
An introduction to the conjecture of Bloch
and Kato

Two lectures at the Clay Mathematical Institute Summer School,
Honolulu, Hawaii, 2009

Prerequisites: The prerequisites for these lectures are elementary:

(i) Algebraic number theory, including class field theory, and structure of the

Galois group of number fields (decomposition groups, Frobenius elements,

etc);

(ii) Basic theory of finite-dimensional representations of groups;

(iii) Group cohomology.

Some knowledge of Galois cohomology (the duality theorems and the Euler-Poincaré

characteristic formula) can be useful, but I shall recall what I need. Similarly, I

shall recall and use some hard results in étale cohomology, and it is not necessary to

know them beforehand, nor their proof, but a familiarity with algebraic geometry

is necessary to understand their formulation.

Exercises: There are exercises in the text. I shall try to separate them in the

notes for other lectures, but here it would be artificial. Some exercises have the

label (easy), which means that you should be able to solve them at sight, if you

have read and understood what is just above. So if you try and can’t solve an

easy exercise, reread what is above and try again. If you still can’t solve it, then

I have made a mistake. Most exercises have no label, meaning that they are of

intermediate difficulty and that you should be able to solve them with a paper and

a pencil in a few minutes. Some have the label (difficult), and they are difficult

exercises that need either some real new ideas, or the knowledge of some other

theory, or both.

Terminology and convention: In all those lectures, a p-adic representation

V of G will be a finite-dimensional vector space over Qp, with a continuous linear

action of a topological group G (in general a Galois group). We could also consider

representations over finite extensions of Qp, but those representations can be seen

as p-adic representations in our sense, so this greater generality would only be

apparent. If V is a p-adic representation, V (n) is V tensor the cyclotomic character

to the power n. The symbol dim means the dimension over Qp, when not otherwise

specified.
1
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Depending on the context, K will be either a characteristic 0 local field, or a

number field. In the latter case, v will denote a place of K, and Gv will denote

GKv . There is a natural morphism Gv → GK well defined up to conjugacy that

allows us to define the restriction V|Gv
to Gv of a representation of GK , without

ambiguity up to equivalence.

Frobeniuses are arithmetic Frobeniuses, denoted Frobv. Predictions are corollary

of conjectures. Errors are mine.

Thanks: I would like to thank the scientific organizers of the CMI summer

school 2009 at Hawaii Brian Conrad, Mark Kisin, Cris Skinner, as well as the

Clay Mathematical Institute for organizing this wonderful summer school, and in

particular David Ellwood and Amanda Battese for their kindness. I also thank the

audience for their attendance and feed-back, in particular David Savitt, Arno Kret,

and Alberto Minguez.
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The aim of those lectures is to introduce the conjecture of Bloch-Kato and to ex-

plain its number-theoretical significance. This conjecture appeared in print ([BK])
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in 1990 in The Grothendieck Festschrift1 related to a collection of papers in honor

of Grothendieck’s 60th birthday. It generalizes at least some important part of the

Birch and Swinnerton-Dyer conjecture, which is one of the seven Clay’s millennium

problem.

This conjecture has a particularity: it is a “second-order conjecture” (or call it

a meta-conjecture if you are fond of Hofstadter). That is to say, it talks about

objects whose basic properties, and which is worse sometimes definitions, depend

on unproved conjectures. A consequence is that there are several formulations of

the Bloch-Kato conjecture, that should be equivalent, but for which a proof of their

equivalence requires using more basic, or level-1, but yet unproved and certainly

very hard, conjectures.

In this lecture, I shall present a panorama of those level-1 conjectures needed

to get a full grasp of the Bloch-Kato conjecture, that I shall try to motivate by

showing how many classical (solved or still conjectural) questions of number theory

can be reformulated to become a special part of it.

In doing so, I will restrain myself to only a part of the conjecture of Bloch-Kato,

the part concerned with characteristic 0 phenomena. That is to say, I will consider

only Galois representations over finite extensions of Qp, instead of Zp or Z/pnZ,

(or “iso-motives” instead of “motives”, see below §1.3) and order of zero and poles

of L-functions, instead of their principal values. I have to warn the reader that

this is only the tip of the iceberg. There is a world of interesting phenomena in

characteristic p, and even if we are only concerned with characteristic 0 questions,

some motivations, and the proofs of many results unavoidably require a détour in

characteristic p. Yet I believe that it may be easier to get a global picture of this

huge set of conjectures, and of what is proved (very little) by restraining ourselves

to characteristic 0.

In characteristic 0, the Bloch-Kato conjecture relates two objects attached to a

geometric Galois representation. A geometric Galois representation V is a semi-

simple continuous representation of the absolute Galois group GK of a number field

K on a finite dimensional vector space V over Qp (or some finite extension) which

satisfies certain properties satisfied by the Galois representations that appears in

the étale cohomology H i(X,Qp) (see below §1.1.1) of proper and smooth variety

X over K. It is conjectured (the Fontaine-Mazur conjecture) that every geometric

1Actually, this paper contains two important and related but quite different conjectures, and
both have been known as ”the Bloch-Kato conjecture”, which has been a frequent source of confu-
sion during the past twenty years. The conjecture that will be studied in those notes, arguably the
most fundamental of the two, is the one that is also known as ”the Tamagawa number conjecture”,
though as we restrict ourselves here to characteristic 0 phenomena, there will be no Tamagawa
number whatsoever. The other Bloch-Kato conjecture, which generalizes the Milnor conjecture
and a proof of which has been announced in 2009, relates the Bloch-Kato Selmer group (an object
we shall study in these notes) to K-theory (that shall not be used here) – see 2.3.4 for a few more
details and [W] for an introduction to that conjecture.
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representation appears this way. The first section will include a quick discussion of

those geometric Galois representations and their fundamental properties (be they

proved or conjectural).

To a geometric representation V of GK , one can attach two objects, one analytic,

and one algebraic, and the Bloch-Kato’s conjecture is a mysterious relation between

those objects. The analytic object is an analytic function of a complex variable s,

with possibly some poles, the L-function L(V, s). Its definition and properties

are studied in section 3. The algebraic object is called the Bloch-Kato Selmer

groups and denoted by H1
f (GK , V ). It is a Qp-vector space, and it is an attempt to

generalize for any geometric representation V the Mordell-Weil group of an elliptic

curve (in the sense that if Vp(E) is the Tate module of an elliptic curve E over K,

we have a canonical injective linear map E(K) ⊗Z Qp ↪→ H1
f (GK , Vp(E)) which is

conjecturally an isomorphism, so the rank of the Mordell-Weil group of E should be

the same as the dimension of the Bloch-Kato Selmer group of Vp(E)). The definition

of the Bloch-Kato Selmer group as well as many of its properties are studied in §2.

The connection between those two objects predicted by (the characteristic 0 part

of) the Bloch-Kato conjecture is that the dimension of H1
f (K,V ) is equal to the

order of the 0 of L(V ∗(1), s) at s = 0 (where V ∗ is the dual representation of

V ). Motivation, examples, and stability properties of that conjecture are discussed

in §4.

1. Geometric Galois representations

For an alternative exposition of much of this material, see [Tay2].

1.1. Representations coming from geometry.

1.1.1. Very brief reminder on étale cohomology. Let K be a number field. For X

a proper and smooth variety over K of dimension n, i an integer and p a prime

number, one sets

H i(X,Qp) =
(
lim←−H

i
ét(X × K̄,Z/pnZ)

)
⊗Zp Qp.

By transport of structure, the Qp-space H i(X,Qp) has a natural Qp-linear action of

the Galois group GK . The following properties are well known in étale cohomology.

They are the only ones we shall use, so a reader who ignores everything of étale

cohomology and takes them as axioms should have no serious problem reading the

sequel.

E1.– The space H i(X,Qp) is finite-dimensional and of dimension independent of

p. The action of GK is continuous.

Actually, there is more: If one uses any embedding ι of K into C to associate to

X an algebraic variety X ×K,ι C over C, and then its analytic variety Xan over C,

then H i(X,Qp) is naturally isomorphic as a Qp-vector space to H i
betty(Xan ,Qp),
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where the H i
betty is the singular cohomology (or any usual cohomology theory of

manifolds).

E2.– X 7→ H i(X,Qp) is a contravariant functor from the category of proper and

smooth varieties over K to the category of p-adic representations of GK .

E3.– We have H i(X,Qp) = 0 for i < 0 and i > 2n = 2 dimX. If X is geometri-

cally connected, H0(X,Qp) = Qp (with trivial action) and H2n(X)(Qp) = Qp(−n).

E4.– There is a functorial cup-product map of GK-representations H i(X,Qp)⊗
Hj(X,Qp)→ H i+j(X,Qp). When i+ j = 2n, it is a perfect pairing.

In particular, H i(X,Qp)
∗ ' H2n−i(X,Qp)(−n).

Also, if X and Y are two proper and smooth varieties, and k an integer, the

natural map⊕
i+j=k

H i(X)⊗Hj(Y )
pr∗1⊗pr∗2−→

⊕
i+j=k

H i(X × Y )⊗Hj(X × Y )
cup-product−→ Hk(X × Y )

is an isomorphism (this is known as Kunneth formula).

Let v be a finite place of K, and O(v) the localization of the ring of integer OK
of K at v. We call kv the residue field of that local ring. We say that X has good

reduction at v if there is a proper and smooth scheme X over SpecO(v) such that

X × SpecK ' X. Such an X is called a model of X over O(v).

E5.– Let v be a finite place of K prime to p. If X has good reduction at v, then

the representation H i(X,Qp) is unramified at v. The characteristic polynomial of

Frobv acting on H i(X,Qp) has its coefficients in Z, and is independent of p (as

long as p stays prime to v). We call it Pv(X) ∈ Z[X]. Its roots all have complex

absolute value equal to q
−i/2
v , where qv is the cardinality of the residue field kv.

This is part of the cohomological interpretation of the Weil’s conjecture due to

Grothendieck, the assertion about the absolute value of the roots being the last

Weil’s conjecture proved by Deligne in 1973. Even if we shall not need it, let

us mention the Lefschetz’s fixed point formula (aka Lefschetz Trace formula) of

Grothendieck: If X is a model of X over O(v), and Xv is its special fiber over kv,

then |Xv(kv)| =
∑2n

i=0(−1)itr(Frobv|H i(X,Qp)).

A proper and smooth variety over K has good reduction for almost all v, so

H i(X,Qp) is, as a p-adic representation of GK , unramified at almost all places.

Exercise 1.1. Prove this when X is projective and smooth.

E6.– Let v be a place of K dividing p. Then as a representation of Gv, H
i(X,Qp)

is de Rham. If X has good reduction at v, H i(X,Qp) is even crystalline.

This is a hard result of Faltings, which will be discussed in Andreatta’s lectures

([A]).

E7.– If Z is a subvariety of codimension q, then there is associated to Z a

cohomology class η(Z) ∈ H2q(X,Ql)(q) that is invariant byGK . The map η extends
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by linearity to cycles and rationally equivalent cycles have the same cohomology

class. Intersection of cycles become cup-product of cohomology classes. If P is

closed point, then η(P ) ∈ H2n(X,Qp)(n) = Qp is non-zero

Besides those proved (with great difficulties) results, there are still some open

conjectures.

EC1.– If X has good reduction at v and v is prime to p, then the operator Frobv

of H i(X,Qp) is semi-simple (that is diagonalizable over Q̄p.) If v divides p, then if

ϕ = φfv , where φ is the crystalline Frobenius acting on Dcrys(V|Gv
) and fv is the

degree of the residual extension at v of K/Q, the linear operator ϕ acts semi-simply

on Dcrys(V|Gv
).

This is called the semi-simplicity of Frobenius. There are also variants for places

v with bad reduction. Conjecture EC1 is known for abelian varieties by a theorem

of Tate.

EC2.– The representation H i(X,Qp) of GK is semi-simple.

This is sometimes called “conjecture of Grothendieck-Serre”. This is known for

abelian varieties, by a theorem that Faltings proved at the same times he proved

the Mordell’s conjecture, and in a few other cases (some Shimura varieties, for

example).

EC3.– The subspace (H2q(X,Qp)(q))
GK is generated over Qp by the classes η(Z)

of sub-varieties Z of codimension q.

This is Tate’s conjecture, still open.

1.1.2. Representations coming from geometry.

Definition 1.1. Let V be an irreducible p-adic representation of GK . We say

that V comes from geometry if there is an integer i, an integer n, and a proper

and smooth variety X over K such that V is isomorphic to a subquotient of

H i(X,Qp)(n). (If EC2 holds, one can replace “sub-quotient” by “sub-representation”).

If V is a semi-simple representation of GK we shall say that V comes from

geometry if every irreducible component of V comes from geometry.

We shall refrain from talking about non-semi-simple representations coming from

geometry. All representations coming from geometry shall be by definition semi-

simple.

Exercise 1.2. Show that the category of p-adic representations coming from ge-

ometry of GK (morphisms are morphisms of representations) is stable by dual and

by tensor product.

1.2. Geometric representations.
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1.2.1. The Fontaine-Mazur conjecture.

Definition 1.2. Let V be a p-adic semi-simple representation of GK . We say that

V is geometric if it is unramified at almost all places and de Rham at all places

dividing p.

A p-adic representation V coming from geometry is geometric by properties E5

and E6 above.

Conjecture 1.1 (Fontaine-Mazur). If V is geometric, then V comes from geome-

try.

This fundamental conjecture is still widely open, but impressive progresses have

been made in the past fifteen years. Before giving a very quick review of these

progresses, we not that the conjecture was known before it was even formulated

for abelian representation (this is not trivial however: this uses a combination of

global class field theory, Weil’s theory of algebraic Hecke characters, and Deuring’s

theory of complex multiplication for elliptic curves and its generalization to abelian

varieties). Most of the recent progresses arose from a work by Taylor who was able

to prove ([Tay1]), building on the proof by Wiles and Taylor-Wiles of Fermat’s

last theorem, on many beautiful new ideas) that a geometric representation V

of dimension 2 of GQ that is odd and with distinct Hodge-Tate weights comes

from geometry after restriction to GF , where F is a suitable totally real number

field. Such a result is known as a potential modularity result. This result has now

been reinforced in dimension 2, where Kisin was able to prove that a geometric odd

representation V which regular Hodge-Tate weight does come from geometry. More

recently, Emerton has given a different proof of the same result. In other word, a

great part of Fontaine-Mazur’s conjecture in dimension 2 is now known. In higher

dimensions, potential modularity results are known (work of Clozel-Harris-Taylor,

and others) for many representations V of GF where F is a totally real field that

satisfy a polarization hypothesis, that is that are equivalent, up to a twist, to their

dual, and that have distinct weights. Back to dimension 2, it has been observed

by Calegari [C], that under some technical restrictions, those higher-dimensional

results can be used to remove the oddness condition in Kisin’s result. In all those

results, the fact that V comes from geometry is actually obtained as a consequence

of the fact that V is automorphic (see §1.2.4 below), which is the hard result actually

proven.

The Fontaine-Mazur conjecture is widely believed to be true, though a general

proof would probably require many completely new ideas.

1.2.2. Algebraicity and purity. The notion of motivic weight. Let V be a represen-

tation of GK that is unramified outside a finite set of places Σ.

Definitions 1.3. We shall say that a representation is algebraic if there is a finite

set of places Σ′ containing Σ such that the characteristic polynomial of Frobv on
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V has coefficients in Q̄ when v 6∈ Σ′. When one wants to precise the set Σ′, we say

Σ′-algebraic.

For w ∈ Z, we shall say that a representation is pure of weight w if there is a finite

set of places Σ′ containing Σ such that V is Σ′-algebraic and all the roots of the

characteristic polynomial of Frobv have complex absolute values (for all embeddings

of Q̄ to C) q
−w/2
v . (Here qv is as above the cardinality of the residue field kv of K

at v). When one wants to specify the set Σ′, one says Σ′-pure.

When V is pure of weight w, we call w the motivic weight of V , or simply its

weight.

Exercise 1.3. (easy) Show that the cyclotomic character Qp(1) is algebraic and

pure of weight −2.

Proposition 1.1. A representation coming from geometry is algebraic. An irre-

ducible representation coming from geometry is pure.

Proof — We can assume that V is irreducible, and appears as a sub-quotient of

H i(X,Qp)(n) for some X, i, n. Then by E5, V is Σ′-algebraic where Σ′ is the set

of primes where X has bad reduction or that divides p. Moreover, by E5 as well,

V is pure of weight i− 2n. �

Remember that H i(X,Qp) is pure of weight i.

If we believe that the Fontaine-Mazur conjecture is true, then

Prediction 1.1. Any geometric representation is algebraic, and if irreducible, pure

of some weight w ∈ Z.

This statement does not seem simpler to prove than the Fontaine-Mazur conjec-

ture itself.

1.2.3. Motivic weight and Hodge-Tate weights. The notion of motivic weight should

not be confused with the notion of Hodge-Tate weight. A geometric representation

V of dimension d of GK (K a number field) which is pure has exactly one motivic

weight. But each of its restrictions to Gv for v dividing p has d Hodge-Tate weights,

so V carries a big package of Hodge-Tate weights.

Yet there is a relation between the Hodge-Tate weights of V and its motivic

weight, when both are defined. To state it, let us introduce the following notation:

Definition 1.4. For V a geometric representation of GK , and for each k ∈ Z, we

denote by mk = mk(V ) the sum

mk(V ) =
∑
v|p

[Kv : Qp]mk(V|Gv
)

where mk(V|Gv
) is the multiplicity of the Hodge-Tate weight k for the representation

V|Gv
of Gv. We call mk(V ) the total multiplicity of k as an Hodge-Tate weight of

V .
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Obviously, the mk(V ) are almost all 0, and we have∑
k∈Z

mk = [K : Q] dimV.

