
A CASE Tool for Geographic Database Design
Supporting Analysis Patterns

Jugurta Lisboa F., Victor de Freitas Sodré, Jaudete Daltio,
Maurício Fidelis Rodrigues Júnior, Valério Vilela

Department of Informatics, Federal University of Viçosa
36570-000, Viçosa, MG, Brazil

{jugurta, vsodre, jdaltio, mfrj, vvilela}@dpi.ufv.br

Abstract: This paper describes the development of an open source CASE tool,
the ArgoCASEGEO, and its modular architecture. The ArgoCASEGEO allows
the geographic database modelling based on the UML-GeoFrame conceptual
model that is specific for Geographic Information Systems applications. The
data dictionary associated to the modelled schema is stored as a XML/XMI
document, aiming its use by other software. The ArgoCASEGEO follows a
design methodology based on a reusable collection of analysis patterns. The
analysis patterns collection is stored in a data base composing a Catalog. The
catalog is attached to the ArgoCASEGEO. Thus, searching for existing analysis
patterns will be an easier and efficient task.

Key words: Geographic database design, Analysis Patterns, CASE tool.

1 Introduction

Geographic Databases (GeoDB) are collections of geographically referenced data,
manipulated by Geographic Information System (GIS). In the Geoprocessing area,
normally the user itself is the one who develops the GIS applications. Thus,
redundancy and inconsistency are strong characteristics in the majority of the GeoDB,
many times compromising the system reliability and, consequently, putting great
public or private investments into risk. For that matter, the development of
methodologies and tools that assist the GeoDB designers are essential to improve the
quality of GIS applications.

A GeoDB should be designed following a database project methodology that
includes conceptual, logical and physical design phases [5]. To elaborate the data
schema in the conceptual phase, a data model must be chosen. Various models for
GeoDB have been proposed in the past years as GeoOOA [12], MADS [19], OMT-G
[2], UML+SpatialPVL [1] and UML-GeoFrame [14].

At this point, reuse mechanisms may help less experienced designers through
instruments that allow software components reuse by patterns definitions. Analysis

Patterns is a pattern category, which has been treated as a reuse instrument for
requirement analysis and conceptual modelling [6], [7], [9], [11] and [20]. Analysis
patterns permit reuse in a higher level than object-oriented class specialization
because it makes possible to reuse a part of a data schema instead of a single class.

Concluded the conceptual modelling, the next step - logical design - consists of the
conceptual schema transformation into a data schema compatible with the data model
of the GIS that will be used. This stage of a conceptual schema transformation into a
logical-spatial schema, and its settlement in a GIS, can be made automatically by a
CASE (Computer Aided Software Engineering) tool. Some of these conceptual
models previously mentioned are supported by CASE tools, for example, Perceptory
[1], REGIS [10], AIGLE [13] and Publisher Java MADS [19].

This paper describes the ArgoCASEGEO architecture, an open source CASE tool
for GeoDB modelling that supports the UML-GeoFrame model [14]. The conceptual
schema elaborated by this tool is stored in XML (eXtensible Markup Language)
format, so can be easily accessed and used. This tool also provides an automatic
generation module, able to generate data schemas to the most common formats
usually found in commercial GIS. Moreover, the ArgoCASEGEO has a support for
reuse based on analysis patterns [7] through the Analysis Patterns Module that
implements a Manager and a Catalog. Further information about the using advantages
of analysis patterns in GeoDB conceptual modeling can be seen in [15] and [16].

Section 2 presents the UML-GeoFrame Model whereas section 3 details the
development of the ArgoCASEGEO tool, showing its architecture and describing
each module. Finally, section 4 brings final considerations and future works.

2 The UML-GeoFrame Model

The conceptual modelling of GeoDB based on the UML-GeoFrame model [14]
produces an easy understanding conceptual schema, improving the communication
between designers and/or users. Besides being used in the database schema
elaboration, the UML-GeoFrame model is appropriate to the analysis patterns
specification.

