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Graphing Calculator Intensive Calculus:
A First Step in Calculus Reform

Bert K Waits and Franklin Demana, Department of Mathematics, The Ohio State Uni-
versity, 231 West 18th Avenue, Columbus, OH  43210

Computer generated numerical, visual, and symbolic mathematics is revolutionizing the teaching and learning
of calculus.  The computer can be a desktop computer with computer algebra and graphing software or a pocket
computer with built-in software (graphing calculator).  The content of calculus is changing—less time is spent
on paper and pencil methods and more time is spent on applications, problem solving, and concept
development (MAA, 1986, 1987, and 1990).  And teaching methods are also dramatically changing—moving
toward an investigative, exploratory approach.

We believe that graphing calculators are the appro-
priate computer tools for most students today (1993)
because they are inexpensive (some less than $50),
user-friendly, powerful (some built-in software on
newer graphing calculators like the TI-85 and HP-48
is phenomenal), small, and personal.  In short, a
graphing calculator intensive approach is implementable
for all students.  Expensive and logistically complex
computer laboratories are not necessary to teach a
computer intensive calculus course.  Any classroom
today can become a computer laboratory with stu-
dent use of graphing calculators (Demana and Waits,
1992a).

The Calculator and Computer Enhanced Calculus
(C3E) calculus reform project

We approach the incorporation of hand-held com-
puter technology in calculus as a natural evolution of
our positive experience in large scale implementation
of hand-held technology with all students in two
projects.  First, with calculators at Ohio State in the
seventies [Leitzel and Waits, 1976] and then with
graphing calculators in our highly regarded C2PC
project in the eighties (See The Calculator and Com-
puter PreCalculs Project (C2PC):  What Have We
Learned in Ten Years?, in press).  Our C2PC textbook,
Precalculus Mathematics, A Graphing Approach is recog-
nized as being the first widely adopted high school
and college textbook to require graphing technology
and is now in the third edition (Demana, Waits, and
Clemens, 1994).

Our C3E calculus reform project is based on what we
learned in our many years with the C2PC project.
Fundamentally we learned that the principal of incre-
mental change should guide our approach to calculus
curriculum reform and the related integration of
computer technology.  We take a familiar body of
calculus material and make the assumption that every
student has an inexpensive, user-friendly graphing
calculator for both in-class activities and for home-

work.  We use graphing calculators as scientific calcu-
lators (they are the best we have every used), as
“tools” for computing derivatives and integrals nu-
merically, as computers for programming (certain
“tool box” programs like Simpson’s method and
Euler’s method), as numerical “solvers” (e.g.  root
and intersection finders), and for computer visualiza-
tion using their built-in graphing software (for ex-
ample graphing derivatives, functions defined by
integrals, and power series).

We believe technology will not be routinely used by
all calculus students (or required by professors) until
it costs less than $100, is user-friendly, and fits in a
backpack or purse.  Our project assumes that every
student has an inexpensive graphing calculator.  The
C3E materials are reflected in a new textbook, Calcu-
lus, A Graphing Approach (Finney, Thomas, Demana,
and Waits, 1994) which requires graphing calculators.
Our project does not assume that every student has a
computer algebra system (like DERIVE     or
Mathematica).  However, in a few years, computer
algebra will no doubt become much cheaper and they
may be a reasonable assumption.  Colleagues who
become comfortable with graphing calculators today
will easily make the transition to the powerful and no
doubt inexpensive computer algebra systems of the
future (Demana and Waits, 1992b).

Our philosophy of using graphing calculator numeri-
cal and visual methods to enhance the teaching and
learning of calculus can be summarized by the follow-
ing three points.

I. Do analytically (paper and pencil), then
SUPPORT numerically and graphically (with
a graphing calculator)

II. Do  numerically and  graphically (with a
graphing calculator), then CONFIRM ana-
lytically (with paper and pencil)

III. Do numerically and graphically, because
other methods are IMPRACTICAL or IM-
POSSIBLE!
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In several years, we will certainly include computer
algebra systems in our required technology “tool
box” as the cost of these powerful systems come
down.  We are also convinced that required student
use of graphing calculators today promotes a coop-
erative learning  environment  where calculus  can be
presented  as an exciting, lively subject where student
investigations (we call them EXPLORES) become rou-
tine.