Lemma 1.1. If K0 is a subfield of K, and W = Ind
GK0
GK

V , them mk(V ) = mk(W ).

The proof is an exercise.

Proposition 1.2. Let V be a p-adic representation of GK that is Hodge-Tate at

all places dividing p, and pure of weight w.

w[K : Q] dimV = 2
∑
k∈Z

mkk(1)

In other words, the weighted average of the Hodge-Tate weights k of V (weighted

by their total multiplicity mk) is w/2.

Proof — We prove this proposition by successive reduction.

First we can assume that K = Q. Indeed, replacing V by W := Ind
GQ
GK
V , the

right hand side is unchanged because of Lemma 1.1, and so is the left hand side

because w(V ) = w(W ), and [K : Q] dimV = dimW .

Second, we can assume that dimV = 1 (and still K = Q). Indeed, if V is

pure of weight w, then detV = ΛdimV V is of dimension 1 and pure of weight

w dimV . Therefore the RHS of (1) for detV is the same as for V . The same is true

concerning the LHS, as the unique Hodge-Tate weight of (detV )|Gp
is the sum of

the Hodge-Tate weights of V|Gp
. So proving the case of detV implies the case of V .

Third we can assume that dimV = 1, K = Q, and the Hodge-Tate weight of

V|Gp
is 0. For if this weight is k, then the one of V (k) is 0, and −2k is added to

both the LHS and the RHS of (1) when we change V to V (k).

Finally, assume that dimV = 1, K = Q, and that the Hodge-Tate weight of

V|Gp
is 0. We need to prove that V has motivic weight 0. By Sen’s theorem, the

inertia Ip of Gp acts through a finite quotient of V . Let χ be the character of

A∗Q attached to V by global class field theory. By local class field theory and its

compatibility with global class field theory, kerχ contains an open subgroup Up of

Z∗p. By continuity, kerχ contains also an open subgroup Up of
∏
l 6=p Z∗l , and by

definition it contains R∗+. Therefore, χ factors through A∗Q/Q∗UpUpR+
∗ , which is

finite. Thus χ has finite image, and this implies immediately that V has motivic

weight 0. �

Exercise 1.4. Assume that V = H i(X,Qp) for some proper and smooth variety

over K. Give another proof of (1) for V using Faltings’s theorem relating the Hodge-

Tate decomposition of V with the Hodge decomposition on H i(X) (see [Co]).

There should actually be stronger relations among the Hodge-Tate weights, but

we need to assume conjectures EC2 and EC3 to prove them. Let us just mention
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them without proof (but see Exercise 1.7 and Theorem 4.1). The first one is a

simple symmetry among Hodge-Tate weights, which is an indirect consequence of

Tate’s conjecture (EC3).

Prediction 1.2. Let V be a p-adic representation of GK coming from geometry.

Let w be the motivic weight of V . We have for all k ∈ Z

mk = mw−k.

As a consequence, if we define

m<w/2 =
∑
k<w/2

mk,(2)

then we have

[K : Q] dimV = 2m<w/2 if w is odd

[K : Q] dimV = 2m<w/2 +mw/2 if w is even.

We can say something more precise. Let

a±(V ) =
∑
v|∞

a±v ,(3)

where a±v = dimV is v is complex, and a±v is the dimension of the ±1-eigenspace

of the action of the complex conjugation at v on V if v is real. In other words,

a+ =
∑
v|∞

dimH0(Gv, V )

We have by simple counting that

a+(V ) + a−(V ) = [K : Q] dimV,

and

a±(V ) = a±(Ind
GK0
GK

V ).

Prediction 1.3. Let V be a p-adic representation of GK coming from geometry.

Let w be the motivic weight of V . Then a± ≥ m<w/2.

Of course, if we assume in addition the Fontaine-Mazur conjecture, then Predic-

tions 1.2 and 1.3 should hold for all geometric V . Note that for such a representa-

tion, Prediction 1.2 is stronger than Prop. 1.2.

Exercise 1.5. (easy) Keep the hypotheses of Prediction 1.2 and Prediction 1.3

(and suppose they are correct), and assume either that w is odd, or that K is

totally complex. Show that a+ = a−.

Exercise 1.6. Keep the hypotheses of Prediction 1.2 and Prediction 1.3 (and sup-

pose they are correct), and prove that for a representation of GQ of even dimension

and distinct Hodge-Tate weights, we have tr(c) = 0 where c is the non-trivial ele-

ment of GR acting on V .
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Exercise 1.7. (difficult)

Let X be a proper and smooth variety over Q and V = H i(X,Qp). Show

Predictions 1.2 and 1.3 for V using Faltings’ theorem comparing Hodge and Hodge-

Tate weight. (Hint: you don’t need any conjecture for this case. For Prediction 1.3

use the fact that Hp(X,Ωq) and Hq(X,Ωp) for p + q = i are conjugate for the

relevant complex structure.)

1.2.4. Automorphic Galois representations. We can not seriously discuss here the

fundamental subject of automorphic forms and their Galois representations, even

as a survey, because it would take hundreds of pages and I have to go to the beach.

But to complete our picture of the conjectural landscape, and also to prepare the

discussion about L-functions of geometric Galois representations, let us just say the

following:

We assume that the reader knows (or is ready to pretend he knows) what is a

cuspidal automorphic representation π = ⊗′vπv of GLn(AK) (K a number field)

and what it means for such an automorphic representation to be algebraic (this

is a condition on the local factors πv for v archimedean). A p-adic semi-simple

Galois representation ρ is attached to π if it is unramified almost everywhere, and

for almost all places v of K, the characteristic polynomial of Frobv on V is equal

to the Satake polynomial of the local factor πv, up to a suitable normalization (we

have chosen once and for all a embedding of Qp into C to be able to compare the

characteristic polynomial of Frobv who lives in Qp[X] and the Satake polynomial

who lives in C[X]. But actually, both polynomial should have algebraic coefficients.)

By Cebotarev density theorem, if ρ is attached to π it is the only one that is.

It is expected (as a part of the global Langlands program) that to every auto-

morphic cuspidal algebraic representation π of GLn/K as above there exists one

(and only one) semi-simple representation ρπ : GK → GLn(L) attached to π(where

L is a finite extension of Qp in general, but if π is Q-rational, that is if its Satake

polynomials at almost every place have coefficients in Q, we should be able to take

L = Qp.)

A p-adic representation which is ρπ for some π as above is called automorphic.

So far, the main result in that direction is that we know the existence of ρπ when

K is a totally real field (resp. a CM field), when π satisfies a self-duality (resp.

conjugate self-duality) condition, and the local factors πv when v is infinite are not

only algebraic, but also regular (this condition corresponds to ρπ having distinct

Hodge-Tate weights at places dividing p). This result is an important part of the

global Langlands program, and it has required an incredible amount of work along

a sketch by Langlands, including the stabilization of the trace formula by Arthur,

the proof of the Fundamental Lemma by Laumon and Ngo, and hard final pushes

by Shin, Morel, Harris and other. See [Sh], [M], the book project on the web page

of Michael Harris, and Shin’s lecture for more details.
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The representations ρπ for all cuspidal algebraic π should moreover be irreducible

and geometric. In the cases described above, it is known that ρπ is geometric.

(In most of those cases, the representation ρπ is, by construction, coming from

geometry, but there are some cases where ρπ is constructed by a limiting process,

and we only know that it is geometric.) The irreducibility assertion is not known,

except in low dimension (n ≤ 3 by results of Ribet, Wiles, Blasius-Rogawski and

n = 4, K = Q by a result of D. Ramakrishna)

Conversely, we have the following folklore conjecture, sometimes called Langlands-

Fontaine-Mazur (as it is a combination of the Langlands philosophy and of the

Fontaine-Mazur conjecture)

Conjecture 1.2. Every geometric irreducible p-adic representation of GK is au-

tomorphic.

So far, mainly cases of dimension 2 and K = Q (and also all the cases n = 1,

any K by Class Field Theory) are known.

1.3. Appendix: Motives. It is important to be aware that p-adic geometric Ga-

lois representations are only a proxy for a more fundamental notion discovered

by Grothendieck, the notion of pure iso-motive (many people say “pure motive”

or simply “motive” instead of “pure iso-motive”, and we shall do the same from

now, but the right term should be pure iso-motive as we work with coefficients in

characteristic 0, and proper and smooth varieties over K).

Let VPSK be the categories of proper and smooth varieties over a field K.

Grothendieck and others have constructed many cohomology theories for objects

in VPSK . All are contravariant functors from VPSK to some abelian (or at least

additive) categories, that satisfy some standard properties. For example, for i

an integer, and p a prime, one has the functor X 7→ H i(X,Qp) defined using

étale cohomology as above, from the category VPSK to the category of p-adic

representations of GK . We also have the de Rham cohomology X 7→ H i
dR(X) from

VPSK to the category of K-vector spaces with a filtration (the Hodge filtration).

As explained in Conrad’s lecture [Co] there is no canonical splitting of this filtration

in general, but there is one if K = C. If ι : K → C is a field embedding, we also

have the functor X 7→ H i
ι(X,Z) = H i

betty((X ×K,ι C)(C),Z) from VPSK to the

category of finite Z-modules, where H i
betty is the usual cohomology of topological

spaces.

There are some comparison results between those cohomology theories. For

example, all our H i(X) have same dimension or rank. Also, if ι is as above,

there is a natural and functorial isomorphism of complex space u : H i
ι(X,Z) ⊗Z

C ' H i
dR(X) ⊗K,ι C. Combining the H i

ι(X,Z) and the H i
dR(X) one can attach

functorially on X a rich structure called, according to the following definition a

K-Hodge-deRham structure of weight i (see the definition below) ; (H i
ι(X,Z) ⊗Z

Q, H i
dR(X), u, (Hp(X × SpecC,Ωq)p,q∈N,p+q=i).
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Definition 1.5. A K-Hodge-deRham structure (where K is a subfield or C, or

when an embedding ι : K → C is given) is a 4-uple (VQ, VK , u, (Vp,q)p,q∈Z2) where

VQ is a finite Q-vector space, VK a finite K-vector space, u is an isomorphism

VK ⊗K,ι C → VQ ⊗Q C, (Vp,q) is a finite family of subspaces of VK ⊗ C such that

one has VK ⊗ C = ⊕p,qVp,q, Vp,q = V q,p for the conjugation on VK ⊗ C attached to

the real structure given by u−1(VQ ⊗ R), and where for each (i, p0) the subspaces

⊕p≥p0Vp,i−p of VK ⊗ C descend to VK .

If for some i ∈ Z we have Vp,q = 0 whenever p+ q 6= i, we say that V is pure of

weight i.

Grothendieck has conjectured for every field K the existence of a universal

abelian category (the category of motives over K) through which all cohomology

functors from VPSK to various additive categories should factor. More precisely,

he has conjectured the existence of a universal Q-linear, abelian, graded, semi-

simple category MK of (pure iso-) motives over K with contravariant functors

H i : VPSK → MK (with image in objects whose only non trivial graded part is

gri - we call those objects “pure of weight i”) and realizations Q-linear functors

Realp, Realι, RealdR from MK to the categories of respectively of p-adic represen-

tations of GK , Z-modules, filtered K-vector spaces, with natural isomorphism of

functors H i(−,Qp) = Realp ◦H i, H i
ι(−,Z) = Realι ◦H i, H i

dR(−) = RealdR ◦H i,

with functorial isomorphisms RealdR ⊗K,ι C ' Realι ⊗Z C making Realι(M)⊗C a

K-Hodge structure Hodge(M). There should be plenty of other properties (com-

parison for various K, existence of classes attached to subvarieties, existence of

tensor products and dual objects in MK , etc.) that I shall not state.

Grothendieck has also proposed a construction of this category, but verifying

that the resulting category has the required properties needs the so-called standard

conjectures of type Hodge and of type Lefschetz, that are still open. The standard

conjecture of type Hodge is a generalization of Hodge index theorem, and should

not be confused with the very famous Hodge conjecture, which also plays a role in

the theory of motives. There has been many propositions to define the category

of motives assuming different conjectures, or even no conjecture at all, which are

important, but none cane provide an unconjectural category of motives unconjec-

turally satisfying all basic expected properties.

If we admit the standard conjectures, then the categoryMK is constructed, and

two of the most important conjectures in algebraic geometry can be reinterpreted as

saying that some realization functor from Mk are fully faithful. First (for K = C,

or even K any subfield of C) the functor M 7→ Hodge(M) would be fully faithful

if and only if the Hodge conjecture held (cf. [H, Prop. 1.2]). Analogously, for K

a number field, the Tate conjecture EC3 (combined with the Grothendieck-Serre

conjecture EC2) would be equivalent to the full faithfulness, for any prime p, of the

functor Realp fromMK to the category of p-adic representations of GK . Therefore,
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if those conjecture held, Realp would be an equivalence from the category of motives

MK to the categories of representations coming from geometry. This functor sends

a motive that is graded only in weight i to a representation that is pure of weight

i.

Alternatively, if we are not willing to assume the standard conjectures, but only

the Tate and Grothendieck-Serre conjectures, we could choose a prime p and define

the category MK as the category of p-adic representations coming from geometry

of GK , and the result would be an independent on p semi-simple Q-linear abelian

category satisfying all properties stated above (but maybe not all the properties

one wants for MK).

To summarize, in an ideal world in which all what we expect is true, a p-adic

representation V of GK coming from geometry should be not the primary object

of interest, but a tangible realization Realp(M), or as one says, an avatar, of a

more fundamental if less accessible object M in the category of motives MK . The

motive M should be determined by V up to isomorphism, and thus in particular

to we should be able to attach to V a K-Hodge structure Hodge(V ) = Hodge(M).

(For more about motives, cf. [?] or [An])

2. Bloch-Kato Selmer groups

For a more advanced presentation of most of this material, see [BK] or [FPR].

2.1. Reminder of Galois cohomology.

2.1.1. Continuous and discrete coefficients. Let G be a profinite group and p be a

prime. We shall consider the following condition, for i ≥ 0 an integer

(Fin(p, i)) For every open subgroup U of G, the set H i(U,Z/pZ) is finite.

(Fin(p)) G satisfies Fin(p, i) for all i ≥ 0.

Remark 2.1. Fin stands of course for “finiteness”. Note that Fin(p, 1) is the p-

finiteness condition used in Galois deformation theory. (See Kisin’s lectures [Ki].)

Exercise 2.1. a.– Let F be the p-Frattini subgroup of U , that is the closure of

the subgroup of U generated by all commutators and all p-powers. Show that F is

normal in U . Show that H1(U,Z/pZ) = Homcont(U,Z/pZ) is finite if and only if

U/F is finite.

b.– (difficult) Let L/K be an algebraic Galois extension of fields, and assume

that G = Gal(L/K) satisfies Fin(p, 1). Show that G satisfies Fin(p, 2) if and only

if for all open normal subgroup U of G the group H2(G/U, (LU )∗)[p] is finite.

c.– Show that if K is a finite extension of Ql, then GK and IK (the inertia

subgroup of GK) satisfies Fin(p) (use a.– and local class field theory for Fin(p, 1);

use b.– and the theory of the Brauer group for Fin(p, 2). There is nothing to prove

(e.g. [S2, Chapter II, §4.3]) for the other cases Fin(p, i), with i > 2).
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d.– Show that if K is a number field, then GK does not satisfy Fin(p, 1) nor

Fin(p, 2). However, show that if Σ is a finite set of places, GK,Σ satisfies Fin(p).

(use a.– and global class field theory for Fin(p, 1); use b.– and the theory of the

Brauer group for Fin(p, 2). There is almost nothing to prove (e.g. [S2, Chapter II,

§4.4]) for the other cases Fin(p, i), with i > 2).

We shall be concerned with continuous group cohomology H i(G,V ) of profinite

groups G satisfying Fin(p) (actually only among the Galois groups considered in

the above exercise) with values in finite dimensional Qp-vector spaces V with a

continuous action of G (V being provided with its p-adic topology, given by any

p-adic norm).

Let us first note that the usual tools of group cohomology (Shapiro’s lemma,

inflation-restriction, long exact sequence attached to a short exact sequence) work

without problem for continuous cohomology with values in finite dimensional vector

space over Qp with continuous G-action (that is, p-adic representation). The only

technical point to check, for the existence of a long exact sequence, is that a short

exact sequence of p-adic representation is always split as a short exact sequence of

Qp-vector spaces, which is obvious.

Since all basic results in Galois cohomology are proved with discrete coefficients,

we need a way to pass from discrete coefficients to p-adic coefficients. Such a way

is provided by the following result of Tate.

Proposition 2.1 (Tate). Let G be a profinite group satisfying Fin(p) and V be a

continuous representation of G. Let Λ be a Zp-lattice in V stable by G.

(a) The continuous cohomology group H i(G,Λ) (with Λ given its p-adic topol-

ogy) is a finite Zp-module and we have a canonical isomorphism

H i(G,V ) ' H i(G,Λ)⊗Zp Qp.

(b) We have a canonical isomorphism H i(G,Λ) = lim←−H
i(G,Λ/pnΛ) (where

Λ/pnΛ is a finite group provided with its discrete topology).

The end of this § is devoted to the proof of (a), which is copied form [T] for the

commodity of the reader. For (b), which is simpler, see [T].

Lemma 2.1. If G is a profinite group satisfying Fin(p), and A be any finite (dis-

crete) p-primary abelian group with continuous G-action, then the groups H i(G,A)

are finite.

Proof — There exists an open normal subgroup U such that U acts trivially

on A. That is, as an U -module, A is a successive extension of Z/pZ (with trivial

U -action). By Fin(p) and the long exact sequences, the groups H i(U,A) are finite.

