

Roma Tre University
Ph.D. in Computer Science and Engineering

Information Management
in the Distributed Web

Enrico Marino

Information Management

in the Distributed Web

A thesis presented by

Enrico Marino

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

in Computer Science and Engineering

Roma Tre University

Dept. of Informatics and Automation

2018

ADVISORS

Prof. Alberto Paoluzzi

David Dias

REVIEWERS

Prof. Ernest Cachia

Prof. Miguel-Angel Sicilia Urban

Juan Benet

Do nothing from selfish ambition or conceit,

but in humility value others above yourselves.

Let each of you look not to your own interests,

but to the interests of others.

—Philippians 2:3-4

TABLE OF CONTENTS

TABLE OF CONTENTS

INTRODUCTION
Abstract ​8

Chapters ​8

CHAPTER 1 - THE WORLD WIDE WEB
1 The origin of the Web ​18

1.1 The basic idea ​18

1.1.1 The Hypertext ​18

1.1.2 The origin of the HyperText ​19

1.2 The first website ​20

1.3 “This is for everyone” ​21

1.4 The Web and Internet ​22

1.4.1 The Internet ​22

1.4.2 The Web ​23

2 The protocols of the Web ​24

2.1 The Internet Protocol suite ​24

2.2 The HyperText Transfer Protocol (HTTP) ​25

3 The languages of the Web ​26

3.1 The Hypertext Markup Language (HTML) ​26

3.1.1 Syntax ​26

3.1.2 Structure ​27

3.1.3 Representation ​27

3.1.4 Semantic ​28

3.2 The Cascading Style Sheet (CSS) ​29

3.2.1 Separation of content and presentation ​29

3.2.2 The loose error-handling ​30

3.2.3 Declarative languages ​31

3.3 JavaScript ​32

3.3.1 The use of JavaScript ​33

3.3.2 The DOM ​33

3.3.3 The Asynchronous JavaScript and XML (AJAX) ​34

3.4 The Extensible Markup Language (XML) ​35

3.5 The JavaScript Object Notation (JSON) ​36

3.5.1 Data Types ​36

TABLE OF CONTENTS

4 The evolution of the Web ​38

4.1 The static Web (the Web 1.0) ​38

4.2 The dynamic Web (the Web 2.0) ​39

4.2.1 The social Web ​40

5 The Semantic Web ​41

5.1 Microdata ​42

5.2 Schema.org ​43

5.3 Open Graph Protocol ​45

5.3.1 Metadata ​45

5.3.2 Types ​46

5.4 AMP ​47

The AMP HTML format ​48

6 The centralization of the Web ​49

6.1 Google ​50

6.2 Facebook ​52

6.3 The attempts to re-decentralize the Web ​54

6.3.1 Solid ​54

7 The problems of the Web ​55

7.1 The censored Web ​55

7.2 The Fake Web ​56

7.3 The Advertising Web ​57

7.4 The Tracking Web ​58

7.5 The Inefficient Web ​59

7.6 The Lost Web ​60

7.7 The Offline Web ​61

TABLE OF CONTENTS

CHAPTER 2 - THE DISTRIBUTED NETWORKS
1 The peer-to-peer networks ​66

1.1 Architecture ​66

1.2 File-sharing applications ​67

1.2.1 Napster ​67

1.2.2 BitTorrent ​68

1.3 Modern Cryptography ​69

1.3.1 Private and Public Keys ​69

1.3.2 Key Formats ​70

2 The InterPlanetary File System ​71

2.1 Content-addressing ​71

2.1.1 The implications of content-addressing ​72

2.2 IPFS network ​73

2.3 IPFS Objects and Links ​74

2.3.1 File System ​74

2.4 The InterPlanetary Linked Data ​75

2.4.1 Merkle links ​76

2.4.2 Merkle DAG ​78

2.4.3 Data model ​79

2.5 The InterPlanetary Naming System ​80

3 Dat ​81

3.1 Beaker browser ​82

3.1.1 Website manifest ​82

3.1.2 DatArchive ​83

3.1.3 WebDB ​84

3.2 HashBase ​85

4 ZeroNet ​86

4.1 Using ZeroNet ​86

5 Secure Scuttlebutt ​88

5.1 Concepts ​88

5.2 Security properties ​91

5.3 Design Challenge ​92

Conclusions ​95

TABLE OF CONTENTS

CHAPTER 3 - WEB CONTENT MANAGEMENT SYSTEMS
1 Web Content Management Systems ​100

1.1 Designing websites ​100

1.2 Content-driven static websites ​101

1.2.1 Blog websites ​101

1.3 PHP websites ​104

1.3.1 Using PHP ​105

1.4 The Content Management Systems ​107

2 WordPress ​108

2.1 Basic concepts ​108

2.1.1 The Loop ​108

2.1.2 Templates files ​109

2.1.3 Template Hierarchy ​111

2.2 Architecture ​114

2.2.1 Plugins and themes ​114

2.2.2 Plugins and themes market ​115

2.3 Plugins ​116

2.3.1 Using plugins ​116

2.4 Plugin repositories ​117

2.4.1 Default Plugins ​117

2.4.2 Plugin Hooks ​118

2.5 Themes ​119

2.5.1 Required files ​120

2.5.2 Template files ​120

2.5.3 Template partials ​120

2.5.4 Common WordPress template files ​121

2.5.5 Post Types ​123

2.6 Open source community ​125

TABLE OF CONTENTS

CHAPTER 4 - STATIC WEBSITE GENERATORS
1 Static website generators ​130

1.1 Using Static website generators ​130

1.2 Hosting static websites ​131

1.2.1 GitHub Pages ​131

1.3 Writing static websites ​132

1.3.1 Markdown ​132

2 Hugo ​134

2.1 Basic concepts ​134

2.1.1 Directory Structure ​134

2.2 Content ​136

2.2.1 Content Sections ​136

2.2.2 Content Types ​136

2.2.3 Content organization ​137

2.2.4 Override destination paths via front matter ​138

2.2.5 Page Bundles ​140

2.2.6 Shortcodes ​141

2.3 Archetypes ​142

2.4 Taxonomies ​143

2.5 Theme ​144

2.5.1 Using a theme ​144

2.5.2 Customizing a theme ​144

2.5.3 Theme components ​145

TABLE OF CONTENTS

CHAPTER 5 - DECOUPLED WEB CONTENT MANAGEMENT SYSTEMS
1 Decoupled Web CMS ​150

Tightly-coupled vs loosely-coupled systems ​150

1.1 Headless CMS ​151

2 Contentful ​152

2.1 APIs ​152

Content Delivery API ​152

Content Management API ​152

Content Preview API ​152

Images API ​152

2.2 Domain Model ​153

User ​153

Organization ​153

Space ​153

Environment ​153

2.3 Data model ​154

2.3.1 Content Types ​154

Fields ​154

2.3.2 Modeling Relationships ​156

Resolve relationships ​156

2.3.3 Modeling attachments ​157

2.3.4 Controlling field appearance ​158

Applicable widgets per field type ​158

Widget settings ​160

2.3.5 UI Extensions ​160

2.4 Locales ​161

TABLE OF CONTENTS

CHAPTER 6 - FRONT-END WEB FRAMEWORKS
1 Front-end Web Frameworks ​166

1.1 Single Page Applications ​167

1.1.1 Frameworks vs. Libraries ​168

1.2 MVC Front-end Web Frameworks ​169

1.2.1 MVC pattern ​169

1.2.2 Observer pattern ​171

1.3 Templating System ​173

1.3.1 Dynamic rendering ​174

2 Angular ​175

2.1 Basic concepts ​175

2.1.1 Modules ​175

2.1.2 Components ​176

2.1.3 Templates ​177

2.1.4 Data binding ​178

3 Vue.js ​180

3.1 Basic concepts ​180

4 React ​182

4.1 Basic Concepts ​182

4.1.1 JSX ​184

4.1.2 Components ​187

4.1.3 The data flow ​190

4.1.4 The Virtual DOM ​191

5 Redux ​193

5.1 Principles ​194

5.2 Concepts ​195

6 Web Components ​198

6.1 Custom Elements ​199

6.1.1 Templates ​203

6.2 Shadow DOM ​204

TABLE OF CONTENTS

CHAPTER 7 - CSS FRAMEWORKS
1 CSS frameworks ​210

2 Bootstrap ​212

2.1 Layout ​212

2.1.1 Grid system ​212

2.1.2 Responsive breakpoint ​214

2.1.3 Alignment ​216

2.1.4 Reordering ​217

2.2 Utilities ​218

2.3 Components ​219

3 Atomic CSS ​223

3.1 Dimensions ​223

3.2 Spacing ​225

3.3 Grid system ​227

3.3.1 Flexbox ​227

4 Maintainable CSS ​228

4.1 Semantics ​228

4.1.1 Advantages ​229

4.1.2 Reuse ​231

4.1.3 Conventions ​232

4.1.4 Modules ​233

4.1.5 State ​234

4.1.6 Modifiers ​235

5 Styling React Components ​236

5.1 Styled Components ​236

6 Styling Web Components ​240

6.1 ::part and ::theme pseudo-elements ​242

6.1.1 ::part pseudo-element ​242

6.1.2 ::theme pseudo-element ​246

TABLE OF CONTENTS

CHAPTER 8 - STATIC PROGRESSIVE WEB APP GENERATORS
1 Progressive Web Apps ​252

1.1 The PRPL Pattern ​252

2 Gatsby.js ​253

Directory structure ​253

2.1 Components ​254

2.1.1 Page Component ​254

2.1.2 Page template components ​255

2.1.3 Layout components ​256

2.1.4 HTML component ​257

2.2 Data Management ​258

Data Nodes ​258

2.2.1 Querying Data Nodes with GraphQL ​260

