLES:

sage: g = DiGraph({'a':
—loops=True)

sage: it = g.all_cycles_iterator()

sage: for _ in range(7): print (next (it))

[vdv], Tqr. ['C’]},u

['a', 'a'l

[lal, lal, lal]

[’C', ldv, lcl]

['a', 'a', 'a', 'a'l]

[lal, lal, lal, lal’ lalJ
[Vcl, ldv, YCV, ldl, ICYJ
['a', 'a', 'a', 'a', 'a', 'a'l

There are no cycles in the empty graph and in acyclic graphs:

sage: g = DiGraph()
sage: it = g.all_cycles_iterator()
sage: list(it)

(continues on next page)
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sage: g = DiGraph({0:[1]})

sage: it = g.all_cycles_iterator()
sage: list(it)

[]

It is possible to restrict the starting vertices of the cycles:

sage: g = DiGraph({'a': ['a', 'b'], 'b': ['c'], 'c': ['d'], 'd'": ['c']},.
—loops=True)
sage: it = g.all_cycles_iterator(starting_vertices=['b', 'c'])

sage: for _ in range(3): print (next (it))
['C', ld', lcl]

[VCV, ldV, YCV, ldl, ICYJ

[lcl, ldl, 'C‘, ldl’ lCl’ ldl’ ICIJ

Also, one can bound the length of the cycles:

sage: it = g.all_cycles_iterator (max_length=3)

sage: list (it)

[['a', 'a'}! ['a'l 'a'I 'a':|7 ['C'I 'd'I 'c':|l
['a', 'a', 'a', 'a'll

By default, cycles differing only by their starting point are not all enumerated, but this may be
parametrized:

sage: it = g.all_cycles_iterator (max_length=3, rooted=False)
sage: list(it)
[[lall lal}, [lall laI, 'al}, [lCI, 'dl, 'C'],
['a', lall laI’ 'al}]
sage: it = g.all_cycles_iterator (max_length=3, rooted=True)

sage: list (it)
[[lall lal], [lall lall |a|j|’ [ICII ldl, 'c|:|’ [ldl, 'c|, 'd|:|’

[lav, 'a', 'a', valJ]

One may prefer to enumerate simple cycles, i.e. cycles such that the only vertex occuring twice in it is the
starting and ending one (see also all_simple_cycles ()):

sage: it = g.all_cycles_iterator (simple=True)
sage: list (it)
[(['a', 'a'l, ['c', 'd', 'c']]

sage: g = digraphs.Circuit (4)
sage: list(g.all_cycles_iterator (simple=True))
(o, 1, 2, 3, 01]

all_paths_iterator (starting_vertices=None, ending_vertices=None, simple=False,

max_length=None, trivial=False)
Return an iterator over the paths of self.

The paths are enumerated in increasing length order.
INPUT:

e starting_vertices - iterable (default: None); vertices from which the paths must start. If
None, then all vertices of the graph can be starting points.

* ending_vertices —iterable (default: None); allowed ending vertices of the paths. If None, then
all vertices are allowed.
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* simple —boolean (default: False); if set to True, then only simple paths are considered. Simple
paths are paths in which no two arcs share a head or share a tail, i.e. every vertex in the path is entered
at most once and exited at most once.

* max_length —non negative integer (default: None); the maximum length of the enumerated paths.
If set to None, then all lengths are allowed.

e trivial - boolean (default: False); if set to True, then the empty paths are also enumerated.
OUTPUT:
iterator
AUTHOR:
Alexandre Blondin Masse

EXAMPLES:

sage: g = DiGraph({'a': ['a', 'b'], 'b': ['c'], 'c': ['d"'], 'd': ['c'l},.
—loops=True)

sage: pi = g.all_paths_iterator()

sage: for _ in range(7): print (next (pi))

[} 1

]
]
']
]
]

It is possible to precise the allowed starting and/or ending vertices:

sage: pi = g.all_paths_iterator (starting_vertices=['a'])

sage: for _ in range(5): print (next (pi))

[‘al lal]

[la', lbl]

[’a', ’aV, laV]

['al’ lal’ lb']

[la', lbl, lcl]

sage: pi = g.all_paths_iterator(starting_vertices=['a'], ending_vertices=['b

sage: for _ in range(5): print (next (pi))

['a', 'b']

['a', 'a', 'b']

['a', 'a', 'a', 'b']

['a', ’a', 'a', 'a', 'b']
['a', 'a', 'a', 'a', 'a', 'b']

One may prefer to enumerate only simple paths (see a1l _simple_paths()):

sage: pi = g.all_paths_iterator(simple=True)

sage: list (pi)

(t'a*, 'a'l, f'a', 'o'l, ['b"', 'c¢'], ['c', 'd'], ['d', 'c'],
('a', 'b', 'c'], ['b"', 'c¢', 'd'], ['c', 'd', 'c'],
[ldl, ICI, ldl}, [lall lbl, lcl, ldl}]

Or simply bound the length of the enumerated paths:
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sage: pi = g.all_paths_iterator(starting vertices=['a'], ending_vertices=['b',
— 'c'], max_length=6)
sage: list (pi)

[[lall 'b'JI [lall 'a', 'b'}, ['a', 'b', 'C'J,

[lall laI, laI, lbl}’ [laI, va|’ 'b', lcl],

['all |a'l lall 'a', vbl], ['a', val, 'a', 'b', 'C'],

[lall 'b'I 'C', 'd', 'C'J, ['a', vav’ vav, ra!' vav, vbv],
[lall laI, laI, va|’ 'b', lcl], [vav’ lal’ lbl’ lcl’ ldl’ lCl],
['all |a'l lall 'a', val, 'a', 'b'],

[lall 'a', 'a', 'a', vav’ 'b', 'C'],

[lall laI, laI, 'b', 'C', ldl’ ICI],

[lall lbll lcll rq! 'C', 'd'l 'C']]

By default, empty paths are not enumerated, but it may be parametrized:

sage: pi = g.all_paths_iterator(simple=True, trivial=True)
sage: list (pi)
[*a', 'b'], ['b', 'c'],

(t'a'l, ['v"'1, ['c'], ['d"], ['a', 'a'l,
[ICII ldl}, [ldl, 'C'J, [lall lbl, ‘C'J, [lbl, ICI, ldl},
[ICI, ldl, 'C'}, [ldl, lcl, ldl}, [lal, lbl’ lcl’ ldl:|]
sage: pi = g.all_paths_iterator(simple=True, trivial=False)
sage: list (pi)

(tta*, ta'l, ('a', 'b'l, ['b', 'c'}, ['c', 'd'], ['d', 'c'],
[lall lbl, ICI}, [lbl ICI, ldl}, [ICI, 'd', 'C'],
[ldll ICII lle, [lal lbll 'C', 'd'}]

all_simple_cycles (starting_vertices=None, rooted=False, max_length=None, trivial=False)

Return a list of all simple cycles of self.
INPUT:

* starting_vertices - iterable (default: None); vertices from which the cycles must start. If
None, then all vertices of the graph can be starting points. This argument is necessary if rooted is
set to True.

* rooted — boolean (default: False); if set to False, then cycles differing only by their starting ver-
tex are considered the same (e.g. ['a', 'b', 'c¢', 'a'land ['b', 'c', 'a', 'b'l).
Otherwise, all cycles are enumerated.

* max_length —non negative integer (default: None); the maximum length of the enumerated paths.
If set to None, then all lengths are allowed.

e trivial - boolean (default: False); if set to True, then the empty paths are also enumerated.
OUTPUT:

list

Note: Although the number of simple cycles of a finite graph is always finite, computing all its cycles
may take a very long time.

EXAMPLES:

sage: g = DiGraph({'a': ['a', 'b'], 'b': ['c'], 'c': ['d"'], 'd': ['c'1},.
—loops=True)

sage: g.all_simple_cycles ()

(r'a*, 'a'l, f('e', 'd', 'c'll
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The directed version of the Petersen graph:

sage: g = graphs.PetersenGraph() .to_directed()

sage: g.all_simple_cycles (max_length=4)

(o, 1, o1, o, 4, oj, (o0, 5, o1, 11, 2, 11, 111, o6, 11, I[2, 3, 21,
2, 7, 21, 13, 8, 31, [3, 4, 31, 1[4, 9, 41, 1[5, 8, 51, I[5, 7, 51,
[6, 61, [6, 9, 61, [7, 9, 711

sage: g.all_simple_cycles (max_length=6)

(ro, 12, o1, o, 4, o1, (o, s, o1, 1, 2, 11, 1, o6, 11, I[2, 3, 2],
(2, 7, 21, (3, 8, 31, [3, 4, 31, 1[4, 9, 41, I[5, 8, 51, I[5, 7, 51,
(6, 8, 61, [6, 9, 61, (7, 9, 71, [0, 1, 2, 3, 4, 01,

(o, », 2, 7, 5, o1, (0, 1, 6, 8, 5, 0], [0, 1, 6, 9, 4, 01,
(o, 4, 9, 6, 1, 01, (0, 4, 9, 7, 5, 0], [0, 4, 3, 8, 5, 01,
ro, 4, 3, 2, 1, oj, 10, 5, 8, 3, 4, 01, [0, 5, 8, 6, 1, 01,
(o, -, 7, 9, 4, o1, (0, 5, 7, 2, 1, 01, 1, 2, 3, 8, 6, 11,
[, 2, 7, 9, 6, 11, 11, 6, 8, 3, 2, 11, [1, 6, 9, 7, 2, 11,
(2, 3, 8, 5, 7, 21, (2, 3, 4, 9, 7, 21, 12, 7, 9, 4, 3, 21,
(2, 7, 5, 8, 3, 21, 13, 8, 6, 9, 4, 31, [3, 4, 9, 6, 8, 31,
[5, 8, 6, 9, 7, 51, [5, 7, 9, 6, 8, 51, [0, 1, 2, 3, 8, 5, 01,
o, 1, 2, 7, 9, 4, 01, [0, 1, 6, 8, 3, 4, 0],

(o, 1, ¢, 9, 7, 5, 01, [0, 4, 9, 6, 8, 5, 0],

(o, 4, 9, 7, 2, 1, 01, 1[0, 4, 3, 8, 6, 1, 0],

o, 4, 3, 2, 7, 5, 01, [0, 5, 8, 3, 2, 1, 01,

(o, 5, 8, 6, 9, 4, 01, [0, 5, 7, 9, 6, 1, 0],

(o, 5, 7, 2, 3, 4, 01, [, 2, 3, 4, 9, 6, 1],

(1, 2, 7, 5, 8, 6, 11, [1, 6, 8, 5, 7, 2, 11,

[1, 6, 9, 4, 3, 2, 11, [2, 3, 8, 6, 9, 7, 21,

2, 7, 9, 6, 8, 3, 21, 1[3, 8, 5, 7, 9, 4, 31,

[3, 4, 9, 7, 5, 8, 311

The complete graph (without loops) on 4 vertices:

sage: g = graphs.CompleteGraph(4) .to_directed()

sage: g.all_simple_cycles()

(ro, 12, o1, 0, 2, o1, (o, 3, o1, 1, 2, 11, 1, 3, 11, 12, 3, 2],
(o, ., 2, o1, (0, 1, 3, o1, 10, 2, 1, 01, [0, 2, 3, 01,
ro, 3, 1, o1, 10, 3, 2, o1, 1, 2, 3, 11, I, 3, 2, 11,

(o, 1, 2, 3, o1, (0, 1, 3, 2, 01, [0, 2, 1, 3, 01,
(o, 2, 3, 1, o1, (0, 3, 1, 2, 01, [0, 3, 2, 1, 0]]

If the graph contains a large number of cycles, one can bound the length of the cycles, or simply restrict
the possible starting vertices of the cycles:

sage: g = graphs.CompleteGraph (20) .to_directed()

sage: g.all_simple_cycles (max_length=2)

(ro, 12, o1, o0, 2, o1, (o, 3, o1, o, 4, 01, [0, 5, 01, [0, 6, 0],
(o, 7, oj, o, s, 01, [0, 9, 01, [0, 10, 01, [O, 11, O],
(o, 12, oj, (o0, 13, o1, (o, 14, o1, [0, 15, 0], [0, 16, O],
(o, 17, o1, 0, 18, 01, [0, 19, o1, (1, 2, 11, [1, 3, 11,
(., 4, 11, (1, 5, 1, 11, 6, 11, (1, 7, 131, (1, 8, 11, [1, 9, 17,
(, 1o, 13, (1, 11, 13, (1, 12, 11, (1, 13, 1], [1, 14, 171,
(, 15, 11, 111, 16, 11, (21, 17, 11, [1, 18, 1], [1, 19, 11,
(2, 3, 21, (2, 4, 21, (2, 5, 21, (2, 6, 21, [2, 7, 21, [2, 8, 21,
2, 9, 21, (2, 10, 21, (2, 11, 21, [2, 12, 21, [2, 13, 2],
(2, 14, 21, (2, 15, 21, [2, 16, 21, [2, 17, 2], 12, 18, 21,
(2, 19, 21, 13, 4, 31, (3, 5, 31, I[3, 6, 31, [3, 7, 31, I3, 8, 31,
(3, 9, 31, (3, 10, 31, (3, 11, 31, [3, 12, 31, [3, 13, 3],
[3, 14, 31, 13, 15, 31, [3, 16, 31, [3, 17, 3], I[3, 18, 31,

(continues on next page)
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19, 31, 1[4, 5, 4], 1[4, o, 41, 14, 7, 41, 14, 8, 41, 1[4, 9, 471,
10, 41, 1[4, 11, 41, 1[4, 12, 41, [4, 13, 41, [4, 14, 47,
15, 41, 1[4, 16, 41, 1[4, 17, 41, 1[4, 18, 41, [4, 19, 471,
6, 51, I[5, 7, 51, 1[5, 8, 51, [5, 9, 51, [5, 10, 51,
i1, 51, [5, 12, 51, [5, 13, 5], [5, 14, 51, I[5, 15, 51,
16, 51, 1[5, 17, 51, 1[5, 18, 51, [5, 19, 51, [6, 7, 61,
8, 61, [6, 9, 61, [6, 10, 6], [6, 11, 61, [6, 12, 6],
13, 61, [6, 14, 6], [6, 15, 6], [6, 16, 61, [6, 17, 61,
18, 6], (6, 19, 61, (7, 8, 71, [7, 9, 71, [7, 10, 71,
i, 71, (7, 12, 71, (7, 13, 71, (7, 14, 71, (7, 15, 71,
16, 71, (7, 17, 71, (7, 18, 71, (7, 19, 71, (8, 9, 8],
io, 831, [8, 11, 81, I8, 12, 81, [8, 13, 8], [8, 14, 8],
15, 81, (8, 16, 81, 1[8, 17, 81, [8, 18, 81, [8, 19, 81,
10, 91, (9, 11, 91, 19, 12, 91, [9, 13, 91, [9, 14, 91,
15, 91, [9, 16, 91, 19, 17, 91, [9, 18, 91, [9, 19, 91,
i1, 103, [10, 12, 10], [10, 13, 10], [10, 14, 1071,

5, 10J], [10, 16, 101, ([10, 17, 10], [10, 18, 1017,

i9, 1o0J), (11, 12, 113, [11, 13, 111, [11, 14, 117,

5, 113, [11, 16, 111, (11, 17, 111, [11, 18, 111,

19, 111, [12, 13, 121, I[12, 14, 12], [12, 15, 12],

16, 1231, (12, 17, 123, [12, 18, 121, [12, 19, 127,

14, 13], [13, 15, 131, [13, 16, 131, [13, 17, 131,

18, 131, [13, 19, 131, [14, 15, 141, [14, 16, 1471,

17, 141, [14, 18, 141, [14, 19, 14], [15, 16, 157,

17, 15], [15, 18, 151, [15, 19, 151, I[le, 17, 161,

18, 161, I[l6, 19, 161, [17, 18, 171, [17, 19, 171,

19, 18]]

g = graphs.CompleteGraph (20) .to_directed()
g.all_simple_cycles (max_length=2, starting vertices=[0])
i, o1, (o0, 2, o1, (o, 3, o1, (o, 4, o1, (o, 5, o1, [0, 6, O,
7, o1, f[o, 8, o1, o, 9, o1, 1o, 10, 01, [0, 11, O,
i2, oJj, [0, 13, 01, (O, 14, O], [0, 15, 01, [0, 16, O,
17, o1, [0, 18, 01, [0, 19, 01]

One may prefer to distinguish equivalent cycles having distinct starting vertices (compare the following
examples):

(o,

(o,
(2,

sage:
sage:

sage:

g
g.
1,
g.
1,
0,

graphs.CompleteGraph (4) .to_directed()

(0, 2, 01, [0, 3,

[Ol
(2,

2,
1,

O:|l
21,

[OI
(2,

3,
3,

all _simple_cycles (max_length=2,
01,
all_simple_cycles (max_length=2,
01,
21,

01, [1,

O]I
21,

(1,
(3,

rooted=False)
11, (1, 3, 11,

rooted=True)
11, [1, 2,
31, [3, 1,

2,

0,
0,

1],
31,

all_simple_paths (starting_vertices=None,

ial=False)

ending_vertices=None,

max_length=None, triv-

Return a list of all the simple paths of self starting with one of the given vertices.

Simple paths are paths in which no two arcs share a head or share a tail, i.e. every vertex in the path is
entered at most once and exited at most once.

INPUT:

* starting_vertices - list (default: None); vertices from which the paths must start. If None,
then all vertices of the graph can be starting points.

* ending_vertices —iterable (default: None); allowed ending vertices of the paths. If None, then
all vertices are allowed.

1.3. Directed graphs
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* max_length — non negative integer (default: None); the maximum length of the enumerated paths.
If set to None, then all lengths are allowed.

* trivial - boolean (default: False); if set to True, then the empty paths are also enumerated.
OUTPUT:

list

Note: Although the number of simple paths of a finite graph is always finite, computing all its paths may
take a very long time.

EXAMPLES:

sage: g = DiGraph({'a': ['a', 'b'], 'b': ['c'], 'c': ['d'], 'd': ['c']},.
—loops=True)
sage: g.all_simple_paths()
[['a', 'a'l, ['a', 'b'l, ['b', 'c'], ['c', 'd'], ['d', 'c'],
['a', 'b', 'c¢'], ['b', 'c¢', 'd']l, ['c', 'd', 'c'],
(a4, ‘'e', '4d'j, ['a', 'b', 'c', 'd']l]

One may compute all paths having specific starting and/or ending vertices:

sage: g.all_simple_paths(starting vertices=['a'])

[['a', lalj|, ['a', lbl}, ['a', lbl, 'C'J, [lall 'bl, 'C', 'dl]]

sage: g.all_simple_paths (starting_vertices=['a'], ending_vertices=['c'])
|:|:la|’ lbl, 'C'J]

sage: g.all_simple_paths(starting_vertices=['a'], ending_vertices=['b', 'c'])
[['a', ''], ['a', 'b', 'c']]

It is also possible to bound the length of the paths:

sage: g.all_simple_paths (max_length=2)

[['a', 'a'], ['a', 'B'], ['b', 'c']l, ['c', 'd"]
['a', lbl, 'C'J, [lbl, 'C', ldl}, ['C', ldl, Al
['d', 'e', 'd'l]

By default, empty paths are not enumerated, but this can be parametrized:

sage: g.all_simple_paths (starting_vertices=['a'], trivial=True)
(t'a'l, (ra', 'a'l, f'a'y, 'o'l, ['a', 'b', 'c'],

[lall lbl, 'C', ldl}]

sage: g.all_simple_paths(starting_vertices=['a'], trivial=False)
[[lall lalJ, [lall lbl}, [lall lbl, 'C'J, [lall lbl, lcl, ldl}]

degree_polynomial ()

Return the generating polynomial of degrees of vertices in self.
This is the sum
Z () out(v)
veG
where in (v) and out (v) are the number of incoming and outgoing edges at vertex v in the digraph G.

Because this polynomial is multiplicative for Cartesian product of digraphs, it is useful to help see if the
digraph can be isomorphic to a Cartesian product.

See also:
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num_verts () for the value at (z,y) = (1,1)

EXAMPLES:

sage: G = posets.PentagonPoset () .hasse_diagram()
sage: G.degree_polynomial ()
X"2 4+ 3xxxy + y"2

sage: G = posets.BooleanLattice(4) .hasse_diagram()
sage: G.degree_polynomial () .factor ()
(x + y)"4

dig6_string()
Return the dig6 representation of the digraph as an ASCII string.

This is only valid for single (no multiple edges) digraphs on at most 2! — 1 = 262143 vertices.

Note: As the dig6 format only handles graphs with vertex set {0,...,n — 1}, a relabelled copy
will be encoded, if necessary.

See also:
* graph6_string () —asimilar string format for undirected graphs

EXAMPLES:

sage: D = DiGraph({O: [1, 21, 1: [2], 2: [3], 3: [O]})
sage: D.dig6_string()
rew !

feedback_edge_set (constraint_generation=True, value_only=False, solver=None, verbose=0)
Compute the minimum feedback edge set of a digraph (also called feedback arc set).

The minimum feedback edge set of a digraph is a set of edges that intersect all the circuits of the digraph.
Equivalently, a minimum feedback arc set of a DiGraph is a set S of arcs such that the digraph G — S'is
acyclic. For more information, see the Wikipedia article Feedback_arc_set.

INPUT:
e value_only — boolean (default: False)
— When set to True, only the minimum cardinal of a minimum edge set is returned.
— When set to False, the Set of edges of a minimal edge set is returned.

e constraint_generation —boolean (default: True); whether to use constraint generation when
solving the Mixed Integer Linear Program.

* solver - string (default: None); specify a Linear Program (LP) solver to be used. If set to None,
the default one is used. For more information on LP solvers and which default solver is used, see the
method solve of the class MixedIntegerLinearProgram.