The GeoFrame is a conceptual framework that supplies a basic class diagram to
assist the designer on the first steps of the conceptual data modelling of a new GIS
application. The mutual use of the UML class diagram and the GeoFrame allows the
solution of the majority requirements of GIS applications modelling. A geographic
conceptual schema built based on the UML-GeoFrame model includes, for example,
the spatial aspects modelling of the geographic information and the difference
between conventional objects and geographic objects/fields. The specification of
these elements is made based on the stereotypes set shown in Figure 1.

The first stereotype set (Geographic Phenomenon and Conventional Object) is used
to differ the two main object types belonging to a GeoDB. The Geographic
Phenomenon class is specialized in Geographic Object () and Geographic Field ()
classes, according to two perception ways of the geographic phenomena, described by
Goodchild [8]. Non-geographic Objects are modeled on traditional form and are
identified through the stereotype ().

Geographic field's
spatial component

Geographic object's
spatial component

Geographic phenomenon
and Conventional object

Point

Line

Polygon

Complex spatial obj.

Geographic field

Non-geographic object

Geographic object Irregular points

Grid of points

TIN

Adjacent polygons

Isolines

Grid of cells
<<function>> categorical function

Fig. 1. Stereotypes of the UML-GeoFrame Model

The Geographic Object’s Spatial Component and Geographic Field’s Spatial
Component stereotypes sets are used to model the phenomena spatial component
according to object and field visions, respectively. The existence of multiple
representations is modeled through the combination of two or more stereotypes on the
same class. For example, a County class can have two abstraction ways of its spatial
component, punctual and polygonal, that is specified by the stereotype pair ().

Finally, the stereotype <<function>> is used to characterize a special type of
association that occurs when modelling categorical fields. According to Chrisman [3],
in a structure of categorical covering the spatial is classified in mutually exclusive
categories, that is, a variable has a value of category type in all the points inside a
region. Figure 2 exemplifies the UML-GeoFrame model use showing a class diagram
containing two themes: Education and Environment.

Environment

Vegetation

Relief

Vegetation
Type

Temperature

<<funtion>>

Education

School

name
contact
address

*

District

idDistrict
name

Student

name
address
father_name

1

*

1

City

codCity
name
population

1*

Fig. 2. An UML-GeoFrame schema example

The Education theme, modeled as a UML package, includes three geographic
phenomena classes perceived in the object vision (District, City and School), and
the Student class that is a non-geographic object. In the Environment theme,
three classes of geographic phenomena perceived in the field vision are modeled,
Vegetation, Relief and Temperature, each one with its different types of spatial
representation. This theme still includes the Vegetation Type class, which is
modeled as non-geographic object, being associated to the Vegetation class through
the stereotype <<function>>, that is, each polygon is associated to a vegetation type.

3 The ArgoCASEGEO tool

ArgoCASEGEO is a CASE tool whose goal is to give support to the GeoDB
modelling based on the UML-GeoFrame model. The data schemas elaborated using
this tool are stored in XMI (XML Metadata Interchange) format, a syntax for
conceptual schema storage, in XML documents [18].

XMI combines the definition, validation and sharing document formats benefits of
XML with the specification, distributed objects and business-oriented models
documentation and construction benefits of the UML visual modelling language.

A CASE tool is primarily a graphical drawing software. To avoid a great
programming effort in developing a new graphical drawing tool, some existing
graphical softwares were selected to be used as starting point. This software must
support the UML class diagram drawing and be extensible to support the stereotypes
defined in the UML-GeoFrame model.

After analyzing some options, the ArgoUML publisher was chosen as the base
tool. Thus, the ArgoCASEGEO was developed as an ArgoUML software extension, a
modelling tool found over a use license and open source distribution, developed in
Java. Figure 3 illustrates the five-module-architecture of the ArgoCASEGEO.

