
Testing subgraphs in large graphs

Noga Alon ∗

Abstract

Let H be a fixed graph with h vertices, let G be a graph on n vertices and suppose that at
least εn2 edges have to be deleted from it to make it H-free. It is known that in this case G
contains at least f(ε,H)nh copies of H. We show that the largest possible function f(ε,H) is
polynomial in ε if and only if H is bipartite. This implies that there is a one-sided error property
tester for checking H-freeness, whose query complexity is polynomial in 1/ε, if and only if H is
bipartite.

1 Introduction

1.1 Preliminaries

All graphs considered here are finite, undirected, and have neither loops nor parallel edges.
Let P be a property of graphs, that is, a family of graphs closed under graph isomorphism. A

graph G with n vertices is ε-far from satisfying P if no graph G̃ with the same vertex set, which
differs from G in no more than εn2 places, (i.e., can be constructed from G by adding and removing
no more than εn2 edges), satisfies P . An ε-tester for P is a randomized algorithm which, given the
quantity n and the ability to make queries whether a desired pair of vertices of an input graph G

with n vertices are adjacent or not, distinguishes with probability at least, say, 2
3 between the case

of G satisfying P and the case of G being ε-far from satisfying P . Such a tester is a one-sided tester
if when G satisfies P the tester determines that this is the case (with probability 1). Obviously,
the probability 2

3 appearing above can be replaced by any constant smaller than 1, by repeating the
algorithm an appropriate number of times.

The property P is called strongly-testable, if for every fixed ε > 0 there exists a one-sided ε-tester
for P whose total number of queries is bounded only by a function of ε, which is independent of the
size of the input graph.
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1.2 The main result

For a fixed graph H (with at least one edge), let PH denote the property of being H-free. Therefore,
G satisfies PH iff it contains no (not necessarily induced) subgraph isomorphic to H. It is known that
for each fixed graph H, the property PH is strongly-testable. This is proved (implicitly) in [1], see
also [2]. The proof in [1] relies on the regularity lemma of Szemerédi [21], and thus provides a one-
sided ε-tester for PH whose query-complexly is bounded by a function which, though independent of
the size of the input graph G, has a huge dependency on ε and the size of H. For some graphs H,
however, there are more efficient testers; for example, if H is a single edge, it is easy to see that there
is a one-sided ε tester for PH , which makes only O(1/ε) queries. Our main result here is a precise
characterization of all graphs H for which there are one-sided ε-testers whose query-complexity (and
running time) is polynomial in 1/ε.

Theorem 1 Let H be fixed graph on h vertices.
(i) If H is bipartite, then for every ε > 0 there is a one-sided ε-tester for PH whose query-complexity
(and running time) are bounded by

O(h2(
1
2ε

)h
2/4).

(ii) If H is non-bipartite, then there exists a constant c = c(H) > 0 such that the query-complexity
(and running time) of any one-sided ε-tester for PH is at least

(
c

ε
)c log(c/ε).

Thus, for example, for all sufficiently small ε > 0 and all sufficiently large n, it is much easier to test
if an input graph G on n vertices is K100,100-free, than to test if it is, say, C5-free.

1.3 Related work

The general notion of property testing was first formulated by Rubinfeld and Sudan [20], who were
motivated mainly by its connection to the study of program checking. The study of the notion of
testability for combinatorial objects, and mainly for labeled graphs, was introduced by Goldreich,
Goldwasser and Ron [11], who showed that all graph properties describable by the existence of a
partition of a certain type, and among them k-colorability, have efficient testers. The fact that k-
colorability is strongly testable is, in fact, implicitly proven already in [6] for k = 2 and in [17] (see
also [1]) for general k, using the Regularity Lemma of Szemerédi [21], but in the context of property
testing it is first studied in [11], where far more efficient algorithms are described. These have been
further improved in [4].

In [2] it is shown that every first order graph property without a quantifier alternation of type
“∀∃” has testers whose query complexity is independent of the size of the input graph (but has a huge
dependence on ε). These properties contain the properties PH whose query complexity is studied
here.
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The notion of property testing has been investigated in other contexts as well, including the
context of regular languages, [3], functions [9] , hypergraphs [8] and other contexts. See [18] for a
survey on the topic.

1.4 Organization

The main result consists of two parts. The first one (Theorem 1, part (i)) is not difficult, and relies
on known techniques in Extremal Graph Theory dealing with the problem of Zarankiewicz. These
techniques, initiated in [16], are applied in Section 2 to show that for any bipartite H, any graph G

which is ε-far from being H-free, contains many copies of H. Therefore, the ε-tester can find a copy
of H in any such G with high probability, without making too many queries.