By the Hochschild-Serre spectral sequence H i(G/U,Hj(U,A))⇒ H i+j(G,A), and

since G/U is finite, the groups H i(G,A) are finite. �
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Let Λ be any finite-type Zp-module with a continuous G-action.

Lemma 2.2. Let Y be a finitely generated Zp-submodule of H i(G,Λ), and set

Z = H i(G,Λ)/Y . If Z = pZ then Z = 0.

Proof — Let g1, . . . , gk be cocycles that represent a generating family of Y .

Suppose xn ∈ H i(G,Λ), n = 0, 1, 2, . . . , are such that xn ≡ pxn+1 (mod Y ).

We need to prove that x0 ∈ Y . Choosing cocycles fn representing xn we have

fn = pfn+1 +
∑k

m=1 anmgm + dhn with hn an (i − 1)-cochain. We thus get by in-

duction and p-adic limit f0 =
∑k

m=1(
∑

n≥1 p
nanm)gm + d(

∑
n≥1 p

nhn), so x0 ∈ Y .

This proves the lemma. �

Lemma 2.3. Assume G satisfies Fin(p). Then H i(G,Λ) is finitely generated for

all i.

Proof — By the long exact sequence, H i(G,Λ)/pH i(G,Λ) is a sub-module of

H i(G,Λ/pΛ), which is finite by Lemma 2.1. Lifting to H i(G,Λ) all elements of

H i(G,Λ)/pH i(G,Λ) we get a family g1, . . . , gm in H i(G,Λ) which generates a Zp-
submodule Y such that Z := H i(G,Λ)/Y satisfies Z = pZ. Therefore Z = 0, and

H i(G,Λ) = Y is finitely generated. �

Now assume that Λ is free as a Zp-module, and set V = Λ⊗Qp, and let W = V/Λ.

We have a long exact sequence attached to the short exact sequence 0→ Λ→ V →
W → 0:

H i−1(G,V )→ H i−1(G,W )
δ→ H i(G,Λ)→ H i(G,V )→ H i(G,W )

Lemma 2.4. Assume that G satisfies Fin(p). Then ker δ is the maximal divisible

subgroup of H i−1(G,W ) and Im δ is the torsion of H i(G,Λ). Moreover H i−1(G,W )

is torsion.

Proof — The Kernel ker δ is the image of the Qp-vector space H i−1(G,V ) and is

therefore divisible. By Lemma 2.3, each divisible subgroup of H i−1(G,V ) must be

in ker δ. This proves the assertion about ker δ.

Since G is compact and W is discrete, a cochain f : Gi−1 →W takes only a finite

number of values, and since W is torsion, so is H i−1(G,W ). Therefore the image

of δ is torsion. Moreover, the image of δ is the kernel of H i(G,Λ)→ H i(G,V ) and

since H i(G,V ) is torsion free, Im δ contains all torsion in H i(G,Λ). �

Using the Lemma (assuming that G satisfies Fin(p)), we see that the natural

map H i(G,Λ) ⊗ Qp → H i(G,V ) is injective, and that its cokernel is a torsion

group tensor Qp, that is 0. This completes the proof of (a).
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2.1.2. The Kummer morphism. An important way to construct interesting ele-

ments of H1 is the Kummer construction.

Let K be a field, and A be a commutative group scheme over K, such that

the map “multiplication by p”, [p] : A → A is finite and surjective. Let n be

an integer. The kernel of the map [pn] : A → A, that is the multiplication by

pn in A, denoted A[pn] is a finite abelian group scheme over K, and A[pn](K̄)

is a finite abelian group with a continuous action of GK . The multiplication by

p induces surjective homomorphisms A[pn+1] → A[pn] of group schemes over K,

hence surjective morphisms A[pn+1](K̄)→ A[pn](K̄) compatible with the action of

GK .

We set Tp(A) = lim←−A[pn](K̄) and Vp(A) = Tp(A)⊗Zp Qp. The space Vp(A) is a

p-adic representation of GK .

Examples 2.1. If A = Gm, then V = Qp(1). If A is an abelian variety (e.g. an

elliptic curve), then Vp(A) is the usual Tate module of A. It satisfies Vp(A)∗(1) '
Vp(A) (Weil’s pairing).

The Kummer map κ will be a Qp-linear homomorphism A(K)→ H1(G,Vp(A))

for G some suitable quotient of GK through which Vp(A) factors. To construct it,

we shall take the projective limit of “finite-level Kummer maps” κn that we now

describe.

We construct a Kummer map

κn : A(K)/pnA(K)→ H1(GK , A[pn](K̄))

as follows. There is a short exact sequence of abelian groups with action of GK :

0→ A[pn](K̄)→ A(K̄)
[pn]→ A(K̄)→ 0.

Taking the long exact sequence, we get

A(K)
[pn]→ A(K)

δ→ H1(GK , A[pn](K̄))→ H1(GK , A(K̄))(4)

The connecting morphism δ defines an injective morphism κn : A(K)/pnA(K) →
H1(GK , A[pn](K̄)).

Exercise 2.2. When A = Gm, show that κn is surjective.

This quick and easy construction of κn is not very explicit. Let us give a second,

more down-to-earth, construction of that morphism. Let x be in A(K). Since

pn : A(K̄) → A(K̄) is surjective, there exists y ∈ A(K̄) such that pny = x.

Let us choose such a y, and define cy(g) := g(y) − y for all g ∈ GK . We have

pncy(g) = pn(g(y) − y) = g(pny) − pny = g(x) − x = 0, so cy(g) ∈ A[pn](K̄).

It is readily seen that the map g 7→ cy(g) is a 1-cocycle from GK to A[pn](K̄).

This map therefore has a class c̄y in H1(GK , A[pn](K̄)). We claim that this class

does not depend on the choice of y, but depends only on x. For if y0 is another
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element of A(K̄) such that pny0 = x, we have z = y − y0 ∈ A[pn](K̄), and cy(g) =

cy0 + g(z) − z which shows that cy and cy0 only differs by a coboundary, hence

have the same class in H1(GK , A[pn](K̄)). We thus have defined a map x 7→ c̄y,

A(K)→ H1(GK , A[pn](K̄)). This map is a morphism of groups, for if x and x′ are

in A(K) and y and y′ are any elements in A(K̄) such that pny = x and pny′ = x′,

our map sends x − x′ to c̄y−y′ which is the same as c̄y − c̄y′ since cy−y′(g) =

g(y − y′)− (y − y′) = g(y)− y − (g(y′)− y′) = cy(g)− cy′(g). And finally, our map

sends pnA(K) to 0, since for x ∈ pnA(K) one can take y ∈ A(K) and cy = g(y)−y is

already 0 for all g. Therefore, we have a map A(K)/pnA(K)→ H1(GK , A[pn](K̄)).

This map is the same map as the map κn constructed above.

Exercise 2.3. Look up in some text on group cohomology (e.g. Serre, local fields)

an explicit construction of the connecting homomorphism δ to check the last asser-

tion.

We shall now give a third construction of κn, which is actually a more concep-

tual but still very concrete formulation of the second one. It will be fundamental in

certain proofs below. Assume for simplicity that K is perfect. Let again x ∈ A(K).

Instead of choosing a y such that pny = x, we consider the set of all such y, or

more precisely, we consider the fiber Tn,x at x of the map [pn]. This is a finite

subscheme of A; obviously this is not a group scheme, but there is an algebraic

action of the commutative group scheme A[pn] on Tn,x (that is a morphism of K-

schemes A[pn] × Tn,x → Tn,x which on R-points is a group action of the group

A[pn](R) on the set Tn,x(R) for all K-algebras R): the map that sends (z, y) to

z+ y. Over K̄, this action (of A[pn](K̄) on Tn,x(K̄)) is obviously simply transitive,

or in other words, Tn,x is isomorphic (over K̄, as a scheme with A[pn]-action) to

A[pn] itself with its right translation action. This implies (technically since Spec K̄

is an étale cover of SpecK) that Tn,x is what we call a K-torsor under A[pn],

locally trivial for the étale (or Galois) topology. As part of the general principle

that objects that are locally (for some Grothendieck topology) isomorphic to some

trivial object are classified by the H1 (on the same topology) of the automorphism

group sheaf of the corresponding trivial object, such torsors are classified by the

H1
ét(SpecK,A[pn]) = H1(GK , A[pn](K̄)). In particular, our torsor Tn,x defines an

element of H1(GK , A[pn](K̄)) – this is κn(x).

Finally, we construct a map κ form the κn’s. There is a small technical difficulty

due to the fact that GK might not satisfy Fin(p).

Let G be a quotient of GK through which the action on Vp(A) factors, and such

that the image of κn lies in H1(G,A[pn](K̄)) ⊂ H1(GK , A[pn](K̄)). Assume that G

satisfies Fin(p). (If K is a characteristic 0 local field, one can simply take G = GK .

If K is a number field, it will be possible in practice to take G = GK,Σ for a suitable

finite set of places Σ).
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It is clear that the injective maps

κn : A(K)/pnA(K) = A(K)⊗Z Z/pnZ→ H1(GK , A[pn])→ H1(G,A[pn](K̄))

for various n are compatible, so they define a map

lim←−A(K)⊗Z Z/pnZ→ lim←−H
1(G,A[pn](K)).

The LHS is the p-adic completion of A(K), that we shall denote Â(K). There is a

natural map from A(K)⊗ZZp to Â(K) which is an isomorphism if A(K) is finitely

generated. The RHS is by Prop. 2.1 H1(G,Tp(A)). Tensorizing by Qp, we finally

get an injective map

κ : Â(K)⊗Zp Qp → H1(G,Vp(A)).

Exercise 2.4. Let K be a finite extension of Ql (with l a prime number equal or

different from p), G = GK , A = Gm. Show that the above map κ : K̂∗ ⊗Zp Qp →
H1(GK ,Qp(1)) is an isomorphism.

2.1.3. Results in local Galois cohomology. Let K be a finite extension of Ql, and

V be a p-adic representation of GK . From the standard results of Tate for Galois

cohomology with finite coefficients, we deduce using Prop. 2.1

Proposition 2.2.

(Cohomological Dimension) H i(GK , V ) = 0 if i > 2.

(Duality) We have a canonical isomorphism H2(GK ,Qp(1)) = Qp and the pairing

H i(GK , V )×H2−i(GK , V
∗(1))→ H2(GK ,Qp(1)) = Qp given by the cup-product is

a perfect pairing for i = 0, 1, 2

(Euler-Poincaré) dimH0(GK , V ) − dimH1(GK , V ) + dimH2(GK , V ) is 0 if l 6= p

and [K : Qp] dimV if l = p.

Exercise 2.5. Prove those results using Prop. 2.1 and the results in any book of

Galois cohomology.

The importance of this theorem is that in practice one can very easily com-

pute the dimension of any H i(GK , V ). For dimH0(GK , V ) = dimV GK is sim-

ply the multiplicity of the trivial representation Qp as a sub-representation of V ;

dimH2(GK , V ) = dimH0(GK , V
∗(1)) (by duality) is simply the multiplicity of the

cyclotomic character Qp(1) as a quotient of V . And dimH1(GK , V ) can then be

computed using the Euler-Poincaré formula. Actually, the result for dimH1(GK , V )

is easy to remember, and worth remembering : it is 0 or [K : Q] dimV , plus the

number of times Qp appears as a sub-representation and Qp(1) appears as a quo-

tient in V , so most of the time, it is simply 0 or [K : Q] dimV (according to whether

l 6= p or l = p).

Exercise 2.6. (easy) Let V be an absolutely irreducible representation of GQp of

dimension d. What is the dimension of H1(GQp , adV )?
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Exercise 2.7. What is the dimension of H1(GK ,Qp(1)) ? of K̂∗⊗Zp Qp ? (Recall

that Â is the p-adic completion of the abelian group A.) Compare with Exercise 2.4.

2.1.4. The unramified H1. Same notations as in the preceding §.

Definition 2.1. The unramified H1 isH1
ur(GK , V ) = ker(H1(GK , V )→ H1(IK , V ))

Proposition 2.3. (a) We have dimH1
ur(GK , V ) = dimH0(GK , V ).

(b) An element of H1(GK , V ) that corresponds to an extension 0→ V →W →
Qp → 0 is in H1

ur(GK , V ) if and only if the sequence 0 → V IK → W IK →
Qp → 0 is still exact.

(c) Assume l 6= p. Then for the duality betwen H1(GK , V ) and H1(GK , V
∗(1)),

the orthogonal of H1
ur(GK , V ) is H1

ur(GK , V
∗(1)).

Proof — By the inflation-restriction exact sequence, the inflation map

H1(GK/IK , V
IK )→ H1

ur(GK , V )

is an isomorphism. But GK/IK ' Ẑ, and for any p-adic representation W of Ẑ,

we have dimH0(Ẑ,W ) = dimH1(Ẑ,W ) (and dimH i(Ẑ,W ) = 0 if i > 1): this is

well-known is W is finite and the case of p-adic representations W follows using

Prop. 2.1 . Therefore, dimH1
ur(GK , V ) = dimH0(GK/IK , V

IK ) = dimH0(GK , V ).

This proves (a).

For a short exact sequence of representation of IK : 0 → V → W → Qp → 0

we have a long exact sequence 0 → V IK → W IK → Qp
δ→ H1(IK , V ) and by the

construction of the connecting morphism δ, the image of δ is the line generated

by the element of H1(IK , V ) corresponding to that extension. The assertion (b)

follows immediately.

For (c) we note that the image ofH1
ur(GK , V )⊗H1

ur(GK , V
∗(1)) inH2(GK ,Qp(1))

is 0 since it lies (using the fact that inflation maps are isomorphisms as in the

proof of (a)) in H2(GK/IK ,Qp(1)) = 0 (as seen in (a)). Assume l 6= p. We

only have to show that dimH1
ur(GK , V ) + dimH1

ur(GK , V
∗(1)) = dimH1(GK , V ).

But by (a), the LHS is dimH0(GK , V ) + dimH0(GK , V
∗(1)) = dimH0(GK , V ) +

dimH2(GK , V ) using the duality. But this is exactly the dimension of the RHS,

by the Euler-Poincaré characteristic formula since l 6= p. �

Exercise 2.8. (easy) Assume l 6= p. Show that the only irreducible representation

of GK such that H1
ur(GK , V ) 6= H1(GK , V ) is V = Qp(1). Show that in this case

H1
ur(GK , V ) = 0,

As suggested by the above exercise, the case of the representation Qp(1) is quite

special, and we study it in details. Remember (see §2.1.2 and exercise 2.4) that the

Kummer map is an isomorphism κ : K̂∗ ⊗Zp Qp → H1(GK ,Qp(1)).
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Proposition 2.4. Assume p 6= l. The isomorphism κ identifies the subspace

Ô∗K ⊗Zp Qp of K̂∗ ⊗Zp Qp with the subspace H1
ur(GK ,Qp(1)) of H1(GK ,Qp(1))

Proof — Indeed, both subspaces have dimension 0. �

Remark 2.2. This trivial result is the shadow in characteristic 0 of a non-trivial

(and important) result with torsion coefficients, that we know describe. Define

H1
ur(GK , µpn(K̄)) = ker(H1(GK , µpn(K̄))→ H1(IK , µpn(K̄))).

Here µpn = Gm[pn] denotes as usual the group scheme of pn-root of 1). We have

an isomorphism µpn = Z/pnZ(1) of GK-modules. The afore-mentionned result is

that κn maps O∗K ⊗Z Z/pnZ into H1
ur(GK , µpn(K̄)).

For pedagogical reasons, as we shall need later to do a more complicated proof

along the same lines, we make an exception to our rule of limiting ourselves to

characteristic 0 result and we prove this fact.

Let x in O∗K , and y ∈ K̄∗ such that yp
n

= x. The extension K(y)/K is unrami-

fied, since the polynomial Y pn − x has no multiple roots in the residue field k of K

(since its derivative is pnY pn−1 has only the root 0 of k (remember that p 6= l) and

0 is not a root of Y pn − x̄ since x ∈ O∗K). Therefore, for all g ∈ IK , g(y)/y = 1,

and the cocycle κn(x) is trivial on IK .

In the proof above, we have used the second construction of κn given in §2.1.2.

We could also have used the third. The end of the proof would have been: Let

x ∈ O∗K . The µpn-torsor Tn,x over K is the generic fiber of a µpn-torsor Tn,x over

OK (defined by the equation Y pn = x.). This torsor is étale over SpecOK , hence

locally trivial for the étale topology of SpecOK , therefore the class κn(x) of Tn,x in

H1
ét(SpecK,µpn) = H1(GK , µpn) lies in H1

ét(OK , µpn) = H1(GK/IK , µpn). QED.

Exercise 2.9. Assume l 6= p, and let E be an elliptic curve over K. Define

H1
ur(GK , E[pn](K̄)) = ker(H1(GK , E[pn](K̄))→ H1(IK , E[pn](K̄))).

a.– Assuming that E has good reduction, show by mimicking the proof in the

above remark that κn maps E(K)/pnE(K) into H1
ur(GK , E[pn](K̄)).

b.– (difficult) Prove the same result in the case of bad reduction.

Exercise 2.10. Assume l 6= p. Let E be an elliptic curve over K, and Vp(E) be

its Tate module. Show that H1(GK , Vp(E)) = 0. (Here is one possible method:

show first that H1
ur(GK , Vp(E)) = 0 using (a) of Prop. 2.3. Then use (c) of that

proposition to conclude, using that Vp(E) ' Vp(E)∗(1).)
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2.1.5. Results in Global Galois cohomology, and Selmer groups. Let K be a number

field and p be a prime number. In what follows, Σ will always denote a finite set

of primes of K containing all primes above p and ∞. For v a place of K, we recall

that we denote by Gv the absolute Galois group of the completion Kv of K at v.