 Conceptual Data
Scheme

Shape
Format

GeoMedia

OpenGIS
(GML)

Others
Formats

Graphical Module

UML-
GeoFrame
Diagrams

ArgoUML
(Java)

Data Dictionary Module

UML-
GeoFrame
Metamodel

XML/XMI

Reverse Engineering
Module

Transformation
Rules Logic-
Conceptual

Analysis Patterns
Catalogue

Automatic Generation Module

Transformation
Rules

Conceptual-
Logic

TerraLib

Analysis Pattern
Manager Module

A. P.
Search

A. P.
Storage

Fig. 3. The ArgoCASEGEO Tool Architecture

The Graphical Module allows the design of the conceptual schema, providing a set
of constructors of the UML-GeoFrame model. The Data Dictionary Module stores the
description of the diagram elements created by the designer. The Automatic
Generation Module allows the transformation of the conceptual schema stored in the
data dictionary into a logical schema corresponding to some models used in
commercial GIS. The Analysis Patterns Catalog and its manager are defined in the
Analysis Patterns Module. And finally, the Reverse Engineering Module, not yet
implemented, will enable the designer to get conceptual schemas from existing GIS
applications. The following sections describe these modules giving further details.

3.1. Graphical Module

The ArgoCASEGEO tool enables creation of diagrams that contain the constructors
and stereotypes suggested by the UML-GeoFrame model. From this diagram the user
can create its conceptual schema. An UML-GeoFrame conceptual schema supports
three distinct class types: Geographic Object, Non-geographic Object and Geographic
Field. The existing fields in the implemented class have name, attributes, operations
and symbols corresponding to the spatial representation type (stereotypes).

These classes can be related by relationships as generalization & specialization,
aggregation, composition or association. In an association, the relationship name and
the multiplicity of each class can be specified. The classes can be grouped to form a
definitive theme, which is modeled by the UML’s Package constructor. Figure 4
illustrates the ArgoCASEGEO environment.

An UML-GeoFrame data schema can be saved as a new Analysis Pattern, which
can be (re) used in new data schema, composing thus, the Analysis Patterns Catalog.
On the other hand, if the designer is starting a new project it would be interesting to
look up in the catalog in order to find existing analysis patterns.

Fig. 4. The ArgoCASEGEO’s graphical environment representing the analysis pattern

Urban Street Mesh in the UML-GeoFrame model

3.2. Data Dictionary Module

The dictionary stores the data schema created by the user. A schema has two data
types, the graphical data (drawing) and the semantic data (classes’ names, attributes,
associations’ multiplicities, etc). The semantic data are stored in the data dictionary,
while the graphical data are stored in an ArgoUML file. The data dictionary stores the
conceptual schema in XMI format. Every class is delimited by a tag that contains the
class name, its spatial representations and its features. The feature tag has two sub
levels corresponding to the attributes and operations storage.

Figure 5 exemplifies the data dictionary to the Road Strech class (modeled in
figure 4) whose spatial representation is line type, the direction and idStrech
attributes. The types used in this definition, including the attribute type, parameters
and operations’ returned values are defined by the ArgoUML.

<Foundation.Core.GeographicObject>
 <Foundation.Core.ModelElement.name>RoadStrech
 </Foundation.Core.ModelElement.name>
 <Foundation.Core.GeneralizableElement.isLine
 xmi.value="true"/>
 <Foundation.Core.Classifier.feature>
 <Foundation.Core.Attribute>
 <Foundation.Core.ModelElement.name>direction
 </Foundation.Core.ModelElement.name>
 <Foundation.Core.Classifier xmi.idref="xmi.16"/>
 </Foundation.Core.Attribute>
 <Foundation.Core.Attribute>
 <Foundation.Core.ModelElement.name>idStrech
 </Foundation.Core.ModelElement.name>
 <Foundation.Core.Classifier xmi.idref="xmi.14"/>
 </Foundation.Core.Attribute>
 </Foundation.Core.Classifier.feature>
</Foundation.Core.GeographicObject>

Fig. 5. An UML-GeoFrame class in XMI representation

A specific tag that contains its name, related properties (that vary according to the
type, association, aggregation or composition), its multiplicity and the classes’
references that participate in the relationship, marks off the relationships between the
classes modeled in the schema. From the generalizations definition vision, the internal
tag is responsible for storing references to subclasses and super classes. Multiple
inheritances are allowed. Finally, the package definitions are kept in a more external
tag that includes everything previously described and has only its name as attribute.