2.2.2 Using GraphQL in Gatsby ​262

Gatsby’s GraphQL schema ​262

2.3 The processes ​263

2.3.1 The “bootstrap” process ​263

2.4 Plugins ​264

Plugins configuration ​264

2.4.2 Plugin types ​265

Source plugins ​265

Transformer plugins ​265

2.5 Building a Blog site ​266

2.5.1 Plugins ​266

Read and transform markdown files ​266

2.5.2 Components ​267

Posts page ​267

Post page ​268

Tags page ​269

Tag page ​270

2.5.3 Extensions ​271

Create pages ​271

TABLE OF CONTENTS

CHAPTER 9 - PANTAREI - THE RESILIENT FRONT-END WEB FRAMEWORK
BASED ON WEB COMPONENTS
1 Pantarei ​276

1.1 Motivation ​276

1.2 Principles ​278

Why the name ​278

1.3 Directives ​279

1.3.1 Sintax ​280

1.3.2 The Element constructor ​281

1.3.3 Built-in directives ​282

1.3.4 Update an attribute ​282

1.3.5 Update a property ​283

1.3.6 Update the class list ​284

1.3.7 Update the inner text ​285

1.3.8 Repeat rendering ​286

Nested repeat ​287

1.3.9 Conditional rendering ​288

1.3.10 Handling Events ​289

1.4 Custom directives ​290

1.4.1 Create a custom directive ​290

Install a new directive ​290

1.4.2 Extend built-in or custom directives ​291

1.4.3 Directives mapping ​292

1.5 Components ​294

1.5.1 Component definition ​294

1.5.2 Component properties ​296

Properties validation ​297

1.5.3 Composition ​298

1.5.4 Distribution ​299

1.6 Example ​300

1.6.1 TodoMVC ​300

TABLE OF CONTENTS

CHAPTER 10 - DESIDERA - THE STATIC PROGRESSIVE WEBSITE GENERATOR
FOR THE DISTRIBUTED WEB
1 Desidera ​306

1.1 Motivation ​306

1.2 Principles ​309

1.3 Website ​311

1.4 Models ​312

1.4.1 Content types ​312

1.5 Content ​316

1.5.1 Organizing content ​316

1.5.2 Pages ​318

1.5.3 Resources ​319

1.6 Theme ​320

1.7 The App ​322

1.7.1 The main files ​322

1.7.2 Routing ​323

1.7.3 The main process ​325

1.8 The workflow ​326

1.8.1 Creating a website ​326

1.8.2 Updating a website ​327

1.8.3 Publishing a website ​328

1.8.4 Linking a website ​329

1.9 Designing a website ​330

1.9.1 The website ​330

1.9.2 Models ​331

1.9.3 Content ​333

1.9.4 Theme ​336

TABLE OF CONTENTS

CONCLUSIONS
1 The state of the art ​346

2 The proposal ​347

2.1 Pantarei ​347

2.2 Desidera ​349

2.2.1 Content Delivery ​349

2.2.2 Dev Op Experience ​349

2.2.3 User Experience ​350

2.2.4 Content Developer Experience ​351

2.2.5 Front-end Developer Experience ​352

3 Future works ​353

3.1 Enquire - the Search Engine for the Distributed Web ​354

3.1.1 Enquire ​355

PREAMBLE

There is always one motivation that excites us more than others. Elevated by aspirations and

towed by suggestions, step by step, we trace our path. Being aware of what truly motivates us

is key to understanding where we are going. Whatever the path may be, wherever your

starting point is, the real motivation allows us to get the right direction. Because, the

important part of a journey is not the journey itself, neither the destination, but the

motivation.

If a man does not know to what port he is steering,

no wind is favourable to him.

—Seneca

Sometimes a goal is not completely defined. No one would start walking if they didn’t define a

goal, no one could reach a goal if they didn’t start walking. As you move ahead the goal

becomes clearer, no matter how long the distance. Taking the smallest possible steps, you can

accomplish the most unimaginable goal.

Do what is necessary, then what is possible.

And suddenly you’ll be surprised to do the impossible.

—Saint Francis of Assisi

Small steps, giants leaps.

One small step for a man,

one giant leap for mankind.

—​Neil Armstrong​, from the moon

1969. The croaking sound of the voice on the radio still echoes in our ears.

A man - Neil Armstrong - takes the first step on the moon . The interplanetary voyage became 1

a reality.

In that same year—on earth—something was about to change the way we would communicate

—to shorten any distance and allow us to be united.

1969. Two separated university computer networks are about to be united for the first time

—the precursor of Internet, the network of networks, was rising . 2

1 Natalie Wolchover. (August 2012). ​"One Small Step for Man": Was Neil Armstrong
Misquoted?​ (https://goo.gl/weaEGn)
2 G. Gromov (2012). ​Roads and Crossroads of the Internet History​. (https://goo.gl/PnG6xJ)

1

No breakthrough can take place unless there has been much preparation work before it. The

history of human civilization is a tale of cumulative effort. Each generation builds upon the

work of their forebearer. Step by step our species makes progress. Whether the progress is

incremental or a huge leap forward, it is always borne upon the accomplishments of those

who came before.

Nowhere is this layered progress more apparent than in the history of technology. Even the

most dramatic endeavors in technological advancement are only possible when there is some

groundwork to build upon.

Technologies aren’t created in isolation.

The printing press, for example, would not have been invented by Gutenberg, if someone,

before him, had not created the screw press to make wine.

Typewriters would not have been invented, if Gutemberg, in turn, had not introduced the

replaceable, moveable letters for his printing press.

Technologies are imprinted with the ghosts of their past.

The layout of the “qwerty” keyboard for personal computer, for example, is an echo of the

design of the first generation of typewriters. That specific arrangement of keys was chosen to

reduce the chances of mechanical pieces of metal clashing as they sprang forward to leave

their mark on the paper.

Scientific progress would be impossible without a shared history of learning and experiences

to draw from. Sharing knowledge has always been the key to new and open perspectives.

If I have seen further,

it is by standing on the shoulders of giants.

—Isaac Newton

2

Our history of sharing knowledge has been a long relay race, where the baton is the knowledge

and its flame is a wisdom to be nourished. A race signed by obstacles and barriers along the

way. However, no fence can hinder the desire to share and to come together.

1989. The Berlin wall, the symbol of the division from a global war, falls.

In that same year, something was about to change the way in which we would interact,

breaking through every known barrier.

1989. Among the mountains on the border between Switzerland and France, in the

laboratories at CERN, a computer scientist from England was tackling the thorny problem of

information management on a large scale.

He produced an unassuming document, with the title “ ​Information Management: A

Proposal ​” , as an attempt to persuade the management at CERN that a unified information 3

management system was in their best interests, in order to foster the synergy of the various

research departments. Fortunately, his supervisor, Mike Sendall, recognized the potential of

this idea and gave the go-ahead by scrawling the words “ ​vague but exciting… ​” across the top

of the cover and a question along the bottom: “ ​and now?​”.

That computer scientist is Timothy John Berners-Lee and his proposal would become the

World Wide Web.

3 Tim Berners-Lee (1989). ​Information Management: a proposal.​ (https://goo.gl/SkB9t1)

3

4

INTRODUCTION

WWW. Just three letters contain a universe.