To prove the second part of Theorem 1 we have to construct, for any non-bipartite graph H and
any small ε > 0, a graph G which is ε-far from being H-free and yet contains relatively few copies of
H. The proof of this part, described in Section 3, is more difficult, and applies some properties of
graph homomorphisms as well as certain constructions in additive number theory, based on (simple
variants of) the construction of Behrend [5] of dense subsets of the first n integers without three-term
arithmetic progressions.

The final Section 4 contains some concluding remarks and open problems.
Throughout the paper we assume, whenever this is needed, that the number of vertices n of the

graph G is sufficiently large. In order to simplify the presentation, we omit all floor and ceiling signs
whenever these are not crucial.

2 Bipartite subgraphs

A homomorphism of a graph H into a graph G is a function from the vertex set of H to that of G,
so that adjacent vertices are mapped into adjacent vertices. Note that the function does not have
to be injective. Thus, for example, every bipartite graph can be mapped homomorphically into an
edge. More generally, a graph is k-colorable if and only if it admits a homomorphism into a complete
graph on k vertices. It is more convenient to count the number of homomorphisms of a graph H into
a graph G, than to count the number of subgraphs of G isomorphic to H. The next lemma shows
that every dense graph contains many copies of any bipartite graph. The proof is based on known
techniques, initiated in [16].

Lemma 2.1 For every two integers s ≥ t ≥ 1 and for every graph G = (V,E) on n vertices with at
least εn2 edges, the number of homomorphisms from a labelled copy of the complete bipartite graph
H = Ks,t into G is at least (2ε)stns+t.
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Proof: Let d1 ≥ d2 ≥ . . . ≥ dn be the degrees of the vertices of G, and let d = (
∑n
i=1 di)/n ( ≥ 2εn)

denote the average degree. The number of homomorphisms from a labelled star K1,t into G is

n∑
i=1

dti ≥ nd
t ≥ n(2εn)t = (2ε)tnt+1,

where the first inequality follows from the convexity of the function zt. Put N = nt, and classify
the homomorphisms above into N classes, according to the ordered set of images of the t leaves
of the star. Let D1, D2, . . . , DN be the numbers of homomorphisms of the N possible types. Note
that each ordered s-tuple of (not necessarily distinct) homomorphisms of the same type defines a
homomorphism of H = Ks,t into G by mapping the star whose apex is vertex number i of the first
color class of Ks,t according to the homomorphism number i in the s-tuple. It follows that the total
number of homomorphisms of H into G is at least

N∑
i=1

Ds
i ≥ N((2ε)tn)s = (2ε)stns+t,

where the first inequality follows from the convexity of the function zs. This completes the proof.

Corollary 2.1 For every fixed ε > 0, and every fixed two integers s ≥ t ≥ 1, and for any graph G

with n vertices and at least εn2 edges, the number of subgraphs of G isomorphic to H = Ks,t is at
least

(1 + o(1))

(
n

s

)(
n

t

)
(2ε)st

if s > t, and at least

(
1
2

+ o(1))

(
n

s

)(
n

t

)
(2ε)st

for s = t, where the o(1) terms tend to 0 as n tends to infinity.

Proof: The number of homomorphisms of H into G which are not injective is at most O(ns+t−1) =
o(ns+t), and the result thus follows from the previous lemma, after dividing by the number of
automorphisms of H.

It is worth noting that as shown by the random graph G(n, 2ε) on n labelled vertices in which
each pair of vertices, randomly and independently , is an edge with probability 2ε, the assertion of
the last corollary is tight.
Proof of Theorem 1, part (i): Let H be a bipartite graph with h = s+ t vertices (and at least
one edge), and suppose it has a bipartition with color classes of sizes s and t. If G = (V,E) is ε-far
from being H-free then it obviously has at least εn2 edges. Therefore, by Corollary 2.1, it has at
least

(
1
2

+ o(1))

(
n

s

)(
n

t

)
(2ε)st
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copies of H. Thus, if we choose, randomly and independently, say,

10/(2ε)st ≤ 10(
1
2ε

)h
2/4

pairs of disjoint sets of sizes s and t, and check if they form a copy of Ks,t (and hence contain a copy
of H), the probability to find a copy of H exceeds 2/3. The ε-tester will thus simply decide that G
is H-free iff it finds no copy of H. If G is indeed H-free, then the tester will surely report that’s the
case. If it is ε-far from being H-free, then the probability the tester reports it is not H-free exceeds
2/3. This completes the proof of Theorem 1, part (i).
Remark: By the discussion above, every graph G on sufficiently many vertices with a quadratic
number of edges contains a copy of every fixed bipartite graph. Therefore there is a very simple
and efficient two-sided error algorithm for testing PH , for every fixed bipartite graph H, based on
estimating the number of edges in the input graph G by sampling. The proof above is needed as we
deal here with one-sided error testers. See also Section 4 for more details.