We illustrate our three point philosophy with four
examples.

Point I:  Use graphing calculators to visually support
results first obtained by analytic calculus paper and
pencil manipulations.
These “support graphically” activities are part of the
“bread and butter” of a first step towards calculus
reform.  Here we take old familiar topics and support
them with technology and, at the same time, we add
to students intuitive understanding of calculus con-
cepts.

Problem 1.  Use the limit definition and show that
lim f(x) = -1, where f(x) = x2 - 2x.
x→→→→→1
The formal limit definition has remained a very mys-
terious concept to students.  In fact, it is not commonly
taught to freshman calculus students in many univer-
sities.  The limit concept can be dramatically en-
hanced by computer graphing and related numerical
analysis.  Analytically it can be determined that given
any ε >0,  choosing δ = +ε  will satisfy the usual limit
definition when applied to Problem 1.  Here a graph
can be much more instructive.

Figure 1.  The graph of  f(x) = x2 - 2x.

The graph of f(x) = x2 - 2x (Figure 1) clearly indicates
the continuous nature of the function (so the limit at
x = 1 can be calculated  by evaluating f(1)).  However,
the analytic “limit proof” of this fact is not so  clear.  A
computer generated “magnified” graph is very valu-
able.  In Figure 2, we illustrate the limit definition for
a “given ε” of ε = 0.01.  The student adds the “target”
lines y= -1 ± ε or, in this case, y = -1 - .01 = -1.01 and y
= -1 + .01 = -0.99.  Then a graphing ZOOM procedure

is used to obtain the graph shown.

Figure 2.  The graph of  f(x) = x2 - 2x, and lines
y = -1,  y = -1 - .01,  y = -1 + .01
for 0.8 ≤≤≤≤≤ x ≤≤≤≤≤ 1.2 and -1.02 ≤≤≤≤≤ y ≤≤≤≤≤ -0.98

It becomes clear that if x is kept between 0.9 and 1.1,
the function values f(x) are always between -1.01 and
-0.99.  That is, if |x-1|<δ=0.1, then |f(x)-(-1)|< ε=0.01.
This fact strongly suggests that δ = 0.1 = √√√√√0.01 = √√√√√ε is
the required delta value in terms of epsilon in the
analytic limit analysis.

This example is very easy to deal with because the
limit point was at the minimum value of the function.
The principal of local linearity will help for other values.
For example, suppose the problem is changed to
 “Use the limit definition to show that

lim f(x) = -0.75 .”
x→→→→→1.5

Figure 3 shows a magnified computer ZOOM-IN
view of the graph in Figure 1 at the point (1.5, f(1.5))
and at another nearby point.

Figure 3.  Zoom-in views of the graph of y = x2 - 2x near the
point (1.5, -0.75).

Notice that the graph of f(x) = x2 - 2x, for all practical
purposes, is a straight line with slope m, where
m = (-0.75 - (-0.7428061224))/(1.5 - 1.5071428571)
which is very close to 1 (actually 1.00714285715).  That
is, the function y + 0.75 = x - 1.5 (or  y = x - 2.25) closely
approximates the quadratic function near x = 1.5.  The
fact that the slope is 1 strongly suggests that for any
e>0, sufficiently small, then for all practical purposes,
we can choose δ=e in the limit analysis of this ex-
ample.  Computer graphing can make the limit defi-
nition far more meaningful than past analytic paper
and pencil “hocus-pocus.”  One can go on and com-
plete the analytic analysis if desired.  This could be an
example of “do graphically, confirm analytically.”
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Point II:  Use graphing calculators as tools to actu-
ally do calculus “manipulations” then confirm the
results using analytic methods of calculus.  Thus
making the need for paper and pencil calculus ma-
nipulations less important.

Problem 2.  The “brief case” box with lid problem
A box with lid is constructed from a 20 by 30 inch sheet
of material in the following manner .  First the material
is folded in half forming a 20 by 15 inch double sheet.
Then four equal squares of side-length x are removed
from each corner of the folded sheet.  The material is
then unfolded and a box with sides and a lid are
formed by folding along the dotted lines shown in
Figure.4.