The World Wide Web, known as WWW or simply Web, is “ ​the universe of network-accessible

information, the embodiment of human knowledge​” . 4

The Web was originally conceived and developed to meet the demand for automatic

information-sharing between scientists in universities and institutes around the world . The 5

Web would then proved to be a communications tool to allow anyone, anywhere to share

information.

During the years, the Web has evolved and influenced how we interact, how we conduct

business, how we keep learning and receive news, in general, how we deal with daily life.

Nowadays, the use of the Web is so ubiquitous that its existence is taken for granted.

At the same time, the usefulness of the Web as a foundation for the distribution and

persistence of information worldwide, as the sum of human knowledge, has shown its

weakness. The Web is extensive, but also very fragile and unreliable.

The Web has unified the entire world into a single global information space, standardizing

how we produce and present information to each other, but the way content is distributed has

turned out to be fundamentally faulty, leading to adverse consequences.

We begin in admiration

and end by organizing our disappointment.

— Gaston Bachelard

The Web Achilles heel is located in the way it addresses content: by means location. Whoever

controls the content’s location controls the content. Whoever controls the content's location

decides what users get to see when they access the link associated to the content.

While the Internet is a truly distributed system, designed so that if any one piece goes out, it

will still function —the Web, built on top of the Internet, is not. The location-addressing

approach of the Web has led to a series of serious consequences, one linked to the other.

4 W3C. (1995). ​About The World Wide Web​. (https://goo.gl/kmGrMY)
5 CERN. ​The Birth of the Web​. (https://goo.gl/2UcTwW)

5

The Web is inefficient. Even if a thousand people have downloaded a thousand copies of the

same content, to a thousand different physical locations locations, like phone, tablet,

computer, etc., all references to that content would still point to that original, single location.

The Web is unreliable. If a content is moved to another location, or just renamed, any link to

that content would be no longer traversable. Also, if the server that hosts the content is turned

off, or if it is made inaccessible, in any way, for whatever reason, any content hosted by that

server would be no longer available.

And yet, since its development, the Web has steadily evolved into an ecosystem of large,

corporate-controlled giant-platforms which intermediate information online. This has lead to

problems ranging from censorship at the behest of national governments to more subtle,

perhaps even unintentional, bias in the curation of content users see based on opaque,

unaudited curation algorithms.

What we need is a truly distributed Web. Distributing the web would make it more efficient,

more reliable, and less malleable by a small handful of powerful organizations, also reducing

the risk of the “one giant shutdown” that takes a massive amount of data with it.

How to enable a truly distributed Web?

From one perspective, evolving the Web infrastructure is nearly impossible, given the number

of backwards compatibility constraints and the number of strong parties invested in the

current model. But from another perspective, new protocols have emerged and gained wide

use since the emergence of the Web: the peer-to-peer networks.

The Web should be built over a peer-to-peer network, where peers are not dependent on a

central host, or the policy of a particular organization, to be truly distributed. What we need is

a global peer-to-peer network on which the Web can be built.

There have been many attempts at constructing a global peer-to-peer network. Some systems

have seen significant success, and others have completely failed. However, while there have

been successful repurposings, no general system has emerged that offers global, low-latency,

and decentralised distribution, as infrastructure to be built upon.

Finally, from the last few years, a novel peer-to-peer, version-controlled, distributed network

has been emerging and gaining wide usage: the InterPlanetary File System (IPFS) . Based on a 6

content-addressing approach, the peer-to-peer network provided by IPFS can address and

resolve most of the problems the Web suffers from.

6 Juan Benet. (2014). ​IPFS - Content Addressed, Versioned, P2P File System (DRAFT 3)​.
(https://goo.gl/zP7RcG)

6

How to build the Web over a content-addressed peer-to-peer network?

Since the Web is made by websites, building the Web implies building websites, and vice

versa. However, the systems, methodologies, and technologies, already used to build websites

are not thought, nor ready, to design, build and deploy websites over a peer-to-peer network.

And even if they were used as-are on a peer-to-peer network, they can not make the most of

such a network, as a system designed from scratch could do.

The peer-to-peer network provides just the infrastructure on which a truly distributed Web

can be built. We should combine the systems already used to build websites on this new

infrastructure, or figure out new ones.

In particular, we should investigate which systems (Web Content Management Systems, Static

Websites Generators, Decoupled Web CMS, Static Progressive Web App Generators)

frameworks (Front-end Web Frameworks, and CSS Frameworks), and methodologies (such as

state management based on unidirectional data flow), have been developed and established to

build websites for the current Web.

Finally, we may propose a system to design, build and deploy websites onto the new

peer-to-peer infrastructure: that is the main contribution of this research work.

7

Abstract

This thesis introduces a novel approach to design, build and deploy websites over a global

content-addressed peer-to-peer network, as to enable a truly distributed Web.

In particular, it introduces a resilient front-end Web framework based on Web Components,

called Pantarei, and a novel static progressive website generator, called Desidera, in order

to design, build and deploy content-driven websites onto a content-addressed peer-to-peer

network, as to enable a resilient, permanent, versioned, censorship-resistant, truly

distributed Web.

The work described in this thesis aims to be a small step in the path to “ ​unlock the Web open​” 7

as it was originally intended to be: a universal space to allow anyone, anywhere to share

information, to share knowledge — “ ​for everyone​” . 8

Why the title

The title “ ​Information Management in the Distributed Web​” is a tribute to Tim Berners-Lee

and refers to his document "​Information Management: a Proposal ​" that laid out the 9

structure and theory of the Web as we use it now.

Chapters

The thesis consists of the following chapters:

Introduction

1. The World Wide Web

2. The Distributed Web

3. Web Content Management Systems

4. Static Website Generators

5. Decoupled Web Content Management Systems

6. Front-End Web Frameworks

7. CSS Frameworks

8. Static Progressive Web App Generators

9. Pantarei - The Resilient Front-End Web Framework based on Web Components

10. Desidera - Static Progressive Website Generator for the Distributed Web

Conclusions

7 Brewster Kahle. (August 2015). ​Locking the Web Open: A Call for a Decentralized Web​.
(https://goo.gl/fDUmgP)
8 J. Keith (November 2013). “ ​This is for everyone​” (https://goo. gl/WofL58)
9 Tim Berners Lee. (March 1989). ​Information Management: a proposal ​.
(https://goo.gl/SkB9t1)

8

The path

Step 1

The first “step” starts from the origin of the Web, and the origin of its problems.

In chapter 1, the World Wide Web is explored. How the Web was born: the basic idea that

gave the Web its success. How the Web works: the protocols the Web is built upon and the

languages which allow anyone to build on it. The evolution of the Web: the Web 1.0, the Web

2.0, but also the Semantic Web. Finally, the centralization of the Web and the problems that

arise from a centralized Web, that triggered this work.

Step 2

The second “step” is actually a leap forward towards the kind of infrastructure on which a

truly distributed Web should be built.

In chapter 2, the distributed (peer-to-peer) networks are introduced. From the very first

peer-to-peer networks, primarily used to share music and movies, such as Napster and

BitTorrent, to the novel peer-to-peer file-systems and protocols. In particular, the distributed

file-systems InterPlanetary File System (IPFS) and Dat; but also, ZeroNet, a platform to build

and deploy websites over the BitTorrent network, and Secure Scuttlebot, a distributed

database protocol for unforgeable append-only message feeds. Finally, a definition for a truly

distributed Web is given.

9

Step 3

The third “step” and the followings, goes back to the current Web, exploring the systems, at

the state of the art, that allow you to build websites, and so to build the Web.

Since the beginning of the Web, the need to ease the publishing process made the success of

the Web Content Management Systems (Web CMS): systems that allow you to create, modify,

review and publish content, and so create websites, on the Web.

In chapter 3, the Web CMSs are introduced. Actually, there are hundreds of Web CMSs that

can be used , but very few of them have clearly become predominant over the rest of the 10

competition. In particular, the most used one, ​WordPress ​, is running over one third of all the

website in the Web. Given its wide usage, the chapter is focused on WordPress as a valid

explanatory instance: how it works and, in particular, why it is so much used.

Step 4

In general, when a user visits a website, built with a Web CMS, expecting the latest content

from the server, that hosts the content, the Web CMS queries the database to get the content,

passes the results to its templating engine, that compose the HTML, and serves the page.

Static site generators shift the heavy load from the moment users request the webpage to the

moment the webpage actually changes (when the website is updated), generating a structure

of purely static HTML files that are ready to be delivered as-are to the users.

Static website generators seem to have been becoming more and more popular, but they are

not one of those ephemeral novelty things that grow in popularity as quickly as they fall into

oblivion shortly after.