* verbose —integer (default: 0); sets the level of verbosity. Set to 0 by default, which means quiet.
ALGORITHM:

This problem is solved using Linear Programming, in two different ways. The first one is to solve the
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following formulation:

Minimize : Z b(u,v)
(u,v)EG

Such that :
V(u,v) € Gydy —dy +n-b(yp) >0
Yu e G,0<d, <|G]

An explanation:

An acyclic digraph can be seen as a poset, and every poset has a linear extension. This means that in any
acyclic digraph the vertices can be ordered with a total order < in such a way that if (u,v) € G, then
u < 0.

Thus, this linear program is built in order to assign to each vertex v a number d,, € [0, ...,n — 1] such that
if there exists an edge (u, v) € G such that d,, < d,,, then the edge (u, v) is removed.

The number of edges removed is then minimized, which is the objective.
(Constraint Generation)
If the parameter constraint_generation is enabled, a more efficient formulation is used :
Minimize : Z b(u,v)
(uv)eG
Such that :

VC circuits C G, Z bluwy =1
uveC

As the number of circuits contained in a graph is exponential, this LP is solved through constraint genera-
tion. This means that the solver is sequentially asked to solved the problem, knowing only a portion of the
circuits contained in GG, each time adding to the list of its constraints the circuit which its last answer had
left intact.

EXAMPLES:

If the digraph is created from a graph, and hence is symmetric (if vv is an edge, then vu is an edge too),
then obviously the cardinality of its feedback arc set is the number of edges in the first graph:

sage: cycle=graphs.CycleGraph (5)

sage: dcycle=DiGraph (cycle)

sage: cycle.size()

5

sage: dcycle.feedback_edge_set (value_only=True)
5

And in this situation, for any edge uv of the first graph, uv of vu is in the returned feedback arc set:

sage: g = graphs.RandomGNP (5, .3)
sage: dg = DiGraph(g)
sage: feedback = dg.feedback_edge_set ()

sage: u,v,l = next(g.edge_iterator())
sage: (u,v) in feedback or (v,u) in feedback
True

flow_polytope (edges=None, ends=None)
Return the flow polytope of a digraph.
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The flow polytope of a directed graph is the polytope consisting of all nonnegative flows on the graph with
a given set .S of sources and a given set 7" of sinks.

A flow on a directed graph GG with a given set S of sources and a given set 7" of sinks means an assignment
of a nonnegative real to each edge of GG such that the flow is conserved in each vertex outside of .S and
T, and there is a unit of flow entering each vertex in S and a unit of flow leaving each vertex in 7. These
flows clearly form a polytope in the space of all assignments of reals to the edges of G.

The polytope is empty unless the sets S and 7" are equinumerous.

By default, S is taken to be the set of all sources (i.e., vertices of indegree 0) of GG, and T is taken to be
the set of all sinks (i.e., vertices of outdegree 0) of GG. If a different choice of S and T is desired, it can be
specified using the optional ends parameter.

The polytope is returned as a polytope in R™, where m is the number of edges of the digraph self. The
k-th coordinate of a point in the polytope is the real assigned to the k-th edge of self. The order of the
edges is the one returned by self.edges (). If a different order is desired, it can be specified using the
optional edges parameter.

The faces and volume of these polytopes are of interest. Examples of these polytopes are the Chan-
Robbins-Yuen polytope and the Pitman-Stanley polytope [ PitSta].

INPUT:

* edges — (optional, default: self.edges ()) alist or tuple of all edges of self (each only once).
This determines which coordinate of a point in the polytope will correspond to which edge of self.
It is also possible to specify a list which contains not all edges of self; this results in a polytope
corresponding to the flows which are 0 on all remaining edges. Notice that the edges entered here
must be in the precisely same format as outputted by self.edges (); so, if self.edges ()
outputs an edge in the form (1, 3, None),then (1, 3) will notdo!

* ends — (optional, default: (self.sources(), self.sinks()))a pair (S,T) of an iterable
S and an iterable 7.

Note: Flow polytopes can also be built through the polytopes.<tab> object:

sage: polytopes.flow_polytope (digraphs.Path(5))
A O-dimensional polyhedron in QQ"4 defined as the convex hull of 1 vertex

EXAMPLES:

A commutative square:

sage: G = DiGraph({1l: [2, 31, 2: [4]1, 3: [41})

sage: fl = G.flow_polytope(); fl

A l-dimensional polyhedron in QQ*4 defined as the convex hull
of 2 vertices

sage: fl.vertices|()

(A vertex at (0, 1, 0, 1), A vertex at (1, 0, 1, 0))

Using a different order for the edges of the graph:

sage: fl = G.flow_polytope (edges=G.edges (key=lambda x: x[0] - x[1])); f1l

A l-dimensional polyhedron in Q0"4 defined as the convex hull of 2 vertices
sage: fl.vertices|()

(A vertex at (0, 1, 1, 0), A vertex at (1, 0, 0, 1))

A tournament on 4 vertices:
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sage: H = digraphs.TransitiveTournament (4)

sage: fl = H.flow_polytope(); fl

A 3-dimensional polyhedron in Q0”6 defined as the convex hull
of 4 vertices
sage: fl.vertices
(A vertex at (0, ,

0
0
A vertex at (0, 1,
0
0

~
~
~

A vertex at (1,
A vertex at (1,

’

~

o O O
~ 0~
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~ 0~

= O~ O

~

’

~
~

Restricting to a subset of the edges:

sage: fl = H.flow_polytope (edges=[(0, 1, None), (1, 2, None),
e (2, 3, None), (0, 3, None)l)
sage: fl

A l-dimensional polyhedron in QQ"4 defined as the convex hull
of 2 vertices

sage: fl.vertices|()

(A vertex at (0, 0, 0, 1), A vertex at (1, 1, 1, 0))

Using a different choice of sources and sinks:

sage: fl = H.flow_polytope(ends=([1], [3]1)); fl1

A l-dimensional polyhedron in Q0”6 defined as the convex hull
of 2 vertices

sage: fl.vertices|()

(A vertex at (0, 0, 0, 1, 0, 1), A vertex at (0, 0, 0, 0, 1, 0))
sage: fl = H.flow_polytope(ends=([0, 11, [3]1)); fl

The empty polyhedron in QQ"6

sage: fl = H.flow_polytope(ends=([3], [0])); f1

The empty polyhedron in Q0”6

sage: fl = H.flow_polytope(ends=([0, 11, [2, 31)); fl

A 3-dimensional polyhedron in Q0”6 defined as the convex hull
of 5 vertices

sage: fl.vertices

(
(A vertex at (0, 0, 1, 1, 0, 0),
A vertex at (0, 1, 0, 0, 1, 0),
A vertex at (1, 0, 0, 2, 0, 1),
A vertex at (1, 0, 0, 1, 1, 0),
A vertex at (0, 1, 0, 1, 0, 1))
sage: fl = H.flow_polytope (edges=[(0, 1, None), (1, 2, None),
..... (2, 3, None), (0, 2, None),
e (1, 3, None)],
e ends= ([0, 1], [2, 31)); f1

A 2-dimensional polyhedron in QQ”5 defined as the convex hull
of 4 vertices

sage: fl.vertices
(A vertex at (0, ,

0
0
A vertex at (1, 2,
1
1

~
~
~

A vertex at (1,
A vertex at (0,
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~
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A digraph with one source and two sinks:

sage: Y = DiGraph({l: [2], 2: [3, 41})
sage: Y.flow_polytope()
The empty polyhedron in QQ"3
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A digraph with one vertex and no edge:

sage: Z = DiGraph({1l: []})

sage: Z.flow_polytope ()

A O-dimensional polyhedron in Q0”0 defined as the convex hull
of 1 vertex

REFERENCES:

immediate_dominators (r, reverse=Fualse)
Return the immediate dominators of all vertices reachable from r.

A flowgraph G = (V, A, r) is a digraph where every vertex in V' is reachable from a distinguished root
vertex r € V. In such digraph, a vertex w dominates a vertex v if every path from r to v includes w.
Let dom(v) be the set of the vertices that dominate v. Obviously, r and v, the trivial dominators of v,
are in dom(v). For v # r, the immediate dominator of v, denoted by d(v), is the unique vertex w # v
that dominates v and is dominated by all the vertices in dom(v) \ {v}. The (immediate) dominator tree
is a directed tree (or arborescence) rooted at r that is formed by the arcs {(d(v),v) | v € V' \ {r}}. See
[Ge2005] for more details.

This method implements the algorithm proposed in [CHK2001] which performs very well in practice,
although its worst case time complexity is in O(n?).

INPUT:
e r —avertex of the digraph, the root of the immediate dominators tree

* reverse —boolean (default: False); when set to True, we consider the reversed digraph in which
out-neighbors become the in-neighbors and vice-versa. This option is available only if the backend of
the digraph is SparseGraphBackend.

OUTPUT: The (immediate) dominator tree rooted at r, encoded as a predecessor dictionary.
EXAMPLES:

The output encodes a tree rooted at r:

sage: D = digraphs.Complete(4) * 2

sage: D.add_edges ([ (0, 4), (7, 3)1)

sage: d = D.immediate_dominators (0)

doctest:...: DeprecationWarning: immediate_dominators is now deprecated.
—~Please use method dominator_tree instead.

See https://trac.sagemath.org/25030 for details.

sage: T = DiGraph([(d[u], u) for u in d if u != d[ull)
sage: Graph(T) .is_tree()
True

sage: all(T.in_degree(u) <= 1 for u in T)
True

In a strongly connected digraph, the result depends on the root:

sage: D = digraphs.Circuit (5)

sage: D.immediate_dominators (0)
{0: 0, 1: 0, 2: 1, 3: 2, 4: 3}
sage: D.immediate_dominators (1)
{0: 4, 1: 1, 2: 1, 3: 2, 4: 3}

The (immediate) dominator tree contains only reachable vertices:
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sage: P = digraphs.Path(5)
sage: P.immediate_dominators (0)
{0: 0, 1: 0, 2: 1, 3: 2, 4: 3}
sage: P.immediate_dominators(3)
{3: 3, 4: 3}

Immediate dominators in the reverse digraph:

sage: D = digraphs.Complete (5)+digraphs.Complete (4)
sage: D.add_edges ([ (0, 5), (1, &), (7, 2)1)

sage: idom = D.immediate_dominators (0, reverse=True)
sage: idom

{0: 0, 1: 0, 2: 0, 3: 0, 4: 0, 5: 7, 6: 7, 7: 2, 8: 7T}
sage: D_reverse = D.reverse()
sage: D_reverse.immediate_dominators (0) == idom
True
See also:
» Wikipedia article Dominator_(graph_theory)
* strong _articulation_points()
* strongly_connected_components ()
in_degree (vertices=None, labels=False)
Same as degree, but for in degree.
EXAMPLES:
sage: D = DiGraph({O: [1,2,31, 1: [0,2], 2: [3], 3: [41, 4: [0,5], 5: [11})

sage: D.in_degree (vertices=[0, 1, 2], labels=True)
{0: 2, 1: 2, 2: 2}

sage: D.in_degree ()

(2, 2, 2, 2, 1, 1]

sage: G = graphs.PetersenGraph() .to_directed()
sage: G.in_degree (0)

3

in_degree_iterator (vertices=None, labels=False)
Same as degree_iterator, but for in degree.

EXAMPLES:

sage: D = graphs.Grid2dGraph(2,4) .to_directed()
sage: for i1 in D.in_degree_iterator():

e print (i)
3

3

2

2

3

2

2

3

sage: for i in D.in_degree_iterator (labels=True):
el print (i)
(0, 1), 3)

(continues on next page)
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in_degree_sequence ()

Return the in-degree sequence.
EXAMPLES:

The in-degree sequences of two digraphs:

sage: g = DiGraph({1: [2, 5, 6], 2: [3, 6], 3: [4, 6], 4: [6], 5: [4, 61})
sage: g.in_degree_sequence ()
[5, 2, 1, 1, 1, 0]

sage: V (2, 3, 5, 7, 8, 9, 10, 11]

sage: E = [[], [8, 10], [11], (8, 111, (91, (1, (1, [2, 9, 10]]
sage: g = DiGraph(dict(zip(V, E)))

sage: g.in_degree_sequence ()

(2, 2, 2, 2, 1, 0, 0, 0]

incoming edge_iterator (vertices, labels=True)

Return an iterator over all arriving edges from vertices.
INPUT:
e vertices —a vertex or a list of vertices

* labels —boolean (default: True); whether to return edges as pairs of vertices, or as triples contain-
ing the labels

EXAMPLES:

sage: D = DiGraph({0O: [1,2,31, 1: [0,2], 2: [31, 3: [41, 4: [0,5], 5: [11})
sage: for a in D.incoming_edge_iterator ([0]) :

et print (a)

(1, 0, None)

(4, 0, None)

incoming_ edges (vertices, labels=True)

Return a list of edges arriving at vertices.
INPUT:
e vertices —a vertex or a list of vertices

e labels —boolean (default: True); whether to return edges as pairs of vertices, or as triples contain-
ing the labels.

EXAMPLES:

sage: D = DiGraph({O: [1,2,31, 1: [0,2], 2: [31, 3: [41, 4: [0,5], 5: [11})
sage: D.incoming_edges ([0])
[(1, O, None), (4, 0, None)]
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is_aperiodic ()

Return whether the current DiGraph is aperiodic.

A directed graph is aperiodic if there is no integer k£ > 1 that divides the length of every cycle in the graph.
See the Wikipedia article Aperiodic_graph for more information.

EXAMPLES:

The following graph has period 2, so it is not aperiodic:

sage: g = DiGraph({O: [1], 1: [0]})
sage: g.is_aperiodic()
False

The following graph has a cycle of length 2 and a cycle of length 3, so it is aperiodic:

sage: g = DiGraph({O: [1, 41, 1: [2], 2: [0], 4: [O0]1})
sage: g.is_aperiodic()
True

See also:

period()

is_directed()

Since digraph is directed, return True.

EXAMPLES:

sage: DiGraph() .is_directed()
True

is_directed_acyclic (certificate=False)

Return whether the digraph is acyclic or not.

A directed graph is acyclic if for any vertex v, there is no directed path that starts and ends at v. Every
directed acyclic graph (DAG) corresponds to a partial ordering of its vertices, however multiple dags may
lead to the same partial ordering.

INPUT:

e certificate —boolean (default: False); whether to return a certificate
OUTPUT:

e When certificate=False, returns a boolean value.

e When certificate=True:

— If the graph is acyclic, returns a pair (True, ordering) where ordering is a list of the
vertices such that u appears before v in orderingif u, v is an edge.

— Else, returns a pair (False, cycle) where cycle is a list of vertices representing a circuit
in the graph.

EXAMPLES:
At first, the following graph is acyclic:

sage: D = DiGraph({O:[1, 2, 31, 4:[(2, 51, 1:[(81, 2:[71, 3:[71, 5:[6,71, 7:[81,
— 6:[9], 8:[10], 9:[101})
sage: D.plot (layout='circular') .show()

(continues on next page)
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sage: D.is_directed_acyclic()
True

Adding an edge from 9 to 7 does not change it:

sage: D.add_edge (9, 7)
sage: D.is_directed_acyclic()
True

We can obtain as a proof an ordering of the vertices such that u appears before v if uv is an edge of the

graph:

sage: D.is_directed_acyclic(certificate=True)
(True, [4, 5, 6, 9, 0, 1, 2, 3, 7, 8, 10])

Adding an edge from 7 to 4, though, makes a difference:

sage: D.add_edge (7, 4)
sage: D.is_directed_acyclic()
False

Indeed, it creates a circuit 7, 4, 5:

sage: D.is_directed_acyclic(certificate=True)
(False, [7, 4, 5])

Checking acyclic graphs are indeed acyclic

sage: def random_acyclic(n, p):

....: g = graphs.RandomGNP (n, p)

e h = DiGraph ()

et h.add_edges (((u, v) 1f u < v else (v, u)) for u, v in g.edge
—iterator (labels=False))

et return h

sage: all (random_acyclic (100, .2).is_directed_acyclic() # long time
e for i in range(50)) # long time

is_strongly_connected (G)
Check whether the current DiGraph is strongly connected.

EXAMPLES:

The circuit is obviously strongly connected:

sage: from sage.graphs.connectivity import is_strongly_connected
sage: g = digraphs.Circuit (5)

sage: is_strongly_connected(qg)

True

sage: g.is_strongly_connected()

True

But a transitive triangle is not:
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sage: g = DiGraph({0: [1, 2], 1: [21})
sage: is_strongly_connected(qg)
False

is_tournament ()
Check whether the digraph is a tournament.

A tournament is a digraph in which each pair of distinct vertices is connected by a single arc.

EXAMPLES:

sage: g = digraphs.RandomTournament (6)

sage: g.1ls_tournament ()

True

sage: u,v = next(g.edge_iterator (labels=False))
sage: g.add_edge (v, u)

sage: g.is_tournament ()

False

sage: g.add_edges ([ (u, v), (v, u)l)
sage: g.is_tournament ()

False

See also:

* Wikipedia article Tournament_(graph_theory)
* RandomTournament ()
e TransitiveTournament ()
is_transitive (g, certificate=False)
Tests whether the digraph is transitive.
A digraph is transitive if for any pair of vertices u, v € G linked by a uv-path the edge uv belongs to G.
INPUT:
e certificate — whether to return a certificate for negative answers.

— If certificate = False (default), this method returns True or False according to the
graph.

— Ifcertificate = True, this method either returns True answers or yield a pair of vertices
uw such that there exists a uv-path in G but uv € G.

EXAMPLES:

sage: digraphs.Circuit (4).is_transitive()

False

sage: digraphs.Circuit (4) .is_transitive(certificate=True)
(0, 2)

sage: digraphs.RandomDirectedGNP (30, .2) .1is_transitive()
False

sage: D = digraphs.DeBruijn (5, 2)

sage: D.is_transitive()

False

sage: cert = D.is_transitive (certificate=True)
sage: D.has_edge (xcert)

False

sage: D.shortest_path(xcert) != []

(continues on next page)
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True
sage: digraphs.RandomDirectedGNP (20, .2) .transitive_closure() .is_transitive ()

True

layout_acyclic (rankdir="up’, **options)
Return a ranked layout so that all edges point upward.

To this end, the heights of the vertices are set according to the level set decomposition of the graph (see
level_sets()).

This is achieved by calling graphviz and dot2tex if available (see layout_graphviz()),
and using a spring layout with fixed vertical placement of the vertices otherwise (see
layout_acyclic_dummy () and layout_ranked()).

Non acyclic graphs are partially supported by graphviz, which then chooses some edges to point down.
INPUT:

e rankdir — string (default: 'up'); indicates which direction the edges should point toward among
'up', 'down', 'left',or 'right'

* xxoptions —passeddownto layout_ranked() or layout_graphviz ()

EXAMPLES:

sage: H = DiGraph({O: [1, 2], 1: [3]1, 2: [3], 3: [], 5: [1, 6], 6: [2, 31})

The actual layout computed depends on whether dot2tex and graphviz are installed, so we don’t test its
relative values:

sage: H.layout_acyclic()

{0z [ovoey, o]y 1o [eee, o]y 20 [oee, oolly 30 [eee, w0l 50 Lo, w1, 0
—6: [..., ...1}

sage: H = DiGraph({0: [11})

sage: pos = H.layout_acyclic(rankdir="'up')
sage: pos[1l][1l] > pos[O][1l] + .5

True

sage: pos = H.layout_acyclic(rankdir="down")
sage: pos[1l][1l] < pos[O][1] - .5

True

sage: pos = H.layout_acyclic(rankdir="'right")
sage: pos[1][0] > pos[0][0] + .5

True

sage: pos = H.layout_acyclic(rankdir="'left")
sage: pos[1][0] < pos[0][0] - .5

True

layout_acyclic_dummy (heights=None, rankdir="up’, **options)
Return a ranked layout so that all edges point upward.

To this end, the heights of the vertices are set according to the level set decomposition of the graph (see
level_ sets ()). This is achieved by a spring layout with fixed vertical placement of the vertices other-
wise (see layout_acyclic_dummy () and layout_ranked ()).

INPUT:

e rankdir — string (default: 'up"'); indicates which direction the edges should point toward among
'up', 'down', 'left',or 'right'
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* x+xoptions —passeddownto layout_ranked()

EXAMPLES:

sage: H = DiGraph({O0: [1, 2], 1: [31, 2: [31, 3: [1, 5: [1, 61, 6: [2, 31})
sage: H.layout_acyclic_dummy ()

{0: (1.00..., 0], 1: [1.00..., 1], 2: [1.51..., 2], 3: [1.50..., 3], 5: [2.01.
.., 0], 6: [2.00..., 11}

sage: H = DiGraph({0: [1]})

sage: H.layout_acyclic_dummy (rankdir="'up')
{0: [0.5..., 0], 1: [0.5..., 11}

sage: H.layout_acyclic_dummy (rankdir="down')
{0: [0.5..., 11, 1: [0.5..., 0]}

sage: H.layout_acyclic_dummy (rankdir="'left")

{0: [1, 0.5...1, 1: [0, 0.5...1}
sage: H.layout_acyclic_dummy (rankdir="'right")
{0: [0, O0.5...], 1: [1, 0.5...]1}

sage: H = DiGraph({O: [1, 2], 1: [3]1, 2: [3], 3: [1], 5: [1, 6], 6: [2, 31})
sage: H.layout_acyclic_dummy ()
Traceback (most recent call last):

ValueError: “self’ should be an acyclic graph

level_sets ()

Return the level set decomposition of the digraph.
OUTPUT:
* alist of non empty lists of vertices of this graph

The level set decomposition of the digraph is a list { such that the level I[¢] contains all the vertices having
all their predecessors in the levels [[j] for j < 4, and at least one in level [[i — 1] (unless ¢ = 0).

The level decomposition contains exactly the vertices not occuring in any cycle of the graph. In particular,
the graph is acyclic if and only if the decomposition forms a set partition of its vertices, and we recover
the usual level set decomposition of the corresponding poset.