The following questions are typical of the investiga-
tions we ask  students to deal with routinely.

a.  Determine an algebraic representation of the
volume of the “brief case” box with lid in
terms of x.

b.  What values of x make sense in this problem
situation?

c.  Draw a complete graph of the volume of the
box in terms of x.

d.  Find the maximum volume of the box.  What
is the associated side length of the removed
square?   Discuss the accuracy of your solu-
tion?

e.  Confirm your results using paper and pencil
analytic methods of calculus.

Figure 5A displays the graphs of the function
y = V(x) = 2x(15 - 2x)(20 - 2x) and its first derivative
(using the numerical derivative feature).  The graph of
y = V(x) for 0 < x < 7.5 is the graph of the box volume
problem situation.  The figure also shows that a “solver”
(for example, ROOT on the TI-82 or TI-85) has been
applied to the derivative graph to find the zero of the
derivative.  Figure 5B shows the function value at the
“root” of  the derivative (which is the local maximum
value of  y = V(x)).

Thus the student can apply the theory of calculus
(“look for possible local extrema where the derivative
is zero”) and solve this problem to a very high degree

of accuracy using a graphing calculator.  Students can
then be required to CONFIRM the result analytically
by computing the derivative and solving the resulting
equation using ordinary paper and pencil calculus.  A
lively discussion will ensue when students are asked
to write about and contrast both solution methods.

An interesting related exercise involving a “simple”
equation is given by the following variation of prob-
lem 2:  Find the side length of a removed square to
obtain a brief case box with volume 455 cubic inches.
Can you confirm your results using analytic meth-
ods?  If so, do it!  Can you find the exact solution?  If
so, do it!   Write a paragraph outlining the issues
involved in applying an analytic method versus ap-
plying a numerical/graphical method.

Figure 4.  Constructing the “brief case” box with lid

Figure 5.  Part A.  The graphs of y = V(x) and y = V’(x) = NDer (V, x)   Part B.  The (local) maximum value of y = V(x)
is V = 758.07562 (accurate to all digits shown)
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Point III:  Solve easily stated and understood prob-
lems that calculus students can’t solve with paper
and pencil analytic methods.  And some that have no
analytic solution.  Illustrate mathematical ideas and
applications in concrete geometric settings.  We ex-
plore, investigate, and make and test mathematical
conjectures.

Problem 3: Visually illustrate the Fundamental Theo-
rem of Calculus.  (Demana & Waits, in press)

Background: Consider a continuous function f de-
fined on an interval [a, b] (any  continuous function
even those without closed form antiderivatives).  The
Fundamental Theorem of Calculus guarantees the

existence of a function F, namely F x f t dt
a

x
( ) ( )= z with

the property that F’(x)=f(x).  The problem is that, until
today, students could “find” these antiderivatives
that we know exist for only a relative few contrived
functions f.  And these contrived functions are what
make up typical calculus textbook integration prob-
lems!  However, today with graphing calculators all
students can “see” the antiderivative F easily for any
continuous function (and those with continuous ex-
tensions) even if we can’t write the explicit “closed
form” analytic expression.  All that is needed is a way

of graphing F x f t dt
a

x
( ) ( )= z .  The TI-82 and TI-85

have this as a built-in feature.  Other graphing calcu-
lators can be programmed with this feature as a “tool
box” item.  See the Graphing Calculator and Computer
Algebra System Resource Manual  for Calculus that ac-
companies our textbook for programs for the TI-81,
Sharp 9200 and 9300, Casio, and Hewlett Packard
graphing calculators (Demana & Waits, 1994).

Solution:   The Fundamental Theorem of Calculus
implies that

D F x D f t dt f xx x a

x
[ ( )] ( ) ] ( )= =z

This is a TI-82 or TI-85 activity.  Graph the function
y = FnInt (t2, t, {-2,0,2,3}, x)  in the [-5, 5] by  [-10, 10]
window (-5 ≤≤≤≤≤x ≤≤≤≤≤ 5, -10 ≤≤≤≤≤y ≤≤≤≤≤ 10).  This produces four

graphs of F x t dt
a

x
( ) = z 2 for a = -2, 0, 2, 3.  Note the use

of a list in the lower limit of integration position.
Students can conjecture about what are the analytic
forms of the antiderivatives that they “see.”  And they
can test their conjecture by “overlaying” the analytic
expression (eg DRAWF x3/3+C ).  EXPLORE: deter-
mine C for the above four antiderivatives and explain
how C and a are related, etc.