Let V be a p-adic representation of GK,Σ, that is a representation of GK that is

unramified at all prime not in Σ.

For global Galois cohomology we still have a simple Euler-Poincaré formula:

Proposition 2.5.

dimH0(GK,Σ, V )− dimH1(GK,Σ, V ) + dimH2(GK,Σ, V ) =∑
v|∞

H0(Gv, V )− [K : Q] dimV.

Exercise 2.11. (easy) Let V be an irreducible representation of dimension 2 of

GQ,Σ. Show that dimH1(GQ,Σ, adV ) is at least 3 if V is odd (that is, the complex

conjugation acts with trace 0 on V ), and at least 1 if V is even.

We also have an analog of local duality, but instead of one clear theorem it

is a web of inter-related results known as Poitou-Tate (e.g. Poitou-Tate duality,

the nine-term Poitou-Tate exact sequence, etc.). Those results do not relate the

dimension of H1(GK,Σ, V ) with the dimension of H1(GK,Σ, V
∗(1)) but rather with

the dimension of a space of more general type (a Selmer group), which is the

subspace of H1(GK,Σ, V ) of elements whose local restrictions at places v ∈ Σ are

0. Moreover, those results do not give us any easy way to compute H2(GK,Σ, V )

as in the local case – and indeed, even determining the dimension of H2(GK,Σ,Qp)

is still an open problem for most number fields K (see §5 below). The bottom line

is that in general the Euler-Poincaré formula gives us a lower bound for H1 but

that in general we do not know if this lower bound is an equality. In exercise 2.11

for example, if V is geometric, it is conjectured that the lower bounds 3 and 1 are

equality, but this is not known in general.

We shall not expose here all the results belonging to the Poitou-Tate world. We

refer the reader to the literature for that (see e.g. [Mi] or [CNF].) We shall content

ourselves with two results. The first one is easily stated.

Proposition 2.6. Let i = 0, 1, 2. In the duality between
∏
v∈ΣH

i(Gv, V ) and∏
v∈ΣH

i(Gv, V
∗(1)), the images of H1(GK,Σ, V ) and the image of H1(GK,Σ, V

∗(1))

are orthogonal of each other.

To explain the second one, we need to introduce the general notion of Selmer

groups.

Definition 2.2. Let V be a p-adic representation of GK unramified almost every-

where. A Selmer structure L = (Lv) for V is the data of a family of subspaces Lv of

H1(Gv, V ) for all finite places v of K such that for almost all v, Lv = H1
ur(Gv, V ).
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Definition 2.3. The Selmer group attached to L is the subspace H1
L(GK , V ) of

elements x ∈ H1(GK , V ) such that for all finite places v, the restriction xv if x to

H1(Gv, V ) is in Lv. In other words,

H1
L(GK , V ) = ker

H1(GK , V )→
∏

v finite place of K

H1(Gv, V )/Lv.


Exercise 2.12. If L is a Selmer structure, there is a finite set Σ of primes of

K containing the places above p, and such that for all finite place v 6∈ Σ, Lv =

H1
ur(Gv, V ). Show that H1

L(GK , V ) = ker
(
H1(GK,Σ, V )→

∏
v∈ΣH

1(Gv, V )/Lv
)
.

In particular, H1
L(GK , V ) is finite dimensional.

When v is finite, the most obvious choices for a component Lv of a Selmer

structure are (0), H1(Gv, V ) and of course H1
ur(Gv, V ). When v is prime to p,

those are the only Lv than one meets in practice. For v dividing p, Bloch and

Kato have introduced other very important Lv: see next §. When v is infinite,

H1(Gv, V ) = 0 so the only possibility is Lv = 0.

Definition 2.4. If L is a Selmer structure for V , we define a Selmer structure L⊥

for V ∗(1) by taking for L⊥v the orthogonal of Lv in H1(Gv, V
∗(1)).

Exercise 2.13. (easy) Why is L⊥ a Selmer structure?

We can now state the second duality result:

Proposition 2.7.

dimH1
L(GK , V ) = dimH1

L⊥(GK , V
∗(1))

+ dimH0(GK , V )− dimH0(GK , V
∗(1))

+
∑

v place of K (finite or not)

dimLv − dimH0(Gv, V )

This formula, or rather its analog for finite coefficients, a consequence of the

Poitou-Tate machinery, appeared first (for finite coefficients) in the work of Green-

berg, and gained immediate notoriety when it was used in Wiles’ work on the

Taniyama-Shimura-Weil conjecture.

Exercise 2.14. Applying the Prop. 2.7 for V ∗(1) instead of V , we get another

formula. Show that it is equivalent to the first one.

Exercise 2.15. Using Prop. 2.7, find a lower bound for the dimension ofH1(GK,Σ, V ).

Compare it with the lower bound you can get using the Euler-Poincaré character-

istic formula.

2.2. The local Bloch-Kato Selmer groups at places dividing p. In all this §,
K is a finite extension of Qp.
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2.2.1. The local Bloch and Kato’s H1
f . If V a p-adic representation of GK , we

are looking for a subspace L of H1(GK , V ) which is the analog of the subspace

H1
ur(GK′ , V ) of H1(GK′ , V ) where K ′ is a finite extension of Ql and V a p-adic

representation, p 6= l.

The naive answer (L = H1
ur(GK , V )) is not satisfying. For one thing, we know

that the p-adic analog of the l-adic notion of being unramified is not unramified but

crystalline. Moreover, the subspace H1
ur(GK , V ) is not the orthogonal of the sub-

space H1
ur(GK , V

∗(1)) when the residual characteristic of K is p: their dimensions

do not add up to dimH1(GK , V ) = dimH1(GK , V
∗(1)) but is smaller (by (a) of

Prop. 2.3 and the local Euler-Poincaré characteristic formula).

The right answer has been found by Bloch and Kato ([BK])

Definition 2.5. We set H1
f (GK , V ) = ker(H1(GK , V )→ H1(GK , V ⊗Qp Bcrys)).

We have a very concrete alternative description of the H1
f .

Lemma 2.5. An element of H1(GK , V ) that corresponds to an extension 0 →
V → W → Qp → 0 is in H1

f (GK , V ) if and only if the sequence 0 → Dcrys(V ) →
Dcrys(W ) → Dcrys(Qp) → 0 is still exact. In particular, if V is crystalline, then

the extension W is in H1
f (GK , V ) if and only if it is crystalline.

Proof — The proof is exactly the same as the one of (b) of Prop. 2.3. �

When V is de Rham (which is the only case of interest), it is easy to compute

the dimension of the (local) H1
f .

Proposition 2.8. Assume that V is de Rham. Let D+
dR(V ) = (V ⊗ B+

dR)GK ⊂
DdR(V ) = (V ⊗BdR)GK . Then we have

dimQp H
1
f (GK , V ) = dimQp(DdR(V )/D+

dR(V )) + dimQp H
0(GK , V ).

Note that DdR(V )/D+
dR(V ) is a K-vector space. We insist that the formula

involves its dimension over Qp, that is [K : Qp] times its dimension over K.

Proof — We use the exact sequence (see [Co])

0→ Qp
α→ Bcrys ⊕B+

dR

β→ Bcrys ⊕BdR → 0

with α(x) = (x, x) and β(y, z) = (y−φ(y), y−z) where φ is the Frobenius on Bcrys.

Tensorizing it by V and taking the long exact sequence, we get

0→ H0(GK , V )
α→ Dcrys(V )⊕D+

dR(V )
β→ Dcrys(V )⊕DdR(V )

→ H1(GK , V )
α1→ H1(GK , V ⊗Bcrys)⊕H1(GK , V ⊗B+

dR)

β1→ H1(GK , V ⊗Bcrys)⊕H1(GK , V ⊗BdR),

(5)

with α1(x) = (xc, xd) where xc (resp. xd) is the image of x by the mapH1(GK , V )→
H1(GK , V ⊗ Bcrys) (resp. H1(GK , V ) → H1(GK , V ⊗ B+

dR)), and β1(y, z) =
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(y − φ(y), y′ − z′′) where y′ is the image of y by the map induced by the inclu-

sion Bcrys ⊂ BdR and z′′ is the image of z by the map induced by the inclusion

B+
dR ⊂ BdR.

We claim that kerα1 = ker(H1(GK , V )
x7→xc→ H1(GK , V ⊗Bcrys)). The inclusion

⊂ is clear, so let us prove the other, and consider an x ∈ H1(GK , V ) such that

xc = 0. Since (xc, xd) ∈ Imα1 = kerβ1, we have (xc)
′ − (xd)

′′ = 0 so (xd)
′′ = 0,

but the map z 7→ z′′ is injective by the Lemma below, so we have xd = 0, so

α1(x) = (0, 0) which proves the claim.

Now we observe that the claim exactly says that kerα1 = H1
f (GK , V ). The exact

sequence (5) thus becomes

0→ H0(GK , V )
α→ Dcrys(V )⊕D+

dR(V )

β→ Dcrys(V )⊕DdR(V )→ H1
f (GK , V )→ 0.

(6)

Since the alternate sum of the dimension of the spaces in an exact sequence is 0,

we get the result. �

Lemma 2.6. The natural map z 7→ z′′, H1(GK , V ⊗ B+
dR) → H1(V ⊗ BdR) is

injective.

Proof — By the long exact sequence attached to the short exact sequence 0 →
B+

dR → BdR → BdR/B
+
dR → 0 tensor V , we only have to prove that the sequence

0→ D+
dR(V )→ DdR(V )→ (V ⊗BdR/B

+
dR)GK → 0,

which is exact at D+
dR(V ) and DdR(V ), is exact. It suffices to show that

dimK DdR(V ) ≥ dimK D
+
dR(V ) + dimK(V ⊗BdR/B

+
dR)GK .

But using that tiBdR/t
i+1BdR ' Cp(i), we get that dimK D

+
dR(V ) ≤

∑
i≥0 dim(V ⊗

Cp(i)), and dimK(V ⊗ BdR/B
+
dR)GK ≤

∑
i<0 dim(V ⊗ Cp(i)), so dimK D

+
dR(V ) +

dimK(V ⊗ BdR/B
+
dR)GK ≤

∑
i∈Z dim(V ⊗ Cp(i))GK which is known by a result of

Tate to be less that dimV = dimK DdR(V ). �

Exercise 2.16. With the same kind of ideas as in the Lemma, one can prove that

for any de Rham representation V , dimK D
+
dR(V ) + dimK D

+
dR(V ∗(1)) = dimQp V .

Do it.

As for the local cohomology group, the formula for the dimension of the H1
f is

simple and worth remembering. If H0(GK , V ) = 0, then dimH1
f (GK , V ) is [K : Qp]

times the number of negative Hodge-Tate weights of V .

Exercise 2.17. (easy) Show that if V is de Rham with all its Hodge-Tate weights

positive, then H1
f (GK , V ) is 0. Show that V is de Rham with all its Hodge-Tate

weights ≤ −2, then H1
f (GK , V ) = H1(GK , V ).
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Exercise 2.18. ComputeH1
f (GK ,Qp(n)) for all n. In particular, show thatH1

f (GK ,Qp)

is a line in H1(GK ,Qp) = Homcont(K
∗,Qp) which has dimension [K : Q] + 1. Show

that this line is generated by the map x 7→ vp(x), where vp is the p-adic valuation

on K.

Exercise 2.19. Show that H1
ur(GK , V ) ⊂ H1

f (GK , V ). When do we have equality?

The first strong indication that H1
f (GK , V ) is a good analog in the p-adic case

of H1
ur(GK , V ) in the l-adic case is the following theorem of Bloch and Kato.

Theorem 2.1. Assume that V is de Rham. Then for the duality between H1(GK , V )

and H1(GK , V
∗(1)), the orthogonal of H1

f (GK , V ) is H1
f (GK , V

∗(1)).

Proof — We first notice that by Prop. 2.8, the dimension of H1
f (GK , V ) and

H1
f (GK , V

∗(1)) add up to

dimH0(GK , V ) + dimH0(GK , V
∗(1))

+ dimDdR(V )/D+
dR(V ) + dimDdR(V ∗(1))/DdR(V ∗(1)),

that is using exercise 2.16 to

dimH0(GK , V ) + dimH0(GK , V
∗(1)) + [K : Qp] dimV,

which is dimH1(GK , V ) by the Euler characteristic formula.

Therefore, we only have to prove that the restriction of the cup product

H1(GK , V )⊗H1(GK , V
∗(1))→ H2(GK ,Qp(1)) = Qp

to H1
f (GK , V ) ⊗H1

f (GK , V
∗(1) is 0. Let x be an element in H1

f (GK , V
∗), and let

us denote by ∪x the cup-products by x (from H i(GK ,W ) to H i+1(GK ,W ⊗V ∗(1))

where i is any integer and W any space with a continuous GK-action.) The crucial

fact we shall use (a well-known fact of group cohomology) is the compatibility of

∪x with the connecting homomorphisms in a long exact sequence of cohomology

attached to a short exact sequence. This fact is used to guarantee the commutativity

of the diagram below:

Dcrys(V )⊕DdR(V ) = H0(GK , V ⊗Bcrys ⊕ V ⊗BdR) //

∪x
��

H1(GK , V )

∪x
��

H1(GK , V ⊗ V ∗(1)⊗Bcrys ⊕ V ⊗ V ∗(1)⊗BdR) // H2(GK , V ⊗ V ∗(1))

where the first line is a part of the long exact sequence (5) and the second line is

another part of the same exact sequence but with V replaced by V ⊗ V ∗(1). The

first vertical map ∪x obviously depends only on the image of x in H1(GK , V
∗(1)⊗

Bcrys), so it is 0 when x ∈ H1
f (GK , V

∗(1)). Therefore, the second vertical map

∪x is 0 on the image of the first horizontal map when x ∈ H1
f (GK , V

∗(1)). But

by (6), this image is precisely H1
f (GK , V ). This proves that the cup-product is 0

on H1
f (GK , V )⊗H1

f (GK , V
∗(1)), hence the theorem. �
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Another indication of the analogy between H1
f (when l = p) and H1

ur (when

l 6= p) is the following:

Proposition 2.9. The Kummer map κ : K̂∗ ⊗Zp Qp → H1(GK ,Qp(1)) identifies

O∗K ⊗Zp Qp with H1
f (GK ,Qp(1))

Proof — Recall that Â is the p-adic completion of A. Since O∗K is already p-

adically complete, Ô∗K = O∗K is a subgroup of K̂∗.

By Prop. 2.8, dimH1
f (GK ,Qp(1)) = [K : Qp]. Since the logarithm defines an

isomorphism between an open (therefore finite index) subgroup of (O∗K ,×) and an

open subgroup of (OK ,+), and since such a subgroup is isomorphic to Z[K:Qp]
p , we

also have dimO∗K ⊗Qp = [K : Q]. Since κ is injective, we only have to prove that

κ(O∗K) ⊂ H1
f (GK ,Qp(1)). To do so, we use the third construction of κ (see §2.1.2):

for x ∈ O∗K , we call Tn,x the K-subscheme of Gm defined by the equation Y pn−x =

0, which is a torsor over µpn . The torsor Tn,x has a natural model Tn,x over OK ,

defined over the same equation, which is not finite étale, but at least finite and

faithfully flat over OK , and is a torsor over the finite faithfully flat group scheme

(µpn)OK
over OK .

The torsor Tn,x defines an extension in the category of finite faithfully flat group

schemes killed by pn over OK ,

0→ (µpn)OK
→ En,x → (Z/pnZ)OK

→ 0

where (Z/pnZ)OK
is the constant group scheme Z/pnZ : the extension En,x is the

one defined by the class of Tn,x in H1
fppf(SpecOK , (µpn)OK

) = Ext1
fppf(Z/pnZ, µpn).

Taking the generic fiber, we also get an extension En,x of Z/pnZ by µpn in the

category of finite group schemes killed by pn over K, whose class is the class of Tn,x

in H1
fppf(SpecK,µn) = H1

ét(SpecK,µn) = H1(GK , µn(K̄)), that is, by definition,

the class κn(x).

Now we let n vary. Of course the constructions are compatible for various n, and

therefore the system (En,x) defines a p-divisible group Ex over K, whose attached

Tate module is, by construction, the extensionW of Qp by Qp(1) defined by the class

κ(x). But this p-divisible group has good reduction over OK , since the p-divisible

group Ex attached to the inductive system (Ex,n) is a model of it. Therefore, by the

theorem of Fontaine explained in one of Conrad’s talk (see [Co]), the Tate module

W of E is crystalline. This proves that κ(x) ∈ H1
f (GK ,Qp(1)) by Lemma 2.5. �

In the same spirit, we have the important:

Proposition 2.10. Let E be an elliptic curve over K. The Kummer isomorphism

κ for E is an isomorphism E(K)⊗Zp Qp
∼→ H1

f (GK , Vp(E)).

Proof — For simplicity, we treat only the case where E has good reduction over

OK . For the general case, see [BK, Example 3.10.1].
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We begin by counting dimensions. The logarithm defines an isomorphism be-

tween an open finite-index subgroup of E(K) and an open subgroup of the Lie

algebra of E/K, which is K, so E(K) is p-adically complete (which shows in pass-

ing that the Kummer map κ as indeed for source E(K) ⊗Zp Qp) and we have

dimE(K) ⊗Zp Qp = [K : Qp]. On the other hand dimH1
f (GK , Vp(E)) = [K : Qp]

by Prop. 2.8. Since κ is injective, we only have to prove that for x ∈ E(K),

κ(x) ∈ H1
f (GK ,Qp(E)). For this we consider as in the third construction of the

Kummer homomorphism (see §2.1.2) the torsor Tn,x (fiber of [pn] : E → E at x over

the finite group scheme E[pn], over K) and observe that this torsor has a finite,

faithfully flat model Tn,x over OK : consider an elliptic scheme E (e.g. the Néron

model of E, or more simply the model defined by a minimal Weierstrass equation)

over OK whose generic fiber is E, and define Tn,x again as the fiber at x of the

faithfully flat morphism [pn] : E → E . The end of the proof is exactly the same as

in the above proposition. �

2.2.2. The variants H1
g and H1

e . We keep the same notations as above. Bloch and

Kato define two variants of H1
f (GK , V ), one slightly smaller H1

e (GK , V ) and one

slightly bigger H1(GK , V ). They are relatively useful, though not as much as the

H1
f .