3 Non-bipartite subgraphs

In this section we apply techniques from additive number theory, based on the construction of
Behrend [5] of dense sets of integers with no three-term arithmetic progressions, together with some
properties of graph homomorphisms, to prove part (ii) of Theorem 1.

A linear equation with integer coefficients

∑
aixi = 0 (1)

in the unknowns xi is homogeneous if
∑
ai = 0. If X ⊆ M = {1, 2, . . . ,m}, we say that X has

no non-trivial solution to (1), if whenever xi ∈ X and
∑
aixi = 0, it follows that all xi are equal.

Thus, for example, X has no nontrivial solution to the equation x1 − 2x2 + x3 = 0 iff it contains no
three-term arithmetic progression.

Lemma 3.1 For every fixed integer r ≥ 2 and every positive integer m, there exists a subset X ⊂
M = {1, 2, . . . ,m} of size at least

|X| ≥ m

e10
√

logm log r

with no non-trivial solution to the equation

x1 + x2 + . . .+ xr = rxr+1. (2)

Proof: Let d be an integer (to be chosen later) and define

X = {
k∑
i=0

xid
i | xi <

d

r
(0 ≤ i ≤ k) ∧

k∑
i=0

x2
i = B},
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where k = blogm/ log dc − 1 and B is chosen to maximize the cardinality of X. If x1, . . . xr+1 ∈ X
satisfy (2) and

xj =
k∑
i=0

xi,jd
i, for 1 ≤ j ≤ r + 1

then, for every i, 0 ≤ i ≤ k
xi,1 + xi,2 + . . .+ xi,r = rxi,r+1.

By the convexity of the function f(z) = z2 this implies that

x2
i,1 + x2

i,2 + . . .+ x2
i,r ≥ rx2

i,r+1,

and the inequality is strict unless all (r + 1) numbers xi,j are equal. Thus, X has no nontrivial
solution to (2). The size of X satisfies

|X| ≥ m

d2rk+1(k + 1)d2

r2

Take d = be
√

logm log rc to conclude (with room to spare) that

|X| ≥ m

e10
√

logm log r
.

We next apply the construction in the last lemma to construct, for every odd integer r + 1 ≥ 3,
a relatively dense graph consisting of pairwise edge disjoint copies of Cr+1- the cycle of length r+ 1,
which does not contain too many copies of Cr+1. Let m be an integer, let X ⊂ {1, 2, . . .m} be a set
satisfying the assertion of Lemma 3.1, and define, for each 1 ≤ i ≤ r + 1, Vi = {1, 2, . . . im} where,
with a slight abuse of notation, we think on the sets Vi as being pairwise disjoint. Let T = T (r,m) be
the r+ 1-partite graph on the classes of vertices V1, V2, . . . , Vr+1, whose edges are defined as follows.
For each j, 1 ≤ j ≤ m, and for each x ∈ X the vertices j ∈ V1, j+x ∈ V2, j+2x ∈ V3, . . . , j+rx ∈ Vr+1

form a cycle of length r + 1 in this order. Therefore, {j + ix, j + (i+ 1)x} is an edge between Vi+1

and Vi+2 for all 1 ≤ j ≤ m,x ∈ X and 0 ≤ i ≤ r− 1, and {j, j + rx} is an edge between V1 and Vr+1

for all 1 ≤ j ≤ m,x ∈ X.

Lemma 3.2 For every even integer r ≥ 2, and every m, the graph T (r,m) defined above has (r +
1)(r + 2)m/2 vertices, (r + 1)m|X| ≥ m2

e10
√

logm log r
edges, and precisely m|X| ( < m2) copies of the

cycle Cr+1.