EXAMPLES:

sage: H = DiGraph({O: [1, 2], 1: [31, 2: [31, 3: [1, 5: [1, 61, 6: [2, 31})
sage: H.level_sets()
(o, 51, 1, o1, [21, [3]]

sage: H = DiGraph({O: [1, 2], 1: [3], 2: [3], 3: [11, 5: [1, 6], 6: [2, 31})
sage: H.level_sets|()
([0, 5], [61, [2]]

This routine is mostly used for Hasse diagrams of posets:

sage: from sage.combinat.posets.hasse_diagram import HasseDiagram

sage: H = HasseDiagram({O: [1, 2], 1: [31, 2: [3]1, 3: [1})
sage: [len(x) for x in H.level_sets ()]
(1, 2, 1]

sage: from sage.combinat.posets.hasse_diagram import HasseDiagram
sage: H = HasseDiagram({O: [1, 2], 1: [3]1, 2: [4]1, 3: [41})

sage: [len(x) for x in H.level_sets()]

(1, 2, 1, 1]
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Complexity: O(n 4+ m) in time and O(n) in memory (besides the storage of the graph itself), where n and
m are respectively the number of vertices and edges (assuming that appending to a list is constant time,
which it is not quite).

neighbor_ in_iterator (verfex)
Return an iterator over the in-neighbors of vertex.

An vertex u is an in-neighbor of a vertex v if uv in an edge.

EXAMPLES:

sage: D = DiGraph({0O: [1,2,31, 1: [0,2]1, 2: [3], 3: [41, 4: [0,5], 5: [11})
sage: for a in D.neighbor_in_iterator (0):
e print (a)

neighbor_out_iterator (verfex)
Return an iterator over the out-neighbors of a given vertex.

A vertex u is an out-neighbor of a vertex v if vu in an edge.

EXAMPLES:

sage: D = DiGraph({0: [1,2,31, 1: [0,2], 2: [31, 3: [4]1, 4: [0,5], 5: [11})
sage: for a in D.neighbor_out_iterator(0):
et print (a)

neighbors_in (vertex)
Return the list of the in-neighbors of a given vertex.

A vertex u is an in-neighbor of a vertex v if uv in an edge.

EXAMPLES:

sage: D = DiGraph({0: [1,2,3]1, 1: [0,2], 2: [3]1, 3: [4], 4: [0,5], 5: [11})
sage: D.neighbors_in(0)
(1, 4]

neighbors_out (vertex)
Return the list of the out-neighbors of a given vertex.

A vertex u is an out-neighbor of a vertex v if vu in an edge.

EXAMPLES:

sage: D = DiGraph({0: [1,2,3]1, 1: [0,2], 2: [3], 3: [4], 4: [0,5], 5: [11})
sage: D.neighbors_out (0)
(1, 2, 3]

out_degree (vertices=None, labels=False)
Same as degree, but for out degree.

EXAMPLES:

sage: D = DiGraph({O: [1,2,3]1, 1: [0,2], 2: [3]1, 3: [4]1, 4: [0,5], 5: [11})
sage: D.out_degree(vertices=[0, 1 ,2], labels=True)
{0: 3, 1: 2, 2: 1}

(continues on next page)
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sage: D.out_degree ()
(3, 2, 1, 1, 2, 1]
sage: D.out_degree (2)
1

out_degree_iterator (vertices=None, labels=False)

Same as degree_iterator, but for out degree.

EXAMPLES:

sage: D = graphs.Grid2dGraph(2,4) .to_directed()
sage: for i in D.out_degree_iterator():
..... print (i)

3

3

2

2

3

2

2

3

sage: for i1 in D.out_degree_iterator (labels=True):
..... print (i)

(0, 1), 3)

(1, 2), 3)

(0, 0), 2)

(0, 3), 2)

((1, 1), 3)

(1, 3), 2)

(L, 0), 2)

(0, 2), 3)

out_degree_sequence ()
Return the outdegree sequence of this digraph.

EXAMPLES:

The outdegree sequences of two digraphs:

sage: g = DiGraph({1: [2, 5, 6], 2: [3, 6], 3: [4, 6], 4: [6], 5: [4, 61})
sage: g.out_degree_sequence ()

(3, 2, 2, 2, 1, 0]

sage: V = [2, 3, 5, 7, 8, 9, 10, 11]

sage: &£ = [[], [8, 101, [11], [8, 111, (91, (1, (1, (2, 9, 10]]

sage: g = DiGraph(dict(zip(V, E)))

sage: g.out_degree_sequence ()

(3, 2, 2, 1, 1, o, 0, 0]

outgoing_edge_iterator (vertices, labels=True)
Return an iterator over all departing edges from vertices.

INPUT:

e vertices — a vertex or a list of vertices

* labels —boolean (default: True); whether to return edges as pairs of vertices, or as triples contain-

ing the labels.
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EXAMPLES:

sage: D = DiGraph({O: [1,2,3], 1: [0,2], 2: [3], 3: [41, 4: [0,5], 5: [11})
sage: for a in D.outgoing_edge_iterator ([0]):

e print (a)

(0, 1, None)

(0, 2, None)

(0, 3, None)

outgoing_edges (vertices, labels=True)
Return a list of edges departing from vertices.

INPUT:
e vertices — a vertex or a list of vertices

e labels —boolean (default: True); whether to return edges as pairs of vertices, or as triples contain-
ing the labels.

EXAMPLES:

sage: D = DiGraph({O: [1,2,3]1, 1: [0,2], 2: [3]1, 3: [4]1, 4: [0,5], 5: [11})
sage: D.outgoing_edges ([0])
[(0O, 1, None), (0, 2, None), (0, 3, None)]

path_semigroup ()
The partial semigroup formed by the paths of this quiver.

EXAMPLES:

sage: Q = DiGraph({1l: {2: ['a', 'c'l}, 2: {3: ['D'1}})

sage: F = Q.path_semigroup(); F

Partial semigroup formed by the directed paths of Multi-digraph on 3 vertices
sage: list (F)

[e_1l, e 2, e_3, a, c, b, a*b, cxb]

period()
Return the period of the current DiGraph.

The period of a directed graph is the largest integer that divides the length of every cycle in the graph. See
the Wikipedia article Aperiodic_graph for more information.

EXAMPLES:

The following graph has period 2:

sage: g = DiGraph({0: [1], 1: [0]})
sage: g.period()
2

The following graph has a cycle of length 2 and a cycle of length 3, so it has period 1:

sage: g = DiGraph({O: [1, 41, 1: [2], 2: [O], 4: [O]})
sage: g.period()
1

Here is an example of computing the period of a digraph which is not strongly connected. By definition, it
is the gcd () of the periods of its strongly connected components:
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sage: g = DiGraph({-1: [-
et 1: [2], 2: [1]}
sage: g.period()

1

sage: sorted([s.period() for s

et in g.strongly_connected_components_subgraphs()])

ALGORITHM:

See the networkX implementation of is_aperiodic, thatis based on breadth first search.
See also:

is_aperiodic()

reverse ()
Return a copy of digraph with edges reversed in direction.

EXAMPLES:

sage: D = DiGraph({O: [1,2,31, 1: [0,2]1, 2: [3], 3: [41, 4: [0,5], 5: [11})
sage: D.reverse()
Reverse of (): Digraph on 6 vertices

reverse_edge (u, v=None, label=None, inplace=True, multiedges=None)
Reverse the edge from u to v.

INPUT:

e inplace - boolean (default: True); if False, a new digraph is created and returned as output,
otherwise self is modified.

e multiedges — boolean (default: None); how to decide what should be done in case of doubt (for
instance when edge (1, 2) is to be reversed in a graph while (2, 1) already exists):

— If setto True, input graph will be forced to allow parallel edges if necessary and edge (1, 2) will
appear twice in the graph.

— If set to False, only one edge (1,2) will remain in the graph after (2, 1) is reversed. Besides,
the label of edge (1, 2) will be overwritten with the label of edge (2, 1).

The default behaviour (multiedges = None) will raise an exception each time a subjective deci-
sion (setting multiedges to True or False) is necessary to perform the operation.

The following forms are all accepted:

* D.reverse_edge( 1,2)

* D.reverse_edge( (1,2))

* D.reverse_edge( [1, 2])

* D.reverse_edge( 1, 2, ‘label’ )

* D.reverse_edge( ( 1, 2, ‘label’) )

* D.reverse_edge( [1, 2, ‘label’] )

* D.reverse_edge( ( 1, 2), label="label’ )
EXAMPLES:

If inplace is True (default value), self is modified:
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sage: D = DiGraph([(0, 1 ,2)1)
sage: D.reverse_edge (0, 1)
sage: D.edges ()

[((1, 0, 2)]

If inplaceisFalse, self is not modified and a new digraph is returned:

sage: D = DiGraph([ (0, 1, 2)1)

sage: re = D.reverse_edge (0, 1, inplace=False)
sage: re.edges()

[(1, 0, 2)]

sage: D.edges|()

[0, 1, 2)]

Ifmultiedgesis True, self will be forced to allow parallel edges when and only when it is necessary:

sage: D = DiGraph([ (1, 2, 'A'), (2, 1, 'A"), (2, 3, None)l)
sage: D.reverse_edge(l, 2, multiedges=True)

sage: D.edges ()

(2, 1, '‘a"y, (2, 1, 'A"), (2, 3, None)]

sage: D.allows_multiple_edges()

True

Evenifmultiedges is True, self will not be forced to allow parallel edges when it is not necessary:

sage: D = DiGraph( [(1, 2, 'A'), (2, 1, 'A"), (2, 3, None)] )
sage: D.reverse_edge (2, 3, multiedges=True)

sage: D.edges|()

[(1, 2, 'A'), (2, 1, 'A'), (3, 2, None)]

sage: D.allows_multiple_edges|()

False

If user specifiesmultiedges = False, self will not be forced to allow parallel edges and a parallel
edge will get deleted:

sage: D = DiGraph( [(l, 2, 'A'), (2, 1, 'A'), (2, 3, None)] )
sage: D.edges|()

[(1, 2, 'A"), (2, 1, 'A"), (2, 3, None) ]

sage: D.reverse_edge(l, 2, multiedges=False)

sage: D.edges|()

[(2, 1, 'A"), (2, 3, None)]

Note that in the following graph, specifying multiedges = False will result in overwriting the label
of (1,2) with the label of (2, 1):

sage: D = DiGraph( [(1, 2, 'B'), (2, 1, 'A"), (2, 3, None)] )
sage: D.edges ()

(¢, 2, '"y, (2, 1, 'A'), (2, 3, None)]

sage: D.reverse_edge(2, 1, multiedges=False)

sage: D.edges|()

[(1, 2, '"A"), (2, 3, None)]

If input edge in digraph has weight/label, then the weight/label should be preserved in the output digraph.
User does not need to specify the weight/label when calling function:

sage: D = DiGraph([[O, 1, 2], [1, 2, 1]1], weighted=True)
sage: D.reverse_edge (0, 1)

(continues on next page)
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sage: D.edges|()

[(1, 0, 2), (1, 2, 1)1

sage: re = D.reverse_edge([l, 2], inplace=False)
sage: re.edges|()

[(1, 0, 2), (2, 1, 1)1

If self has multiple copies (parallel edges) of the input edge, only 1 of the parallel edges is reversed:

sage: D = DiGraph([(O, 1, '0O1'), (O, 1, 'O1"), (O, 1, 'cat'), (1, 2, '"12")1,.
—welghted=True, multiedges=True)

sage: re = D.reverse_edge ([0, 1, '01'], inplace=False)

sage: re.edges()

(¢o, 1, o1"y), (0, 1, 'cat'), (1, O, 'O1"), (1, 2, '12")]

If self has multiple copies (parallel edges) of the input edge but with distinct labels and no input label
is specified, only 1 of the parallel edges is reversed (the edge that is labeled by the first label on the list
returned by edge_label ()):

sage: D = DiGraph([(O, 1, 'A'), (O, 1, 'B"), (0, 1, 'mouse'), (0, 1, 'cat")l,_.
—multiedges=true)

sage: D.edge_label (0, 1)

['cat', 'mouse', 'B', 'A']

sage: D.reverse_edge (0, 1)

sage: D.edges|()

(¢g, 12, 'a"y, (0, 1, 'B'), (0, 1, 'mouse'), (1, 0, 'cat')]

Finally, an exception is raised when Sage does not know how to choose between allowing multiple edges
and losing some data:

sage: D = DiGraph([(0, 1, 'A"), (1, O, '"B")])
sage: D.reverse_edge (0, 1)
Traceback (most recent call last):

ValueError: reversing the given edge is about to create two parallel
edges but input digraph doesn't allow them - User needs to specify
multiedges is True or False.

The following syntax is supported, but note that you must use the 1abel keyword:

sage: D = DiGraph()

sage: D.add_edge( (1, 2), label='"label')
sage: D.edges|()

[(1, 2, '"label'")]

sage: D.reverse_edge((1l, 2), label='label')
sage: D.edges|()

[(2, 1, '"label'")]

sage: D.add_edge((1, 2), 'label')

sage: D.edges|()

[(2, 1, '"label'), ((1, 2), 'label', None)]
sage: D.reverse_edge((1l, 2), 'label')
sage: D.edges|()

[(2, 1, 'label'), ('label', (1, 2), None)]

reverse_edges (edges, inplace=True, multiedges=None)

Reverse a list of edges.

INPUT:
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* edges —a list of edges in the DiGraph.

e inplace — boolean (default: True); if False, a new digraph is created and returned as output,
otherwise self is modified.

* multiedges — boolean (default: None); if True, input graph will be forced to allow parallel edges
when necessary (for more information see the documentation of reverse edge ())

See also:
reverse_edge () - Reverses a single edge.
EXAMPLES:

If inplace is True (default value), self is modified:

sage: D = DiGraph({ O: [1, 1, 31, 2: [3, 31, 4: [1l, 5]}, multiedges=true)
sage: D.reverse_edges([[0, 1], [0, 311)

sage: D.reverse_edges ([ (2, 3), (4, 5)1])

sage: D.edges|()

[(0O, 1, None), (1, 0O, None), (2, 3, None)

, (3, 0, None),
(3, 2, None), (4, 1, None), (5, 4, None)]

If inplaceisFalse, self is not modified and a new digraph is returned:

sage: D = DiGraph([(0, 1, 'A'), (1, 0, 'B'), (1, 2, 'C')])
sage: re = D.reverse_edges([(0, 1), (1, 2)1,

et inplace=False,

e multiedges=True)

sage: D.edges|()

(o, 1, 'a"y, (1, o, 'B"), (1, 2, 'C")]
sage: D.allows_multiple_edges|()

False

sage: re.allows_multiple_edges ()

True

Ifmultiedgesis True, self will be forced to allow parallel edges when and only when it is necessary:

sage: D = DiGraph([ (1, 2, 'A"'), (2, 1, 'A'), (2, 3, None)l)
sage: D.reverse_edges ([ (1, 2), (2, 3)], multiedges=True)
sage: D.edges ()

((z, 1, 'a"), (2, 1, 'A"), (3, 2, None)]
sage: D.allows_multiple_edges|()
True

Evenif multiedges is True, self will not be forced to allow parallel edges when it is not necessary:

sage: D = DiGraph([ (1, 2, 'A"'), (2, 1, 'A'), (2, 3, None)l)
sage: D.reverse_edges ([ (2, 3)], multiedges=True)
sage: D.edges|()

(1, 2, 'a"y, (2, 1, 'a"), (3, 2, None)]
sage: D.allows_multiple_edges|()
False

Ifmultiedgesis False, self will not be forced to allow parallel edges and an edge will get deleted:

sage: D = DiGraph([ (1, 2), (2, 1)1)
sage: D.edges|()

(continues on next page)
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[(1, 2, None), (2, 1, None)]

sage: D.reverse_edges ([ (1, 2)], multiedges=False)
sage: D.edges|()

[(2, 1, None)]

If input edge in digraph has weight/label, then the weight/label should be preserved in the output digraph.
User does not need to specify the weight/label when calling function:

sage: D = DiGraph([(O, 1, '01'), (1, 2, 1), (2, 3, '23")], weighted=True)
sage: D.reverse_edges([(0, 1, '01'), (1, 2), (2, 3)1)

sage: D.edges ()

[(x, 0, 'o1r"y, (2, 1, 1), (3, 2, '23")]

sinks ()

Return a list of sinks of the digraph.
OUTPUT:

* list of the vertices of the digraph that have no edges beginning at them

EXAMPLES:

sage: G = DiGraph({l: {3: ['a'l}, 2: {3: ['D']}})
sage: G.sinks()

[3]

sage: T = DiGraph({1: {}})
sage: T.sinks()
(1]

sources ()

Return a list of sources of the digraph.
OUTPUT:
* list of the vertices of the digraph that have no edges going into them

EXAMPLES:

sage: G = DiGraph({1l: {3: ['a'l}, 2: {3: ['D']1}})
sage: G.sources|()

(1, 2]

sage: T = DiGraph({1: {}})

sage: T.sources|()

(1]

strong_articulation_points (G)

Return the strong articulation points of this digraph.

A vertex is a strong articulation point if its deletion increases the number of strongly connected compo-
nents. This method implements the algorithm described in [ILS2012]. The time complexity is dominated
by the time complexity of the immediate dominators finding algorithm.

OUTPUT: The list of strong articulation points.
EXAMPLES:

Two cliques sharing a vertex:
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sage: from sage.graphs.connectivity import strong_articulation_points
sage: D = digraphs.Complete (4)

sage: D.add_clique([3, 4, 5, 6])

sage: strong_articulation_points (D)

[3]

sage: D.strong_articulation_points ()

[3]

Two cliques connected by some arcs:

sage: D = digraphs.Complete(4) * 2

sage: D.add_edges ([ (0, 4), (7, 3)1)
sage: sorted(strong_articulation_points (D))
(0, 3, 4, 7]

sage: D.add_edge(l, 5)

sage: sorted(strong_articulation_points (D))
[3, 7]

sage: D.add_edge (6, 2)

sage: strong_articulation_points (D)

[]

See also:

* strongly connected components ()

e dominator_tree /()

strongly_ connected_component_containing_vertex (G, V)

Return the strongly connected component containing a given vertex
INPUT:

* G — the input DiGraph

* v —avertex
EXAMPLES:

In the symmetric digraph of a graph, the strongly connected components are the connected components:

sage: from sage.graphs.connectivity import strongly_connected_component_
—containing_vertex

sage: g = graphs.PetersenGraph ()

sage: d = DiGraph(g)

sage: strongly_connected_component_containing vertex(d, 0)

(o, 1, 2, 3, 4, 5, 6, 7, 8, 9]

sage: d.strongly_connected_component_containing_vertex (0)

(o, 1, 2, 3, 4, 5, 6, 7, 8, 9]

sage: g = DiGraph([(0, 1), (1, 0), (1, 2), (2, 3), (3, 2)1)
sage: strongly_connected_component_containing vertex (g, 0)
[0, 1]

strongly connected_components (G)

Return the lists of vertices in each strongly connected components (SCCs).

This method implements the Tarjan algorithm to compute the strongly connected components of the di-
graph. It returns a list of lists of vertices, each list of vertices representing a strongly connected component.
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The basic idea of the algorithm is this: a depth-first search (DFS) begins from an arbitrary start node (and
subsequent DFSes are conducted on any nodes that have not yet been found). As usual with DFSes, the
search visits every node of the graph exactly once, declining to revisit any node that has already been
explored. Thus, the collection of search trees is a spanning forest of the graph. The strongly connected
components correspond to the subtrees of this spanning forest that have no edge directed outside the
subtree.

To recover these components, during the DFS, we keep the index of a node, that is, the position in the DFS
tree, and the lowlink: as soon as the subtree rooted at v has been fully explored, the lowlink of v is the
smallest index reachable from v passing from descendants of v. If the subtree rooted at v has been fully
explored, and the index of v equals the lowlink of v, that whole subtree is a new SCC.

For more information, see the Wikipedia article Tarjan’s_strongly_connected_components_algorithm.

EXAMPLES:

sage: from sage.graphs.base.static_sparse_graph import tarjan_strongly_
—connected_components

sage: tarjan_strongly_connected_components (digraphs.Path(3))

(121, (11, [011]

sage: D = DiGraph( { O : [1, 3], 1 : [2], 2 : [31, 4 :« [5, 6], 5 : [6] } )
sage: D.connected_components ()

(to, 1, 2, 31, I[4, 5, 6]]

sage: D = DiGraph( { O : [1, 3], 1 : [2], 2 : [31, 4 :« [5, 6], 5 : [6] } )
sage: D.strongly_connected_components ()

(31, ftz1, 111, o1, rtel, (51, [41]

sage: D.add_edge([2,0])

sage: D.strongly_connected_components ()

(31, 1o, 1, 21, f[el, (51, [4]]

sage: D DiGraph([('a', 'D"), ('b','c"), ('c¢', 'd"), ('d', 'b"), ('c', 'e")])
sage: D.strongly_connected_components ()
({'e']l, ['c", 'b', 'd'], ['a']l]

strongly_ connected_components_digraph (G, keep_labels=False)

Return the digraph of the strongly connected components

The digraph of the strongly connected components of a graph G has a vertex per strongly connected
component included in G. There is an edge from a component C to a component C', if there is an edge in
G from a vertex uy € C7 to a vertex ug € Cs.

INPUT:
* G — the input DiGraph

* keep_labels — boolean (default: False); when keep_labels=True, the resulting digraph
has an edge from a component C; to a component C; for each edge in G from a vertex u; € C;
to a vertex u; € Cj. Hence the resulting digraph may have loops and multiple edges. However,
edges in the result with same source, target, and label are not duplicated (see examples below). When
keep_labels=False, the return digraph is simple, so without loops nor multiple edges, and edges
are unlabelled.