They are defined as

H1
g (GK , V ) = ker(H1(GK , V )→ H1(GK , V ⊗BdR))

H1
e (GK , V ) = ker(H1(GK , V )→ H1(GK , V ⊗Bφ=1

crys ))

Since Bφ=1
crys ⊂ Bcrys ⊂ BdR, we have

H1
e (GK , V ) ⊂ H1

f (GK , V ) ⊂ H1
g (GK , V ).

Again we have a very concrete alternative description of the H1
g and H1

e

Lemma 2.7. An element of H1(GK , V ) that corresponds to an extension 0 →
V → W → Qp → 0 is in H1

g (GK , V ) (resp. in H1
e (GK , V )) if and only if the

sequence 0 → DdR(V ) → DdR(W ) → DdR(Qp) → 0 (resp. 0 → Dcrys(V )φ=1 →
Dcrys(W )φ=1 → Dcrys(Qp)→ 0) is still exact. In particular, if V is de Rham, then

the extension W is in H1
g if and only if it is de Rham

Proof — The proof is exactly the same as the one of (b) of Prop. 2.3. �

Exercise 2.20. a.– Using Fontaine’s fundamental exact sequence (see [Co])

0→ Qp → Bφ=1
crys → BdR/B

+
dR → 0,

show that there exists a natural surjective map

DdR(V )/D+
dR(V )→ H1

e (GK , V )
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whose kernel is Dcrys(V )φ=1/V GK . This map is called the Bloch-Kato exponential

(because, in the case where V = Vp(A) for an abelian variety A over K, it can

be identified with the (the tensorization with Qp of) the exponential map from an

open subgroup of the Lie algebra of A to A(K). )

b.– Deduce that if V is de Rham,

dimH1
e (GK , V ) = dimDdR(V )/D+

dR(V ) + dimH0(GK , V )− dimDcrys(V )φ=1.

The “g” in H1
g stands for geometric since geometric representations are de Rham.

The “e” in H1
e stands for “exponential”. This explains the “f” in the H1

f , as f

is just between e and g in the alphabetic order. (Others believe that f stands for

”fine”.)

Proposition 2.11. Assume that V is de Rham. For the pairing between H1(GK , V )

and H1(GK , V
∗(1)), the orthogonal of H1

e (GK , V ) is H1
g (GK , V

∗(1)) and the orthog-

onal of H1
g (GK , V ) is H1

e (GK , V
∗(1)).

Of course, it is sufficient to prove one of those assertions. For the proof of this

result, that we shall not use, see [BK, page 357].

Exercise 2.21. Show that if V is de Rham, then dimH1
g (GK , V ) = dimDdR(V )/D+

dR(V )+

dimH0(GK , V ) + dimDcrys(V
∗(1))φ=1.

Exercise 2.22. Check that dimH1
e (GK ,Qp), dimH1

f (GK ,Qp), dimH1
g (GK ,Qp),

dimH1(GK ,Qp) are respectively 0, 1, 1, 1 + [K : Qp].

Exercise 2.23. Compute dimH1
e (GK ,Qp(n)), dimH1

f (GK ,Qp(n)), dimH1
g (GK ,Qp(n)),

dimH1(GK ,Qp(n)) for all integers n. The answers depends on n only through the

conditions n < 0, n = 0, n = 1, n > 1, so you can put them in a 4 × 4-table that

you can write in the space below. You can check your answer on [BK, Example

3.9].

Exercise 2.24. (difficult) Let E be an elliptic curve over K. Show that

H1
e (GK , Vp(E)) = H1

f (GK , Vp(E)) = H1
g (GK , Vp(E)).

Exercise 2.25. (difficult) Suppose that V is de Rham. Let x ∈ H1
f (GK , V ),

corresponding to an extension W of Qp by V . Let ϕ = φq where q is the degree of

the residue field of K over Fp, so that ϕ is a linear (not semi-linear) operator on

Dcrys(W ). Show that x ∈ H1
e (GK , V ) if and only if φ acts like the identity on its

generalized eigenspace φ of eigenvalue 1 in Dcrys(W ) (the generalized eigenspace is

the set of v ∈ Dcrys(W ) such that (φ − 1)nv = 0 for some natural number n, and

the assertion is that we can take n = 1 for each such v).
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2.2.3. Analogies. For K a finite extension of Ql, and V a p-adic representation, we

have three natural subspaces of H1(GK , V ) if l 6= p, and five if l = p.

case l 6= p (0) ⊂ H1
ur(GK , V ) ⊂ H1(GK , V )

case l = p (0) ⊂ H1
e (GK , V ) ⊂ H1

f (GK , V ) ⊂ H1
g (GK , V ) ⊂ H1(GK , V )

The correct analogies between the subspaces in the case l 6= p and l = p are

given by the vertical alignment in the above table. That is, the correct analog of

the full H1(GK , V ) (resp. of H1
ur(GK , V ), resp. of (0)) in the case l 6= p is, in the

case l = p, the subspace H1
g (GK , V ) (resp. H1

f (GK , V ), resp. H1
e (GK , V )).

Of course, this is only an analogy, so it cannot be proved and one is allowed

to disagree. But we have already strongly substantiated the analogy H1
ur / H

1
f .

Let us motivate the analogies (0) / H1
e and H1 / H1

g . Of course, if we want our

analogies to respect orthogonality, we only have to motivate one of them, say the

analogy H1 / H1
g . Now look at the formula for dimH1(GK , V )− dimH1

ur(GK , V )

if l 6= p, and compare it to the formula dimH1
g (GK , V ) − dimH1

f (GK , V ) if l = p

(from Prop. 2.8 and Exercise 2.21). They look rather similar, don’t they? While if

you consider dimH1(GK , V )− dimH1
f (GK , V ) the formula is more complicated.

Another argument is as follows: if V is de Rham (in the case l = p), an element of

x ∈ H1(GK , V ) represents an extension W of Qp by V , and x ∈ H1
g means that W

is de Rham (see Lemma 2.7), that is, by Berger’s monodromy theorem, potentially

semi-stable (in the p-adic sense). But if l 6= p, any representation W is potentially

semi-stable by Grothendieck’s monodromy theorem. So the analog of H1
g is the full

H1.

This motivates the following notations.

Notation 2.1. If K is a finite extension of Ql and V a p-adic representation of GK ,

and l 6= p, we set H1
e (GK , V ) = 0, H1

f (GK , V ) = H1
ur(GK , V ), and H1

g (GK , V ) =

H1(GK , V ).

Exercise 2.26. Let K is a finite extension of Ql and V a p-adic representation of

GK , with l 6= p. Show that the analog of Exercise 2.25 holds, that is: if W is an

extension of Qp by V corresponding to an x ∈ H1
f (V ), then x ∈ H1

e (GK , V ) (that

is x = 0 by definition) if and only if Frob acts like the identity on its generalized

eigenspace of eigenvalue 1.

2.3. Global Bloch-Kato Selmer group. In all this §, K is a number field, and

V is a geometric p-adic representation of GK .

2.3.1. Definitions.

Definitions 2.6. The global Bloch-Kato Selmer group H1
f (GK , V ) is the subspace

of elements x of H1(GK , V ) such that for all finites place v of K, the restriction xv

of x belongs to H1
f (GK , v).
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More generally, if S is any finite set of finite places of K, we define H1
f,S(GK , V )

as the subspace of elements x of H1(GK , V ) such that for all finites place v of K,

the restriction xv of x belongs to H1
f (Gv, V ) if v 6∈ S, and to H1

g (GK , V ) if v ∈ S.

Finally, we call H1
g (GK , V ) the union of all H1

f,S(GK , V ) when S runs among

finite sets of primes of K. In other words, H1
g (GK , V ) is the subspace of elements x

of H1(GK , V ) such that for all finite places v of K, the restriction xv of x belongs

to H1
g (Gv, V ), and such that xv belongs to H1

f (Gv, V ) for all but a finite number

of v.

Recall that by definition (see §2.2.3)H1
f (Gv, V ) meansH1

ur(Gv, V ) andH1
g (Gv, V )

means H1(Gv, V ) when v does not divides p. Of course, H1
f,∅ = H1

f , and H1
f,S ⊂

H1
f,S′ if S ⊂ S′.
The Bloch-Kato Selmer group H1

f (GK , V ) is an instance of a Selmer group in

the sense of Definition 2.2: it is the Selmer groups H1
Lf (GK , V ) attached to the

Selmer structure Lf = (Lv) where Lv = H1
f (Gv, V ) for all v. So is H1

f,S(GK , V ) =

H1
Lf,S (GK , V ) where Lf,S is the Selmer structure (Lv) with Lv = H1

f (Gv, V ) for

v 6∈ S and Lv = H1
g (Gv, V ) if v ∈ S. In particular, they are finite-dimensional over

Qp.

A remarkable feature about the Selmer structure Lf is that it is self-dual: The

structure L⊥f of V ∗(1) is the same as its own structure Lf , as it follows from

Prop. 2.3(c) and Theorem 2.1. The duality formula for Selmer groups therefore

takes a very nice form for Bloch-Kato Selmer groups:

Theorem 2.2.

dimH1
f (GK , V ) = dimH1

f (GK , V
∗(1))

+ dimH0(GK , V )− dimH0(GK , V
∗(1))

+
∑
v|p

dimDdR(V|Gv
)/D+

dR(V|Gv
)

−
∑
v|∞

dimH0(Gv, V )

Proof — This results from Proposition 2.7, taking into account that

- for v a finite place not dividing p, dimH1
f (Gv, V )− dimH0(Gv, V ) = 0 by

Prop. 2.3(a).

- For v a finite place dividing p,

dimH1
f (Gv, V )− dimH0(Gv, V ) = dimDdR(V|Gv

)/D+
dR(V|Gv

)

by Prop. 2.8

�
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Remark 2.3. The term on the third line of the above formula,∑
v|p

dimDdR(V|Gv
)/D+

dR(V|Gv
)

is equal to
∑

k<0mk(V ), where the mk(V )’s are the total multiplicity of the Hodge-

Tate weight k in V defined in §1.2.3. This is clear from their definition since

dim(DdR(V|Gv
)/D+

dR(V|Gv
)) is equal to [Kv : Qp] times the number of negative

Hodge-Tate weights of V|Gv
, counted with multiplicity.

Similarly, the term on the fourth line
∑

v|∞ dimH0(Gv, V ) is by definition the

term we have denoted by a+(V ) in §1.2.3.

Therefore, the theorem says that

dimH1
f (GK , V ) = dimH1

f (GK , V
∗(1))

+ dimH0(GK , V )− dimH0(GK , V
∗(1))

+
∑
k<0

mk(V )

− a+(V )

Exercise 2.27. What does this theorem say when V = V ∗(1)?

Exercise 2.28. a.– Show that H1
f (GK ,Qp) = 0. (Hint: use the finiteness of the

class group of K as well as Exercise 2.18.)

b.– Deduce from a.– that dimH1
f (GK ,Qp(1)) = r1 + r2 − 1 where r1 and r2 are

the number of real and complex places of K.

To explain the arithmetic significance of the Bloch-Kato selmer groups, we look

at two important examples: V = Qp(1), and V = Vp(E) for E an elliptic curve.

2.3.2. The case V = Qp(1).

Proposition 2.12. The Kummer map κ realizes an isomorphism

O∗K ⊗Z Qp → H1
f (GK ,Qp(1)).

Proof — Note that properly speaking, the Kummer map κ has not been defined in

this context of number fields, as GK does not satisfy the finiteness property Fin(p),

and as K∗ is not of finite type. This is of course a minor technical problem that

we shall circumvent in the next paragraph.

What we have defined is a compatible family of maps κn : K∗ ⊗ Z/pnZ →
H1(GK ,Z/pnZ(1)) that are isomorphisms (see Exercise 2.2). Let Σ be any finite

set of finite places containing the places above p. Let O∗K,Σ be the group of units

of K outside Σ. If x ∈ O∗K,Σ ⊂ K∗, then by the proof of Prop. 2.4, κn(x) is in

H1(GK,Σ,Z/pnZ(1)) so since GK,Σ satisfies Fin(p) and O∗K,Σ is of finite type, we can

define by taking the projective limit of the κn’s an isomorphism κ : O∗K,Σ⊗Z Qp →
H1(GK,Σ,Qp(1)). Of course, by construction, this κ is compatible with the local

Kummer maps κ : K̂∗v ⊗Zp Qp → H1(GKv ,Qp(1)) for v a place of K in Σ.
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Now by Proposition 2.4 and Proposition 2.9, we see that for x ∈ O∗K,Σ ⊗Z Qp,

κ(x) ∈ H1
f (GK ,Qp(1)) if and only if x ∈ O∗K . Therefore κ induces an isomorphism

O∗K ⊗Qp → H1
f (GK ,Qp(1)). �

The proof easily shows that H1
f,S(GK ,Qp(1)) ' O∗K,S ⊗ Qp, where O∗K,S is the

group of S-unit sof K.

This result, relating the Bloch-Kato Selmer group of Qp(1) with is a classical

object of interest in arithmetic (at least since the appearance of the Pell-Fermat

equation x2−Dy2 = ±1) is a first indication of the number-theoretical significance

of the Bloch-Kato Selmer group. The proof makes clear how the condition f of

Bloch-Kato makes it related to the interesting group O∗K (whose rank is the object

of one of the most beautiful theorem of the nineteenth century, Dirichlet’s units

theorem), rather than to the much less mysterious K∗ (which is a free abelian

group of infinite rank times a finite cyclic group). Note that, using exercise 2.28,

this result implies that rkO∗K = r1 + r2 − 1, which is the hard part of Dirichlet

units theorem.

2.3.3. The case V = Vp(E) for E an elliptic curve. Now let E be an elliptic curve

over K. Let us recall (see [Silverman] for details) that the classical p-adic Selmer

group Selp(E) of E is defined as the subspace of H1(GK , Vp(E)) whose elements

are the x whose restriction xv at every finite place v belong to the image of E(Kv)

in H1(Gv, Vp(E)) by the local Kummer map κv. It is known (e.g. [Silverman])

that the Kummer map induces an injection κ : E(K) ⊗Z Qp ↪→ Selp(E) which is

an isomorphism if and only if the p-primary component Cha(E)[p∞] of the Tate-

Shafarevich group Cha(E) of E is finite, which is conjectured to be true (as a part

of Birch and Swinnerton-Dyer conjecture).

Proposition 2.13. As subspaces of H1(GK , Vp(E)), we have

Selp(E) = H1
f (GK , Vp(E)).

In particular, the Kummer map induces an injection E(K)⊗ZQp → H1
f (GK , Vp(E))

which is an isomorphism if and only if Cha(E)[p∞] is finite.

Proof — This is clear, since if v|p, for an element of H1(Gv, Vp(E)) it is equivalent

by Proposition 2.10 to be in the image of E(Kv) or to be in the H1
f (Gv, Vp(E));

and since v 6 |p, we have H1
f (Gv, Vp(E)) = H1(Gv, Vp(E)) = 0 by Exercise 2.10. �

This again shows that the H1
f is closely related to one of the most interesting

abelian group of algebraic number theory, the Mordell-Weil group E(K). Similar

results hold for abelian varieties.
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2.3.4. Motivic interpretation and the other Bloch-Kato conjecture. Assume that V

is the p-adic realization of a motive M ∈MK . Let 0 6= x ∈ H1
g (GK , V ), and let W

be the extension of Qp by V defined by x. We note that the p-adic representation is

de Rham at places v dividing p (since V is, and xv is in H1
g (Gv, V ) – see Lemma 2.7),

and unramified at almost all places (since V is, and xv ∈ H1
f (Gv, V ) = H1

ur(Gv, V )

for almost all v). Should the p-adic representation W be the realization of some

motive N? If by motive we understand, as we have done so far pure (iso-) motives,

the answer is no, because such a realization should be semi-simple, and W is not.

However, according to Grothendieck, there should exist a Q-linear abelian cate-

goryMMK of mixed motives over K, containing the categoryMK of pure motives

as a full subcategory, with realization functors Realp toward the category of p-adic

representations of GK (for all prime p), extending those from MK . The category

MMK should be to MK what the category VK of all varieties over K (not neces-

sarily proper and smooth) is to its subcategory VPSK . In particular, there should

exist a contravariant functor H i : VK →MMK such that Realp ◦H i = H i(−,Qp),

where H i(X,Qp) denotes for a general variety X over K the p-adic representation

H i
ét(X ×K K̄,Qp) of GK .

The most notable difference between MMK and MK is that MMK should

not be semi-simple (nor graded in any interesting way). If N ∈ MMK , the GK-

representation Realp(N) should be unramified almost everywhere, and de Rham at

places dividing p, but not semi-simple in general, nor pure of some weight (rather,

it should have an increasing filtration FilwRealp(N) whose graded piece are pure

geometric representation of weight w): those requirement are inspired by the known

properties of the étale cohomology of general varieties over K.