Proof: The number of vertices and edges of T (r,m) is obviously as stated, as the m|X| cycles
appearing in its construction are pairwise edge-disjoint. We thus only have to show that it does
not contain any additional cycles Cr+1 besides those used in the construction. Note that the graph
obtained from T by deleting all edges connecting V1 and Vr+1 is bipartite, and hence contains no
odd cycles. It is thus easy to check that every copy of Cr+1 in T must contain an edge between Vi
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and Vi+1 for each 1 ≤ i ≤ r, and one edge between Vr+1 and V1. Therefore, there are j ≤ m and
elements x1, x2, . . . , xr+1 ∈ X, such that the vertices of the cycle are j ∈ V1, j+x1 ∈ V2, j+x1 +x2 ∈
V3, . . . , j + x1 + x2 + . . .+ xr ∈ Vr+1 and x1 + x2 + . . .+ xr = rxr+1. However, by the definition of
X this implies that x1 = x2 = . . . = xr+1, implying the desired result.

An s-blow-up of a graph K = (V (K), E(K)) is the graph obtained from K by replacing each
vertex of K by an independent set of size s, and each edge of K by a complete bipartite subgraph
whose vertex classes are the independent sets corresponding to the ends of the edge.

Lemma 3.3 Let H = (V (H), E(H)) be a graph with h vertices, let K = (V (K), E(K)) be another
graph on at most h vertices, and let T = (V (T ), E(T )) be an s-blow-up of K. Suppose there is a
homomorphism

f : V (H) 7→ V (K)

from H to K and suppose s ≥ h. Let R ⊂ E(T ) be a subset of the set of edges of T , and suppose
that each copy of H in T contains at least one edge of R. Then

|R| ≥ |E(T )|
|E(K)||E(H)|

>
|E(T )|
h4

.

Proof: Let g : V (H) 7→ V (T ) be a random injective mapping obtained by defining, for each vertex
v ∈ V (K), the images of the vertices in f−1(v) ∈ V (H) randomly, in a one-to-one fashion, among all
s vertices of T in the independent set that corresponds to the vertex v. Obviously, g maps adjacent
vertices of H into adjacent vertices of T , and hence the image of g contains a copy of H in T . Each
edge of H is mapped to one of the corresponding s2 edges of T according to a uniform distribution,
and hence the probability it is mapped onto a member of R does not exceed |R|/s2. It follows
that the expected number of edges of H mapped to members of R is at most |R||E(H)|

s2
, and as, by

assumption, this random variable is always at least 1, we conclude that |R||E(H)|
s2

≥ 1. The desired
result follows, since s2 = |E(T )|/|E(K)|.

Lemma 3.4 For every fixed, non-bipartite graph H = (V (H), E(H)) on h vertices, there is a con-
stant c = c(H) > 0, such that for every positive ε < ε0(H) and every integer n > n0(ε), there is
a graph G on n vertices which is ε-far from being H-free, and yet contains at most (ε/c)c log (c/ε)nh

copies of H.

Proof: Let r + 1 denote the length of the shortest odd cycle of H. Let K be a subgraph of H,
such that there is a homomorphism of H to K and K has the minimum possible number of edges
among all subgraphs of H satisfying this property. The graph K is called the core of H (see [15]),
a notion that has some interesting properties. Note that K must contain a cycle of length r + 1,
as a homomorphic image of any odd cycle must contain an odd cycle which is not longer, and K,
which is a subgraph of H, does not contain odd cycles of length shorter than r + 1. Let k denote
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the number of vertices of K, and let us number its vertices {v1, v2, . . . , vk} such that the first r + 1
vertices v1, v2, . . . vr+1 form a cycle in this order. By the minimality of K, every homomorphism of
K into itself must be an automorphism, implying that in any homomorphism of H into K there is
a cycle of length r + 1 in H which is mapped onto the cycle of K on the first r + 1 vertices.

Given a small ε > 0, let m be the largest integer satisfying

ε ≤ 1

h8e10
√

logm log h
.

It is easy to check that this m satisfies

m ≥ (
c

ε
)c log(c/ε)

for an appropriate c = c(h) > 0. Let X ⊂ {1, 2, . . . ,m} be as in Lemma 3.1. We next define a
graph F from K in a way similar to the one described in the paragraph preceding Lemma 3.2. Let
V1, V2, . . . Vk be pairwise disjoint sets of vertices, where |Vi| = im and we denote the vertices of Vi by
{1, 2, . . . , im}. For each j, 1 ≤ j ≤ m, for each x ∈ X and for each edge vpvq of K, let j+(p−1)x ∈ Vp
be adjacent to j + (q − 1)x ∈ Vq. Note that the induced subgraph of F on the union of the first
(r + 1) vertex classes, is precisely the graph T (r,m) considered in Lemma 3.2. Finally, define

s = b n

|V (F )|
c = b 2n

k(k + 1)m
c

and let G be the s-blow-up of F (together with some isolated vertices, if needed, to make sure that
the number of vertices is precisely n).