EXAMPLES:

Such a digraph is always acyclic:

sage: from sage.graphs.connectivity import strongly_connected_components_

—digraph
sage: g = digraphs.RandomDirectedGNP (15, .1)
sage: scc_digraph = strongly_connected_components_digraph (g)

sage: scc_digraph.is_directed_acyclic()

(continues on next page)
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True

sage: scc_digraph = g.strongly_connected_components_digraph ()
sage: scc_digraph.is_directed_acyclic()

True

The vertices of the digraph of strongly connected components are exactly the strongly connected compo-

nents:

sage: g = digraphs.ButterflyGraph (2)

sage: scc_digraph = strongly_connected_components_digraph (g)

sage: g.is_directed_acyclic()

True

sage: V_scc = list (scc_digraph)

sage: all(Set(scc) in V_scc for scc in g.strongly_connected_components())
True

The following digraph has three strongly connected components, and the digraph of those is a
TransitiveTournament ():

sage: g = DiGraph({O: {1: "O1", 2: "02", 3: "03"}, 1: {2: "12"}, 2:{1: "21",
—3: "23"}})

sage: scc_digraph = strongly_connected_components_digraph (g)

sage: scc_digraph.is_isomorphic (digraphs.TransitiveTournament (3))

True

By default, the labels are discarded, and the result has no loops nor multiple edges. If keep_labels is
True, then the labels are kept, and the result is a multi digraph, possibly with multiple edges and loops.
However, edges in the result with same source, target, and label are not duplicated (see the edges from O
to the strongly connected component {1, 2} below):

sage: g = DiGraph({0O: {1: "O-12", 2: "0-12", 3: "0-3"}, 1: {2: "1-2", 3: "1-3
"}, 2: {1l: "2-1", 3: "2-3"}})
sage: g.order (), g.size()

(4, 7)

sage: scc_digraph = strongly_connected_components_digraph (g, keep_labels=True)
sage: (scc_digraph.order (), scc_digraph.size())

(3, 6)

sage: set(g.edge_labels()) == set(scc_digraph.edge_labels())

True

strongly_connected_components_subgraphs (G)
Return the strongly connected components as a list of subgraphs.

EXAMPLES:

In the symmetric digraph of a graph, the strongly connected components are the connected components:

sage: from sage.graphs.connectivity import strongly_connected_components_
—subgraphs

sage: g = graphs.PetersenGraph ()

sage: d = DiGraph(g)

sage: strongly_connected_components_subgraphs (d)

[Subgraph of (Petersen graph): Digraph on 10 vertices]

sage: d.strongly_connected_components_subgraphs ()

[Subgraph of (Petersen graph): Digraph on 10 vertices]
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sage: g = DiGraph ([ (0, 1), (1, 0), (L1, 2), (2, 3), (3, 2)1)
sage: strongly_connected_components_subgraphs (g)
[Subgraph of (): Digraph on 2 vertices, Subgraph of (): Digraph on 2 vertices]

to_directed()

Since the graph is already directed, simply returns a copy of itself.

EXAMPLES:

sage: DiGraph ({O0: [1, 2, 31, 4: [5, 1]1}).to_directed()
Digraph on 6 vertices

to_undirected (implementation="c_graph’, data_structure=None, sparse=None)

Return an undirected version of the graph.
Every directed edge becomes an edge.
INPUT:

e data_structure — string (default: None); one of "sparse", "static_sparse", or
"dense". See the documentation of Graph or DiGraph.

* sparse — boolean (default: None); sparse=True is an alias for
data_structure="sparse", and sparse=False is an alias for
data_structure="dense".

EXAMPLES:

sage: = DiGraph ({0: [1, 2], 1: [01})

D
sage: G = D.to_undirected()
sage: D.edges (labels=False)
[(0, 1), (0, 2), (1, 0)]
sage: G.edges (labels=False)
[(0, 1), (0, 2)]

topological_sort (implementation="default’)

Return a topological sort of the digraph if it is acyclic.

If the digraph contains a directed cycle, a TypeError is raised. As topological sorts are not necessarily
unique, different implementations may yield different results.

A topological sort is an ordering of the vertices of the digraph such that each vertex comes before all of its
successors. That is, if u comes before v in the sort, then there may be a directed path from « to v, but there
will be no directed path from v to w.

INPUT:
e implementation — string (default: "default™"); either use the default Cython implementation,
or the default NetworkX library (implementation = "NetworkX")
See also:

e is directed_acyclic () — Tests whether a directed graph is acyclic (can also join a certificate
— a topological sort or a circuit in the graph).

EXAMPLES:

sage: D = DiGraph({O: [1, 2, 31, 4: [2, 5], 1: [8]1, 2: [7]1, 3: [71,
e 5: [6, 71, 7: [8], 6: [9], 8: [10], 9: [10]})
sage: D.plot (layout='circular') .show()

(continues on next page)
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sage: D.topological_sort ()
(4, 5, 6, 9, 0, 1, 2, 3, 7, 8, 10]

sage: D.add_edge (9, 7)
sage: D.topological_sort ()
(4, 5, 6, 9, 0, 1, 2, 3, 7, 8, 10]

Using the NetworkX implementation

sage: list(D.topological_sort (implementation="NetworkX"))
[41 5/ 67 97 OI 3/ 27 77 ll 8/ 10]

sage: D.add_edge (7, 4)
sage: D.topological_sort ()
Traceback (most recent call last):

TypeError: digraph is not acyclic; there is no topological sort

topological_sort_generator ()
Return an iterator over all topological sorts of the digraph if it is acyclic.

If the digraph contains a directed cycle, a TypeError is raised.

A topological sort is an ordering of the vertices of the digraph such that each vertex comes before all of its
successors. That is, if u comes before v in the sort, then there may be a directed path from u to v, but there
will be no directed path from v to u. See also topological_ sort ().

AUTHORS:

* Mike Hansen - original implementation

* Robert L. Miller: wrapping, documentation
REFERENCE:

e [1] Pruesse, Gara and Ruskey, Frank. Generating Linear Extensions Fast. SIAM J. Comput., Vol. 23
(1994), no. 2, pp. 373-386.

EXAMPLES:

sage: D = DiGraph({O: [1, 21, 1: [31, 2: [3, 41})

sage: D.plot (layout='circular') .show()

sage: list(D.topological_sort_generator())

(o, 1, 2, 3, 41, [0, 2, 1, 3, 41, [0, 2, 1, 4, 31, [0, 2, 4, 1, 31, [0, 1, 2,
— 4, 31]

sage: for sort in D.topological_sort_generator():
et for u, v in D.edge_iterator (labels=False):
e if sort.index(u) > sort.index (v):
el print ("this should never happen")

1.4 Bipartite graphs

This module implements bipartite graphs.
AUTHORS:
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¢ Robert L. Miller (2008-01-20): initial version

e Ryan W. Hinton (2010-03-04): overrides for adding and deleting vertices and edges

sage: B = BipartiteGraph (graphs.CycleGraph (4))
sage: B == B.copy ()

True

sage: type(B.copy())
<class 'sage.graphs.bipartite_graph.BipartiteGraph'>

class sage.graphs.bipartite_graph.BipartiteGraph (data=None, partition=None,

check=True, *args, **kwds)

Bases: sage.graphs.graph.Graph

Bipartite graph.

INPUT:

* data — can be any of the following:

1.
2.
3.

5.

Empty or None (creates an empty graph).
An arbitrary graph.
A reduced adjacency matrix.

A reduced adjacency matrix contains only the non-redundant portion of the full adjacency matrix for
the bipartite graph. Specifically, for zero matrices of the appropriate size, for the reduced adjacency
matrix H, the full adjacency matrixis [ [0, H'], [H, 0]]1. The columns correspond to vertices
on the left, and the rows correspond to vertices on the right.

. A file in alist format.

The alist file format is described at http://www.inference.phy.cam.ac.uk/mackay/codes/alist.html

From a NetworkX bipartite graph.

e partition — (default: None); a tuple defining vertices of the left and right partition of the graph.
Partitions will be determined automatically if partition is None.

¢ check — boolean (default: True); if True, an invalid input partition raises an exception. In the other
case offending edges simply won’t be included.

Note: All remaining arguments are passed to the Graph constructor

EXAMPLES:

1. No inputs or None for the input creates an empty graph:

0

sage: B = BipartiteGraph/()

sage: type (B)

<class 'sage.graphs.bipartite_graph.BipartiteGraph'>
sage: B.order ()

sage: B == BipartiteGraph (None)
True

2. From a graph: without any more information, finds a bipartition:
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sage: B = BipartiteGraph (graphs.CycleGraph (4))
sage: B = BipartiteGraph (graphs.CycleGraph (5))
Traceback (most recent call last):

TypeError: input graph is not bipartite
sage: G = Graph({0: [5, 6], 1: [4, 5], 2: [4, 6], 3: [4, 5, 61})

sage: B = BipartiteGraph (G)
sage: B ==
True

sage: B.left
{o, 1, 2, 3}
sage: B.right

{4, 5, 6}

sage: B = BipartiteGraph({O: [5, 6], 1: [4, 51, 2: [4, 61, 3: [4, 5, 61})
sage: B ==

True

sage: B.left
{0, 1, 2, 3}
sage: B.right
{4, 5, 6}

3. If a Graph or DiGraph is used as data, you can specify a partition using partition argument. Note
that if such graph is not bipartite, then Sage will raise an error. However, if one specifies check=False,
the offending edges are simply deleted (along with those vertices not appearing in either list). We also
lump creating one bipartite graph from another into this category:

sage: P = graphs.PetersenGraph ()

sage: partition = [list(range(5)), list(range(5, 10))]
sage: B = BipartiteGraph (P, partition)

Traceback (most recent call last):

TypeError: input graph is not bipartite with respect to the given partition

sage: B = BipartiteGraph (P, partition, check=False)
sage: B.left

{0, 1, 2, 3, 4}

sage: B.show()

sage: G = Graph({0: [5, 6], 1: [4, 51, 2: [4, 6], 3: [4, 5, 61})
sage: B = BipartiteGraph (G)
sage: B2 = BipartiteGraph (B)

sage: B == B2

True

sage: B3 = BipartiteGraph(G, [list (range(4)), list(range(4, 7))1)
sage: B3

Bipartite graph on 7 vertices

sage: B3 == B2

True

sage: G = Graph({O: [], 1: []1, 2: [1})

sage: part = (list(range(2)), [2])
sage: B = BipartiteGraph (G, part)
sage: B2 = BipartiteGraph (B)

sage: == B2

True
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sage: d = DiGraph(6)
sage: d.add_edge (0, 1)
sage: part=[[1, 2, 31, [0, 4, 5]]
sage: b = BipartiteGraph(d, part)
sage: b.left
{1, 2, 3}
sage: b.right
{0, 4, 5}
4. From a reduced adjacency matrix:
sage: M = Matrix([(1,1,1,0,0,0,0), (1,0,0,1,1,0,0),
..... (0,1,0,1,0,1,0), (1,1,0,1,0,0,1)1)
sage: M
[1 11000 0]
[1 00110 0]
[01 01 01 0]
[1 10100 1]
sage: H = BipartiteGraph(M); H
Bipartite graph on 11 vertices
sage: H.edges|()
[(O, 7, None),
(0, 8, None),
(0, 10, None),
(1, 7, None),
(1, 9, None),
(1, 10, None),
(2, 7, None),
(3, 8, None),
(3, 9, None),
(3, 10, None),
(4, 8, None),
(5, 9, None),
(6, 10, None)]
sage: M = Matrix([(l, 1, 2, O, 0O), (0, 2, 1, 1, 1), (0, 1, 2, 1, 1)1)
sage: B = BipartiteGraph (M, multiedges=True, sparse=True)
sage: B.edges|()
[(O, 5, None),
(1, 5, None),
(1, 6, None),
(1, 6, None),
(1, 7, None),
(2, 5, None),
(2, 5, None),
(2, 6, None),
(2, 7, None),
(2, 7, None),
(3, 6, None),
(3, 7, None),
(4, 6, None),
(4, 7, None)]
sage: F.<a> = GF (4)
sage: MS = MatrixSpace(F, 2, 3)
sage: M = MS.matrix([[O0, 1, a + 11, [a, 1, 111)
sage: B = BipartiteGraph (M, weighted=True, sparse=True)

(continues on next page)
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sage: B.edges|()
[0, 4, a), (1, 3,
sage: B.weighted()
True

L, (1, 4, 1), (2, 3, a+ 1), (2, 4, 1)]

5. From an alist file:

sage: file_name = os.path.join (SAGE_TMP, 'deleteme.alist.txt')
sage: fi = open(file_name, 'w')

sage: _ = fi.write("7 4 \n 3 4 \n 3313111 1\n 3334 \n\
124\n1l134\n100\n234\n\

200 \n300N\n40 0 \n\

1 30\nl1450\n24601\n1l1?247\n")

\S]

sage: fi.close()

sage: B = BipartiteGraph(file_name)
sage: B.is_isomorphic (H)

True

6. From a NetworkX bipartite graph:

sage: import networkx

sage: G = graphs.OctahedralGraph/ ()

sage: N = networkx.make_clique_bipartite (G.networkx_graph())
sage: B = BipartiteGraph (N)

add_edge (u, v=None, label=None)
Add an edge from u to v.

INPUT:
e u — the tail of an edge.
* v — (default: None); the head of an edge. If v=None, then attempt to understand u as a edge tuple.
e label — (default: None); the label of the edge (u, v).
The following forms are all accepted:
* G.add_edge (1, 2)
* G.add_edge ((1, 2))
e G.add_edges ([ (1, 2)]1)
* G.add_edge (1, 2, 'label')
* G.add_edge ((1, 2, 'label'))
* G.add_edges ([ (1, 2, 'label'")])

See add_edge () for more detail.

This method simply checks that the edge endpoints are in different partitions. If a new vertex is to be
created, it will be added to the proper partition. If both vertices are created, the first one will be added to
the left partition, the second to the right partition.

add_vertex (name=None, left=False, right=False)
Create an isolated vertex. If the vertex already exists, then nothing is done.

INPUT:
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* name — (default: None); name of the new vertex. If no name is specified, then the vertex will be
represented by the least non-negative integer not already representing a vertex. Name must be an
immutable object and cannot be None.

e left —boolean (default: False); if True, puts the new vertex in the left partition.
* right — boolean (default: False); if True, puts the new vertex in the right partition.
Obviously, 1eft and right are mutually exclusive.

As it is implemented now, if a graph G has a large number of vertices with numeric labels, then G.
add_vertex () could potentially be slow, if name is None.

OUTPUT:
¢ If name is None, the new vertex name is returned. None otherwise.

EXAMPLES:

sage: G = BipartiteGraph/()
sage: G.add_vertex (left=True)

0

sage: G.add_vertex(right=True)
1

sage: G.vertices()

[0, 1]

sage: G.left
{0}

sage: G.right
{1}

add_vertices (vertices, left=False, right=False)

Add vertices to the bipartite graph from an iterable container of vertices.
Vertices that already exist in the graph will not be added again.
INPUT:

* vertices — sequence of vertices to add.

e left —(default: False);either True or sequence of same length as vertices with True/False
elements.

e right — (default: False); either True or sequence of the same length as vertices with
True/False elements.

Only one of 1eft and right keywords should be provided. See the examples below.
EXAMPLES:

sage: bg = BipartiteGraph ()

sage: bg.add_vertices ([0, 1, 2], left=True)

sage: bg.add_vertices([3, 4, 5], left=[True, False, True])
sage: bg.add_vertices([6, 7, 8], right=[True, False, Truel)
sage: bg.add_vertices([9, 10, 11], right=True)

sage: bg.left

{0, 1, 2, 3, 5, 7}

sage: bg.right

{4, 6, 8, 9, 10, 11}

allow_loops (new, check=True)

Change whether loops are permitted in the (di)graph
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Note: This method overwrite the allow Iloops () method to ensure that loops are forbidden in
BipartiteGraph.

INPUT:
* new — boolean

EXAMPLES:

sage: B = BipartiteGraph/ ()
sage: B.allow_loops (True)
Traceback (most recent call last):

ValueError: loops are not allowed in bipartite graphs

bipartition ()
Return the underlying bipartition of the bipartite graph.

EXAMPLES:

sage: B = BipartiteGraph (graphs.CycleGraph (4))
sage: B.bipartition()
({0, 2}, {1, 3})

complement ()
Return a complement of this graph.

EXAMPLES:

sage: B = BipartiteGraph({1l: [2, 4], 3: [4, 51})
sage: G = B.complement(); G

Graph on 5 vertices

sage: G.edges (labels=False)

(1, 3), (1, 5, (2, 3), (2, 4), (2, 5), (4, 5]

delete_vertex (vertex, in_order=False)
Delete vertex, removing all incident edges.

Deleting a non-existent vertex will raise an exception.
INPUT:
* vertex —a vertex to delete.

¢ in_order —boolean (default False); if True, deletes the i-th vertex in the sorted list of vertices,
i.e. G.vertices () [1].

EXAMPLES:

sage: B = BipartiteGraph (graphs.CycleGraph (4))
sage: B

Bipartite cycle graph: graph on 4 vertices
sage: B.delete_vertex(0)

sage: B

Bipartite cycle graph: graph on 3 vertices
sage: B.left

{2}

sage: B.edges|()

[(1, 2, None), (2, 3, None)]

(continues on next page)
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sage: B.delete_vertex(3)

sage: B.right

{1}

sage: B.edges|()

[(1, 2, None)]

sage: B.delete_vertex(0)

Traceback (most recent call last):

ValueError: vertex (0) not in the graph

sage: bg.vertices|()

['a', 'b', 'c']

sage: bg.delete_vertex('a')
sage: bg.edges|()

[("b'", 'c', None)]

sage: bg.vertices|()

['b', 'c']

sage: bg2 = BipartiteGraph(g)

sage: bg2 == bg
True

sage: g = Graph({'a': ['b"'], 'c': ['b']})
sage: bg = BipartiteGraph(g) # finds bipartition

sage: bg2.delete_vertex (0, in_order=True)

delete_vertices (vertices)

Remove vertices from the bipartite graph taken from an iterable sequence of vertices.

Deleting a non-existent vertex will raise an exception.

INPUT:

* vertices — asequence of vertices to remove

EXAMPLES:

sage: B

sage: B.delete_vertices ([0, 3])
sage: B

sage: B.left

{2}

sage: B.right

{1}

sage: B.edges|()

[(1, 2, None)]

sage: B.delete_vertices ([0])
Traceback (most recent call last):

Bipartite cycle graph: graph on 4 vertices

Bipartite cycle graph: graph on 2 vertices

ValueError: vertex (0) not in the graph

sage: B = BipartiteGraph (graphs.CycleGraph (4))

load_afile (fname)

Load into the current object the bipartite graph specified in the given file name.

This file should follow David MacKay’s alist format, see http://www.inference.phy.cam.ac.uk/mackay/

codes/data.html for examples and definition of the format.

EXAMPLES:
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sage: file_name = os.path.join (SAGE_TMP, 'deleteme.alist.txt')

sage: fi = open(file_name, 'w')

sage: _ = fi.write("7 4 \n 3 4 \n 3313111 1\n3334\n\
124\n134\n100\n2 34\n\
200 1\n 300X\n40 0 \n\
1230\n1450\n24601\n1l?247\n"

sage: fi.close()

sage: B = BipartiteGraph()
sage: B.load_afile(file_name)
Bipartite graph on 11 vertices
sage: B.edges()

[(0O, 7, None),

(0, 8, None),
(0, 10, None),
(1, 7, None),
(1, 9, None),
(1, 10, None),
(2, 7, None),
(3, 8, None),
(3, 9, None),
(3, 10, None),
(4, 8, None),
(5, 9, None),
(6, 10, None)]
sage: B2 = BipartiteGraph (file_name)
sage: B2 == B
True

matching (value_only=False, algorithm=None, use_edge_labels=False, solver=None, verbose=0)
Return a maximum matching of the graph represented by the list of its edges.

Given a graph G such that each edge e has a weight w,, a maximum matching is a subset S’ of the edges
of G of maximum weight such that no two edges of S are incident with each other.

INPUT:

* value_only — boolean (default: False); when set to True, only the cardinal (or the weight) of
the matching is returned

* algorithm - string (default: "Hopcroft-Karp" if use_edge_labels==False, otherwise
"Edmonds"); algorithm to use among:

— "Hopcroft—Karp" selects the default bipartite graph algorithm as implemented in NetworkX
— "Eppstein" selects Eppstein’s algorithm as implemented in NetworkX
— "Edmonds" selects Edmonds’ algorithm as implemented in NetworkX
— "LP" uses a Linear Program formulation of the matching problem
* use_edge_labels —boolean (default: False)

— when set to True, computes a weighted matching where each edge is weighted by its label (if an
edge has no label, 1 is assumed); only if algorithmis "Edmonds", "LP"

— when set to False, each edge has weight 1
* solver — (default: None) a specific Linear Program (LP) solver to be used
* verbose — integer (default: 0); sets the level of verbosity: set to 0 by default, which means quiet

See also:
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» Wikipedia article Matching_(graph_theory)
* matching/()

EXAMPLES:

Maximum matching in a cycle graph:

sage: G = BipartiteGraph (graphs.CycleGraph (10))
sage: G.matching()
[(O, 1, None), (2, 3, None), (4, 5, None), (6, 7, None), (8, 9, None)]

The size of a maximum matching in a complete bipartite graph using Eppstein:

sage: G = BipartiteGraph (graphs.CompleteBipartiteGraph(4,5))
sage: G.matching(algorithm="Eppstein", value_only=True)
4

matching polynomial (algorithm="Godsil’, name=None)

Compute the matching polynomial.