Going back to our extensionW of 1 by V = Realp(M) representing x ∈ H1
g (GK , V ),

it is expected that W should be Realp(N) for some mixed motive N ∈ MK . Ac-

tually it is even expected that the functor Realp induces an isomorphism between

Ext1
MMK

(Q,M) ' H1
g (GK , V )(7)

where Q is the object of MK such that Realp(Q) = Qp. This is the motivic

interpretation of H1
g . We should have similar interpretation for H1

f,S(GK , V ) by

considering mixed motives over SpecOK − S instead of SpecK.

Thus, the Bloch-Kato conjecture is in a sense a prediction, in terms of L-

functions, of the dimension of the Ext1-spaces in the category of mixed motives

MK . It is also conjectured that this category has cohomological dimension 1, that

is trivial Exti for i ≥ 2.

Of course, the category of mixed motives MMK has not yet been constructed.

Nevertheless, when M = H i(X) for some X ∈ VPSK it is possible to give a non-

conjectural meaning to (what should be) Ext1
MMK

(Q,M) using the K-theory of X

(see [BK, page 359].) Bloch and Kato have conjectured ([BK, Conjecture 5.3]) that
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when Ext1
MMK

(Q,M) is defined that way, (7) holds. Many cases other Bloch-

Kato conjecture have been proved (by Voedvodsky and other authors), and a proof

of the general case has been recently announced (by Voedvodsky)

2.3.5. Relations between H1
f , H1

f,S and H1
g . It is a natural question to try to com-

pare the dimension of H1
f,S(GK , V ) and H1

f,S′(GK , V ). Of course, it would be

enough to understand completely the case S′ = S ∪ {v} where v is a finite prime

not in S. First, let us just state that in this case, by definition,

dimH1
f,S(GK , V ) ≤ dimH1

f,S∪{v}(GK , V ) ≤ dimH1
f,S(GK , V )+dim(H1

g (Gv, V )/H1
f (Gv, V )).

By Proposition 2.8 and Exercise 2.21 in the case v|p, and from Proposition 2.3 in

the case v 6 |p, we have

dim(H1
g (Gv, V )/H1

f (Gv, V )) = dimDcrys((V|Gv
)∗(1))φ=1 if v|p

dim(H1
g (Gv, V )/H1

f (Gv, V )) = dimH0(Gv, V
∗(1)) if v 6 |p

In particular, when v 6 |p, V|Gv
has no quotient isomorphic to Qp(1), we have

dimH1
f,S(GK , V ) = dimH1

f,S′(GK , V ).

Exercise 2.29. Prove those relations.

It is not possible to prove in general a formula for dimH1
f,S(GK , V ) in term of

dimH1
f,S∪{v}(GK , V ) and local terms, without assuming again some conjectures.

Prediction 2.1 (Fontaine & Perrin-Riou). ([FPR, §II.3.3.1]) We have

dimH1
f,S∪{v}(GK , V ) = dimH1

f,S(GK , V ) + dim(H1
g (Gv, V )/H1

f (Gv, V )).

Equivalently, we have

dimH1
f,S∪{v}(GK , V ) = dimH1

f,S(GK , V ) + dimDcrys((V|Gv
)∗(1))φ=1 if v|p

dimH1
f,S∪{v}(GK , V ) = dimH1

f,S(GK , V ) + dimH0(Gv, V
∗(1)) if v 6 |p

Let us explain where this prediction comes from. Applying duality both to

H1
f,S∪{v}(GK , V ) and H1

f,S(GK , V ), we are reduced to proving that

H1
f, e at S∪{v}(GK , V

∗(1)) = H1
f, e at S(GK , V

∗(1)).

Here H1
f, e at S(GK ,W ) parametrizes extension of Qp by W that are e at places of

S and f anywhere else.

Exercise 2.30. Check this computation.

Therefore the prediction boils down to the fact that extension of 1 by V ∗(1)

that are f everywhere are also e everywhere. The reason for what this is believed

to be true is as follows: the extension of 1 by V ∗(1) should be geometric, that is

appearing in the étale cohomology of some (not proper-and-smooth) variety X over

K. It is expected that even in this mixed case, conjecture EC1 holds, that at every

place v of K, the Frobenius (Frobv acting on W Iv if v is prime to p, ϕ = φqv acting
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on Dcrys(W|Gv
) if v divides p) acts semi-simply. If this holds, then the class of the

extension W is not only f but e at v, according to Exercises 2.25 and 2.26.

3. L-functions

For an alternative presentation of some of this material, see [FPR] or [Tay2]. In

all this section, K is a number field.

3.1. L-functions.

3.1.1. Euler factors. Let V be a p-adic geometric representation of GK . For the

commodity of exposition, we suppose that an embedding of Qp into C has been

chosen. This is an ugly thing to do, as it depends on the non-enumerable axiom of

choice and it is absolutely non-canonical, but actually, as we shall see, this choice

shall play no role in practice.

For every finite place v of K that does not divides p, we set

Lv(V, s) = det(Id− (Frob−1
v q−sv )|V Iv )−1(8)

Here s is a complex argument, qv the cardinality of the residue field of K at v,

and the matrix of Frobv is seen as a complex (rather than p-adic) matrix using our

embedding. The function s 7→ Lv(V, s), called an Euler factor, is clearly a rational

(hence meromorphic) function from C to C, with only a finite number of poles. It

is also, formally, a power series in the variable q−sv .

Note also that when V is algebraic, the coefficients of det((Id−Frob−1
v q−sv )|V Iv )−1

are algebraic numbers for almost all v by property E5 so the choice of the embedding

Qp → C is not really relevant, only an embedding of the field of algebraic numbers

in Qp to C matters.

For places v of V that divide p, we set

Lv(V, s) = det((Id− ϕ−1q−1
v )|Dcrys(V|Gv ))

−1,(9)

where ϕ = φfv , with φ the crystalline Frobenius and fv the integer such that

qv = pfv .

3.1.2. Formal definition of the L-function as an Euler product.

Definition 3.1. We set formally

L(V, s) =
∏

v finite place of K

Lv(V, s).

More generally, for S any finite set of finite places of K, we set

LS(V, s) =
∏

v finite place of K not in S

Lv(V, s).
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The product of Euler factors defining the L-function is called an Euler product.

Note that if V = V1⊕V2 as GK-representations, then L(V, s) = L(V1, s)L(V2, s).

Since geometric representations are semi-simple, it is often enough to consider ir-

reducible V .

Even only formally, there are many things to say about the L-function. We will

only mention two of them. The first one is immediately checked, and fundamental.

We shall use it frequently without comments:

L(V (n), s) = L(V, s+ n).(10)

The second one needs a little computation, left as an exercise to the reader in the

case where V is crystalline at all places dividing v (for the general case, see [FPR]):

Lemma 3.1. Let V be a p-adic representation of a number field K, K0 be a subfield

of K, and W = Ind
GK0
GK

V . Then

L(V, s) = L(W, s).

If S0 a finite set of finite places of K0 and S is the set of places of K that lies above

some place of S0, then

LS(V, s) = LS0(W, s).

3.1.3. Convergence. Let V be a p-adic representation that is pure of weight w ∈ Z.

Assume more precisely that it is Σ-pure, where Σ is a finite set of finite places

containing all places above p, and all places where V is ramified. Then by definition,

for v 6∈ Σ, we have

Lv(V, s) =

dimV∏
i=1

(1− α−1
i,v q
−s
v )−1

where α1,v, . . . , αdimV,v are the roots of the characteristic polynomials of Frobv in

V , and we see that Lv(V, s) have no zero, and only a finite number of poles, all on

the line <s = w/2.

Proposition 3.1. Let V be a representation that is Σ-pure of weight w, with Σ as

above. Then the Euler product defining LΣ(V, s) converges absolutely and uniformly

on all compact on the domain <s > w/2 + 1.

Proof — We have to see that
∑

v 6∈Σ

∑dimV
i=1 log(|1−α−1

i,v q
−s
v |) converges absolutely

and uniformly over every compact on the domain <s > w/2 + 1. Using the in-

equality | log(1 + z)| ≤ |z|, and |α−1
i,v | = q

w/2
v , we are reduced to check that the sum∑

v 6∈Σ |q
−s+w/2
v | converges absolutely and uniformly on all compact on the same do-

main. But the number of places v such that qv = n for a given non-negative integer

n is finite and bounded independently of n, so we are reduced to the convergence

(absolutely and uniformly on all compact subsets of <s > w/2 + 1) of the sum∑
n≥1 |nw/2−s| =

∑
n≥1 n

w/2−<s, which is clear. �
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Corollary 3.1. For Σ as above, the function LΣ(V, s) is a well-defined holomorphic

function with no zero on the domain <s > w/2 + 1. The function L(V, s) are well-

defined meromorphic functions with no zero on the domain <s > w/2 + 1.

Proof — The first assertion concerning LΣ(V, s) follows directly from the propo-

sition. The assertion concerning L(V, s) follows from the first one since it is clear

that the local factors Lv(V, s) for v 6∈ Σ are meromorphic functions with no 0. �

Prediction 3.1. If V is geometric, and as above pure of weight w, then for all

prime v, the poles of the local factors Lv(V, s) lie on the line <s = w/2. As a

consequence, L(V, s) is holomorphic on <s > w/2 + 1.

If V is Σ-pure, the assertion about the local factors for v 6∈ Σ is clear by the

definition of the weight. That the same holds for all places v would follow from

the Fontaine-Mazur conjecture and assertion about étale cohomology we have not

written. The consequence on L(V, s) is proved as the corollary above (compare

[Tay2, page 11]).

3.1.4. Examples. If V = Qp, the function L(V, s) is the Dedekind zeta function

ζK(s). It is well known to have an analytic continuation to C with only one pole,

at s = 1, of order one. If V = Qp(n), then L(V, s) = ζK(s+ n).

If V = Vp(E) for E an elliptic curve over K, then Vp(E) = H1(E,Qp)
∗ =

H1(E,Qp)(1), L(Vp(E), s) = L(H1(E,Qp)(1), s) = L(E, s+ 1) where L(E, s) is the

usual L-function of the elliptic curve.

3.1.5. Analytic continuation and zeros.

Conjecture 3.1. Assume that V is a geometric p-adic representation of GK , that

is pure of weight w. Then the function L(V, s) admits a meromorphic continuation

on all the complex plane. The function L(V, s) has no zeros on the domain <s ≥
w/2 + 1. If V is irreducible, L(V, s) has no poles, except if V ' Qp(n), in which

case L(V, s) has a unique pole at s = n+ 1, which is simple.

This conjecture is known to be true if V is automorphic. Let us detail this asser-

tion. If V is automorphic, it is attached to a cuspidal automorphic representation

π of GLd/K, where d = dimV , and we have L(V, s) = L(π, s) where L(π, s) is

the L-function attached to π in the theory of automorphic representation. That

the L-function of an automorphic representation satisfies the conjecture is a re-

sult of Hecke in the case d = 1, of Jacquet-Langlands in the case d = 2, and of

Jacquet-Shalika in the case d ≥ 3.

It is widely expected that proving conjecture 3.1 will require to prove that every

geometric representation is automorphic.

Let us add some cultural comments on the assertion in the conjecture that L(V, s)

has no zero on the domain <s ≥ w/2 + 1, which will be very important for us
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through its special case L(V,w/2 + 1) 6= 0. By construction, as we have seen,

L(V, s) has no zero on the open domain <s > w/2 + 1, and the new assertion is

that L(V, s) has no zero on the boundary of the domain of convergence, that is the

line <s = w/2+1. In the special case V = Qp, K = Q, this is the assertion that the

Riemann zeta function ζQ has no zero on the line <s = 1. This of course is a part

of the famous hypothesis made by Riemann in 1859, in connection of the “prime

number theorem”, a striking statement about the distribution on prime numbers

that was earlier conjectured by Gauss. In the same paper, Riemann proved the

analytic continuation of ζQ, and determined its pole, so this was really the ancestor

of Conjecture 3.1. The non-vanishing of ζQ on the line <s = 1 was proved in 1896

by Hadamard and de la Vallée Poussin, and further results on the non-vanishing

on the boundary of the domain of convergence for more general L-function were

proved using the same ideas.

As is well known, the stronger statement that ζQ has no zero on the domain

<s > 1/2 is the Riemann Hypothesis, a still open conjecture and now another Clay

Millennium Problem. More generally, the Grand Riemann Hypothesis predicts that

for any geometric V pure of weight w, L(V, s) has no zero on <s > (w + 1)/2. For

a detailed exposition of the consequences of the Grand Riemann hypothesis, see [I,

chapter 5]. However, be aware that there is no direct relation between the Grand

Riemann Hypothesis, which is interested in the zeros of L(V, s) on (w + 1)/2 <

<s < w/2 + 1 and the Bloch-Kato conjecture, which is concerned by the zeros of

L(V, s) at integers.

3.2. The functional equation.

3.2.1. The Gamma function and variants. Let us recall that the Γ-function is de-

fined as an holomorphic function for <s > 1 as

Γ(s) =

∫ ∞
0

ts−1e−t dt.

Its properties that we shall need are given as an exercise (or google “Gamma func-

tion”):

Exercise 3.1. a.– Show that Γ(s+ 1) = sΓ(s) for <s ≥ 1 and that Γ(1) = 1.

b.– Show that Γ has an analytic continuation on the whole complex plane with

only poles at non-positive integers s = 0,−1,−2,−3, . . . , and that those poles are

simple.

c.– Show that Γ has no zero.

d.– Show the duplication formula Γ(s)Γ(s+ 1/2) = 21/2−2s
√

2πΓ(2s).
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We define two variants:

ΓR(s) = π−s/2Γ(s/2)

ΓC(s) = 2(2π)−sΓ(s)

Note that ΓC(s) = ΓR(s)ΓR(s+ 1). The poles of ΓR are at 0,−2,−4,−6, . . . and

those of ΓC are at 0,−1,−2,−3,−4,−5, . . . . These poles are all simple.

3.2.2. The completed L-function. To state the functional equation of L(V, s) we

need to complete the Euler product that defines it by adding “Euler factors at

infinity”, which are translated of the functions ΓR and ΓC. Morally, the precise

form of those Γ factors should be deduced from the Hodge structure Hodge(V )

conjecturally attached to V according to the philosophy of motives (see §1.3). For

a definition using this Hodge structure, see [S1] or [FPR]. Since we do not want to

rely on motive theory, we give a definition of those factors assuming only that V is

a representation coming from geometry that is pure of weight w, and this definition

is (conjecturally) equivalent to the one given in literature.

Recall that we have defined in 1.2.3 the total multiplicity mk = mk(V ) of the

Hodge-Tate weight k ∈ Z of V and also two natural integers a±(V ) which add up

to [K : Q] dimV . We have also set m<w/2 =
∑

k<w/2mk.

We set

L∞(V, s) =
∏

k∈Z,k<w/2

ΓC(s− k)mk if w is odd.

If w is even, we define a sign ε = (−1)w/2, and

L∞(V, s) =
∏

k∈Z,k<w/2

ΓC(s− k)mk ΓR(s−w/2)a
ε−m<w/2 ΓR(s−w/2 + 1)a

−ε−m<w/2

This definition may seem ad hoc. Since it is a definition, we cannot justify it

a priori, and since it is only used in a conjecture (the functional equation), not a

theorem, we cannot even say that it is the right definition that makes the theorem

work. However, it is really the only natural definition that matches the various

cases where we know the functional equation (Hecke characters, modular forms,

etc.). We hope that the following lemma and exercise will show that it is more

natural that it seems at first glance.

Lemma 3.2. We have L∞(V (n), s) = L∞(V, s+ n) for all n ∈ Z.

Proof — It is enough to prove it for n = 1. Let V ′ = V (1). We have w(V ′) =

w(V )−2, and mk′(V
′) = mk′+1(V ) for any k′ ∈ Z (since the Hodge-Tate weights of

V are those of V minus one). Therefore if in the product
∏
k∈Z,k<w(V )/2 ΓC((s+1)−

k)mk(V ) we make the change of variables k′ = k− 1, we get
∏
k′∈Z,k′<w(V ′)/2 ΓC(s−

k′)mk′ (V
′). This already proves that L∞(V (1), s) = L∞(V, s) in the case w(V ) (or

w(V ′), that amounts to the same) odd. For the case w(V ) even, we notice that
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ε(V ′) = −ε(V ). But we also have a+(V (1)) = a−(V ) by definition since the action

of the complex conjugation on Qp(1) is −1. Therefore the two changes of sign

cancel each other and we have a±ε(V (1))(V (1)) = a±ε(V )(V ). It is now easy to check

that

ΓR((s+ 1)−w(V )/2)a
ε(V )(V )−m<w(V )/2 ΓR((s+ 1)−w(V )/2 + 1)a

−ε(V )−m<w(V )/2(V )

= ΓR(s− w(V ′)/2)a
ε(V ′)(V ′)−m<w(V ′)/2 ΓR(s− w(V ′)/2 + 1)a

−ε(V ′)−m<w(V ′)/2(V ′),

and this proves the lemma. �

Exercise 3.2. Using Predictions 1.2 and 1.3, show that L∞(V, s) has no zero

and that the number of ΓR factors (a ΓC being worth two ΓR’s) in L∞ is always

[K : Q] dimV .

We note for further reference the following

Lemma 3.3. If w < 0, the function L∞(V, s) has no pole at s = 0. If w ≥ 0 is

odd, then L∞(V, s) has a pole at s = 0 of order
∑

0≤k<w/2mk. If w ≥ 0 is even,

then L∞(V, s) has a pole at s = 0 of order
∑

0≤k<w/2mk + a+ −mw/2.