Since G consists of pairwise edge disjoint s-blow-ups of K it follows, by Lemma 3.3, that one has
to delete at least a fraction of 1/h4 of its edges to destroy all copies of H in it. By the definition of
m and the construction of X this implies, after taking the edge-density of G into account, that G is
ε-far from being H-free.

We next claim that any copy of H in G must contain a cycle of length r + 1 in the induced
subgraph of G on the first (r + 1) vertex classes of it. To see this, note that there is a natural
homomorphism of G onto K, obtained by first mapping G homomorphically onto F (by mapping
each class of s vertices into the vertex of F to which it corresponds), and then by mapping all vertices
of Vi to vi. This homomorphism maps each copy of H in G homomorphically into K, and hence,
using the discussion in the first paragraph of the proof, maps some cycle C of length r+1 in the copy
of H considered onto the cycle on the first r+ 1 vertices of K. The definition of the homomorphism
thus implies the assertion of the claim.

By Lemma 3.2 it follows that the number of such cycles is at most m2sr+1 ≤ nr+1/m, and this
implies that the total number of copies of H in G does not exceed nh/m, implying the desired result.

Proof of Theorem 1, part (ii): Let H be a non-bipartite graph on h vertices and suppose ε > 0.
Given a one-sided tester for testing H-freeness we may assume, without loss of generality, that it
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queries about all pairs of a randomly chosen set of vertices (otherwise, as explained in [2], every time
the algorithm queries about a vertex pair we make it query also about all pairs containing a vertex
of the new pair and a vertex from previous queries. This may only square the number of queries.
See also [13] for a more detailed proof of this statement.) As the algorithm is a one-sided-error
algorithm, it can report that G is not H-free only if it finds a copy of H in it. By Lemma 3.4 there
is a graph G on n vertices which is ε-far from being H-free and yet contains at most (ε/c)c log (c/ε)nh

copies of H. The expected number of copies of H inside a randomly chosen set of x vertices in such
a graph is at most

(x
h

)
(ε/c)c log (c/ε), which is far smaller than 1 unless x exceeds (c′/ε)c

′ log(c′/ε) for
some c′ = c′(H) > 0, implying the desired result.

4 Concluding remarks and open problems

We have characterized all graphs H for which the property PH of being H-free has a one-sided tester
whose query complexity is polynomial in (1/ε). The situation for two-sided error algorithms is more
complicated, and although the characterization for this case may be the same, this remains open.
As mentioned at the end of Section 2, for every bipartite graph H there is a trivial (two-sided-error)
algorithm for testing PH which makes only O(1/ε) queries (and this number can be easily seen to be
optimal, up to the multiplicative constant). Indeed, the algorithm only has to sample random edges
of G and estimate if the total number of edges is Ω(εn2). Since every graph with a quadratic number
of edges contains every fixed bipartite graph, this indeed provides the required tester. On the other
hand, it is easy to see that any one-sided tester for testing, say, K1000,1000-freeness must ask far more
than O(1/ε) queries, as there are graphs which are ε-far from being K1000,1000-free and yet contain
only O(ε106

n2000) copies of K1000,1000. The problem of finding nontrivial lower bounds for the best
possible query complexity of two-sided error testers for the property PH for various graphs H seems
interesting (and difficult).

It would be interesting to improve the upper bound for the query complexity of the best one-sided
tester for PH for non-bipartite graphs H. At the moment, the only known upper bound is a tower
type function of 1/ε. Even the special case H = K3 would be of considerable interest, because of
its connection to the problem of the maximum possible density of a subset of {1, 2, . . . , n} with no
three-term arithmetic progression. This problem received a considerable amount of attention over
the years, see [19], [14], [22], [7]. A proof that any graph on n vertices which is ε-far from being
triangle-free contains at least, say, 2−c/ε

2
n3 triangles for some fixed c > 0 would suffice to improve

the best known bound for the arithmetic progression problem.
Another intriguing problem is that of estimating the best possible (one-sided and two-sided)

query complexity of the property P ∗H of not containing any induced copy of a fixed graph H. We
can show that for certain fixed graphs H (like a star with two leaves) there are one-sided testers for
P ∗H whose query complexity is polynomial in 1/ε, whereas for some other graphs H (like a star with
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three leaves) there are no such efficient testers. It would be interesting to study this problem further.
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