In chapter 4, the Static Website Generators are explored. What they are. How they works. In

particular, as an explanatory instance, the static website generator ​Hugo ​ is described.

10 W3Techs. ​Usage of content management systems for websites ​. (https://goo.gl/6XqFst)

10

Step 5

Choosing a Web ​CMS means accepting not only the language it is written in, but also its

editing and administration tools, its database, its templating system, etc. Decoupled Web

CMSs aim to improve this situation.

A Decoupled CMS is essentially a regular full stack of content management, delivery, and

presentation solution but allows for content stored within it to be leveraged by other systems.

In chapter 5, the Decoupled Web CMS are described. What they are. How they works. In

particular, as an explanatory instance, ​Contentful ​ is presented.

Step 6

Decoupled CMS gives the web designer the honors and burdens to build the front-end of the

website. In general, a front-end Web Framework should be used.

In chapter 6, the Front-end Web Frameworks are explored.

Step 7

In essence, a modern Web Framework introduce a component system to build the website

using reusable, customizable, piece of User Interface, i.e. the components.

The main factor in customizing a component is its stylization.

In chapter 7, the CSS Frameworks are explored.

Step 8

Finally, a system that seems to merge the good parts of the systems that came before, is briefly

described.

In chapter 8, the Static Progressive Web App Generators are introduced.

Static progressive Web app generators offers the advantages of a static website generator and

the versatility of a Decoupled (or Headless) CMS plus a front-end Web Framework.

11

Step 9

The last two steps (from the end of this thesis) introduce the proposal.

The choice of one system over another leads to a inevitable lock-in on the technologies and the

methodologies adopted by that system, as to make it difficult, if not nearly always impossible,

to reuse the components, designed for a specific system, in other systems.

The main principle that drives both the systems that form the proposal, i.e. the front-end Web

framework and the static progressive website generator, is the separation of concerns, in every

aspect of the design, to avoid as much as possible any lock-in.

In chapter 9, ​Pantarei ​, a resilient front-end Web UI framework, is presented.

Pantarei is based on the HTML5 Web Components standards, in order to ease the process to

extend and customize websites, to design components that can be generally used in the most

natural and longeval way for the Web: using Web Standards.

Step 10

In chapter 10, ​Desidera​, a static progressive website generator, to design websites for the

distributed Web, is presented. Desidera websites are made with Web Components, using

Pantarei or not, and delivered to the peer-to-peer network provided by the InterPlanetary File

System.

Conclusions

Finally, the last step rapidly covers the whole path. It briefly dwells on the current state. Then,

it suggests the direction for the next steps.

In the last chapter, the conclusions. The evaluation of the proposal. The future works.

The next steps are for who will come after.

12

CHAPTER 1 - THE WORLD WIDE WEB

CHAPTER 1
THE WORLD WIDE WEB

In this chapter, the World Wide Web is explored. How the Web was born: the basic idea that

gave the Web its success. How the Web works: the protocols it is built upon and the languages

that allow to build on it. The evolution of the Web: the Web 1.0, the Web 2.0, but also the

Semantic Web. Finally, the centralization of the Web: the centralized Web and the problems

that arise from a centralized Web.

15

CHAPTER 1 - THE WORLD WIDE WEB

TABLE OF CONTENTS

1 The origin of the Web ​18

1.1 The basic idea ​18

1.1.1 The Hypertext ​18

1.1.2 The origin of the HyperText ​19

1.2 The first website ​20

1.3 “This is for everyone” ​21

1.4 The Web and Internet ​22

1.4.1 The Internet ​22

1.4.2 The Web ​23

2 The protocols of the Web ​24

2.1 The Internet Protocol suite ​24

2.2 The HyperText Transfer Protocol (HTTP) ​25

3 The languages of the Web ​26

3.1 The Hypertext Markup Language (HTML) ​26

3.1.1 Syntax ​26

3.1.2 Structure ​27

3.1.3 Representation ​27

3.1.4 Semantic ​28

3.2 The Cascading Style Sheet (CSS) ​29

3.2.1 Separation of content and presentation ​29

3.2.2 The loose error-handling ​30

3.2.3 Declarative languages ​31

3.3 JavaScript ​32

3.3.1 The use of JavaScript ​33

3.3.2 The DOM ​33

3.3.3 The Asynchronous JavaScript and XML (AJAX) ​34

3.4 The Extensible Markup Language (XML) ​35

3.5 The JavaScript Object Notation (JSON) ​36

3.5.1 Data Types ​36

4 The evolution of the Web ​38

4.1 The static Web (the Web 1.0) ​38

4.2 The dynamic Web (the Web 2.0) ​39

4.2.1 The social Web ​40

16

CHAPTER 1 - THE WORLD WIDE WEB

5 The Semantic Web ​41

5.1 Microdata ​42

5.2 Schema.org ​43

5.3 Open Graph Protocol ​45

5.3.1 Metadata ​45

5.3.2 Types ​46

5.4 AMP ​47

The AMP HTML format ​48

6 The centralization of the Web ​49

6.1 Google ​50

6.2 Facebook ​52

6.3 The attempts to re-decentralize the Web ​54

6.3.1 Solid ​54

7 The problems of the Web ​55

7.1 The censored Web ​55

7.2 The Fake Web ​56

7.3 The Advertising Web ​57

7.4 The Tracking Web ​58

7.5 The Inefficient Web ​59

7.6 The Lost Web ​60

7.7 The Offline Web ​61

17

CHAPTER 1 - THE WORLD WIDE WEB

1 The origin of the Web
The web was originally conceived and developed to meet the demand for automatic

information-sharing between scientists in universities and institutes around the world . 1

The Web would then be quickly revealed as a communications tool to allow anyone, anywhere

to share information.

1.1 The basic idea
The basic idea was a hypertext whose documents are distributed on a computer network, that

is “a distributed hypertext”.

A client application, called ​web browser ​, obtains access to a hypertext document, called ​web

page​, stored on another computer, by sending a message over the network to a server

application, called ​web server ​, on that computer, which in turn sends back the source code for

the document.

1.1.1 The Hypertext
Hypertext is text which is not constrained to be linear, but contains links to other texts . 2

Why the name
The term ​hypertext ​ was coined by Ted Nelson in 1963 . 3

The English prefix ​hyper comes from the Greek prefix “υπερ” and means “over” or “beyond”;

it has a common origin with the prefix “super-” which comes from Latin; it signifies the

overcoming of the linear constraints of written text.

The term ​hypertext is often used where the term ​hypermedia​, which also was coined by Ted

Nelson, might seem appropriate. However, the term “hypermedia”, meaning complexes of

branching and responding graphics, movies and sound – as well as text – is much less used.

1 CERN. ​The Birth of the Web​ (https://goo.gl/4mYJqk)
2 W3C. ​What is HyperText ​ (https://goo.gl/M5VAbc)
3 Ted Nelson. ​Literary Machines ​ (https://goo.gl/tczxzL)

18

CHAPTER 1 - THE WORLD WIDE WEB

1.1.2 The origin of the HyperText
Tim Berners-Lee did not invent the hypertext, but he conceived of hypertext system

distributed over a computer network.

In 1980, Tim Berners-Lee started a personal project to get to grips with managing

information. He realized a software, that he called Enquire, named for a Victorian manual of

domestic life called “ ​Enquire Within Upon Everything​” : 4

It allowed one to store snippets of information, and to link related pieces together in

any way. To find information, one progressed via the links from one sheet to

another, rather like in the old computer game “adventure”.

By the 1960s, with the advancement of computer technology, this concept was implemented

by pioneers such as Douglas Engelbart and Ted Nelson. They realized a program that allowed

texts (or other media) to be viewed with some spans marked as hyperlinks, through which the

reader could jump to another document . 5

Douglas Engelbart and Ted Nelson, for their part, were influenced by the ideas set out by

Vannevar Bush. He proposed an organisation of external records (books, papers,

photographs) corresponding to the association of ideas in human memory . 6

Vanner Bush, in turn, was no doubt influenced by the ideas of Belgian informatician Paul

Otlet, who have been considered the father of information science, a field he called

“documentation”.

Each one of these giants in the history of hypertext was standing on the shoulders of the giants

that had come before them.