Proof — Each term of the form ΓC(s− k)mk contributes to a pole at s = 0 (with

order mk) if and only if k ≥ 0. So the product of those terms for k < w/2 gives a

pole of order
∑

0≤k≤w/2mk (which is 0 if w < 0) and that’s all if w is odd. If w

is even, we look at the factor ΓR(s − w/2) and ΓR(s − w/2 + 1). If w < 0, none

of them has pole at s = 0, which concludes the case w < 0. If w ≥ 0, and w/2 is

even, only the factor ΓR(s − w/2) has a pole at s = 0. Since this factors appears

aε − mw/2 times, and ε = +1 in this case, we get a contribution to the order of

the pole at s = 0 of a+ −mw/2. If w ≥ 0 and w/2 is odd (so in fact w ≥ 2), then

only the factor ΓR(s − w/2 + 1) has a pole at s = 0, and the order of this pole is

a−ε −mw/2, but in this case ε = −1, so the contribution is again a+ −mw/2. �

We set

Λ(V, s) = L(V, s)L∞(V, s).

This is the completed L-function of V .

Example 3.1. Assume V = Qp. In this case we have w = 0, m0 = [K : Q]

ad m<w/2 = 0. We also have ε = 1, a+ = r1 + r2 and a− = r2, where r1 and

r2 are the number of real and complex places of K. We thus have L∞(V, s) =

ΓR(s)r1+r2ΓR(s+ 1)r2 , and

Λ(V, s) = ζK(s)ΓR(s)r1+r2ΓR(s+ 1)r2 = ζK(s)ΓR(s)r1ΓC(s)r2 .

Formulas equivalent to this one appears in Dedekind’s work (and in Riemann’s

work in the case K = Q).
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3.2.3. The functional equation. Assume as before that V comes from geometry.

Then so does V ∗(1). Assume conjecture 3.1, so L(V, s) and L(V ∗(1), s) and there-

fore Λ(V, s) and Λ(V ∗, s) are well-defined meromorphic function on C. Then it is

conjectured that the following functional equation relates those two functions:

Conjecture 3.2. There exists an entire function with no zero ε(V, s) such that the

following holds

Λ(V ∗(1),−s) = ε(V, s)Λ(V, s).

It is further conjectured that ε(V, s) has a very simple form, namely s 7→ ABs for

A a complex constant and B a positive real constant. For more details, see [Tay2].

This conjecture is known to be true for automorphic representations.

Example 3.2. Using the functional equation above in the case K = Q, V = Qp

(which is due to Riemann), one sees that the only zeros of ζQ at integers are simple

zeros at −2,−4,−6,−8, . . . If K is a general number field, using the functional

equation above for V = Qp (which is due to Hecke), one sees that ζK has a zero at

s = 0 of order r1 + r2− 1, where r1 is the number of real places and r2 the number

of complex places of K.

Exercise 3.3. Check carefully the computations leading to Example 3.2.

Exercise 3.4. Let V be a representation that comes from geometry and is pure of

weight w. Assume Conjectures 3.1 and 3.2. Show that the only possible zeros of

L(V, s) outside the critical band w/2 < <s < w/2 + 1 are at integers ≤ w/2, and

compute the order of those zeros. They are called the trivial zeros of L(V, s).

3.2.4. The sign of the functional equation for a polarized representation. The prob-

lem with the functional equation given above is that it relates two different L-

functions, namely L(V, s) and L(V ∗(1), s) = L(V ∗, s + 1). When those function

are equal, or at least, translates of each other, things become more interesting. In

this §, we shall discuss cases where this happens.

Let V be a geometric and pure p-adic representation of GK . For τ any automor-

phism of the field K, we denote V τ the representation of GK over the same space

V , but where an element g in GK acts on V τ as σgσ−1, where σ is a fixed element

of GQ whose restriction to K is τ . The representation V τ only depends on τ (not

on σ) up to isomorphism and we have L(V, s) = L(V τ , s) where they are defined

and similarly for completed Λ-functions. Also V τ is pure of the same weight as V .

Exercise 3.5. Check these assertions (that’s easy) and prove the following partial

converse: assume that K is Galois over Q and V and V ′ are two irreducible geo-

metric and pure p-adic representations of GK such that L(V, s) = L(V ′, s). Then

V ′ ' V τ for some τ ∈ Gal(K/Q).
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Definition 3.2. We shall say that V is polarized if for some integer w and some

τ ∈ Aut(K), we have V τ (w) ' V ∗. The integer w is called the weight of the

polarization.

It is obvious that if V is pure and polarized, then the weight of the polarization

w is the motivic weight of V .

Exercise 3.6. Prove that every representation V of dimension 1 is polarized. Prove

that the representation Vp(A) attached to an abelian variety A is polarized of weight

−1. Prove that the representation attached to a classical modular eigenform of

weight 2k and level Γ0(N) is polarized of weight 2k − 1. Prove that if V is an

irreducible polarized representation of GQ of dimension 2, then the weight of the

polarization is odd if and only if V is.

If V is polarized, geometric and pure of weight w, we have Λ(V ∗(1), s) =

Λ(V τ (1 + w), s) = Λ(V, s + 1 + w). Therefore assuming Conjectures 3.1 and 3.2,

the functional equation becomes

Λ(V,−s+ 1 + w) = ε(V, s)Λ(V, s).(11)

It involves only one L-function, L(V, s), and we can talk of the center of the func-

tional equation s = (w + 1)/2. Note that this center is 1/2 off the domain of

convergence of the Euler product, and right in the middle of the critical band (see

Exercise 3.4). In particular, this center is not a pole of L(V, s) (and if it is a zero,

at least it is not a trivial zero).

In particular, since L(V, s) is not identically 0, one sees that ε(V, (w+1)/2) = ±1.

This sign is called the sign of the functional equation of L(V, s), or simply the sign of

L(V, s). One has the elementary but important relation, first observed by Shimura:

Proposition 3.2. The order of the zero of L(V, s) at s = (w + 1)/2 is odd if the

sign of L(V, s) is −1, and even if it is 1.

Proof — This is clear if L is replaced by Λ in view of the functional equation

(11). So we just have to show that the factor L∞(V, s) and L∞(V ∗(1), s) have no

pole and no zero at s = (w + 1/2). But they both are products of functions of the

form ΓR(s − i) with i < w/2. The result then follows from the properties of the

Γ-function. �

This is especially interesting when the weight w of V is odd, because then the

center of the functional equation (w+1)/2 is an integer. By replacing V by V ((w+

1)/2, we can even assume that V has weight −1 and that the center of the functional

equation is at 0.

Remark 3.1. The progress in the Langlands program mentioned in §1.2.4 has

provided us with a vast supply of automorphic representations ρπ that are polarized
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with K totally real and τ = Id, or K a CM field, and τ its complex conjugacy.

All representations constructed this way are also regular, that is they have distinct

Hodge-Tate weights.

Conversely, it is a reasonable hope that current methods (e.g. those explained

in this conference) will lead, some day, with a huge amount of work, to the proof

that every irreducible geometric regular polarized representation of GK (with K, τ

as above) is automorphic, and in most cases, comes from geometry.

For other geometric representations (non-polarized especially), some completely

new ideas seem required.

4. The Bloch-Kato conjecture

For an other presentation of much of this material (and more) see [BK] and

[FPR].

In all this section, K is a number field, and V is a pure geometric representation

of GK . We assume that the L-function L(V, s) has a meromorphic continuation to

the entire plane, in accordance to Conjecture 3.1.

4.1. The conjecture.

4.1.1. Statement.

Conjecture 4.1 (Bloch-Kato).

dimH1
f (GK , V

∗(1))− dimH0(GK , V
∗(1)) = ords=0L(V, s).

The H0 term in the LHS is 0 unless V contains Qp(1). It accounts for the pole

predicted by conjecture 3.1 of L(V, s). Aside the case of Qp(1), it can safely be

ignored.

The conjectures of Bloch-Kato relate two very different objects attached to V .

The Selmer group H1
f (GK , V ) is a global invariant of V , that contains deep number-

theoretical information attached to the representation V , the motives M of which

it is the p-adic realization, or ultimately, the algebraic variety where it comes from

(as H1
f (GK , Vp(E)) is closely related to E(K)); the L-function, on the other hand,

is built on local information (the local Euler factors), but all this information is

mixed up, and via a mysterious process of analytical continuation, gives rise to an

integer, the order at s = 0 of the L-function. That this number should be equal to

the dimension of the Bloch-Kato Selmer group for V ∗(1) is very mysterious indeed.

Tautologically, proving the Bloch-Kato conjecture amounts to proving two in-

equalities:

dimH1
f (GK , V

∗(1)) ≥ ords=0L(V, s) + dimH0(GK , V
∗(1))(12)

dimH1
f (GK , V

∗(1)) ≤ ords=0L(V, s) + dimH0(GK , V
∗(1)).(13)



AN INTRODUCTION TO BLOCH-KATO CONJECTURE 45

The first one, the lower bound on the dimension of the Bloch-Kato Selmer group,

asks us to exhibit a sufficient number of independent extensions of 1 by V ∗(1) in the

category of representationd of GK , whose classes lies in the H1
f . So it is essentially

a problem of constructing non-trivial extensions between Galois representations

with prescribed local properties. Chris’ lecture and mine will explain some of the

techniques that allow us to do so. Very often those technics take a big input in the

theory of automorphic forms.

The second inequality, the upper bound of the dimension of the Bloch-Kato

Selmer group, seems to be accessible by very different methods, using in many

cases the idea of Euler systems. We shall give a short review of the results obtained

in its direction below.

4.1.2. Two examples. Assume first that V = Qp. Then L(V, s) is the Dedekind Zeta

function ζK(s), and as we have seen, ords=0ζK(s) = r1+r2−1 (cf. Example 3.2). On

the other hand, V ∗(1) = Qp(1) so H1
f (GK , V

∗(1)) ' O∗K ⊗ZQp by Proposition 2.12

and H0(GK , V
∗(1)) ' 0. Therefore the Bloch-Kato conjecture reduces in this case

to

rkZO∗K = r1 + r2 − 1.

This equality is of course well known, as the Dirichlet’s units theorem.

Assume now that E is an elliptic curve over K, and V = Vp(E). Then V ∗(1) ' V
by the Weil’s pairing, so V is polarized of weight −1 in the terminology of §3.2.4.

The Bloch-Kato conjectures amount to the prediction:

dimH1
f (GK , Vp(E)) = ords=0L(Vp(E), s) = ords=1L(E, s).

As we have seen (Prop. 2.13), in this case dimH1
f (GK , V ) ≥ rkE(K), with equality

if Cha(E)[P∞] is finite. The Birch and Swinnerton-Dyer conjecture contains three

parts, of which the first two are: rkE(K) = ords=1L(E, s) (this part is actually one

of the seven Clay’s problem) and Cha(E)[p∞] is finite. Therefore, the Birch and

Swinnerton-Dyer conjecture implies the Bloch-Kato conjecture for V = Vp(E), and

assuming its second part (the finiteness of Cha(E)[p∞]), its first part is equivalent

to the Bloch-Kato conjecture for V = Vp(E).

4.1.3. Prediction for representations of non-negative weight. Now assume that the

weight w of V satisfies w ≥ 0, and for simplicity that V is irreducible. Then V ∗(1)

has weight w′ = −2−w ≤ −2. The Euler product for L(V ∗(1), s) converges for <s >
w′/2 + 1 ≥ −1−w/2 + 1 = −w/2, and if V ∗(1) satisfies conjecture 3.1, L(V ∗(1), s)

has no zero on the domain <s ≥ −w/2. In particular ords=0L(V ∗(1), s) = 0, except

if V = Qp, where this order is −1. Applying the Bloch-Kato conjecture to V ∗(1),

we thus get that H1
f (GK , V ) = 0. Since V has weight ≥ 0, we see easily that in

fact H1
f (GK , V ) = H1

g (GK , V ). So in fact

Prediction 4.1. If V is pure of weight w ≥ 0, then H1
g (GK , V ) = 0.
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This prediction is an important part of the Bloch and Kato’s conjecture, and is

still widely open. Through the motivic interpretation of the H1
g (see §2.3.4), it is

also a consequence of the older, and still conjectural, “yoga of weights” developed by

Grothendieck in the sixties. Namely, Grothendieck emphasized that motivic weights

should go up in a non-trivial extension of pure motives in the categories of mixed

motives MMK : if M ′ and M ′′ are pure motives, and 0 → M ′ → M → M ′′ → 0

is a non trivial extension in MMK , one should have w(M ′) < w(M ′′). (See the

”definition” of MMK in §2.3.4)

If V is pure of some weight w, then adV is pure of weight 0, so in particular

Prediction 4.2. For every V that is geometric and pure, H1
g (GK , adV ) = 0.

This prediction can be seen as an infinitesimal variant of the Fontaine-Mazur

conjecture. Indeed, H1
g (GK , adV ) can be seen (see Kisin’s lectures) as the tangent

space of the deformation functor of V that parameterizes deformation that stay

de Rham at all places dividing p, and unramified at almost all places, that is of

deformations that stay “geometric”. Now, if the Fontaine-Mazur conjecture is true,

all geometric representations come from geometry, so obviously there are at most a

countable number of such representations, which is not enough to make non-zero-

dimensional families. Therefore, the tangent space to the (heuristic) “universal

families of geometric representation” at V , which is (heuristically) H1
g (GK , adV )

should be 0.

The heuristic argument described above can actually be promoted to a proof in

favorable context, and indeed, we know for example 4.2 for most V attached to

modular forms, due to work of Weston and Kisin, and for some higher-dimensional

polarized V attached to automorphic form, using work of Clozel-Harris-Taylor.

An other interesting observation regarding Prediction 4.1 is

Theorem 4.1. Prediction 4.1 implies Prediction 1.2, that is if V is a pure geo-

metric representation of weight w, then the Hodge-Tate weights of V are placed

symmetrically with respect to w/2, that is mk = mw−k for all k.

The proof is given in the following exercise.

Exercise 4.1. a.– Prove first that is enough to prove Prediction 1.2 for K = Q.

Then prove that is also enough to prove it for K a quadratic imaginary field where

p is split.

We henceforth assume that K is a quadratic imaginary field, and that p is split in

K. We call v and v′ the two places of K above p. Let V be a p-adic representation

of GK of dimension d, which is geometric and pure of weight w. Let k1 ≤ · · · ≤ kd
be the weights of ρ at v and k′1 ≥ · · · ≥ k′d be the weights of ρ at v′; the aim is to

prove that if Prediction 4.1 holds then we have ki + k′i = w for all i.

Here is a list of steps toward this goal. First, two preliminary results.
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b.– Assume Prediction 4.1. Show that if V is pure of weight 0 and of dimension

d, we have∑
k<0

mk(V ) ≤ d,
∑
k>0

mk(V ) ≤ d,
∑
k≤0

mk(V ) ≥ d,
∑
k≥0

mk(V ) ≥ d.

(Hint: Apply Theorem 2.2 and its following remark to V and V ∗ to prove the first

two inequalities.)

c.– Show that for every (a, b) ∈ Z2 there exists a geometric Galois character χ

of GK whose Hodge-Tate weight at v is a and Hodge-Tate weight at v′ is b. Show

that such a character is pure of motivic weight a+ b. Note that it is equivalent to

prove Prediction 1.2 for V or for V ⊗ χ.

Now we take V as in the statement, and we always assume that Prediction 4.1

id true.

d.– Show that it is enough to prove that k1 + k′1 = w (for once it is done you

could apply this result to ΛiV for all i = 1, . . . , d).

e.– Deduce from c.– that it is enough to prove d.– in the case w = 0.

f.– So assume that we are in the case w = 0 and that k1 + k′1 = a. If a = 0 we

are done (well, you are done, because I have been done for long). By the operation

ρ 7→ ρ∗, the cases a > 0 and a < 0 are symmetric, so one can as well assume a > 0.

Show that a = 1. (hint: using c.– we can replace V by the twist of motivic weight 0

such that k′1 = 1; so we have k1 = a−1 ≥ 0. Using b.–, show that actually k1 = 0.)

g.– Keeping the notations and hypotheses of f.– we see that the only possibilities

for a are therefore 1, −1, or 0 in which case we hare done. Apply the same result

to V ⊗ V to show that a cannot be ±1. Therefore a = 0, QED.

4.2. Stability properties for the Bloch-Kato conjecture.

4.2.1. Compatibility with the functional equation. This is the following statement.

Theorem 4.2. Assume that Conjectures 3.1 and 3.2 hold for V , and also Predic-

tions 1.2 and 1.3. Then the Bloch-Kato conjecture for V is equivalent to Bloch-Kato

conjecture for V ∗(1).

The same is true for each inequality in Bloch-Kato conjecture, that is: (13) holds

for V if and only if (13) holds for V ∗(1), and similarly for (12).

Proof — We only need to show that

(14) ords=0L(V, s)− ords=0L(V ∗(1), s) = dimH1
f (GK , V

∗(1))

− dimH0(GK , V
∗(1))− (dimH1

f (GK , V )− dimH0(GK , V ))

Since this relation is symmetric in V and V ∗(1), we can assume that

w ≥ −1.



48 JOËL BELLAÏCHE

We first compute the LHS of (14). By the functional equation (conjecture 3.2),

we have ords=0Λ(V, s) = ords=0Λ(V ∗(1), s). By Lemma 3.3, we have

ords=0L(V, s) = ords=0Λ(V, s) +
∑

0≤k<w/2

mk if w is odd

ords=0L(V, s) = ords=0Λ(V, s) +
∑

0≤k<w/2

mk + a+ −m<w/2 if w is even

ords=0L(V ∗(1), s) = ords=0Λ(V ∗(1), s)

We thus get

ords=0L(V, s)− ords=0L(V ∗(1), s) =
∑

0≤k<w/2

mk if w is odd

ords=0L(V, s)− ords=0L(V ∗(1), s) =
∑

0≤k<w/2

mk + a+ −m<w/2 if w is even

We now compute the RHS of (14). By the duality formula for Bloch-Kato Selmer

group Theorem 2.2 this RHS is∑
v|∞

dimH0(Gv, V )−
∑
v|p

dimDdR(V|Gv
)/D+

dR(V|Gv
) = a+ −

∑
k<0

mk,

the last equality coming from the definition of a+ and of mk (see Remark 2.3)

Therefore, in the case w odd, the formula (14) that we need to prove becomes∑
0≤k<w/2

mk = a+ −
∑
k<0

mk.