Figure 6 makes the constant of integration and family
of antiderivatives concept come alive for students.
Here are “connected” slope fields!  Static figures do

not do this activity justice.  This dynamic activity
must be “experienced” by the student.

Next we graph the numerical derivative of this func-
tion defined by the integral to visually illustrate the
fundamental relationship that the derivative of F(x) is
f(x) as claimed by the Fundamental Theorem of Cal-
culus.  That is, we show that

 D f t dt f xx a

x
( ) ( )z = for any continuous function f.

The graph of NDer (FnInt (sin(t)/t, t, 0, x), x) on the TI-

82 or TI-85 is the graph of y D
t

t
dtx

t
= L

NM
O
QPz sin

0
which

should be y
x

x
= sin( )

.  Figure 7 shows this is indeed

the case!  Note: we regard the integrand to be the
continuous extension of sin(x)/x.  TRACE can be used
to compare the two function values for supporting
numerical evidence.  This activity is a powerful visu-
alization!

Figure 7.  Graphs of y D
t

t
dtx

t
= L

NM
O
QPz sin

0
and

y
x

x
= sin( )

  in [-10,10] by [-1,2] appear to be the same.

Figure 6.  A graph of a family of antiderivatives of x2 in
[-5, 5] by [-10, 10]
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The predator-prey problem
The classic Volterra predator-prey problem becomes
a routine exercise using a graphing calculator like the
TI-85.  The model assumes the rates of population
growth of predator-prey populations (foxes and rab-
bits) are related by the “highly coupled” first order
differential equation system given by

dF/dt = (-0.5 + 0.02R)F
dR/dt =(1 - 0.1F)R
where y = F(t) is the population of foxes at time t
and y = R(t) is the population of rabbits at time t
(t measured in years).

Problem 4.  Suppose there are 10 foxes and 50 rabbits
at time t = 0 (today).  What are the population graphs?
How are the populations related over time? (Here a
picture is as good as an analytic result!)  Suppose the
initial populations are changed.  How do the popula-
tion graphs change?

Solution:  This simple system has no closed form
solution.  Numerical methods are necessary.  Here is a TI-
85 solution using its amazing built-in differential
equation solver with graphics interface.

The graphs in Figures 8 and 9 show the population
graphs over a 40 year time period with the given
initial populations and with a change in the initial
populations to 4 foxes and 20 rabbits.

Figure 8.  The fox and rabbit populations for 40 years
starting with 10 foxes and 50 rabbits

Figure 9.  The fox and rabbit populations for 40 years
starting with 4 foxes and 20 rabbits

Figure 10 shows the population patterns for various
initial conditions in one view (orbits - the phase plane
solution).  These orbits are found by plotting the
points (F(t), R(t)) for 6 different initial conditions (the
beginning populations) which the TI-85 does auto-
matically with an axes change selection.

Figure 10.  A phase plane solution to the fox-rabbit
predator-prey problem

The student can be led to conjecture that perhaps
there is a set of initial conditions that result in stable
(constant) populations over time.  The graphs suggest
that if the starting population is 10 foxes and 25 rabbits
then the populations will be stable.  This result can
then be confirmed analytically using paper and pencil
calculus (when does dF/dt = 0?, etc.) and supported
graphically.

Summary

Hopefully we have made the case that the types of
graphing calculator activities represented by the four
problems in this paper provide insight and under-
standing for all students in ways not possible with
paper and pencil methods alone.  These types of
activities will also empower and excite calculus stu-
dents in ways not possible with paper and pencil
methods alone.

We readily admit that we have not yet made all the
hard decisions regarding what content should be
modified or deleted from the current calculus cur-
riculum.  The “jury” is still out!  However, we believe
our C3E project is an important first step.  Indeed, a
necessary first step.  A step of enhancing  the tradi-
tional calculus curriculum with computer numerical
and visual methods delivered by student use of inex-
pensive graphing calculators.  We are also able to
include many rich examples and illustrations that are
possible for all students only with graphing calcula-
tors.  Furthermore, graphing calculators promote
sound mathematics teaching methods including co-
operative learning, student investigations,  and writ-
ing about mathematics.
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