4 Bob Hopgood (2001). ​History of the Web​ (https://goo.gl/92khjf)
5 Douglas Engelbart (1995). ​Boosting our Collective IQ ​ (https://goo.gl/A3tD8k)
6 Vannervar Bush (July 1945). ​As we may think​ (https://goo.gl/A6pemX)

19

CHAPTER 1 - THE WORLD WIDE WEB

1.2 The first website
In 1990, aided and abetted by his colleague Robert Cailliau, Tim Berners-Lee built all the tools

necessary for a working Web: the first web browser, which was a web editor as well, called

“WorldWideWeb” (just one word) ; the first web server, which used a NeXT Computer; and 7

so, the first web site, which described the Web project itself . 8

The first website at CERN - and in the world - was dedicated to the World Wide Web project

itself. It described the basic features of the web, how to access other people’s documents and

how to set up your own server.

In 2013, as part of the project to restore the first website, CERN reinstated the world’s first

website to its original address . 9

The original web server — the Berners-Lee’s NeXT computer — used to serve the first web

site, is still at CERN.

7 Tim Berners-Lee. ​The WorldWideWeb browser ​ (https: //goo.gl/vzVTYk)
8 CERN. ​Home of the first website​ (https://goo.gl/ifEU9R)
9 CERN. ​The Birth of the Web​ (https://goo.gl/VjRRLS)

20

CHAPTER 1 - THE WORLD WIDE WEB

1.3 “This is for everyone”
In 1993, on April 30, CERN put the World Wide Web software in the public domain. CERN

made the next release available with an open licence, as a more sure way to maximise its

dissemination. Through these actions, making the software required to run a web server freely

available, along with a basic browser and a library of code, the web was allowed to flourish . 10

The temptation to monetize this burgeoning hypertext system must have been hard to resist.

But, perhaps inspired by the selfless spirit of cooperation and collaboration at CERN, Tim

Berners-Lee and Robert Cailliau gave their gift to the world and asked for nothing in return . 11

In 2012, at the Summer Olympic games in London, Sir Tim Berners-Lee was lauded in the

opening ceremony. Watched by a global audience, he passed on one message regarding the

World Wide Web: “ ​This is for everyone.​” . 12

In 2017, Tim Berners-Lee received the Turing award for having invented the Web, the first

web browser, and the fundamental protocols and algorithms that allowed the Web to scale . 13

Today we think of the World Wide Web as one of the greatest inventions in the history of

communication, but to the scientists at CERN it is merely a byproduct. When you’re dealing in

cosmological timescales and investigating the very building blocks of reality itself, the timeline

of humanity’s relationship with technology is little more than a rounding error . 14

10 K. Coldham (August 2016). "​Internaut Day and the World Wide Web​"
(https://goo.gl/7vtsnb)
11 M. Giampietro (April 2013). “ ​Twenty years of a free, open web​” (https://goo.gl/Sb2V3T)
12 J. Keith (November 2013). “ ​This is for everyone​” (https://goo. gl/WofL58)
13 J. Russell. (April 2017). “ ​Tim Berners-Lee, inventor of the world wide web, wins
“computing’s Nobel Prize”​” (https://goo.gl/j6r9x5)
14 J. Keith (2015). “ ​Resilient web design​” (https://goo.gl/ MvnUFv)

21

CHAPTER 1 - THE WORLD WIDE WEB

1.4 The Web and Internet
Informally people often use the terms Internet and Web interchangeably, but this is

inaccurate. Even though they are closely related, the Web and Internet are two separate

things. The Web is in fact just one of many services delivered over the Internet.

1.4.1 The Internet
The Internet is an extension of the technology of computer networks. It is a globally

distributed networking infrastructure, a massive network of networks. It connects millions of

computers together in the world, forming a network of networks, in which any computer can

communicate with any other computer as long as they are both connected to the network. The

internet has no centre. This architectural decision gives the network its robustness . 15

It’s common to hear that the internet was designed to resist a nuclear attack, but that’s not

entirely correct. It’s true that the project began with military considerations: the initial

research was funded by DARPA, the Defense Advanced Research Projects Agency, but the

engineers working on the project were not military personnel . The underlying ideals had 16

more in common with the free-speech movement than with the military-industrial complex.

The Internet was designed to route around damage; even though the damage was not

concerned a nuclear attack, but censorship.

The open architecture of the internet reflected the liberal worldview of its creators. As well as

being decentralised, the internet was also deliberately designed to be a dumb network. The

protocols underlying the transmission of data on the internet, the Transfer Control Protocol

and the Internet Protocol (TCP/IP), describe how packets of data should be moved around,

but those protocols care not a whit for the contents of the packets . That decreted the success 17

of Internet, allowing Internet to be the transport mechanism for all sorts of applications:

email, file transfer, and eventually the World Wide Web.

15 Vinton Cerf & Edward Cain (1983). “ ​The DoD Internet Architecture Model ​”
(https://goo.gl/pEzprW)
16 Ronda Hauben. “ ​From the ARPANET to the Internet ​” (https://goo.gl/JrMdDv)
17 DARPA Internet Program (September 1981). RFC 793. “ ​Transmission Control Protocol.
Protocol Specification​” (https://goo.gl/ZRS3Zb)

22

CHAPTER 1 - THE WORLD WIDE WEB

1.4.2 The Web
When Tim Berners-Lee was designing the Web at CERN, the Internet was already established

as part of the infrastructure there. This network of networks was first created in the ‘60s and

the early adopters were universities and scientific institutions.

The earliest computers operated independently. In the 1960s and 1970s, it became common

for computers in an organisation (e.g., university, government, company) to be linked

together in a network.

At the same time, there were early experiments in linking whole networks together, including

the ARPANET in the United States.

In the early 1980s, the Internet Protocol Suite (TCP/IP) for the ARPANET was standardised,

to provide the basis for a network of networks that could embrace the whole world . 18

The Internet spread mostly to Europe and Australia during the 1980s, and to the rest of the

world during the 1990s.

The Web is an information-sharing model that is built on top of the Internet. It is just one of

the ways that information can be disseminated over the Internet.

18 DARPA Internet Program (September 1981). RFC 791. “ ​Internet Protocol. Protocol
Specification​” (https://goo.gl/G7y15m)

23

CHAPTER 1 - THE WORLD WIDE WEB

2 The protocols of the Web
Any communication between two entities requires the two entities agree on the way and the

language used to communicate. All communications between two nodes on the Internet

require the two nodes agree on the way and the format of the data they exchange to each

other. The set of rules defining a format is called a protocol.

The Web has a body of software, and a set of protocols and conventions. The protocols of the

Web rely on the protocols of the Internet network it is built on.

2.1 The Internet Protocol suite
The technology supporting the Internet includes the IP (Internet Protocol) system for

addressing computers, so that messages can be routed from one computer to another.

Each computer on the Internet is assigned an IP address.

The structure of messages is governed by application protocols that vary according to the

service required . For example the SMTP (Simple Mail Transfer Protocol) for email , the FTP 19 20

(File Transfer Protocol) for file transfer , and HTTP (HyperText Transfer Protocol) for the 21

Web . 22

The Internet Protocol (IP) is complemented by the Transmission Control Protocol (TCP),

originated in the initial network implementation. Therefore, the entire protocol suite is

commonly referred to as TCP/IP. TCP provides reliable, ordered, and error-checked delivery

of a stream of data bytes between applications running on hosts communicating by an IP

network.

Applications that do not require reliable data stream service may use the User Datagram

Protocol (UDP), which provides a connectionless datagram service that emphasizes reduced

latency over reliability . 23

19 IETF (October 1989). RFC 1123. "​Requirements for Internet Hosts - Application and
Support ​" (https://goo.gl/s3yjnf)
20 Jonathan B. Postel (August 1982). RFC 821. Simple Mail Transfer Protocol
(https://goo.gl/C2XTLT)
21 IETF (October 1985). RFC 959. “ ​File Transfer Protocol (FTP)​” (https://goo.gl/V4QZKi)
22 UC Irvine & J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, T. Berners-Lee. (June
1999). RFC 2616. “ ​Hypertext Transfer Protocol - HTTP/1.1​” (https://goo.gl/PGcDBi)
23 J. Postel (August 1980). RFC 768: User Datagram Protocol (https://goo.gl/rgTRPN)

24

CHAPTER 1 - THE WORLD WIDE WEB

2.2 The HyperText Transfer Protocol (HTTP)
The Web uses the HyperText Transfer Protocol (HTTP), to send and receive data. HTTP

defines how messages are formatted and transmitted between web servers and web browsers,

and what actions web servers and web browsers should take in response to various

commands.

Resources in the Web are uniquely identified by global identifiers called Uniform Resource

Identifiers (URI) . 24

Many of these URIs identify documents written in the HyperText Markup Language (HTML),

called web pages . 25

Webpages can contain hyperlinks to other resources on the Web, as well as other webpages,

enabling the distributed hypertext.