The matching polynomial is defined as in [Godsil93], where p(G, k) denotes the number of k-matchings
(matchings with k edges) in G :
plx) =Y (~1)"p(G, k)a" 2
k>0
INPUT:

* algorithm — string (default: "Godsil"); either “Godsil” or “rook™; “rook” is usually faster for
larger graphs

* name - string (default: None); name of the variable in the polynomial, set to x when name is None

EXAMPLES:

sage: BipartiteGraph (graphs.CubeGraph(3)) .matching_polynomial ()
X"8 — 12%x76 + 42xx"4 — 44xx"2 + 9

sage: x = polygen (QQ)

sage: g = BipartiteGraph (graphs.CompleteBipartiteGraph (16, 16))
sage: bool (factorial (16) = laguerre(l6, x"2) == g.matching_
—polynomial (algorithm="rook"))

True

Compute the matching polynomial of a line with 60 vertices:

sage: from sage.functions.orthogonal polys import chebyshev_U
sage: g = next (graphs.trees (60))

sage: chebyshev_U (60, x/2) == BipartiteGraph(g) .matching_polynomial (algorithm=
—'rook")
True

The matching polynomial of a tree is equal to its characteristic polynomial:

sage: g = graphs.RandomTree (20)

sage: p = g.characteristic_polynomial ()

sage: p == BipartiteGraph(g) .matching polynomial (algorithm="'rook")
True
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plot (*args, **kwds)
Override Graph’s plot function, to illustrate the bipartite nature.

EXAMPLES:

sage: B = BipartiteGraph (graphs.CycleGraph (20))
sage: B.plot ()

Graphics object consisting of 41 graphics primitives

project_left ()
Project self onto left vertices. Edges are 2-paths in the original.

EXAMPLES:

sage: B = BipartiteGraph (graphs.CycleGraph (20))
sage: G = B.project_left()

sage: G.order (), G.size()

(10, 10)

project_right ()
Project self onto right vertices. Edges are 2-paths in the original.

EXAMPLES:

sage: B BipartiteGraph (graphs.CycleGraph (20))
sage: G = B.project_right ()

sage: G.order (), G.size()

(10, 10)

reduced_adjacency_matrix (sparse=True)
Return the reduced adjacency matrix for the given graph.

A reduced adjacency matrix contains only the non-redundant portion of the full adjacency matrix for the
bipartite graph. Specifically, for zero matrices of the appropriate size, for the reduced adjacency matrix H,
the full adjacency matrixis [ [0, H'], [H, 0]].

INPUT:
* sparse —boolean (default: True); whether to return a sparse matrix
EXAMPLES:

Bipartite graphs that are not weighted will return a matrix over ZZ:

sage: M = Matrix([(1,1,1,0,0,0,0), ¢(1,0,0,1,1,0,0),
R (0,1,0,1,0,1,0), (1,1,0,1,0,0,1)1)
sage: B = BipartiteGraph (M)

sage: N = B.reduced_adjacency_matrix()

e
= o o o

]
]
]
]

o

=
o o o
I o o r o
2 or oo

sage: N =

sage: N[0,0] .parent ()
Integer Ring

Multi-edge graphs also return a matrix over ZZ:
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sage: M = Matrix([(1,1,2,0,0), (0,2,1,1,1), (0,1,2,1,1)1)
sage: B = BipartiteGraph (M, multiedges=True, sparse=True)
sage: N = B.reduced_adjacency_matrix()

sage: N == M

True

sage: N[0,0] .parent ()
Integer Ring

Weighted graphs will return a matrix over the ring given by their (first) weights:

sage: F.<a> = GF (4)
sage: MS = MatrixSpace(F, 2, 3)

sage: M = MS.matrix([[O0, 1, a+1l], [a, 1, 111)

sage: B = BipartiteGraph (M, weighted=True, sparse=True)
sage: N = B.reduced_adjacency_matrix (sparse=False)
sage: N == M

True

sage: N[0,0].parent ()
Finite Field in a of size 272

save_afile (fname)

Save the graph to file in alist format.

Saves this graph to file in David MacKay’s alist format, see http://www.inference.phy.cam.ac.uk/mackay/
codes/data.html for examples and definition of the format.

EXAMPLES:

sage: M = Matrix([(1,1,1,0,0,0,0), (1,0,0,1,1,0,0),
“ e e e (O,l,O,l,O,l,O), (lrllolllololl)])

sage: M

[1 11000 0]
[1 00110 0]
(01 01 01 0]
[11 0100 1]

sage: b = BipartiteGraph (M)

sage: file_name = os.path.join (SAGE_TMP, 'deleteme.alist.txt')
sage: b.save_afile(file_name)

sage: b2 = BipartiteGraph (file_name)

sage: b.is_isomorphic (b2)

to_undirected()

Return an undirected Graph (without bipartite constraint) of the given object.

EXAMPLES:

sage: BipartiteGraph (graphs.CycleGraph(6)) .to_undirected()
Cycle graph: Graph on 6 vertices

vertex_cover (algorithm="Konig’, value_only=False, reduction_rules=True, solver=None, ver-

bosity=0)
Return a minimum vertex cover of self represented by a set of vertices.

A minimum vertex cover of a graph is a set S of vertices such that each edge is incident to at least one
element of S, and such that S is of minimum cardinality. For more information, see Wikipedia article
Vertex_cover.

Equivalently, a vertex cover is defined as the complement of an independent set.
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As an optimization problem, it can be expressed as follows:

Minimize : Z by
veG

Such that : V(u,v) € G.edges(),b, + b, > 1
Va € G, b, is a binary variable

INPUT:
* algorithm - string (default: "Konig"); algorithm to use among:

— "Konig" will compute a minimum vertex cover using Konig’s algorithm (Wikipedia article
Ké&nig’s_theorem_(graph_theory))

— "Cligquer" will compute a minimum vertex cover using the Cliquer package
— "MILP" will compute a minimum vertex cover through a mixed integer linear program

— "mcgd" will use the MCQD solver (http://www.sicmm.org/~konc/maxclique/), and the MCQD
package must be installed

* value_only —boolean (default: False); if set to True, only the size of a minimum vertex cover
is returned. Otherwise, a minimum vertex cover is returned as a list of vertices.

* reduction_rules — (default: True); specify if the reductions rules from kernelization must be
applied as pre-processing or not. See [ACFLSS04] for more details. Note that depending on the
instance, it might be faster to disable reduction rules. This parameter is currently ignored when
algorithm == "Konig".

* solver — (default: None); specify a Linear Program (LP) solver to be used. If set to None, the
default one is used. For more information on LP solvers and which default solver is used, see
the method sage .numerical .mip.MixedIntegerLinearProgram.solve () of theclass
sage.numerical.mip.MixedIntegerLinearProgram.

* verbosity — non-negative integer (default: 0); set the level of verbosity you want from the linear
program solver. Since the problem of computing a vertex cover is N P-complete, its solving may take
some time depending on the graph. A value of 0 means that there will be no message printed by the
solver. This option is only useful if algorithm="MILP".

EXAMPLES:
On the Cycle Graph:

sage: B = BipartiteGraph (graphs.CycleGraph (6))
sage: len(B.vertex_cover())

3

sage: B.vertex_cover (value_only=True)

3

The two algorithms should return the same result:

sage: g = BipartiteGraph (graphs.RandomBipartite (10, 10, .5))

sage: vcl = g.vertex_cover (algorithm="Konig")
sage: vc2 = g.vertex_cover (algorithm="Cliquer")
sage: len(vcl) == len(vc2)

True
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CHAPTER
TWO

2.1 Common Graphs

CONSTRUCTORS AND DATABASES

All graphs in Sage can be built through the graphs object. In order to build a complete graph on 15 elements, one

can do:

’sage: g =

graphs.CompleteGraph (15)

To get a path with 4 vertices, and the house graph:

sage: p =
sage: h

graphs.PathGraph (4)
graphs.HouseGraph ()

More interestingly, one can get the list of all graphs that Sage knows how to build by typing graphs. in Sage and

then hitting tab.

Basic structures

loh

AztecDiamondGraph CompleteMultipartiteGraph LadderGraph
BullGraph DiamondGraph LollipopGraph
ButterflyGraph DipoleGraph PathGraph
CircularLadderGraph EmptyGraph StarGraph
ClawGraph Grid2dGraph TadpoleGraph
CycleGraph GridGraph ToroidalGrid2dGraph
CompleteBipartiteGraph HouseGraph Toroidal6RegularGrid2dGra
CompleteGraph HouseXGraph

Small Graphs

A small graph is just a single graph and has no parameter influencing the number of edges or vertices.

355



Sage Reference Manual: Graph Theory, Release 8.6

1Graph

BalabanlOCage GossetGraph MoebiusKantorGraph
BalabanllCage GrayGraph MoserSpindle
BidiakisCube GrotzschGraph NauruGraph
BiggsSmithGraph HallJankoGraph PappusGraph
BlanusaFirstSnarkGraph HarborthGraph PoussinGraph
BlanusaSecondSnarkGraph HarriesGraph PerkelGraph
BrinkmannGraph HarriesWongGraph PetersenGraph
BrouwerHaemersGraph HeawoodGraph RobertsonGraph
BuckyBall HerschelGraph SchlaefliGraph
CameronGraph HigmanSimsGraph ShrikhandeGraph
Cell600 HoffmanGraph SimsGewirtzGraph
Celll20 HoffmanSingletonGraph SousselierGraph
ChvatalGraph HoltGraph SylvesterGraph
ClebschGraph HortonGraph SzekeresSnarkGraph
CoxeterGraph IoninKharaghani765Graph ThomsenGraph
DesarguesGraph JankoKharaghaniGraph TietzeGraph
DejterGraph JankoKharaghaniTonchevGraphruncatedIcosidodecahedra
DoubleStarSnark KittellGraph TruncatedTetrahedralGraph
DurerGraph KrackhardtKiteGraph TuttelZCage
DyckGraph Klein3RegularGraph TutteCoxeterGraph
EllinghamHorton54Graph Klein7RegularGraph TutteGraph
EllinghamHorton78Graph LocalMcLaughlinGraph U42Graph2l16
ErreraGraph LjubljanaGraph U42Graph540
F26AGraph LivingstoneGraph WagnerGraph
FlowerSnark M22Graph WatkinsSnarkGraph
FolkmanGraph MarkstroemGraph WellsGraph
FosterGraph MathonStronglyRegularGraphWienerArayaGraph
FranklinGraph McGeeGraph SuzukiGraph
FruchtGraph McLaughlinGraph
GoldnerHararyGraph MeredithGraph

Platonic solids (ordered ascending by number of vertices)
TetrahedralGraph HexahedralGraph DodecahedralGraph
OctahedralGraph IcosahedralGraph

Families of graphs

A family of graph is an infinite set of graphs which can be indexed by fixed number of parameters, e.g. two integer
parameters. (A method whose name starts with a small letter does not return a single graph object but a graph iterator

or a list of graphs or...)
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Graph

rdMatrixGrap

BalancedTree GeneralizedPetersenGraph | OddGraph

BarbellGraph GoethalsSeidelGraph PaleyGraph
BubbleSortGraph HammingGraph PasechnikGraph
CaiFurerImmermanGraph HanoiTowerGraph petersen_family
chang_graphs HararyGraph planar_graphs
CirculantGraph HyperStarGraph quadrangulations
cospectral_graphs JohnsonGraph RingedTree

CubeGraph KneserGraph SierpinskiGasketGraph
DorogovtsevGoltsevMendesQrapEGraph SquaredSkewHadamardMatrix|
EgawaGraph line graph_forbidden_subgr8whschedSquaredSkewHadama
FibonacciTree MathonPseudocyclicMergingGeapbngly regular._graph
FoldedCubeGraph MathonPseudocyclicStrongllyRegesarGraph
FriendshipGraph MuzychukSé6Graph triangulations

fullerenes MycielskiGraph TuranGraph

FurerGadget MycielskiStep WheelGraph

fusenes NKStarGraph WindmillGraph
FuzzyBallGraph NStarGraph

Graphs from classical geometries over finite fields

A number of classes of graphs related to geometries over finite fields and quadrics and Hermitean varieties there.

AffineOrthogonalPolarGrap

hSymplecticDualPolarGraph

NowhereOWordsTwolWeightCod

eGraph

AhrensSzekeresGeneralized

OSznipdegltéGPaphrGraph

HaemersGraph

NonisotropicOrthogonalPol

af@ydphkTwographDescendants

RGossidentePenttilaGraph

NonisotropicUnitaryPolar@

rdpllorTwographSRG

UnitaryDualPolarGraph

OrthogonalPolarGraph T2starGeneralizedQuadrangll&@raphyPolarGraph
Chessboard Graphs

BishopGraph KnightGraph RookGraph

KingGraph QueenGraph

Intersection graphs

These graphs are generated by geometric representations. The objects of the representation correspond to the graph

vertices and the intersections of objects yield the graph edges.
IntersectionGraph OrthogonalArrayBlockGraphl ToleranceGraph
IntervalGraph PermutationGraph

Random graphs
RandomBarabasiAlbert RandomGNP RandomShell
RandomBicubicPlanar RandomHolmeKim RandomToleranceGraph
RandomBipartite RandomChordalGraph RandomTree
RandomRegularBipartite RandomIntervalGraph RandomTreePowerlaw
RandomBlockGraph RandomLobster RandomTriangulation
RandomBoundedToleranceGrapRandomNewmanWattsStrogatz
RandomGNM | RandomReqgular

2.1. Common Graphs
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Graphs with a given degree sequence

DegreeSequence DegreeSequenceConfiguratijobMgdeéSequencelree
DegreeSequenceBipartite DegreeSequenceExpected
Miscellaneous
WorldMap AfricaMap
EuropeMap USAMap
AUTHORS:

¢ Robert Miller (2006-11-05): initial version, empty, random, petersen

* Emily Kirkman (2006-11-12): basic structures, node positioning for all constructors
* Emily Kirkman (2006-11-19): docstrings, examples

* William Stein (2006-12-05): Editing.

* Robert Miller (2007-01-16): Cube generation and plotting

* Emily Kirkman (2007-01-16): more basic structures, docstrings

* Emily Kirkman (2007-02-14): added more named graphs

* Robert Miller (2007-06-08-11): Platonic solids, random graphs, graphs with a given degree sequence, random
directed graphs

* Robert Miller (2007-10-24): Isomorph free exhaustive generation

* Nathann Cohen (2009-08-12): WorldMap

* Michael Yurko (2009-9-01): added hyperstar, (n,k)-star, n-star, and bubblesort graphs

* Anders Jonsson (2009-10-15): added generalized Petersen graphs

» Harald Schilly and Yann Laigle-Chapuy (2010-03-24): added Fibonacci Tree

* Jason Grout (2010-06-04): cospectral_graphs

¢ Edward Scheinerman (2010-08-11): RandomTree

* Ed Scheinerman (2010-08-21): added Grotzsch graph and Mycielski graphs

* Ed Scheinerman (2010-11-15): added RandomTriangulation

e Minh Van Nguyen (2010-11-26): added more named graphs

» Keshav Kini (2011-02-16): added Shrikhande and Dyck graphs

* David Coudert (2012-02-10): new RandomGNP generator

* David Coudert (2012-08-02): added chessboard graphs: Queen, King, Knight, Bishop, and Rook graphs
* Nico Van Cleemput (2013-05-26): added fullerenes

* Nico Van Cleemput (2013-07-01): added benzenoids

* Birk Eisermann (2013-07-29): new section ‘intersection graphs’, added (random, bounded) tolerance graphs

* Marco Cognetta (2016-03-03): added TuranGraph
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2.1.1 Functions and methods

class sage.graphs.graph_generators.GraphGenerators
A class consisting of constructors for several common graphs, as well as orderly generation of isomorphism
class representatives. See the module's help for a list of supported constructors.

A list of all graphs and graph structures (other than isomorphism class representatives) in this database is avail-
able via tab completion. Type “graphs.” and then hit the tab key to see which graphs are available.

The docstrings include educational information about each named graph with the hopes that this class can be
used as a reference.

For all the constructors in this class (except the octahedral, dodecahedral, random and empty graphs), the posi-
tion dictionary is filled to override the spring-layout algorithm.

ORDERLY GENERATION:

graphs (vertices, property=lambda x: True, augment='edges', size=None)

This syntax accesses the generator of isomorphism class representatives. Iterates over distinct, exhaustive rep-
resentatives.

Also: see the use of the nauty package for generating graphs at the nauty_geng () method.
INPUT:
e vertices — anatural number or None to infinitely generate bigger and bigger graphs.

e property — (default: lambda x: True) any property to be tested on graphs before generation,
but note that in general the graphs produced are not the same as those produced by using the property
function to filter a list of graphs produced by using the 1lambda x: True default. The generation
process assumes the property has certain characteristics set by the augment argument, and only in the
case of inherited properties such that all subgraphs of the relevant kind (for augment="'edges"' or
augment="'vertices"') of a graph with the property also possess the property will there be no missing
graphs. (The property argument is ignored if degree_sequence is specified.)

e augment — (default: 'edges ') possible values:

— 'edges' — augments a fixed number of vertices by adding one edge. In this case, all graphs on
exactly n=vertices are generated. If for any graph G satisfying the property, every subgraph,
obtained from G by deleting one edge but not the vertices incident to that edge, satisfies the property,
then this will generate all graphs with that property. If this does not hold, then all the graphs generated
will satisfy the property, but there will be some missing.

— 'vertices' - augments by adding a vertex and edges incident to that vertex. In this case, all
graphs up fo n=vertices are generated. If for any graph G satisfying the property, every subgraph,
obtained from G by deleting one vertex and only edges incident to that vertex, satisfies the property,
then this will generate all graphs with that property. If this does not hold, then all the graphs generated
will satisfy the property, but there will be some missing.

* size — (default: None) the size of the graph to be generated.

* degree_sequence — (default: None) a sequence of non-negative integers, or None. If specified, the
generated graphs will have these integers for degrees. In this case, property and size are both ignored.

* loops — (default: False) whether to allow loops in the graph or not.
* implementation — (default: 'c_graph') which underlying implementation to use (see Graph?).
* sparse — (default: True) ignored if implementation is not 'c_graph'.

* copy (boolean) — If set to True (default) this method makes copies of the graphs before returning them.
If set to False the method returns the graph it is working on. The second alternative is faster, but
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modifying any of the graph instances returned by the method may break the function’s behaviour, as it is
using these graphs to compute the next ones: only use copy = False when you stick to reading the
graphs returned.

EXAMPLES:

Print graphs on 3 or less vertices:

sage: for G in graphs (3, augment='vertices'):

e print (G)

Graph on 0 vertices
Graph on 1 vertex

Graph on 2 vertices
Graph on 3 vertices
Graph on 3 vertices
Graph on 3 vertices
Graph on 2 vertices
Graph on 3 vertices

Note that we can also get graphs with underlying Cython implementation:

sage: for G in graphs (3, augment='vertices', implementation='c_graph'):

e print (G)

Graph on 0 vertices
Graph on 1 vertex

Graph on 2 vertices
Graph on 3 vertices
Graph on 3 vertices
Graph on 3 vertices
Graph on 2 vertices
Graph on 3 vertices

Print graphs on 3 vertices.

sage: for G in graphs(3):
e print (G)
Graph on 3 vertices

3 vertices
Graph on 3 vertices

3 vertices

Generate all graphs with 5 vertices and 4 edges.

sage: L = graphs (5, size=4)
sage: len(list (L))
6

Generate all graphs with 5 vertices and up to 4 edges.

sage: L = list (graphs (5, lambda G: G.size () <= 4))
sage: len(L)

14

sage: graphs_list.show_graphs (L) # long time

Generate all graphs with up to 5 vertices and up to 4 edges.

sage: L = list (graphs(5, lambda G: G.size() <= 4, augment='vertices'))
sage: len (L)

(continues on next page)
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(continued from previous page)

31
sage: graphs_list.show_graphs (L) # long time

Generate all graphs with degree at most 2, up to 6 vertices.

sage: property = lambda G: ( max([G.degree(v) for v in G] + [0]) <= 2 )
sage: L = list(graphs (6, property, augment='vertices'))

sage: len(L)

45

Generate all bipartite graphs on up to 7 vertices: (see OEIS sequence A033995)

sage: L = list( graphs(7, lambda G: G.is_bipartite(), augment='vertices') )
sage: [len([g for g in L if g.order() == i]) for i in [1..7]]
[, 2, 3, 7, 13, 35, 88]

Generate all bipartite graphs on exactly 7 vertices:

sage: L = list( graphs (7, lambda G: G.is_bipartite()) )
sage: len (L)
88

Generate all bipartite graphs on exactly 8 vertices:

sage: L = list( graphs(8, lambda G: G.is_bipartite()) ) # long time
sage: len (L) # long time
303

Remember that the property argument does not behave as a filter, except for appropriately inheritable properties:

sage: property = lambda G: G.is_vertex_transitive()
sage: len(list (graphs (4, property)))

1

sage: sum(l for g in graphs(4) if property(g))

4

sage: property = lambda G: G.is_bipartite()
sage: len(list (graphs (4, property)))

sage: sum(l for g in graphs(4) if property(g))

Generate graphs on the fly: (see OEIS sequence A000088)

sage: for i in range(7):
e print (len(list (graphs (i))))

i

11
34
156

Generate all simple graphs, allowing loops: (see OEIS sequence A000666)
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sage: L = list (graphs(5,augment="'vertices', loops=True)) # long time
sage: for i in [0..5]: # long time

e print ((i, len([g for g in L if g.order() == 1i]))) # long time

(0, 1)

(1, 2)

(2, 6)

(3, 20)

(4, 90)

(5, 544)

Generate all graphs with a specified degree sequence (see OEIS sequence A002851):

sage: for i in [4,6,8]: # long time (4s on sage.math, 2012)

e print ((i, len([g for g in graphs (i, degree_sequence=[3]xi) if g.is_
—connected()])))

(4, 1)

(6, 2)

(8, 5)

sage: for i in [4,6,8]: # long time (7s on sage.math, 2012)

el print ((i, len([g for g in graphs (i, augment='vertices',6 degree_
—sequence=[3]x1i) if g.is_connected()])))

(4, 1)

(6, 2)

(8, 5)

sage: print ((10, len([g for g in graphs(10,degree_sequence=[3]x10) if g.is_
—connected()]))) # not tested
(10, 19)

Make sure that the graphs are really independent and the generator survives repeated vertex removal (trac ticket
#8458):

sage: for G in graphs(3):
e G.delete_vertex (0)
e print (G.order ())

REFERENCE:

e Brendan D. McKay, Isomorph-Free Exhaustive generation. Journal of Algorithms, Volume 26, Issue 2,
February 1998, pages 306-324.

static AffineOrthogonalPolarGraph (d, q, sign="+")
Returns the affine polar graph VO™ (d, q), VO~ (d, q) or VO(d, q).