Grouping terms, this is equivalent to
∑

k<w/2mk = a+, that is m<w/2 = a+, which

follows from Predictions 1.2 and 1.3.

In the case w even, the formula (14) that we need to prove becomes∑
0≤k<w/2

mk + a+ −m<w/2 = a+ −
∑
k<0

mk,

which is obviously true. �

Of course there are many conjectures to assume in order to make the above

a non-conditional theorem. However, in practice, for the V we work with (e.g.

automorphic V ), we know all of them.

This compatibility result is, in my humble opinion, the most convincing single

piece of evidence for the conjecture of Bloch-Kato. The functional equation relat-

ing L(V, s) and L(V ∗(1),−s) on the one hand, and the duality formula relating

H1
f (GK , V ) and H1

f (GK , V
∗(1), s) belong to two different paths in the history of

mathematics, the first one to the analytic ideas (often based on Poisson’s summa-

tion formula) initiated by Riemann in his study of the zeta functions, the second to

the world of duality theorems in cohomology. That they give compatible formulas

in the context of the Bloch-Kato conjecture seems to me a strong argument in favor

of a deep link between L-functions and Selmer groups.
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Corollary 4.1. Same hypothesis as in the theorem above. Assume also that V is

pure of weight w 6= −1. Then the lower bound (12) in Bloch-Kato conjecture hold

for V .

Proof — If the weight w satisfies w ≥ 0, then we have seen in (4.1.3) that the

RHS of the Bloch-Kato conjecture is 0, so the inequality (12) obviously holds for

V . If the weight w of V satisfies w ≤ −2, then the weight of V ∗(1) is ≥ 0, so (12)

holds for V ∗(1). Therefore it holds for V ∗(1) by theorem 4.2. �

This important result features the difference between the case w 6= −1 (where

one only needs to prove the upper bound in the Bloch-Kato conjecture), and the

case w = −1 (where one needs to prove both the upper and the lower bound).

4.2.2. Compatibility with induction.

Proposition 4.1. If K0 is a subfield of K, then if the Bloch-Kato conjecture holds

for V if and only if it holds for Ind
GK0
GK

V

This is true because both the left hand side and the right hand side of the

conjectural formula are invariant by inductions. Most of the arguments necessary

to prove this have been seen above. Collecting them is left as an exercise.

In particular, it is enough to prove the Bloch-Kato conjecture for K = Q.

4.2.3. A slightly more general conjecture.

Conjecture 4.2. Let S be any finite set of primes of K. We have

dimH1
f,S(GK , V

∗(1))− dimH0(GK , V
∗(1)) = ords=0LS(V, s).(15)

The classical Bloch-Kato conjecture is the case S = ∅.

Exercise 4.2. (easy) Show that this holds in the case V = Qp

Proposition 4.2 (Fontaine, Perrin-Riou). If Prediction 2.1 and conjecture EC1

hold for V , the above conjecture for a set S (and a given K, V ) is equivalent to the

conjecture for any other set S′ (and the same K,V ).

Proof — We may assume that S ⊂ S′, and by induction on the cardinality of

S′ − S, that S′ = S ∪ v. In this case, by Prediction 2.1, changing S to S′ adds to

the RHS of (15) the term dimDcrys(V|Gv
)φ=1 if v|p, (resp. H0(Gv, V ) if v 6 |p), that

is, assuming conjecture EC1, the multiplicity of the eigenvalue 1 of the crystalline

Frobenius ϕ = φfv (resp. the Frobenius) on Dcrys(V|Gv
) (resp. on V Iv). Changing

S to S′ adds to the LHS the the order of the pole of the local factor Lv(V, s) at

s = 0. By the definitions 9 and 8 of those local factors, it is clear that we get the

same terms as for the RHS. �

4.3. Results in special cases.
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4.3.1. The case V = Qp(n). The Bloch-Kato conjecture is known for all number

fields K and all integers n for V = Qp(n), and more generally, all representations

of the form V = A(n) where A is an Artin character. Indeed, the lower bound in

the Bloch-Kato conjecture results from what we have said since the motivic weight

−2n of A(n) is never −1. The upper bound is a consequence of a theorem of Soulé

relating K-theory and Galois cohomology, together with Borel’s computation of the

K-theory of number fields.

So in particular, for K = Q and n ∈ Z we have dimH1
f (GQ,Qp(n)) = 1 if

n = 3, 5, 7, 9, . . . and is 0 otherwise.

4.3.2. The case of elliptic curves over Q and classical modular forms. Let E/Q be

an elliptic curve and V = Vp(E)(n) for some integer n. Or more generally, let f be

a modular eigenform of level Γ1(N) that we assume, for the simplicity of exposition,

of trivial nebentypus and even weight k = 2k′ (and say p 6 |N); take V = Vp(f)(n)

for some integer. The second case is indeed more general as since the Tanyama-

Shimura-Weil conjecture proved by Breuil, Conrad, Diamond and Taylor, for E/Q
an elliptic curve, there exist an f as above such that Vp(f)(k′) = Vp(E). For such

V ’s, many partial results toward the Bloch-Kato conjecture are known.

In the case where V = Vp(E), the Bloch-Kato conjecture is closely related to

the Birch and Swinnerton-Dyer conjecture, so all results about the Birch and

Swinnerton-Dyer conjecture give a result for the Bloch-Kato conjecture. For ex-

ample, the combination of results of Gross-Zagier and Kolyvagin shows that for if

ords=0L(Vp(E), s) ≤ 1, the Bloch-Kato conjecture is known for V = Vp(E).

More generally for V = Vp(f)(n), a striking result of Kato ([K]) shows that the

upper bound in Bloch-Kato conjecture (13) is always true. The proof uses an Euler

systems produced constructed by Kato, using ideas of Beilinson. Remember that

the lower bound (12) is always known for V of weight different from −1. The

bottom line is that the Bloch-Kato conjecture for V = Vp(f)(n) is known for all

n except n = k′ = k/2 and that for Vp(f)(k′) only the lower bound needs to be

proved.

So we now turn to the results for V = Vp(f)(k′) which has weight −1. This

includes the case V = Vp(E). Using his theory of “Selmer complex”, Nekovar has

shown that if f is ordinary at p,

dimH1
f (GK , V ) ≡ ords=0L(V, s) (mod 2).

This can be rephrased as the parity of dimH1
f (GK , V ) is the one predicted by the

sign of the functional equation of L(V, s). In the case V = Vp(E), this results

has been recently extended (by similar methods) to the supersingular case by B.D.

Kim, and been independently reproved by Dokchitser and Dokchitser.

4.3.3. Automorphic methods. There has been in recent years many results proving

existence of non-trivial elements in H1
f (GK , V ) by automorphic methods. All those
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methods are cousin, their common grand-parents being Ribet’s proof of the converse

of Herband’s theorem (See Chris’ lecture) and the theory of endoscopy and CAP

forms for automorphic representation.

For example, for V = Vp(f)(k′) as in the preceding §, and for p ordinary, Belläıche

and Chenevier in the CM case (proved in 2002) and Skinner and Urban in the

general case (announced in 2002, proved in 2005), have given an automorphic con-

struction of a non-zero element in H1
f (GK , Vp(f)(k′)) under the assumption that

the sign of L(Vp(f), s) is −1. This proves that dimH1
f (GK , V ) ≥ 1 if ords=0L(V )

is odd. This is of course contained in Nekovar’s result (and this is also in the CM

case, a consequence of the proof of the Iwasawa conjecture for quadratic imaginary

field by Rubin), but it is interesting to have a real construction of the extension in

the H1
f .

This hypothesis of ordinarity of p for f has been removed by Belläıche and

Chenevier ([BC2] if k > 2 (2006) and [B] if k = 2 (2009)). Actually this is a

special case of a similar result valid for all automorphic representations V of GK of

dimension n that are polarized (for τ = Id in the case K = Q or for τ the complex

conjugation in the case K a quadratic imaginary field, with some restrictions at

places dividing p) in [BC2]. A similar result has been announced by Skinner and

Urban (in 2006 [SU], but the proof is not yet available in August 2011), in which

the hypothesis that ords=0L(V, s) is odd has been weakened to ords=0L(V, s) ≥ 1.

5. Complement: a conjecture about the full H1

5.1. Motivation. We have all but forgotten the space H1(GK,Σ, V ) for V a p-adic

geometric representation of GK , K a number field, and Σ a finite set of places of K

containing all places above p and ∞, focussing instead on its subspace H1
f (GK , V ).

Even if the H1
f seemed more complicated at the beginning, we have seen that it

was this subspace that has the nicest number-theoretical (and also motivic) inter-

pretation, and also the simplest duality theory. So one could say: why should we

care about the full H1(GK,Σ, V )? There are actually many reasons we should.

For one thing, simplicity is important, and it is quite frustrating, almost fifty

years after the pioneers’ work on Galois cohomology, not to be able to compute the

dimension of H1(GK,Σ, V ) even for the most simple V .

Also, those spaces have also a number-theoretical significance, though quite dif-

ferent from the H1
f or H1

g . Admittedly, the H1(GK,Σ, V ) have no motivic or K-

theoretical interpretation. But, for example, computing the dimension ofH1(GK,Σ,Qp)

(for Σ any finite set of places containing those above p) is equivalent to proving

(or disproving) the famous Leopoldt’s conjecture, whose classical statement is: the

natural map ι : O∗K ⊗Z Zp →
∏
v|pO∗Kv

is injective. This conjecture is ubiquitous

in algebraic number theory, and has proved very elusive: there have been many

released proofs by eminent or less eminent mathematicians which have been found

faulty, and certainly many more which were refuted by their own author or a friend
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before any public release2. But despite its importance in algebraic number theory,

there is a sense that it properly belongs to transcendence theory, due in part to

the fact that the two main known partial results (the proof in the case where K is

abelian over Q or over a quadratic imaginary field by Brummer, and a lower bound

on the rank of the image of ι by Waldschmidt) have proofs using heavily methods

of transcendence theory. Therefore, predicting the dimension of H1(GK,Σ, V ) for

various V can be seen as a generalized Leopoldt’s conjecture, and can hardly be

considered as non-important for number theory.

Let us add that the knowledge of the dimension of the H1(GK,Σ, V ) (and of the

H2(GK,Σ, V ), which is essentially equivalent by the Euler Characteristic formula)

would be useful in many situations. For example, it is needed to compute tangent

spaces and obstructions in Galois deformation theory. Also, if X is a variety over

K and if we want to compute the étale cohomology H1
ét(X,Qp) (the true cohomol-

ogy of X/K this time, not of X ×K K̄ that we have denoted H i(X,Qp) earlier),

then the natural way to proceed is to use the Grothendieck’s spectral sequence

H i(GK , H
j
ét(X×K K̄,Qp))⇒ H i+j

ét (X,Qp), but this takes to know how to compute

the Galois cohomology of the geometric representation Hj
ét(X ×K K̄,Qp).

5.2. Jannsen’s conjecture.

Proposition 5.1. Let V be a p-adic geometric representationof GK,Σ and let W =

V ∗(1). The following are equivalent:

(i) The natural map H1(GK,Σ,W )→
∏
v∈ΣH

1(Gv,W ) is injective.

(ii) One has

dimH1(GK,Σ, V ) = [K : Q] dimV + dimH0(GK,Σ, V )− dimH0(GK,Σ, V
∗(1))

+
∑

v∈S, v finite

dimH0(Gv, V
∗(1))−

∑
v|∞

dimH0(Gv, V )

(iii)

dimH2(GK,Σ, V ) =
∑

v∈S, v finite

dimH0(Gv, V
∗(1))− dimH0(GK,Σ, V

∗(1))

Moreover, in (ii) and (iii), the LHS is never less that the RHS.

Let us note that in
∏
v∈ΣH

1(Gv,W ) in (i), we can restrict the product to the

v that are finite, since H1(Gv,W ) = 0 for v an infinite place. The RHS of the

formula computing the dimension of H1(GK,Σ, V ) in (ii) is easy to compute in

practice. Proof — Let us call KW thw kernel of the map (i). Propososition. 2.2

2Currently, there is a proof in an article on arxiv, but it has not yet been fully verified, and
some specialists are skeptical.
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applied to Lv = H1(Gv, V ) gives

dimH1(GK,Σ, V ) = dimKW dimH0(GK,Σ, V )− dimH0(GK,Σ, V
∗(1))

+
∑
v∈S

(dimH1(Gv, V )− dimH0(Gv, V ))

For a finite v ∈ S, dimH1(Gv, V )− dimH0(Gv, V ) = dimH0(Gv, V
∗(1)) if v does

not divides p, and dimH1(Gv, V ) − dimH0(Gv, V ) = dimH0(Gv, V
∗(1)) + [Kv :

Qp] dimV when v divided p (cf. Prop. 2.2). Summing, we get that the LHS of

(ii) is equl to the RHS of (ii) plus dimKW . The equivalence between (i) and (ii)

follows, as well as the fact that ≥ in (ii) always hold. For the equivalence between

(ii) and (iii), one just applies the Euler characactersitic formula. �

In 1989, a few months before Bloch and Kato, Jannsen asked ([J, Question 2,

page 349]) wether the following statement hods,

Conjecture 5.1 (Jannsen). Let V be a representation coming from geometry of

GK,Σ which is pure of weight w. Assume that w 6= −1. Then the statements (i),

(ii) and (iii) of the proposition above hold.

Remark 5.1. (a) While Jannsen is prudent and formulates it as an open ques-

tion rather than a conjecture, we call it a conjecture without hesitation

because in the case w > −1 (where w is the weight of V ), Jannsen himself

calls the statement (iii) a conjecture (cf. [J, case(b) of Conjecture (i)]) and

provides serious evidence ([J, §4]) in its favor, while in the case w < −1, the

weight −2−w of W is ≥ 0, so Prediction 4.1 (which is itself a consequence

of either the conjecture of Bloch and Kato, or of Grotehendieck’s yoga of

weights) implies H1
f (GK ,W ) = 0 which clearly implies (i).

(b) The condition w 6= −1 is fundamental: If V = Vp(E) where E/Q is an

elliptic curve, the conjecture, extended to the case w = −1 would predict

that dimH1(GQ,Σ, Vp(E)) = 1. But we know that already the dimension

of the subspace H1
f (GQ,Σ, Vp(E)) is at least the rank of E(Q) and of course

there are examples of E with rkE(Q) > 1. To my knowledge, there is

no general conjecture predicting the dimension of H1(GK,Σ, V ) in the case

w = −1.

The following consequence of Jannsen’s conjecture is interesting:

Prediction 5.1. Let V be a p-adic representation coming from geometry of GK,Σ

which is pure of weight w. Assume that w 6= −1, and that H0(Gv, V ) = 0 for every

finite v ∈ S that does not divide v. Assume Jannsen’s conjecture (for V ∗(1)). Then

the regulator map

H1
f (GK,Σ, V )→

∏
v|p

H1
f (Gv, V )

is injective.
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Proof — The map H1
f (GK,Σ, V ) →

∏
v∈S H

1
f (Gv, V ) is injective because its

a restriction of the map H1(GK,Σ, V ) →
∏
v∈S H

1(Gv, V ) which is injective by

Jannsen’s conjecture. If v ∈ S is finite and does not divide p, then by Prop. 2.3(a),

dimH1
f (Gv, V ) = dimH0(Gv, V ) = 0. The prediction follows. �

Exercise 5.1. (easy) For K a number field, and any Σ, show that Jannsen’s

conjecture is equvalent to Leopoldt’s conjecture for K.

Exercise 5.2. 1.– (easy) Show that the conjecture predicts the following values

for dn := dimH1(GQ,S ,Qp(n)) where n ∈ Z and S = {p,∞}: dn = 0 if n is even,

n 6= 0; d0 = 1; dn = 1 if n is odd.

2.– Using the fact that the conjecture of Bloch and Kato is known for GQ,S ,

V = Qp(n), show that the conjecture of Jannsen holds excepet may be for n < 0

even. What does (i) say for those V ?

3.– (difficult) Show that if p is a regular prime, Jannsen’s conjecture holds for

V = Qp(n), all n. (Use Iwasawa’s main conjecture proved by Mazur-WIiles and

independently by Kolyvagin)

In general, for p irregular, Jannsen’s conjecture for GQ,S , V = Qp(n), is still

open.

Exercise 5.3. (difficult) Justify the following prediction: for E/Q an elliptic

curve with good reduction outside Σ. dimH1(GQ,Σ, Vp(E)) = max(1, rkE(Q))

Exercise 5.4. (difficult) Let (Vn)n∈N and V be geometric Galois representations

of GK,Σ. Let Tn and T be the trace of Vn and V respectively. Assume that (Tn)

converges uniformly to T .

a.– Assume Jannsen’s conjecture, and that Vn and V satisfy its condition. Show

that lim infn→∞ dimH1(GK,Σ, Vn) ≤ dimH1(GK,Σ, V ).

b.– Show by an example that this property of lower semi-continuity does not

hold if H1 is replaced by H1
f .

c.– Can you prove a.– without assuming Jannsen’s conjecture?
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[BC2] J. Belläıche & G. Chenevier, p-adic Families of Galois representations, Astérisque, 324,
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