When the user clicks on a hyperlink, the web browser finds the IP address associated with the

URL , and sends a HTTP message to this IP address requesting the HTML file at the given 26

location in the server’s file system; on receipt, this file is displayed in the web browser.

Links in web pages turned the Web from being a straightforward storage and retrieval system

into a world wide distributed hypertext system. Through the use of hypertexts and multimedia

techniques, and leveraging on HTTP, the Web has been allowing anyone to roam, browse, and

contribute to.

24 T. Berners-Lee, R. Fielding, Day Software & L. Masinter. (January 2005). RFC 3986.
“ ​Uniform Resource Identifier (URI): Generic Syntax.​” (https://goo.gl/NnQh6N)
25 Tim Berners-Lee & Daniel Connolly. (June 1993). Internet Draft. “ ​Hypertext Markup
Language (HTML) - A Representation of Textual Information and Meta Information for
Retrieval and Interchange.​” (https://goo.gl/y8GZsm)
26 T. Berners-Lee, L. Masinter, M. McCahill. (December 1994). RFC 1738. Uniform Resource
Locators (URL). (https://goo.gl/TuuhoY)

25

CHAPTER 1 - THE WORLD WIDE WEB

3 The languages of the Web

3.1 The Hypertext Markup Language (HTML)
The Hypertext Markup Language (HTML) is the standard markup language for creating web

pages . HTML describes the structure of a web page semantically, though originally included 27

cues for the appearance of the document . 28

HTML isn’t the first markup language to be used. When Tim Berners-Lee designed the Web at

CERN, scientists there were already sharing documents written in SGML (Standard

Generalized Markup Language) . Tim Berners-Lee used the SGML as a starting point for a 29

new markup language, the HTML (HyperText Markup Language). It made sense to build

something on what people were already familiar with rather than creating something from

scratch [12].

HTML provides a means to create structured documents. An HTML document is composed of

a hierarchical set of nodes. Each node can have HTML attributes specified, include text as well

as other nodes.

3.1.1 Syntax
In the HTML syntax, most nodes are written with a start tag and an end tag, with the content

in between. An HTML tag is composed of the name of the node, surrounded by angle brackets

< and ​>​. An end tag also has a slash ​/ after the opening angle bracket, to distinguish it from

the start tag . 30

For example:

<​node-name​>content</​node-name​>

Where:

- <node-name>​ is the start tag

- </node-name>​ is the end tag

27 WhatWG (June 2018). “ ​HTML Living standard ​”. (https://goo.gl/cuYJBX)
28 W3C (December 2017). W3C Recommendation: “ ​HTML 5.2​” (https://goo.gl/g1F8GP)
29 Dan Connolly (January 1996). “ ​A Study of Linguistics: Representation and Exchange of
Knowledge​” (https://goo.gl/JU4yDG)
30 WhatWG. (June 2018). “ ​The HTML syntax​”. (https://goo.gl/59rdAN)

26

CHAPTER 1 - THE WORLD WIDE WEB

3.1.2 Structure
An HTML document has a well defined structure. The element ​html is the root that contains

just two sub-elements:

- head is the container for processing information, such as the title of the document,

and metadata, such as the description of the document;

- body​ is the container for the displayable content of the HTML document . 31

For example:

<​html​>
 <​head​>
 <​meta​ description="This is the description">
 <​title​>This is the title</​title​>
 </​head​>
 <​body​>
 <​h1​>This is a title</​h1​>
 <​h2​>This is a subtitle</​h2​>
 <​p​>This is an <​em​>emphasized</​em​> paragraph</​p​>
 </​body​>
</​html​>

3.1.3 Representation
An HTML document is delivered as textual document . The web browser parses the HTML 32

document and turns it into an internal representation, called Document Object Model (also

known as the DOM) . 33

Presentation by the web browser is performed on this internal object model, not the original

textual document. The nodes of the textual document are called ​tags ​, while the corresponding

representations of the DOM are called ​elements ​. HTML documents contain tags, but do not

contain the elements. The elements are only generated after the parsing step, from these tags.

31 W3C. ‘​The global structure of an HTML document ​” (https://goo.gl/pdSGVF)
32 W3C. “ ​HTML Document Representation​” (https://goo.gl/1sYPpG)
33 W3C. “ ​Document Object Model (DOM)​” (https://goo.gl/WudRXo)

27

CHAPTER 1 - THE WORLD WIDE WEB

3.1.4 Semantic
Some HTML elements are literally meaningless, like the element ​span that says nothing about

the contents within it . But most HTML elements exist for a reason: they have been created 34

and agreed upon in order to account for specific situations . 35

There are special elements, like the element ​a​, that allows users to link out to any other

resource on the web, or like the elements ​input​, ​select​, ​textarea​, and ​button​, that allows

users to enter data and submit it to a web server.

There are elements that describe the kind of content they contain.

For example:

- element ​p​ is a paragraph.

- element ​ol​ is an ordered (numbered) list of items.

- element ​ul​ is an unordered (bullet) list of items.

- element ​li​ is an item in a list (be it ordered or not).

Browsers display these elements with some visual hints as to their meaning.

For example, anchors are underlined; paragraphs are displayed with whitespace before and

after their content; ordered list items are prefixed with numbers, while unordered list items

are prefixed with bullet points.

The early growth of HTML’s vocabulary was filled with new elements that provided visual

instructions to web browsers: ​big​, ​small​, ​center​, ​font​, etc. In fact, the visual instructions

were the only reason for those elements to exist, they provided no hint as to the meaning of

the content they contained. HTML was in danger of becoming a visual instruction language

instead of a vocabulary of meaning.

34 W3C. The first introduction to “ ​HTML tags ​”. (https://goo.gl/E9NALU)
35 MDN. "​HTML elements reference​". (https://goo.gl/L7WTQi)

28

CHAPTER 1 - THE WORLD WIDE WEB

3.2 The Cascading Style Sheet (CSS)
Håkon Wium Lie was working at CERN at the same time as Tim Berners-Lee. He immediately

recognised the potential of the World Wide Web and the HTML. He also realised that the

expressive power of the language was in danger of being swamped by visual features. He

proposed a new format to describe the presentation of HTML documents: the Cascading Style

Sheets (CSS) . 36

Bert Bos quickly joined Lie. They set about creating a syntax that would be powerful enough to

handle the demands of designers, while remaining simple enough to learn quickly.

There’s a huge variation in visual style on the Web, such as colour schemes, typographic

treatments, layouts, etc. All of the styling variety is made possible by one simple pattern that

describes all the CSS ever written.

selector​ {
 property: value;

}

Actually, CSS specifications is composed by different levels . 37

3.2.1 Separation of content and presentation
Separation of content and presentation or separation of content and style, is a design principle

under which visual and design aspects (presentation and style) are separated from the core

material and structure (content) of a document.

This principle is not a rigid guideline, but serves more as best practice for keeping appearance

and structure separate. In many cases, the design and development aspects of a project are

performed by different people, so keeping both aspects separated ensures both initial

production accountability and later maintenance simplification, as in the don’t repeat yourself

(DRY) principle . 38

36 H. W. Lie. (1994). “ ​Cascading Style Sheets ​”. (https://goo.gl/t5xgKm)
37 W3C. “ ​Description of all CSS specifications ​”. (https://goo.gl/sQLd1t)
38 W3C. (June 2003). “ ​Separation of semantic and presentational markup, to the extent
possible, is architecturally sound ​”. (https://goo.gl/FKroGV)

29

CHAPTER 1 - THE WORLD WIDE WEB

3.2.2 The loose error-handling
HTML and CSS have a forgiving attitude to errors.

Echoing the Robustness Principle , also known as Postel’s Law: 39

Be conservative in what you send; be liberal in what you accept.

Even if there are errors in the HTML or CSS, the browser will still attempt to process the

information, skipping over any pieces that it can’t parse. The browser doesn’t throw an error.

The browser doesn’t stop parsing, refusing to go any further.

If the browser sees an HTML element it doesn’t know, it just ignores the element but

continues to parse its content. If the browser sees an HTML attribute for an element it doesn’t

know, it just ignore the attribute.

<​unknown​>This tag is ignored</​unknown​>
<​a​ href="/" not-yet-defined-attribute="value">link< ​a​>

If the browser sees a CSS selector it doesn’t understand, it just ignores that selector’s styling

rules. If the browser sees a CSS property or a value it doesn’t understand, it just ignores that

particular declaration.

unknown {

 not-yet-defined-property: value;

}

The loose error-handling has allowed CSS to grow over time. New selectors, new properties,

and new values have been added to the language’s vocabulary over the years. Whenever a new

feature lands in CSS, designers and developers know that they can safely use it, even if it isn’t

yet widely supported in browsers. They can rest assured that old browsers will react to new

features with complete indifference.