Affine Polar graphs are built from a d-dimensional vector space over F;, and a quadratic form which is
hyperbolic, elliptic or parabolic according to the value of sign.

Note that VO™ (d, q), VO~ (d, q) are strongly regular graphs, while VO(d, q) is not.
For more information on Affine Polar graphs, see Affine Polar Graphs page of Andries Brouwer’s website.
INPUT:

* d (integer) — d must be even if sign is not None, and odd otherwise.

* g (integer) — a power of a prime number, as Fj, must exist.
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¢ sign — must be equal to "+", "—", or None to compute (respectively) VO™ (d, q), VO~ (d, q) or
VO(d, q). By default sign="+".

Note: The graph VO¢(d, q) is the graph induced by the non-neighbors of a vertex in an Orthogonal
Polar GraphO¢(d+2,q).

EXAMPLES:

The Brouwer-Haemers graph is isomorphic to VO~ (4, 3):

sage: g = graphs.AffineOrthogonalPolarGraph (4,3,"-")
sage: g.is_isomorphic (graphs.BrouwerHaemersGraph () )
True

Some examples from Brouwer’s table or strongly regular graphs:

sage: g = graphs.AffineOrthogonalPolarGraph(6,2,"-"); g
Affine Polar Graph VO"-(6,2): Graph on 64 vertices
sage: g.is_strongly_regular (parameters=True)

(64, 27, 10, 12)

sage: g = graphs.AffineOrthogonalPolarGraph(6,2,"+"); g
Affine Polar Graph VO"+(6,2): Graph on 64 vertices
sage: g.is_strongly_regular (parameters=True)

(64, 35, 18, 20)

When sign is None:

sage: g = graphs.AffineOrthogonalPolarGraph (5,2,None); g
Affine Polar Graph VO"-(5,2): Graph on 32 vertices

sage: g.is_strongly_regular (parameters=True)

False

sage: g.is_regular()

True

sage: g.ls_vertex_transitive ()

True

static AfricaMap (continental=False, year=2018)
Return African states as a graph of common border.

“African state” here is defined as an independent state having the capital city in Africa. The graph has an
edge between those countries that have common land border.

INPUT:
e continental, a Boolean — if set, only return states in the continental Africa
* year —reserved for future use

EXAMPLES:

sage: Africa = graphs.AfricaMap(); Africa

Africa Map: Graph on 54 vertices

sage: sorted(Africa.neighbors('Libya'))

['Algeria', 'Chad', 'Egypt', 'Niger', 'Sudan', 'Tunisia']

sage: cont_Africa = graphs.AfricaMap (continental=True)
sage: cont_Africa.order ()
48

(continues on next page)
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(continued from previous page)

sage: 'Madagaskar' in cont_Africa
False

static AhrensSzekeresGeneralizedQuadrangleGraph (q, dual=False)
Return the collinearity graph of the generalized quadrangle AS(q), or of its dual

Let ¢ be an odd prime power. AS(q) is a generalized quadrangle [GOwiki] of order (¢ — 1,q + 1), see
3.1.51in [PT09]. Its points are elements of F>, and lines are sets of size q of the form

* {(0,a,b) | 0 € Fy}

* {(a,0,b) | 0 € F,}

e {(co® —bo +a,—2co +b,0) | o € F,},
where a, b, c are arbitrary elements of Fj,.
INPUT:

e g—apower of an odd prime number

e dual - if False (default), return the collinearity graph of AS(q). Otherwise return the collinearity
graph of the dual AS(q).

EXAMPLES:

sage: g=graphs.AhrensSzekeresGeneralizedQuadrangleGraph(5); g

AS(5); GQ(4, 6): Graph on 125 vertices

sage: g.is_strongly_regular (parameters=True)

(125, 28, 3, 7)

sage: g=graphs.AhrensSzekeresGeneralizedQuadrangleGraph (5,dual=True); g
AS(5)*; GQ(6, 4): Graph on 175 vertices

sage: g.is_strongly_regular (parameters=True)

(175, 30, 5, 5)

REFERENCE:

static AztecDiamondGraph (n)
Return the Aztec Diamond graph of order n.

See the Wikipedia article Aztec_diamond for more information.

EXAMPLES:

sage: graphs.AztecDiamondGraph (2)
Aztec Diamond graph of order 2

sage: [graphs.AztecDiamondGraph (i) .num_verts () for i in range(8)]
[0, 4, 12, 24, 40, 60, 84, 112]

sage: [graphs.AztecDiamondGraph (i) .num_edges () for i in range(8)]
(0, 4, 16, 36, 64, 100, 144, 196]

sage: G = graphs.AztecDiamondGraph (3)
sage: sum(l for p in G.perfect_matchings())
64

static BalabanlOCage (embedding=1)
Return the Balaban 10-cage.
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The Balaban 10-cage is a 3-regular graph with 70 vertices and 105 edges. See the Wikipedia article
Balaban_10-cage.

The default embedding gives a deeper understanding of the graph’s automorphism group. It is divided into
4 layers (each layer being a set of points at equal distance from the drawing’s center). From outside to
inside:

e L1: The outer layer (vertices which are the furthest from the origin) is actually the disjoint union of
two cycles of length 10.

» L2: The second layer is an independent set of 20 vertices.
e L3: The third layer is a matching on 10 vertices.

e L4: The inner layer (vertices which are the closest from the origin) is also the disjoint union of two
cycles of length 10.

This graph is not vertex-transitive, and its vertices are partitioned into 3 orbits: L2, L3, and the union of
L1 of L4 whose elements are equivalent.

INPUT:
* embedding —two embeddings are available, and can be selected by setting embedding to be either
1or?2.
EXAMPLES:
sage: g = graphs.BalabanlOCage ()
sage: g.girth()
10
sage: g.chromatic_number ()
2
sage: g.diameter ()
6
sage: g.is_hamiltonian()
True
sage: g.show(figsize=[10,10]) # long time

static BalabanllCage (embedding=1)
Return the Balaban 11-cage.

For more information, see the Wikipedia article Balaban_11-cage.
INPUT:

* embedding - three embeddings are available, and can be selected by setting embedding to be 1,
2, or 3.

— The first embedding is the one appearing on page 9 of the Fifth Annual Graph Drawing Contest
report [EMMN1998]. It separates vertices based on their eccentricity (see eccentricity ()).

— The second embedding has been produced just for Sage and is meant to emphasize the automor-
phism group’s 6 orbits.

— The last embedding is the default one produced by the LCFGraph () constructor.

Note: The vertex labeling changes according to the value of embedding=1.

EXAMPLES:

Basic properties:
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sage: g = graphs.BalabanllCage ()
sage: g.order ()

112

sage: g.size()

168

sage: g.girth()

11

sage: g.diameter ()

8

sage: g.automorphism_group() .cardinality ()
64

Our many embeddings:

sage: gl = graphs.BalabanllCage (embedding=1)

sage: g2 = graphs.BalabanllCage (embedding=2)
sage: g3 = graphs.BalabanllCage (embedding=3)
sage: gl.show(figsize=[10,101]) # long time
sage: g2.show(figsize=[10,101]) # long time
sage: g3.show(figsize=[10,10]) # long time

Proof that the embeddings are the same graph:

sage: gl.is_isomorphic(g2) # g2 and g3 are obviously isomorphic
True

static BalancedTree (1, h)

Returns the perfectly balanced tree of height 1 > 1, whose root has degree r > 2.

. . . . h+1_ .
The number of vertices of this graphis 1 +r 472 + - - 4", that s, % The number of edges is one
less than the number of vertices.

INPUT:

» r —positive integer > 2. The degree of the root node.

e h — positive integer > 1. The height of the balanced tree.
OUTPUT:

The perfectly balanced tree of height & > 1 and whose root has degree r > 2. A NetworkXError is
returned if r < 2 or h < 1.

ALGORITHM:
Uses NetworkX.
EXAMPLES:

A balanced tree whose root node has degree r = 2, and of height h = 1, has order 3 and size 2:

sage: G = graphs.BalancedTree (2, 1); G
Balanced tree: Graph on 3 vertices
sage: G.order(); G.size()

3

2

sage: r = 2; h =1

sage: v = 1 + r

sage: v; v — 1
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Plot a balanced tree of height 5, whose root node has degree r = 3:

sage: G = graphs.BalancedTree (3, 5)
sage: G.show () # long time

A tree is bipartite. If its vertex set is finite, then it is planar.

sage: r = randint (2, 5); h = randint(l, 7)
sage: T = graphs.BalancedTree(r, h)
sage: T.is_bipartite()

True

sage: T.is_planar ()

True

sage: v = (r"(h + 1) — 1) / (r — 1)
sage: T.order() == v

True

sage: T.size() == v - 1

True

static BarbellGraph (nl, n2)
Returns a barbell graph with 2+n1 + n2 nodes. The argument n1 must be greater than or equal to 2.

A barbell graph is a basic structure that consists of a path graph of order n2 connecting two complete
graphs of order n1 each.

INPUT:

e nl —integer > 2. The order of each of the two complete graphs.

* n2 —nonnegative integer. The order of the path graph connecting the two complete graphs.
OUTPUT:
A barbell graph of order 2nl + n2. AValueErrorisreturnedifnl < 2orn2 < 0.
PLOTTING:

Upon construction, the position dictionary is filled to override the spring-layout algorithm. By convention,
each barbell graph will be displayed with the two complete graphs in the lower-left and upper-right corners,
with the path graph connecting diagonally between the two. Thus the n1-th node will be drawn at a 45
degree angle from the horizontal right center of the first complete graph, and the n1 + n2 + 1-thnode
will be drawn 45 degrees below the left horizontal center of the second complete graph.

EXAMPLES:

Construct and show a barbell graph Bar = 4,Bells = 9:

sage: g = graphs.BarbellGraph(9, 4); g
Barbell graph: Graph on 22 vertices
sage: g.show() # long time

Annl >= 2,n2 >= 0 barbell graph has order 2+n1 + n2. It has the complete graph on n1 vertices
as a subgraph. It also has the path graph on n2 vertices as a subgraph.

sage: nl = randint (2, 2%x1072)
sage: n2 = randint (0, 2x1072)
sage: g = graphs.BarbellGraph(nl, n2)

sage: v = 2+nl + n2
sage: g.order () == v
True

sage: K_nl = graphs.CompleteGraph (nl)

(continues on next page)
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sage: P_n2 = graphs.PathGraph(n2)

sage: s_K g.subgraph_search (K_nl, induced=True)
sage: s_P g.subgraph_search (P_n2, induced=True)
sage: K_nl.is_isomorphic (s_K)

True

sage: P_n2.is_isomorphic (s_P)

True

static BidiakisCube ()

Return the Bidiakis cube.
For more information, see the Wikipedia article Bidiakis_cube.
EXAMPLES:

The Bidiakis cube is a 3-regular graph having 12 vertices and 18 edges. This means that each vertex has a
degree of 3.

sage: g = graphs.BidiakisCube(); g
Bidiakis cube: Graph on 12 vertices

sage: g.show() # long time
sage: g.order ()

12

sage: g.size()

18

sage: g.is_regular(3)

True

It is a Hamiltonian graph with diameter 3 and girth 4:

sage: g.is_hamiltonian()

True

sage: g.diameter ()
3

sage: g.girth()

4

It is a planar graph with characteristic polynomial (z — 3)(z — 2)(z*)(x + 1)(z + 2)(z* + = — 4)? and
chromatic number 3:

sage: g.is_planar ()

True

sage: bool (g.characteristic_polynomial () == expand((x — 3) * (x — 2) % (x"4)_
sx (X + 1) x (X + 2) x (X722 + x — 4)7°2))

True

sage: g.chromatic_number ()

3

static BiggsSmithGraph (embedding=1)

Return the Biggs-Smith graph.
For more information, see the Wikipedia article Biggs-Smith_graph.
INPUT:

* embedding —two embeddings are available, and can be selected by setting embedding to be 1 or
2.

EXAMPLES:
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Basic properties:

sage: g = graphs.BiggsSmithGraph ()

sage: g.order ()

102

sage: g.size()

153

sage: g.girth()

9

sage: g.diameter ()

-

sage: g.automorphism_group () .cardinality() # long time
24438

sage: g.show(figsize=[10, 101]) # long time
The other embedding:

sage: graphs.BiggsSmithGraph (embedding=2) .show() # long time

static BishopGraph (dim_list, radius=None, relabel=False)

Returns the d-dimensional Bishop Graph with prescribed dimensions.

The 2-dimensional Bishop Graph of parameters n and m is a graph with nm vertices in which each vertex
represents a square in an n X m chessboard, and each edge corresponds to a legal move by a bishop.

The d-dimensional Bishop Graph with d >= 2 has for vertex set the cells of a d-dimensional grid with
prescribed dimensions, and each edge corresponds to a legal move by a bishop in any pairs of dimensions.

The Bishop Graph is not connected.
INPUT:

e dim_1list — an iterable object (list, set, dict) providing the dimensions ny, no, ..., ng, withn; > 1,
of the chessboard.

e radius — (default: None) by setting the radius to a positive integer, one may decrease the power of
the bishop to at most radius steps.

e relabel — (default: False) a boolean set to True if vertices must be relabeled as integers.
EXAMPLES:

The (n,m)-Bishop Graph is not connected:

sage: G = graphs.BishopGraph( [3, 41 )
sage: G.is_connected()
False

The Bishop Graph can be obtained from Knight Graphs:

sage: for d in range(3,12): # long time

et H = Graph()

e for r in range(1l,d+1):

e B = graphs.BishopGraph([d,d], radius=r)

et H.add_edges ( graphs.KnightGraph([d, d],one=r, two=r) .edges () )
e if not B.is_isomorphic (H) :

et print ("that's not good!")

static BlanusaFirstSnarkGraph ()

Return the first Blanusa Snark Graph.
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The Blanusa graphs are two snarks on 18 vertices and 27 edges. For more information on them, see the
Wikipedia article Blanusa_snarks.

See also:

* BlanusaSecondSnarkGraph ().

EXAMPLES:

sage: g = graphs.BlanusaFirstSnarkGraph ()
sage: g.order ()

18

sage: g.size()

27

sage: g.diameter ()

4

sage: g.girth()

5

sage: g.automorphism_group() .cardinality ()
8

static BlanusaSecondSnarkGraph ()

Return the second Blanusa Snark Graph.

The Blanusa graphs are two snarks on 18 vertices and 27 edges. For more information on them, see the
Wikipedia article Blanusa_snarks.

See also:

* BlanusaFirstSnarkGraph ().

EXAMPLES:

sage: g = graphs.BlanusaSecondSnarkGraph ()
sage: g.order ()

18

sage: g.size()

27

sage: g.diameter ()

4

sage: g.girth()

5

sage: g.automorphism_group () .cardinality ()
4

static BrinkmannGraph ()

Return the Brinkmann graph.
For more information, see the Wikipedia article Brinkmann_graph.
EXAMPLES:

The Brinkmann graph is a 4-regular graph having 21 vertices and 42 edges. This means that each vertex
has degree 4.

sage: G = graphs.BrinkmannGraph(); G
Brinkmann graph: Graph on 21 vertices
sage: G.show () # long time

sage: G.order ()

(continues on next page)
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21

sage: G.size()

42

sage: G.is_regular (4)
True

It is an Eulerian graph with radius 3, diameter 3, and girth 5.

sage: G.is_eulerian()
True

sage: G.radius ()

3

sage: G.diameter ()

3

sage: G.girth{()

5

The Brinkmann graph is also Hamiltonian with chromatic number 4:

sage: G.is_hamiltonian()
True

sage: G.chromatic_number ()
4

Its automorphism group is isomorphic to D7:

sage: ag = G.automorphism_group ()
sage: ag.is_isomorphic (DihedralGroup (7))
True

static BrouwerHaemersGraph ()
Return the Brouwer-Haemers Graph.

The Brouwer-Haemers is the only strongly regular graph of parameters (81,20, 1, 6). It is build in Sage as
the Affine Orthogonal graph VO~ (6, 3). For more information on this graph, see its corresponding page
on Andries Brouwer’s website.

EXAMPLES:

sage: g = graphs.BrouwerHaemersGraph ()
sage: g
Brouwer-Haemers: Graph on 81 vertices

It is indeed strongly regular with parameters (81,20, 1, 6):

sage: g.is_strongly_regular (parameters = True) # long time
(81, 20, 1, 6)

Its has as eigenvalues 20, 2 and —7:

sage: set (g.spectrum()) == {20,2,-7}
True

static BubbleSortGraph (n)
Returns the bubble sort graph B(n).

The vertices of the bubble sort graph are the set of permutations on n symbols. Two vertices are adjacent
if one can be obtained from the other by swapping the labels in the i-th and (i 4+ 1)-th positions for
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1 <i <n—1.Intotal, B(n) has order n!. Swapping two labels as described previously corresponds to
multiplying on the right the permutation corresponding to the node by an elementary transposition in the
SymmetricGroup.

The bubble sort graph is the underlying graph of the permutahedron ().
INPUT:

* n — positive integer. The number of symbols to permute.
OUTPUT:
The bubble sort graph B(n) on n symbols. If n < 1,a ValueError is returned.
EXAMPLES:

sage: g = graphs.BubbleSortGraph(4); g

Bubble sort: Graph on 24 vertices

sage: g.plot () # long time

Graphics object consisting of 61 graphics primitives

The bubble sort graph on n = 1 symbol is the trivial graph K;:

sage: graphs.BubbleSortGraph (1)
Bubble sort: Graph on 1 vertex

If n > 1, then the order of B(n) is n!:

sage: n = randint(l, 8)
sage: g = graphs.BubbleSortGraph (n)

sage: g.order () == factorial (n)
True
See also:

* permutahedron ()

AUTHORS:
¢ Michael Yurko (2009-09-01)

static BuckyBall ()

Create the Bucky Ball graph.

This graph is a 3-regular 60-vertex planar graph. Its vertices and edges correspond precisely to the carbon
atoms and bonds in buckminsterfullerene. When embedded on a sphere, its 12 pentagon and 20 hexagon
faces are arranged exactly as the sections of a soccer ball.

EXAMPLES:
The Bucky Ball is planar.

sage: g = graphs.BuckyBall ()
sage: g.is_planar ()
True

The Bucky Ball can also be created by extracting the 1-skeleton of the Bucky Ball polyhedron, but this is
much slower.
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sage: g = polytopes.buckyball () .vertex_graph ()
sage: g.remove_loops ()

sage: h = graphs.BuckyBall ()

sage: g.is_isomorphic (h)

True

The graph is returned along with an attractive embedding.

sage: g = graphs.BuckyBall()
sage: g.plot (vertex_labels=False, vertex_size=10).show() # long time

static BullGraph ()
Returns a bull graph with 5 nodes.

A bull graph is named for its shape. It’s a triangle with horns. See the Wikipedia article Bull_graph for
more information.

PLOTTING:

Upon construction, the position dictionary is filled to override the spring-layout algorithm. By convention,
the bull graph is drawn as a triangle with the first node (0) on the bottom. The second and third nodes (1
and 2) complete the triangle. Node 3 is the horn connected to 1 and node 4 is the horn connected to node
2.

EXAMPLES:

Construct and show a bull graph:

sage: g = graphs.BullGraph(); g
Bull graph: Graph on 5 vertices
sage: g.show() # long time

The bull graph has 5 vertices and 5 edges. Its radius is 2, its diameter 3, and its girth 3. The bull graph is
planar with chromatic number 3 and chromatic index also 3.

sage: g.order(); g.size()

5

5

sage: g.radius(); g.diameter(); g.girth()
2

3

3

sage: g.chromatic_number ()

3

The bull graph has chromatic polynomial z(z — 2)(x — 1)% and Tutte polynomial z* + 23 + z2y. Its
characteristic polynomial is z:(z2 — 2 — 3) (22 + 2 — 1), which follows from the definition of characteristic
polynomials for graphs, i.e. det(z] — A), where x is a variable, A the adjacency matrix of the graph, and
I the identity matrix of the same dimensions as A.

sage: chrompoly = g.chromatic_polynomial ()

sage: bool (expand(x * (x — 2) % (x — 1)73) == chrompoly)
True

sage: charpoly = g.characteristic_polynomial ()

sage: M = g.adjacency_matrix(); M

(001 1 0 0]
[1 01 1 0]
[1 100 1]

(continues on next page)
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[01 00 0]

[00 1 0 0]

sage: Id = identity_matrix(ZZ, M.nrows())
sage: D = xxId - M

sage: bool (D.determinant () == charpoly)

True

sage: bool (expand(x * (x"2 - x — 3) * (x"2 + x — 1)) == charpoly)
True

static ButterflyGraph ()
Returns the butterfly graph.

Let C3 be the cycle graph on 3 vertices. The butterfly or bowtie graph is obtained by joining two copies
of ('3 at a common vertex, resulting in a graph that is isomorphic to the friendship graph F». See the
Wikipedia article Butterfly_graph for more information.