3.3. Automatic Generation Module

After the conceptual modelling, the user needs to transform the elaborated schema
into an effective implementation, characterizing a GIS application. As each GIS has
its own data logical model, it is not possible to establish a single set of transformation

rules to make the automatic generation of the logical-spatial schema. Thus, for each
GIS the ArgoCASEGEO tool needs a specific Automatic Generation Module (AGM).

Two AGM have already been implemented in the ArgoCASEGEO tool. The first
module transforms UML-GeoFrame schema to Shape format, used in the GIS
ArcView [17]. A second AGM, described in the section below, transforms conceptual
UML-GeoFrame schema into logical-spatial schema of the GIS GeoMedia.

3.3.1. GeoMedia Automatic Generation Module

The AGM-GeoMedia has as input the data dictionary identification that contains the
conceptual schema to be transformed. To create a work environment in this software a
connection with an existing database must be established. This connection will store
the layers and the associated tables. For that matter, the AGM-GeoMedia creates a
database Access (.mdb) to store all the elements generated by the automatic mapping.

For each element of the conceptual schema a specific transformation rule is
applied. These rules are described as following.

Rule 1 – Packages: A package is formed by a set of interrelated classes. Therefore,
a database is defined for each package in the conceptual schema that will store all the
themes generated by the mapping related to it. The file name and its location are
supplied by the user.

Rule 2 - Geographic Object Classes (): Each class mapped as Geographic Object
generates at least one layer inside the corresponding database, whose spatial
representation is defined according to the representation’s stereotype. The attributes
defined in the class are mapped as fields of a relational table.

Rule 3 - Geographic Field Class (): The GeoMedia is a vector software,
therefore, it is not possible to carry through an automatic mapping of the phenomena
that are modeled as field. However, according to Goodchild [8], the geographic fields’
representations are simply aggregations of points, lines and polygons, connected to
spatial characteristics. A field with spatial representation of Isolines type, for
example, can be mapped in a layer of line type, having a value associated to each line.

According to this analysis, the program considers some mapping options to the
designer. Beyond the suggested attributes, the attributes of each class are also added
to the table. If these approaches are not useful, the designer can choose not applying
them and the geographic fields are mapped similarly to non-geographic objects.

Rule 4 - Non-Geographic Object Classes (): Each class modeled as Non-
geographic Object generates directly one relational table. Objects are classified as
Non-geographic exactly for having no spatial representation.

Rule 5 - Relationships: Relationships as association, aggregation and composition
are made in accordance to the specified multiplicity. There are basically three types of
multiplicities: one-to-one (1..1); one-to-many (1..*); and many-to-many (*..*).This
mapping follows the same rules used to generate relational DBMS, which are well
known [5]. Relationship of generalization-specialization type can also be translated
using the same solutions applied in relational DBMS. Indeed, the spatial
representation must be considered accordingly.

As an example, the AGM-GeoMedia will create the logical-spatial schema shown
in Figure 6 taking the data dictionary shown in Figure 4 as input.

Fig. 6. Data schema generated automatically for the GeoMedia

3.4. Analysis Patterns Manager Module

The idea of attaching an Analysis Patterns Catalog in a CASE tool is to help the
database designer to find solutions that have already been used in similar GIS
applications, which will improve the quality of the final database.

An extensive collection of analysis patterns, that permits search in the existing
patterns and their use in a new project that is under development, are kept organized
by this module.

The Analysis Patterns Catalog and its Manager compose the Analysis Patterns
Manager Module. The Catalog Manager deals with the Analysis Patterns Catalog and
keeps its file system organized. The Catalog is a set of analysis patterns where each
analysis pattern is stored without dependence on another one. In fact, they are
grouped in a directory system, according to the pattern’s theme. Therefore, different
patterns proposing solutions for a specific class of problems are stored in distinct files
in the same directory.

Besides the schema supplied as solution by the Analysis Patterns, its
documentation is also stored so that the reasoning behind a solution can be searched
and analyzed. The analysis patterns’ documentation is stored in a XML file sharing
the same name of the file that has the pattern modeled. Both files are kept in the same
directory in order to make search an easier task.