39 Wikipedia. ​Robustness principle​. (https://goo.gl/7dm4K7)

30

CHAPTER 1 - THE WORLD WIDE WEB

3.2.3 Declarative languages
HTML and CSS are both examples of declarative languages.

A declarative language describes a desired outcome without providing step-by-step

instructions to the program that parse the document . 40

An HTML document describes the nature of the content, such as headings, paragraphs, lists,

etc., without having to explain to the browser, that parses the document, exactly what it

should do display those content.

A CSS document describes the desired appearance of the content, such as colors, positions,

dimensions, etc., without having to explain to the browser, that parse the document, exactly

what it should do to apply those styles.

Most programming languages are not declarative, but imperative.

An imperative language provides precise instructions to the program that interprets the code.

Imperative languages provide more power and precision than declarative languages, but at a

price: imperative languages tend to be harder to learn than declarative languages.

Furthermore, they make it harder to apply Postel’s law. If you make a single mistake - even a

misplaced comma - the entire program may fail. A misspelt tag in HTML or a missing curly

brace in CSS can also cause headaches, but imperative programs must be well-formed or they

won’t run at all.

Imperative languages such as PHP, Ruby, and Python can be found on the servers powering

the World Wide Web, reading and writing database records, processing input, and running

complex algorithms. You can choose just about any programming language you want when

writing server-side code.

If you want to write code that runs in a web browser, you only have one choice: JavaScript.

40 Wikipedia. Declarative programming (https://goo.gl/Y7EbwR)

31

CHAPTER 1 - THE WORLD WIDE WEB

3.3 JavaScript
The idea of executing a program from within a webpage is as old as the Web itself. From an

email to the www-talk mailing list dated May 1992 : 41

I would like to know, whether anybody has extended WWW such, that it is possible

to start arbitrary programs by hitting a button in a WWW browser.

Tim Berners-Lee responded:

Very good question. The problem is that of programming language. You need

something really powerful, but at the same time ubiquitous. Remember a facet of the

web is universal readership. There is no universal interpreted programming

language. But there are some close tries. (lisp, sh). You also need something which

can run in a very safe mode, to prevent virus attacks.

Ideally, the language should include object-oriented inheritance, a basically

functional nature, and a clean syntax. It should be interpretable and compilable. At

least one public domain. A pre-compiled standard binary form would be cool too.

It isn’t here yet.

A universal interpreted programming language wasn’t there yet, until 1996.

In 1996, Brendan Eich, a programmer at Netscape, wrote it, in ten days . 42

Why the name
The language went through a few name changes. First, it was called ​Mocha​. Then, it was

launched as ​LiveScript ​. Finally, it was renamed as ​JavaScript ​, to ride the wave of hype

associated with the then-new ​Java language. Even though JavaScript and Java have little in

common.

41 Tim Berners-Lee (May 1992). “ ​Program Links in WWW​” (https://goo.gl/JDBPZB)
42 Brendan Eich (June 2005). “ ​JavaScript 1, 2, and in between​”. (https://goo.gl/AhNVLs)

32

CHAPTER 1 - THE WORLD WIDE WEB

3.3.1 The use of JavaScript
JavaScript gave web designers the power to create websites that were slicker, smoother, and

more reactive. The same technology also gave web designers the power to create websites that

were sluggish, unwieldy, and more difficult to use.

Being it an imperative language, if you give a web browser some badly-formed JavaScript or

attempt to use an unsupported JavaScript feature, not only will the browser throw an error, it

will stop parsing the script at that point and refuse to go any further.

3.3.2 The DOM
The Document Object Model (DOM) is a programming interface for HTML documents. It

represents the page so that programs can change the document structure, style, and content . 43

A Web page is a document. The DOM is an object-oriented representation of the web page: it

represents the document as nodes and objects that can be modified with a scripting language.

The W3C DOM and WHATWG DOM standards are implemented in most modern browsers 44

in JavaScript.

For example:

let​ heading = ​document​.createElement('h1')
let​ heading_text = ​document​.createTextNode('Hello DOM!')
heading.appendChild(heading_text)

document​.body.appendChild(heading)

43 MDN. “ ​Introduction to the DOM ​” (https://goo.gl/hFL7NB)
44 WhatWG. “ ​DOM Living Standard ​”. (https://goo.gl/rdaCnm)

33

CHAPTER 1 - THE WORLD WIDE WEB

3.3.3 The Asynchronous JavaScript and XML (AJAX)
At the beginning, JavaScript was just used for creating visual effect, such as rollover, and form

validation. Swapping out images when someone hovers their cursor over a link might not

seem like a sensible use of a brand new programming language, but back in the nineties there

was no other way of creating hover effects.

Both of those use cases still exist, but now there’s no need to reach for JavaScript. You can

create rollover effects in CSS, and you can validate form fields using the new functionalities of

the HTML input element.

This reveals a common pattern: a solution is created in an imperative language and if it’s

popular enough, it migrates to a declarative language over time. When a feature is available in

a declarative language, not only is it easier to write, it’s also more robust.

The rise of JavaScript was boosted in 2005 with the publication of an article entitled Ajax: A

New Approach to Web Applications by Jesse James Garrett . 45

The article put a name to a technique that was gaining popularity.

With this technique, using a specific subset of JavaScript, it was possible for a web browser to

send and receive data from a web server asynchronously (in the background) without

interfering with the display and behaviour of the existing web page. By decoupling the data

interchange layer from the presentation layer, it allows for web pages to change content

dynamically without the need to reload the entire page.

The term Ajax is a short for “ ​asynchronous JavaScript and XML​”, it has come to represent a

broad group of Web technologies : 46

- HTML and CSS for presentation

- The DOM for dynamic display of and interaction with data

- XML for the interchange of data

- The XMLHttpRequest JavaScript object for asynchronous communication

- JavaScript to bring these technologies together

45 J. J. Garrett (February 2005). “ ​Ajax: A New Approach to Web Applications ​”.
(https://goo.gl/t4r6oz).
46 MDN. “ ​Ajax​”. (https://goo.gl/ktuCo7)

34

CHAPTER 1 - THE WORLD WIDE WEB

3.4 The Extensible Markup Language (XML)
The Extensible Markup Language (XML) is a markup language that defines a set of rules for

encoding documents in a format that is both human-readable and machine-readable.

The W3C’s XML 1.0 Specification and several other related specifications —all of them free 47

open standards— define XML. XML is claimed as a self-describing language, though the XML

specification itself makes no such claim.

Hundreds of document formats using XML syntax have been developed, including RSS, Atom,

SOAP, SVG, and XHTML. XML-based formats have become the default for many

office-productivity tools, including Microsoft Office (Office Open XML), OpenOffice.org and

LibreOffice (OpenDocument). XML has also provided the base language for communication

protocols such as XMPP.

XML and its extensions have regularly been criticized for verbosity and complexity. Mapping

the basic tree model of XML to type systems of programming languages or databases can be

difficult, especially when XML is used for exchanging highly structured data between

applications, which was not its primary design goal.

JSON is frequently proposed as simpler alternative, that focus on representing highly

structured data rather than documents, which may contain both highly structured and

relatively unstructured content.

47 W3C. (November 2008). “ ​Extensible Markup Language (XML) 1.0 (Fifth Edition)​”.
(https://goo.gl/VydyAv)

35

CHAPTER 1 - THE WORLD WIDE WEB

3.5 The JavaScript Object Notation (JSON)
JavaScript programming language carried on with it a data format, JSON (JavaScript Object

Notation) . 48

3.5.1 Data Types
JSON has four basic data types : 49

- number

- string

- boolean

- null

and two complex data types:

- array

- object

Number
The format makes no distinction between integer and floating-point. A signed decimal

number that may contain a fractional part and may use exponential E notation, but cannot

include non-numbers. JavaScript uses a double-precision floating-point format for all its

numeric values, but other languages implementing JSON may encode numbers differently.

123

3.141592653589793

1E9

String
A string is a sequence of zero or more Unicode characters. Strings are delimited with

double-quotation marks and support a backslash escaping syntax.