See also:
* GraphGenerators.FriendshipGraph ()

EXAMPLES:

The butterfly graph is a planar graph on 5 vertices and having 6 edges.

sage: G = graphs.ButterflyGraph(); G
Butterfly graph: Graph on 5 vertices

sage: G.show() # long time
sage: G.is_planar ()

True

sage: G.order ()

5

sage: G.size()

6

It has diameter 2, girth 3, and radius 1.

sage: G.diameter ()

2

sage: G.girth()
3

sage: G.radius ()
1

The butterfly graph is Eulerian, with chromatic number 3.

sage: G.is_eulerian()

True

sage: G.chromatic_number ()
3

static CaiFurerImmermanGraph (G, twisted=False)
Return the a Cai-Furer-Immerman graph from G, possibly a twisted one, and a partition of its nodes.

A Cai-Furer-Immerman graph from/on G is a graph created by applying the transformation described in
[CFI1992] on a graph G, that is substituting every vertex v in G with a Furer gadget F'(v) of order d
equal to the degree of the vertex, and then substituting every edge (v,u) in G with a pair of edges, one
connecting the two “a” nodes of F'(v) and F'(u) and the other their two “b” nodes. The returned coloring
of the vertices is made by the union of the colorings of each single Furer gadget, individualised for each
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vertex of GG. To understand better what these “a” and “b” nodes are, see the documentation on Furer
gadgets.

Furthermore, this method can apply what is described in the paper mentioned above as a “twist” on an
edge, that is taking only one of the pairs of edges introduced in the new graph and swap two of their
extremes, making each edge go from an “a” node to a “b” node. This is only doable if the original graph
G is connected.

A CaiFurerImmerman graph on a graph with no balanced vertex separators smaller than s and its twisted
version cannot be distinguished by k-WL for any k <s.

INPUT:

* G- An undirected graph on which to construct the Cai-Furer-Immerman graph

* twisted - A boolean indicating if the version to construct is a twisted one or not
OUTPUT:

e H - The Cai-Furer-Immerman graph on G

* coloring — A list of list of vertices, representing the partition induced by the coloring on H
EXAMPLES:

CaiFurerlmmerman graph with no balanced vertex separator smaller than 2

sage: G = graphs.CycleGraph (4)

sage: CFI, p = graphs.CaiFurerImmermanGraph (G)

sage: CFI.vertices|()

)), (0, (0, 1)), (0, (0, 'a')), (0, (0, 'B")),

")), (0, (1, 'D") o 0O)y (1, (0, 1)),

")), (L, (0, 'b") , (1, ta)y), (L, (1, 'B")),

2, (0, )), (2, (0, 'b")),
’ , 'a')), (2, (1, 'b")), (3, O), (3, (0, 1)),
3, 'a')), (3, (0, 'B")), (3, (1, 'a')), (3, (1, 'B"))]
sage I.edges()
[((O, y, (0, (0, 'b'")), None),
0, ), (0, (1, 'b')), None),
’ , 1)), (0, (0, 'a")), None),
’ ’ 1 )/ (O, (l, 'a')), None),
’ , ‘'a')), (1, (0, 'a')), None),
’ , 'b')), (1, (0, 'b')), None),
’ , 'a')), (3, (0, 'a')), None),
’ , 'b')), (3, (0, 'b'")), None),
’ ), 1, (0, '"b')), None),
’ ) 1, (1, 'b'")), None),
’ ), (1, (0, 'a')), None),
p ) (1, (1, 'a')), None),

~

)), (2, (0, 'a')), None),
) (z, (0, 'b")), None),

’ )y, (2, (0, '"b')), None),
’ y, (2, (1, 'b')), None),
’ , 1)), (2, (0, 'a')), None),
' , 1)), (2, (1, 'a')), None),

~

)), (3, (1, 'a')), None),
)
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’ , 'b")), (3, (1, 'b')), None),
’ ), (3, (0, 'b')), None),

’ y, (3, (1, 'b')), None),

’ , 1)), (3, (0, 'a")), None),

’ , 1)), (3, (1, 'a')), None)]
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static CameronGraph ()
Return the Cameron graph.

The Cameron graph is strongly regular with parameters v = 231,k = 30,A =9, u = 3.
For more information on the Cameron graph, see https://www.win.tue.nl/~aeb/graphs/Cameron.html.

EXAMPLES:

sage: g = graphs.CameronGraph ()
sage: g.order ()

231

sage: g.size()

3465

sage: g.is_strongly_regular (parameters = True) # long time

(231, 30, 9, 3)

static Celll20 ()
Return the 120-Cell graph.

This is the adjacency graph of the 120-cell. It has 600 vertices and 1200 edges. For more information, see
the Wikipedia article 120-cell.

EXAMPLES:

sage: g = graphs.Celll20() # long time
sage: g.size() # long time
1200

sage: g.is_regular (4) # long time
True

sage: g.ls_vertex_transitive() # long time
True

static Cell600 (embedding=1)
Return the 600-Cell graph.

This is the adjacency graph of the 600-cell. It has 120 vertices and 720 edges. For more information, see
the Wikipedia article 600-cell.

INPUT:

e embedding (1 (default) or 2) — two different embeddings for a plot.

EXAMPLES:

sage: g = graphs.Cell600 () # long time
sage: g.size() # long time
720

sage: g.is_regular(12) # long time
True

sage: g.is_vertex_transitive () # long time
True

static ChessboardGraphGenerator (dim_list, rook=True, rook_radius=None, bishop=True,
bishop_radius=None, knight=True, knight_x=1,
knight _y=2, relabel=False)
Returns a Graph built on a d-dimensional chessboard with prescribed dimensions and interconnections.

This function allows to generate many kinds of graphs corresponding to legal movements on a d-
dimensional chessboard: Queen Graph, King Graph, Knight Graphs, Bishop Graph, and many general-
izations. It also allows to avoid redondant code.
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INPUT:

dim_1list — aniterable object (list, set, dict) providing the dimensions nq,no, ..., ng, withn; > 1,
of the chessboard.

rook — (default: True) boolean value indicating if the chess piece is able to move as a rook, that is
at any distance along a dimension.

rook_radius — (default: None) integer value restricting the rook-like movements to distance at
most rook,adius.

bishop — (default: True) boolean value indicating if the chess piece is able to move like a bishop,
that is along diagonals.

bishop_radius — (default: None) integer value restricting the bishop-like movements to distance
at most bishop,adius.

knight — (default: True) boolean value indicating if the chess piece is able to move like a knight.

knight_x — (default: 1) integer indicating the number on steps the chess piece moves in one dimen-
sion when moving like a knight.

knight_y — (default: 2) integer indicating the number on steps the chess piece moves in the second
dimension when moving like a knight.

relabel — (default: False) a boolean set to True if vertices must be relabeled as integers.

OUTPUT:

A Graph build on a d-dimensional chessboard with prescribed dimensions, and with edges according
given parameters.

A string encoding the dimensions. This is mainly useful for providing names to graphs.

EXAMPLES:

A (2, 2)-King Graph is isomorphic to the complete graph on 4 vertices:
sage: G, _ = graphs.ChessboardGraphGenerator( [2,2] )
sage: G.is_isomorphic( graphs.CompleteGraph (4) )

True

A Rook’s Graph in 2 dimensions is isomorphic to the Cartesian product of 2 complete graphs:

sage: G, _ = graphs.ChessboardGraphGenerator( [3,4], rook=True, rook_
—radius=None, bishop=False, knight=False )
sage: H = ( graphs.CompleteGraph(3) ) .cartesian_product ( graphs.

—CompleteGraph (4) )
sage: G.is_isomorphic (H)
True

static ChvatalGraph ()
Return the Chvatal graph.

Chvatal graph is one of the few known graphs to satisfy Grunbaum’s conjecture that for every m, n, there
is an m-regular, m-chromatic graph of girth at least n. For more information, see the Wikipedia article
Chv%C3%A1tal_graph.

EXAMPLES:

The Chvatal graph has 12 vertices and 24 edges. It is a 4-regular, 4-chromatic graph with radius 2, diameter
2, and girth 4.
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sage: G = graphs.ChvatalGraph(); G
Chvatal graph: Graph on 12 vertices
sage: G.order(); G.size()

12

24

sage: G.degree()

(4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4]
sage: G.chromatic_number ()

4

sage: G.radius(); G.diameter(); G.girth()
2

2

4

static CirculantGraph (n, adjacency)

Returns a circulant graph with n nodes.

A circulant graph has the property that the vertex ¢ is connected with the vertices ¢ + j and ¢ — j for each j
in adjacency.

INPUT:
* n - number of vertices in the graph
* adjacency - the list of j values

PLOTTING: Upon construction, the position dictionary is filled to override the spring-layout algorithm.
By convention, each circulant graph will be displayed with the first (0) node at the top, with the rest
following in a counterclockwise manner.

Filling the position dictionary in advance adds O(n) to the constructor.

See also:

* sage.qgraphs.generic_graph.GenericGraph.is_circulant () — checks whether a
(di)graph is circulant, and/or returns all possible sets of parameters.

EXAMPLES: Compare plotting using the predefined layout and networkx:

sage: import networkx

sage: n = networkx.cycle_graph(23)

sage: spring23 = Graph (n)

sage: posdict23 = graphs.CirculantGraph (23, 2)
sage: spring23.show() # long time

sage: posdict23.show() # long time

We next view many cycle graphs as a Sage graphics array. First we use the CirculantGraph construc-
tor, which fills in the position dictionary:

sage: g = [
sage: j = [
sage: for i in range(9):

el k = graphs.CirculantGraph (i+4, i+1)
g.append (k)

i in range(3):

n = []

e for m in range(3):

et n.append(g[3xi + m].plot (vertex_size=50, vertex_labels=False))
et j.append (n)

(continues on next page)
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sage:
sage:

G = sage.plot.graphics.GraphicsArray (J)
G.show () # long time

Compare to plotting with the spring-layout algorithm:

sage:
sage:
sage:

g =[]
j =11
for i in range(9):
spr = networkx.cycle_graph (i+3)
k = Graph (spr)
g.append (k)
for i in range(3):
n = []
for m in range(3):
n.append(g[3xi + m].plot (vertex_size=50,
Jj.append (n)
G = sage.plot.graphics.GraphicsArray (J)
G.show () # long time

vertex_labels=False))

Passing a 1 into adjacency should give the cycle.

sage:
True
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static CircularlLadderGraph (n)

Return a circular ladder graph with 2 * n nodes.

A Circular ladder graph is a ladder graph that is connected at the ends, i.e.: a ladder bent around so that
top meets bottom. Thus it can be described as two parallel cycle graphs connected at each corresponding
node pair.

PLOTTING: Upon construction, the position dictionary is filled to override the spring-layout al-
gorithm. By convention, the circular ladder graph is displayed as an inner and outer cycle
pair, with the first n nodes drawn on the inner circle. The first (0) node is drawn at the
top of the inner-circle, moving clockwise after that. The outer circle is drawn with the (n +
1)‘thnodeatthetop, thencounterclockwiseaswell. W hen‘n == 2, we rotate the outer circle by an angle
of 7r/8 to ensure that all edges are visible (otherwise the 4 vertices of the graph would be placed on a single
line).

EXAMPLES:

Construct and show a circular ladder graph with 26 nodes:
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sage: g = graphs.CircularLadderGraph (13)
sage: g.show() # long time

Create several circular ladder graphs in a Sage graphics array:

sage: g = []
sage: j = []

sage: for i in range(9):

el k = graphs.CircularLadderGraph (i+3)

et g.append (k)

sage: for i in range(3):

R n =[]

e for m in range(3):

et n.append(g[3xi + m].plot (vertex_size=50, vertex_labels=False))

et j.append (n)
sage: G = sage.plot.graphics.GraphicsArray (j)
sage: G.show() # long time

static ClawGraph ()
Returns a claw graph.

A claw graph is named for its shape. It is actually a complete bipartite graph with (nl, n2) = (1, 3).
PLOTTING: See CompleteBipartiteGraph.
EXAMPLES: Show a Claw graph

sage: (graphs.ClawGraph()) .show() # long time

Inspect a Claw graph

sage: G = graphs.ClawGraph ()
sage: G
Claw graph: Graph on 4 vertices

static ClebschGraph ()
Return the Clebsch graph.

See the Wikipedia article Clebsch_graph for more information.

EXAMPLES:

sage: g = graphs.ClebschGraph ()

sage: g.automorphism_group() .cardinality ()
1920

sage: g.girth()

4

sage: g.chromatic_number ()

4

sage: g.diameter ()

2

sage: g.show(figsize=[10, 10]) # long time

static CompleteBipartiteGraph (nl, n2, set_position=True)
Return a Complete Bipartite Graph on nl 4 n2 vertices.

A Complete Bipartite Graph is a graph with its vertices partitioned into two groups, V; = {0, ...,nl — 1}
and V5 = {nl,...,nl +n2 — 1}. Each u € V; is connected to every v € V5.

INPUT:
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e nl, n2 - number of vertices in each side

* set_position —boolean (default True); if set to True, we assign positions to the vertices so that
the set of cardinality n1 is on the line y = 1 and the set of cardinality n2 is on the line y = 0.

PLOTTING: Upon construction, the position dictionary is filled to override the spring-layout algorithm.
By convention, each complete bipartite graph will be displayed with the first n1 nodes on the top row (at
y = 1) from left to right. The remaining n2 nodes appear at y = 0, also from left to right. The shorter row
(partition with fewer nodes) is stretched to the same length as the longer row, unless the shorter row has 1
node; in which case it is centered. The x values in the plot are in domain [0, max(nl,n2)].

In the Complete Bipartite graph, there is a visual difference in using the spring-layout algorithm vs. the
position dictionary used in this constructor. The position dictionary flattens the graph and separates the
partitioned nodes, making it clear which nodes an edge is connected to. The Complete Bipartite graph
plotted with the spring-layout algorithm tends to center the nodes in nl (see spring_med in examples
below), thus overlapping its nodes and edges, making it typically hard to decipher.

Filling the position dictionary in advance adds O(n) to the constructor. Feel free to race the constructors
below in the examples section. The much larger difference is the time added by the spring-layout algorithm
when plotting. (Also shown in the example below). The spring model is typically described as O(n?), as
appears to be the case in the NetworkX source code.

EXAMPLES:

Two ways of constructing the complete bipartite graph, using different layout algorithms:

sage: import networkx

sage: n = networkx.complete_bipartite_graph (389, 157); spring_big = Graph(n)
— # long time

sage: posdict_big = graphs.CompleteBipartiteGraph (389, 157)

— # long time

[

Compare the plotting:

sage: n = networkx.complete_bipartite_graph (11, 17)
sage: spring_med = Graph (n)
sage: posdict_med = graphs.CompleteBipartiteGraph(l1l, 17)

Notice here how the spring-layout tends to center the nodes of n1:

sage: spring_med.show() # long time
sage: posdict_med.show() # long time

View many complete bipartite graphs with a Sage Graphics Array, with this constructor (i.e., the position

dictionary filled):
sage: g = []
sage: j = []

[
[
sage: for i in range(9):

el k = graphs.CompleteBipartiteGraph (i+1,4)
g.append (k)

i in range(3):

..... n = []

et for m in range (3):
e n.append(g[3xi + m].plot (vertex_size=50, vertex_labels=False))

et j.append (n)
sage: G = sage.plot.graphics.GraphicsArray (j)
sage: G.show() # long time

We compare to plotting with the spring-layout algorithm:
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sage: g = []

sage: j = []

sage: for i1 in range(9):

et spr = networkx.complete_bipartite_graph (i+l,4)

e k = Graph (spr)

et g.append (k)

sage: for i in range(3):

R n = []

et for m in range(3):

et n.append(g[3x1i + m].plot (vertex_size=50, vertex_labels=False))

et j.append (n)

sage: G = sage.plot.graphics.GraphicsArray (j)
sage: G.show() # long time

trac ticket #12155:

sage: graphs.CompleteBipartiteGraph (5,6) .complement ()
complement (Complete bipartite graph of order 5+6): Graph on 11 vertices

static CompleteGraph (n)

Return a complete graph on n nodes.
A Complete Graph is a graph in which all nodes are connected to all other nodes.

PLOTTING: Upon construction, the position dictionary is filled to override the spring-layout algorithm.
By convention, each complete graph will be displayed with the first (0) node at the top, with the rest
following in a counterclockwise manner.

In the complete graph, there is a big difference visually in using the spring-layout algorithm vs. the position
dictionary used in this constructor. The position dictionary flattens the graph, making it clear which nodes
an edge is connected to. But the complete graph offers a good example of how the spring-layout works.
The edges push outward (everything is connected), causing the graph to appear as a 3-dimensional pointy
ball. (See examples below).

EXAMPLES: We view many Complete graphs with a Sage Graphics Array, first with this constructor (i.e.,
the position dictionary filled):

sage: g = [
sage: j = [
sage: for i1 in range(9):

e k = graphs.CompleteGraph (i+3)

g.append (k)

i in range(3):

..... n =[]

e for m in range(3):

et n.append(g[3xi + m].plot (vertex_size=50, vertex_labels=False))

el j.append (n)
sage: G = sage.plot.graphics.GraphicsArray (Jj)
sage: G.show() # long time

We compare to plotting with the spring-layout algorithm:

sage: import networkx

sage: g = []

sage: j = []

sage: for i in range(9):

el spr = networkx.complete_graph (i+3)
et k = Graph (spr)

(continues on next page)
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et g.append (k)

sage: for i1 in range(3):

I n =[]

e for m in range(3):

el n.append(g[3xi + m].plot (vertex_size=50, vertex_labels=False))

et j.append (n)
sage: G = sage.plot.graphics.GraphicsArray (j)
sage: G.show() # long time

Compare the constructors (results will vary)

sage: import networkx

sage: t = cputime ()

sage: n = networkx.complete_graph(389); spring389 = Graph(n)
sage: cputime (t) # random

0.59203700000000126

sage: t = cputime ()

sage: posdict389 = graphs.CompleteGraph (389)

sage: cputime (t) # random

0.6680419999999998

We compare plotting:

sage: import networkx

sage: n = networkx.complete_graph (23)
sage: spring23 = Graph (n)

sage: posdict23 = graphs.CompleteGraph (23)
sage: spring23.show() # long time

sage: posdict23.show() # long time

static CompleteMultipartiteGraph (/)
Returns a complete multipartite graph.

INPUT:
e 1 —alist of integers : the respective sizes of the components.
EXAMPLES:

A complete tripartite graph with sets of sizes 5, 6, 8:

sage: g = graphs.CompleteMultipartiteGraph([5, 6, 8]); g
Multipartite Graph with set sizes [5, 6, 8]: Graph on 19 vertices

It clearly has a chromatic number of 3:

sage: g.chromatic_number ()
3

static CossidentePenttilaGraph (q)
Cossidente-Penttila ((¢> +1)(¢+1)/2,(¢*> +1)(¢ — 1)/2, (¢ — 3) /2, (¢ — 1)? /2)-strongly regular graph

For each odd prime power g, one can partition the points of the Oy (q)-generalized quadrange GQ(q, ¢°)
into two parts, so that on any of them the induced subgraph of the point graph of the GQ has parameters
as above [CP05].

Directly following the construction in [CP05] is not efficient, as one then needs to construct the dual
GQ(q?, q). Thus we describe here a more efficient approach that we came up with, following a suggestion
by T.Penttila. Namely, this partition is invariant under the subgroup H = Q3(¢?) < Og (g). We build
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the appropriate H, which leaves the form B(X,Y,Z) = XY + Z? invariant, and pick up two orbits of
H on the F,-points. One them is B-isotropic, and we take the representative (1 : 0 : 0). The other one
corresponds to the points of PG(2,¢?) that have all the lines on them either missing the conic specified
by B, or intersecting the conic in two points. We take (1 : 1 : e) as the representative. It suffices to pick
e so that e? + 1 is not a square in F,2. Indeed, The conic can be viewed as the union of {(0 : 1 : 0)}
and {(1 : —t* : t)|t € Fp2}. The coefficients of a generic line on (1 : 1 : e) are [1 : —1 — eb : b], for
—1 5 eb. Thus, to make sure the intersection with the conic is always even, we need that the discriminant
of 1+ (1 + eb)t? + tb = 0 never vanishes, and this is if and only if e? + 1 is not a square. Further, we
need to adjust B, by multiplying it by appropriately chosen v, so that (1 : 1 : ¢) becomes isotropic under
the relative trace norm vB(X,Y, Z) + (vB(X,Y, Z))4. The latter is used then to define the graph.

INPUT:
* g—an odd prime power.
EXAMPLES:

For ¢ = 3 one gets Sims-Gewirtz graph.

sage: G=graphs.CossidentePenttilaGraph (3) # optional - gap_packages (grape)
sage: G.is_strongly_regular (parameters=True) # optional - gap_packages (grape)
(56, 10, 0, 2)

For g > 3 one gets new graphs.

sage: G=graphs.CossidentePenttilaGraph (5) # optional gap_packages (grape)
sage: G.is_strongly_regular (parameters=True) # optional - gap_packages (grape)
(378, 52, 1, 8)

REFERENCES:

static CoxeterGraph ()

Return the Coxeter graph.
See the Wikipedia article Coxeter_graph.
EXAMPLES:

sage: g = graphs.CoxeterGraph ()

sage: g.automorphism_group () .cardinality ()
336

sage: g.girth()

7

sage: g.chromatic_number ()

3

sage: g.diameter ()

4

sage: g.show(figsize=[10, 10]) # long time

static CubeGraph (n)

Returns the hypercube in n dimensions.

The hypercube in n dimension is build upon the binary strings on n bits, two of them being adjacent if
they differ in exactly one bit. Hence, the distance between two vertices in the hypercube is the Hamming
distance.