In the ArgoCASEGEO tool the designer can add new patterns in the directory
structure. The designer itself defines the patterns’ themes hierarchy. Usually, there

isn’t an expressive number of analysis patterns available in an organization. Thus,
designer groups can easily organize their patterns catalog in a simpler way. Analysis
patterns can also be exchanged with partners from the same area. The tool also has
import/export functions. Figure 7 shows an example of Analysis Patterns Directory.

Fig. 7. An example of Analysis Patterns Directory

When the user needs to look for an analysis pattern, the manager builds a structure

of packages, containing all the patterns recorded, in the Graphical Module. The
Catalog Manager has a query mechanism which helps the designer to find analysis
patterns by keywords that occur in the pattern’s documentation.

An example of the Catalog’s graphical environment can be seen in figure 8. On the
left-hand side we can observe the directory hierarchy with the Hydrography pattern
highlighted. All the pattern’s components are listed below the theme’s name.
Opposite, the ArgoCASEGEO tool draws the schema related to the pattern. All the
classes and relationships that form the schema can be identified and examined.

Putting the knowledge from the schema together with the information stored in the
documentation we have enough means to understand and employ the pattern. As the
documentation is stored in XML format, its recovering becomes easier and simpler to
perform.

Figure 9 brings the Urban Street Mesh Pattern documentation source code. Every
field found in the pattern template is kept in a special tag. As an example, the field
Forces is represented by the pair of tags <forces> and </forces>. However, it might be
interesting if we could store each force in a single pair of tags instead of keeping all
the forces together. To solve this problem, a new pair of tag was created: <force> and
</force>. Thus, to get the Forces data, it’s only necessary to go through the
<force></force> tags.

All the fields from the pattern template are put in a more external pair of tags:
<documentation> </documentation>. This group of information constitutes the
Pattern’s documentation source code.

Fig. 8. The Analysis Patterns Catalog’s graphical environment representing

the analysis pattern Hydrography

4. Conclusion

The CASE tool use during the GIS applications development makes creation time
smaller, which, consequently, reduces cost. Moreover, the geographic databases
quality increases.

The ArgoCASEGEO tool was implemented to assist the designer to develop its
GIS applications with higher quality, following a design methodology based on a
conceptual model specific for geographic databases and on a reusable collection of
analysis patterns. The documentation produced during the project (e.g.: conceptual
schema and data dictionary) permits further references and visualization, which
makes future system maintenance easier and the immediate generation of new
versions of the application with the updates. The data dictionary storage in XML/XMI
format allows the schema exchange and can be used by other applications, for
example, analysis patterns discovery and search automatic tools. The Analysis Pattern
Manager Module organizes all the patterns recorded into a directory architecture,
which raises the efficiency while searching for a new analysis pattern to be used.

<?xml version="1.0" encoding="UTF-8"?>
<documentation>
 <problem>Which elements belong to a city’s street mesh?
 </problem>

<context>Every city in Brazil (and probably in the world)
has shown the same organization pattern, which is
structured by their pathways organization. The set
of pathways stretches generates an urban street
network.

 </context>
 <forces>

 <force>Each drive way stretch is considered a road
instance and should have an identification code
and a name. It normally should be divided into
several segments as well.

 </force>
 <force>A road stretch is a pathway segment between two

connections.
 </force>

 <force>The set formed by the connections (or terminal
points) and road stretches create an urban street
mesh.

 </force>
 </forces>

<participants>The StreetMesh class is a geographic
phenomenon represented by a complex spatial object
(represented by the u symbol). In this class many
attributes may be defined relating to the network
as a whole. Road is a conventional class
implemented normally as a table in a relational
DBMS. Each road is made of several road stretches,
which corresponds to a network arc. A road stretch
may be connected to other stretches but this
connection is represented by the Crossroad class’
instances, which are the network nodes. The
network elements’ manipulation operations may be
implemented as classes’ methods from StreetMesh,
RoadStretch and Crossroad depending on their
functionality.