EXAMPLES:
The distance between 0100110 and 1011010 is 5, as expected
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sage: g = graphs.CubeGraph (7)
sage: g.distance('0100110",'1011010")
5

Plot several n-cubes in a Sage Graphics Array

sage: g = []
sage: j = []

sage: for i1 in range(6):

....: k = graphs.CubeGraph (i+l)
....: (g.append(k)

sage: for i1 in range(2):

et n = []

e for m in range(3):

e n.append(g[3*xi + m].plot (vertex_size=50, vertex_labels=False))
....: J.append(n)

sage: G = sage.plot.graphics.GraphicsArray (j)
sage: G.show(figsize=[6,4]) # long time

Use the plot options to display larger n-cubes

sage: g = graphs.CubeGraph (9)
sage: g.show(figsize=[12,12],vertex_labels=False, vertex_size=20) # long time

AUTHORS:
¢ Robert Miller

static CycleGraph (n)
Return a cycle graph with n nodes.

A cycle graph is a basic structure which is also typically called an n-gon.

PLOTTING: Upon construction, the position dictionary is filled to override the spring-layout algorithm.
By convention, each cycle graph will be displayed with the first (0) node at the top, with the rest following
in a counterclockwise manner.

The cycle graph is a good opportunity to compare efficiency of filling a position dictionary vs. using the
spring-layout algorithm for plotting. Because the cycle graph is very symmetric, the resulting plots should
be similar (in cases of small n).

Filling the position dictionary in advance adds O(n) to the constructor.

EXAMPLES: Compare plotting using the predefined layout and networkx:

sage: import networkx

sage: n = networkx.cycle_graph(23)
sage: spring23 = Graph (n)

sage: posdict23 = graphs.CycleGraph (23)
sage: spring23.show() # long time

sage: posdict23.show() # long time

We next view many cycle graphs as a Sage graphics array. First we use the CycleGraph constructor,
which fills in the position dictionary:

sage: g = []
sage: j = []

(continues on next page)
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sage: for i in range(9):
..... k = graphs.CycleGraph (1i+3)
et g.append (k)

i in range (3):
..... n = []

e for m in range(3):
e n.append(g[3xi + m].plot (vertex_size=50, vertex_labels=False))

et j.append (n)
sage: G = sage.plot.graphics.GraphicsArray (j)
sage: G.show() # long time

Compare to plotting with the spring-layout algorithm:

sage: g = []

sage: j = []

sage: for i in range(9):

et spr = networkx.cycle_graph (i+3)

et k = Graph (spr)

et g.append (k)

sage: for i in range(3):

et n = []

et for m in range(3):

el n.append(g[3xi + m].plot (vertex_size=50, vertex_labels=False))

et j.append (n)
sage: G = sage.plot.graphics.GraphicsArray (j)
sage: G.show() # long time

static DegreeSequence (deg_sequence)
Returns a graph with the given degree sequence. Raises a NetworkX error if the proposed degree sequence
cannot be that of a graph.

Graph returned is the one returned by the Havel-Hakimi algorithm, which constructs a simple graph by
connecting vertices of highest degree to other vertices of highest degree, resorting the remaining vertices
by degree and repeating the process. See Theorem 1.4 in [CharLes1996].

INPUT:
* deg_sequence - a list of integers with each entry corresponding to the degree of a different vertex.

EXAMPLES:

sage: G = graphs.DegreeSequence([3,3,3,31])

sage: G.edges (labels=False)

(o, 1), 0, 2y, (0, 3), (1, 2), (1, 3), (2, 3)]
sage: G.show() # long time

sage: G = graphs.DegreeSequence([3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,31)
sage: .show () # long time

(9}

sage: G = graphs.DegreeSequence ([4,4,4,4,4,4,4,4])
sage: .show () # long time

@

sage: G = graphs.DegreeSequence([1,2,3,4,3,4,3,2,3,2,11)
sage: G.show () # long time

REFERENCE:
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static DegreeSequenceBipartite (s/, s2)
Returns a bipartite graph whose two sets have the given degree sequences.

Given two different sequences of degrees s; and s3, this functions returns ( if possible ) a bipartite graph on
sets A and B such that the vertices in A have s; as their degree sequence, while s is the degree sequence
of the vertices in B.

INPUT:

e s_1 —list of integers corresponding to the degree sequence of the first set.

* s_2 —list of integers corresponding to the degree sequence of the second set.
ALGORITHM:

This function works through the computation of the matrix given by the Gale-Ryser theorem, which is in
this case the adjacency matrix of the bipartite graph.

EXAMPLES:

If we are given as sequences [2,2,2,2,2] and [5, 5] we are given as expected the complete bipartite
graph K 5

sage: g = graphs.DegreeSequenceBipartite([2,2,2,2,2],15,51)
sage: g.is_isomorphic (graphs.CompleteBipartiteGraph(5,2))
True

Some sequences being incompatible if, for example, their sums are different, the functions raises a
ValueError when no graph corresponding to the degree sequences exists.

sage: g = graphs.DegreeSequenceBipartite([2,2,2,2,11,1[5,5])
Traceback (most recent call last):

ValueError: There exists no bipartite graph corresponding to the given degree
—sequences

static DegreeSequenceConfigurationModel (deg_sequence, seed=None)
Returns a random pseudograph with the given degree sequence. Raises a NetworkX error if the proposed
degree sequence cannot be that of a graph with multiple edges and loops.

One requirement is that the sum of the degrees must be even, since every edge must be incident with two
vertices.

INPUT:

* deg_sequence - a list of integers with each entry corresponding to the expected degree of a differ-
ent vertex.

* seed-arandom.Random seed or a Python int for the random number generator (default: None).

EXAMPLES:

sage: G = graphs.DegreeSequenceConfigurationModel ([1,1])
sage: G.adjacency_matrix/()

[0 1]

[1 0]

Note: as of this writing, plotting of loops and multiple edges is not supported, and the output is allowed to
contain both types of edges.
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sage: G = graphs.DegreeSequenceConfigurationModel([3,3,3,3,3,3,3,3,3,3,3,3,3,
-3,3,3,3,3,3,31)
sage: len(G.edges())

30
sage: G.show () # long time
REFERENCE:

static DegreeSequenceExpected (deg_sequence, seed=None)

Returns a random graph with expected given degree sequence. Raises a NetworkX error if the proposed
degree sequence cannot be that of a graph.

One requirement is that the sum of the degrees must be even, since every edge must be incident with two
vertices.

INPUT:

* deg_sequence - alist of integers with each entry corresponding to the expected degree of a differ-
ent vertex.

* seed-arandom.Random seed or a Python int for the random number generator (default: None).

EXAMPLES:

sage: G = graphs.DegreeSequenceExpected([1,2,3,2,3])
sage: G.edges (labels=False)

[0, 3), (1, 3), (1, 4), (4, 4)] # 32-bit
(o, 3, (1, 4), (2, 2), (2, 3), (2, 4), (4, 4)] # 64-bit
sage: G.show() # long time

REFERENCE:

static DegreeSequenceTree (deg_sequence )

Returns a tree with the given degree sequence. Raises a NetworkX error if the proposed degree sequence
cannot be that of a tree.

Since every tree has one more vertex than edge, the degree sequence must satisfy len(deg_sequence) -
sum(deg_sequence)/2 == 1.

INPUT:

* deg_sequence - alist of integers with each entry corresponding to the expected degree of a differ-
ent vertex.

EXAMPLES:

sage: G = graphs.DegreeSequenceTree([3,1,3,3,1,1,1,2,11)
sage: G.show() # long time

static DejterGraph ()

Return the Dejter graph.

The Dejter graph is obtained from the binary 7-cube by deleting a copy of the Hamming code of length
7. It is 6-regular, with 112 vertices and 336 edges. For more information, see the Wikipedia article
Dejter_graph.

EXAMPLES:

sage: g = graphs.DejterGraph(); g
Dejter Graph: Graph on 112 vertices
sage: g.is_regular (k=6)

(continues on next page)
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True
sage: g.girth()
4

static DesarguesGraph ()
Return the Desargues graph.

PLOTTING: The layout chosen is the same as on the cover of [Har1994].
EXAMPLES:

sage: D graphs.DesarguesGraph ()

sage: L graphs.LCFGraph (20, [5,-5,9,-91,5)
sage: D.is_isomorphic (L)

True

sage: D.show () # long time

static DiamondGraph ()
Returns a diamond graph with 4 nodes.

A diamond graph is a square with one pair of diagonal nodes connected.

PLOTTING: Upon construction, the position dictionary is filled to override the spring-layout algorithm.
By convention, the diamond graph is drawn as a diamond, with the first node on top, second on the left,
third on the right, and fourth on the bottom; with the second and third node connected.

EXAMPLES: Construct and show a diamond graph

sage: g = graphs.DiamondGraph ()
sage: g.show() # long time

static DipoleGraph (n)
Returns a dipole graph with n edges.

A dipole graph is a multigraph consisting of 2 vertices connected with n parallel edges.
EXAMPLES:

Construct and show a dipole graph with 13 edges:

sage: g = graphs.DipoleGraph(13); g
Dipole graph: Multi-graph on 2 vertices
sage: g.show() # long time

static DodecahedralGraph ()
Returns a Dodecahedral graph (with 20 nodes)

The dodecahedral graph is cubic symmetric, so the spring-layout algorithm will be very effective for
display. It is dual to the icosahedral graph.

PLOTTING: The Dodecahedral graph should be viewed in 3 dimensions. We chose to use the default
spring-layout algorithm here, so that multiple iterations might yield a different point of reference for the
user. We hope to add rotatable, 3-dimensional viewing in the future. In such a case, a string argument will
be added to select the flat spring-layout over a future implementation.

EXAMPLES: Construct and show a Dodecahedral graph

sage: g graphs.DodecahedralGraph ()
sage: g.show() # long time
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Create several dodecahedral graphs in a Sage graphics array They will be drawn differently due to the use
of the spring-layout algorithm

sage: g = [
sage: j = [
sage: for i1 in range(9):

et k = graphs.DodecahedralGraph ()

g.append (k)

i in range(3):

n = []

e for m in range(3):

el n.append(g[3xi + m].plot (vertex_size=50, vertex_labels=False))

et j.append (n)
sage: G = sage.plot.graphics.GraphicsArray (j)
sage: G.show () # long time

static DorogovtsevGoltsevMendesGraph (n)

Construct the n-th generation of the Dorogovtsev-Goltsev-Mendes graph.

EXAMPLES:

sage: G = graphs.DorogovtsevGoltsevMendesGraph (8)
sage: G.size()
6561

REFERENCE:

 [1] Dorogovtsev, S. N., Goltsev, A. V., and Mendes, J. F. F., Pseudofractal scale-free web, Phys. Rev.
E 066122 (2002).

static DoubleStarSnark ()

Return the double star snark.
The double star snark is a 3-regular graph on 30 vertices. See the Wikipedia article Double-star_snark.

EXAMPLES:

sage: g = graphs.DoubleStarSnark ()
sage: g.order ()

30

sage: g.size()

45

sage: g.chromatic_number ()

3

sage: g.is_hamiltonian()

False

sage: g.automorphism_group () .cardinality ()
80

sage: g.show()

static DurerGraph ()

Return the Diirer graph.
For more information, see the Wikipedia article D%C3%BCrer_graph.
EXAMPLES:

The Diirer graph is named after Albrecht Diirer. It is a planar graph with 12 vertices and 18 edges.
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sage: G = graphs.DurerGraph(); G
Durer graph: Graph on 12 vertices
sage: G.is_planar()

True

sage: G.order ()
12

sage: G.size()
18

The Diirer graph has chromatic number 3, diameter 4, and girth 3.

sage: G.chromatic_number ()

3

sage: G.diameter ()
4

sage: G.girth()

3

Its automorphism group is isomorphic to Dg.

sage: ag = G.automorphism_group ()
sage: ag.is_isomorphic (DihedralGroup (6))
True

static DyckGraph ()
Return the Dyck graph.

For more information, see the MathWorld article on the Dyck graph or the Wikipedia article Dyck_graph.
EXAMPLES:

The Dyck graph was defined by Walther von Dyck in 1881. It has 32 vertices and 48 edges, and is a cubic
graph (regular of degree 3):

sage: G = graphs.DyckGraph(); G
Dyck graph: Graph on 32 vertices
sage: G.order ()

32

sage: G.size()

48

sage: G.is_regular ()

True

sage: G.is_regular(3)

True

It is non-planar and Hamiltonian, as well as bipartite (making it a bicubic graph):

sage: G.is_planar ()

False

sage: G.is_hamiltonian()
True

sage: G.is_bipartite()
True

It has radius 5, diameter 5, and girth 6:

sage: G.radius/()
5

(continues on next page)
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sage: G.diameter ()
5

sage: G.girth()

6

Its chromatic number is 2 and its automorphism group is of order 192:

sage: G.chromatic_number ()

2

sage: G.automorphism_group() .cardinality ()
192

It is a non-integral graph as it has irrational eigenvalues:

sage: G.characteristic_polynomial () .factor ()
(x — 3) *» (x +3) » (x —1)"9 * (x + 1)"9 » (x*2 - 5)"6

It is a toroidal graph, and its embedding on a torus is dual to an embedding of the Shrikhande graph
(ShrikhandeGraph).

static EgawaGraph (p, s)

Return the Egawa graph with parameters p, s.

Egawa graphs are a peculiar family of graphs devised by Yoshimi Egawa in [Egal981] . The Shrikhande
graph is a special case of this family of graphs, with parameters (1,0). All the graphs in this family are
not recognizable by 1-WL (Weisfeiler Lehamn algorithm of the first order) and 2-WL, that is their orbits
are not correctly returned by k-WL for k lower than 3.

Furthermore, all the graphs in this family are distance-regular, but they are not distance-transitive if p # 0.

The Egawa graph with parameters (0, s) is isomorphic to the Hamming graph with parameters (s, 4), when
the underlying set of the Hamming graph is [0, 1, 2, 3]

INPUT:
¢ p — power to which the graph named Y in the reference provided above will be raised
* s — power to which the graph named X in the reference provided above will be raised
OUTPUT:
* G —The Egawa graph with parameters (p,s)
EXAMPLES:

Every Egawa graph is distance regular.

sage: g = graphs.EgawaGraph(l, 2)
sage: g.is_distance_regular ()
True

An Egawa graph with parameters (0,s) is isomorphic to the Hamming graph with parameters (s, 4).

sage: g = graphs.EgawaGraph (0, 4)
sage: g.is_isomorphic (graphs.HammingGraph (4,4))
True

static EllinghamHorton54Graph ()

Return the Ellingham-Horton 54-graph.

For more information, see the Wikipedia article Ellingham-Horton_graph.
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EXAMPLES:
This graph is 3-regular:

sage: g = graphs.EllinghamHorton54Graph ()
sage: g.is_regular (k=3)
True

It is 3-connected and bipartite:

sage: g.vertex_connectivity () # not tested - too long
3

sage: g.is_bipartite()

True

It is not Hamiltonian:

sage: g.is_hamiltonian() # not tested - too long
False

. and it has a nice drawing

sage: g.show(figsize=[10, 10]) # not tested - too long

static EllinghamHorton78Graph ()
Return the Ellingham-Horton 78-graph.

For more information, see the Wikipedia article Ellingham%E2%80%93Horton_graph
EXAMPLES:
This graph is 3-regular:

sage: g = graphs.EllinghamHorton78Graph ()
sage: g.is_regular (k=3)
True

It is 3-connected and bipartite:

sage: g.vertex_connectivity() # not tested - too long
3

sage: g.is_bipartite()

True

It is not Hamiltonian:

sage: g.is_hamiltonian() # not tested - too long
False

. and it has a nice drawing

sage: g.show(figsize=[10,10]) # not tested too long

static EmptyGraph ()
Returns an empty graph (0 nodes and 0 edges).

This is useful for constructing graphs by adding edges and vertices individually or in a loop.

PLOTTING: When plotting, this graph will use the default spring-layout algorithm, unless a position
dictionary is specified.

2.1.

Common Graphs 393


https://en.wikipedia.org/wiki/Ellingham%E2%80%93Horton_graph

Sage Reference Manual: Graph Theory, Release 8.6

EXAMPLES: Add one vertex to an empty graph and then show:

sage: emptyl = graphs.EmptyGraph ()
sage: emptyl.add_vertex()
0

sage: emptyl.show() # long time

Use for loops to build a graph from an empty graph:

sage: empty2 = graphs.EmptyGraph ()
sage: for i in range(5):
e empty2.add_vertex () # add 5 nodes, labeled 0-4

sage: for i1 in range(3):

et empty2.add_edge (i,i+1) # add edges {[0:1],[1:2],[2:3]}
sage: for i in range(l, 4):

e empty2.add_edge (4,1i) # add edges {[1:4],[2:4],[3:4]}
sage: empty2.show() # long time

static ErreraGraph ()
Return the Errera graph.

For more information, see the Wikipedia article Errera_graph.

EXAMPLES:

The Errera graph is named after Alfred Errera. It is a planar graph on 17 vertices and having 45 edges.

sage: G = graphs.ErreraGraph(); G
Errera graph: Graph on 17 vertices
sage: G.is_planar()

True

sage: G.order ()
17

sage: G.size()
45

The Errera graph is Hamiltonian with radius 3, diameter 4, girth 3, and chromatic number 4.

sage: G.is_hamiltonian()
True

sage: G.radius()

3

sage: G.diameter ()

4

sage: G.girth()

3

sage: G.chromatic_number ()
4

Each vertex degree is either 5 or 6. That is, if f counts the number of vertices of degree 5 and s counts the

number of vertices of degree 6, then f + s is equal to the order of the Errera graph.
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sage: D = G.degree_sequence ()
sage: D.count (5) + D.count (6) == G.order ()
True

The automorphism group of the Errera graph is isomorphic to the dihedral group of order 20.

sage: ag = G.automorphism_group ()
sage: ag.is_isomorphic(DihedralGroup (10))
True

static EuropeMap (continental=False, year=2018)
Return European states as a graph of common border.

“European state” here is defined as an independent state having the capital city in Europe. The graph has
an edge between those countries that have common land border.

INPUT:
e continental, a Boolean — if set, only return states in the continental Europe
e year —reserved for future use

EXAMPLES:

sage: Europe = graphs.EuropeMap(); Europe
Europe Map: Graph on 44 vertices

sage: Europe.neighbors('Ireland’')
['United Kingdom']

sage: cont_Europe = graphs.EuropeMap (continental=True)
sage: cont_Europe.order ()

40

sage: 'Iceland' in cont_Europe

False

static F26AGraph ()
Return the F26A graph.

The F26A graph is a symmetric bipartite cubic graph with 26 vertices and 39 edges. For more information,
see the Wikipedia article F26A_graph.

EXAMPLES:

sage: g = graphs.F26AGraph(); g

F26A Graph: Graph on 26 vertices

sage: g.order(),g.size()

(26, 39)

sage: g.automorphism_group() .cardinality ()
78

sage: g.girth()

6

sage: g.is_bipartite()

True

sage: g.characteristic_polynomial () .factor ()
(x = 3) » (x + 3) » (x4 - 5%xx™2 + 3)"6

static FibonacciTree (n)
Return the graph of the Fibonacci Tree F; of order n.
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The Fibonacci tree F; is recursively defined as the tree with a root vertex and two attached child trees F;_
and F;_o, where F} is just one vertex and Fp is empty.

INPUT:
* n - the recursion depth of the Fibonacci Tree

EXAMPLES:

sage: g = graphs.FibonacciTree (3)
sage: g.is_tree()

True

sage: 11 = [ len(graphs.FibonacciTree(_)) + 1 for _ in range(6) |
sage: 12 = list (fibonacci_sequence (2,8))

sage: 11 == 12

True

AUTHORS:

¢ Harald Schilly and Yann Laigle-Chapuy (2010-03-25)

static FlowerSnark ()

Return a Flower Snark.

A flower snark has 20 vertices. It is part of the class of biconnected cubic graphs with edge chromatic
number = 4, known as snarks. (i.e.: the Petersen graph). All snarks are not Hamiltonian, non-planar and
have Petersen graph graph minors. See the Wikipedia article Flower_snark.

PLOTTING: Upon construction, the position dictionary is filled to override the spring-layout algorithm.
By convention, the nodes are drawn 0-14 on the outer circle, and 15-19 in an inner pentagon.

EXAMPLES: Inspect a flower snark:

sage: F = graphs.FlowerSnark ()
sage: F

Flower Snark: Graph on 20 vertices
sage: F.graph6_string()
'ShCGHCR?GGg@?@?Gp?K??C?CA?G?_G?Cc'

Now show it:

sage: F.show() # long time

static FoldedCubeGraph (n)

Returns the folded cube graph of order 271,

The folded cube graph on 27! vertices can be obtained from a cube graph on 2" vertices by merging
together opposed vertices. Alternatively, it can be obtained from a cube graph on 2"~ ! vertices by adding
an edge between opposed vertices. This second construction is the one produced by this method.

See the Wikipedia article Folded_cube_graph for more information.
EXAMPLES:
The folded cube graph of order five is the Clebsch graph:

sage: fc = graphs.FoldedCubeGraph (5)
sage: clebsch = graphs.ClebschGraph ()
sage: fc.is_isomorphic (clebsch)

True
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static FolkmanGraph ()
Return the Folkman graph.

See the Wikipedia article Folkman_graph.

EXAMPLES:

sage: g = graphs.FolkmanGraph ()
sage: g.order ()

20

sage: g.size()

40

sage: g.diameter ()

4

sage: g.girth()

4

sage: g.charpoly () .factor()

(x — 4) » (x + 4) » x*10 « (x"2 — 6)"™4
sage: g.chromatic_number ()

2

sage: g.is_eulerian()

True

sage: g.is_hamiltonian ()

True

sage: g.ls_vertex_transitive ()
False

sage: g.is_bipartite()

True

static FosterGraph()
Return the Foster graph.

See the Wikipedia article Foster_graph.

EXAMPLES:

sage: g graphs.FosterGraph ()
sage: g.order ()

90

sage: g.size()

135

sage: g.diameter ()

8

sage: g.girth()

10

sage: g.automorphism_group() .car