 </participants>
<related_patterns>The Urban Street Mesh uses the “State

Across a Collection” pattern when modeling the
Road and Road Stretch phenomena. Moreover, a new
pattern project may be abstracted to create any
network structure model made by nodes and arcs,
whose topology’s relationship among its elements
is kept to make possible common network operations
such as the shortest path calculation (a value for
each is necessary), network navigation, distance
between nodes, etc.

 </related_patterns>
</documentation>

Fig. 9. The Urban Street Mesh Pattern documentation source code

The Reverse Engineering Module development, the implementation of a new
AGM for the OpenGIS feature model, and new analysis patterns mining and
specification in different domains are futures works.

Acknowledgements

This work has been partially supported by CNPq (Brazilian National Research
Council), the Brazilian governmental agency for scientific and technological
development.

References

1. Bédard, Y.: Visual modelling of spatial databases towards spatial extensions and UML.
Geomatica, v.53, n.2, (1999).

2. Borges, K. A. V.; Davis Jr, C. D. Laender, A.H.F.: OMT-G: an object-oriented data model
for geographic applcations. GeoInformatica, v.5, n.3 (2001).

3. Chrisman, N.: Exploring Geographic Information Systems. John Wiley & Sons (1997).
4. Coad, P.: Object Models: Strategies, Patterns, and Applications. 2nd ed. New Jersey,

Yourdon Press (1997).
5. Elmasri, R.; Navathe, S. B.: Fundamentals of Database Systems. Addison-Wesley (2000).
6. Fernandez, E. B.; Yuan, X.: An analysis pattern for reservation and use of reusable entities.

Procs. of Workshop in the Conference of Pattern Language of Programs – Plop (1999).
7. Fowler, M.: Analysis Patterns: reusable object models. Menlo Park, Addison Wesley

Longman (1997).
8. Goodchild, M. F.: Geographical data modelling, Computers & Geosciences, v.18, n.4 (1992).
9. Hay, D. C.: Data Model Patterns: conventions of thought. New York, Dorset House

Publishing (1995).
10. Isoware: CASE-Toll REGIS. (2002). Available in http://www.isoware.de/.
11.Johannesson, P.; Wohed, P.: The deontic pattern – a framework for domain analysis in

information systems design. Data & Knowledge Engineering, v.31 (1999).
12. Kösters, G. et al.: GIS-Application Development with GeoOOA. Int. Journ. GIS, v.11, n.4

(1997).
13. Lbath A., Pinet, F.: The Development and Customization of GIS-Based Applications and

Web-Based GIS Applications with the CASE Tool AIGLE. In Proc. 8th ACM GIS (2000).
14. Lisboa Filho, J.; Iochpe, C.: Specifying analysis patterns for geographic databases on the

basis of a conceptual framework. In Proc.7th ACM GIS, Kansas City (1999).
15. Lisboa Filho, J.; Iochpe, C.; Borges, K. A. V.: Analysis Patterns for GIS Data Schema

Reuse on Urban Management Applications. CLEI Electronic Journal v.5, n.2 (2002).
16. Lisboa Filho, J.; Iochpe, C.; Beard, K.: Applying Analysis Patterns in the GIS Domain. In

Proc. 10th Annual Colloquium of the SIRC, Dunedin, NZ (1998).
17. Lisboa Filho, J.; Pereira, M. A.: Desenvolvimento de uma ferramenta CASE para o Modelo

UML-Geoframe com Suporte para Padrões de Análise. In the proceedings of the IV
Simpósio Brasileiro de Geoinformática – GEOINFO`02, Caxambu (2002). (in Portuguese)

18. Object Management Group: Meta Objects Facility (MOF) Specification. (2000).
19. Parent, C. et al.: Spatio-temporal conceptual models: data structures + space + time. In

Proc.7th ACM GIS, Kansas City (1999).
20. Wohed, P.: Tool support for reuse of analysis patterns – a case study. In: A. H. F. Laender,

S. W. Liddle, V. C. Storey (eds): ER2000 Conference, LNCS 1920, 2000. Springer-Verlag
Berlin Heidelberg (2000).