"string"

"a string \n in two rows"

48 ECMA (December 2017). Standard ECMA-404. “ ​The JSON Data Interchange Syntax​”
(https://goo.gl/qQ9ZZm)
49 json.org. “ ​Introducing JSON​” (https://goo.gl/giEeWz)

36

CHAPTER 1 - THE WORLD WIDE WEB

Boolean
A boolean is either of the values true or false.

true

false

Null
A null is empty value, using the word null.

null

Array
An array is an ordered list of zero or more values, each of which may be of any type. Arrays are

delimited with square bracket and values are comma-separated.

[​1​, ​1.4142135623730951​, ​2​, ​3​, ​3.141592653589793​, ​4​]
["a", ​2​, ​true​, ​null​]
["a", ["another array", ​42​]]

Object
An object is an unordered collection of name–value pairs where the names (also called keys)

are strings. Since objects are intended to represent associative arrays, it is recommended,

though not required, that each key is unique within an object.

Objects are delimited with curly brackets and use commas to separate each pair, while within

each pair the colon character separates the key or name from its value.

{

 "key": "value",

 "another key": ​null​,
 "nested object": {

 "array": [​1​, ​2​, ​3​]
 }

}

37

CHAPTER 1 - THE WORLD WIDE WEB

4 The evolution of the Web
During the years, the Web has evolved to influence how we interact, how we keep informed,

how we keep learning, in general, how we proceed day to day.

For many years, the Web was a “read-only” tool for many.

4.1 The static Web (the Web 1.0)
In 1993 came a turning point for the WWW with the introduction of the Mosaic web browser,

which could display graphics as well as text . 50

From that date, usage of the web grew rapidly, although most users operated only as

consumers of content, not producers.

Enter Web 1.0. During this early phase of web development, web pages were mostly static

documents read from a server and displayed on a client, with no options for users to

contribute content, or for content to be tailored to a user’s specific demands.

50 NCSA. “ ​NCSA Mosaic™ ​” (http://www.ncsa.illinois.edu/enabling/mosaic)

38

CHAPTER 1 - THE WORLD WIDE WEB

4.2 The dynamic Web (the Web 2.0)
Around 2000 a second phase of web development began with the increasing use of

technologies allowing the user of a browser to interact with web pages and shape their

content. Tim O’Reilly used the phrase Web 2.0 to describe a new wave of web products and

services . 51

It was difficult to pin down a definition of Web 2.0. For business people, it meant new

business models. For graphic designers, it meant rounded corners and gradients. For

developers, it meant JavaScript and Ajax.

Whatever its exact meaning, the term Web 2.0 captured a mood and a feeling. Everything was

going to be different now. The old ways of thinking about building for the web could be cast

aside. Treating the web as a limitless collection of hyperlinked documents was passé. The age

of web apps was at hand.

Web 2.0 represented the move toward a more social, collaborative, interactive and responsive

web. It served as a marker of change in the philosophy of web companies and web developers.

Even more than that, Web 2.0 was a change in the philosophy of a web savvy society as a

whole. Both the change in how society functions as well as the internet as an existing form of

technology are part of Web 2.0. Web 2.0 marked an era where we weren’t just using the

internet as a tool anymore — we were becoming a part of it. Web 2.0 is the process of putting

“us” into the web.

51 Tim O'Reilly (September 2005). “ ​What Is Web 2.0 - Design Patterns and Business Models
for the Next Generation of Software​”. (https://goo.gl/JwgeCE)

39

CHAPTER 1 - THE WORLD WIDE WEB

4.2.1 The social Web
Web 2.0 technologies have made possible a wide range of social web sites now familiar to

everyone, including chat rooms, blogs, wikis, product reviews, e-markets, and crowdsourcing.

Previously a consumer of content provided by others, the web user has now become a

prosumer, capable of adding information to a web page, and in this way communicating not

only with the server, but through the server with other clients as well.

The idea of human society that blends with a computer network looks like a science fiction

scene anticipated by a dreamy past, but it is a fair description of what has happened to our

society at the beginning of the new millennium.

Not only have we increased our usage of the internet, from how much time we started

spending on it at home to how we now carry around a version of it in our pocket, but we have

changed the way we interact with it.

This has led us to a social web where we aren’t just getting information dumped onto us from

a computer because we’re now all connected with other people who can put anything they

want to share online.

Nowadays, the Web is the main communication channel of everyday life.

We are getting more and more connected thanks to the Web. In just few decades we’ve

tremendously extended our boundaries and shortened our distances: we can speak to half the

planet, at any time and from almost anywhere; we can examine the most complete

compendium of human knowledge in seconds; we can work, study, play, and be together at a

distance.

40

CHAPTER 1 - THE WORLD WIDE WEB

5 The Semantic Web
Tim Berners-Lee original idea of the Web concealed another idea, a Web of data.

That idea would become the Semantic Web.

The Semantic Web extends the network of hyperlinked human-readable web pages by

inserting machine-readable metadata about pages and how they are related to each other.

This enables automated agents to access the Web more intelligently and perform more tasks

on behalf of users.

The Semantic Web is about two things. It is about common formats for integration and

combination of data drawn from diverse sources, where on the original Web mainly

concentrated on the interchange of documents. It is also about language for recording how the

data relates to real world objects. That allows a person, or a machine, to start off in one

database, and then move through an unending set of databases which are connected not by

wires but by being about the same thing . 52

The 2001 Scientific American article by Tim Berners-Lee, Hendler, and Lassila described an

expected evolution of the existing Web to a Semantic Web . In 2006, Berners-Lee and 53

colleagues stated that: “ ​This simple idea…remains largely unrealized ​”. However, in 2013,

more than four million Web domains contained Semantic Web markup. 54

52 W3C. (November 2011). “ ​W3C Semantic Web activity​”. (https://goo.gl/2otfYn)
53 Tim Berners-Lee, James Hendler and Ora Lassila. (May 2001). “ ​The Semantic Web - a new
form of Web content that is meaningful to computers will unleash a revolution of new
possibilities.​” (https://goo.gl/Kxg3ud)
54 Ramanathan V. Guha (March 2015). “ ​Light at the End of the Tunnel ​”.
(https://goo.gl/YzijhY)

41

CHAPTER 1 - THE WORLD WIDE WEB

5.1 Microdata
Microdata is a set of tags (HTML attributes), introduced with HTML5, to help search 55

engines and other applications better understand web content and display it in a useful,

relevant way.

Microdata provides a simple mechanism to label content in a document, so it can be processed

as a set of items described by name-value pairs. Each name-value pair identifies a property of

the item, and a value of that property.

Itemscope and itemtype
Items and properties are generally represented by regular elements.

The ​itemscope​ attribute on an element identifies the element as an item.

The ​itemprop​ attribute on a descendant of an item identifies a property of that item.

Typically, the text content of that element is the value of that property.

If text content is not suitable to contain the value the ​content​ attribute of the element is used.

For example:

<​div​ itemscope itemtype="http://schema.org/Movie">
 <​h1​ itemprop="name">Avatar</​h1​>
 <​div​ itemprop="director" itemscope itemtype="http://schema.org/Person">
 <​span​>Directed by<​span​> <​span​ itemprop="name">James Cameron</​span​>
 </​div​>
 <​span​ itemprop="genre">Science fiction</​span​>
 <​a​ href="/movies/avatar-trailer" itemprop="trailer">Trailer</ ​a​>
</​div​>

Many pages can be described using only the ​itemscope​, ​itemtype​, and ​itemprop attributes

along with the types and properties defined on schema.org . 56

Most sites and organizations will not have a reason to extend schema.org. However,

schema.org offers the ability to specify additional properties or sub-types to existing types . 57

55 W3C (April 2018). ​HTML Microdata​. (https://goo.gl/74i7NJ)
56 Schema.org. ​Getting started with schema.org using Microdata​ (https://goo.gl/c1MJBm)
57 Schema.org. ​Schema.org Extensions ​. (https://goo.gl/GuuwrV)

42

CHAPTER 1 - THE WORLD WIDE WEB

5.2 Schema.org
Schema.org is a collaborative, community activity with a mission to create, maintain, and

promote schemas for structured data on the Internet, on web pages, and beyond . 58

Web pages have an underlying meaning that people understand when they read them. But

search engines have a limited understanding of what is being discussed on those pages.

Schema.org provides a collection of shared vocabularies to mark up web pages in ways that

can be understood by the major search engines: Google, Microsoft, Yandex and Yahoo!

Schema.org vocabulary can be used with many different encodings, including RDFa,

Microdata and JSON-LD . These vocabularies cover entities, relationships between entities 59

and actions, but can be extended.

Schema.org is used by over 10 million sites to markup their web pages. Many applications

from Google, Microsoft, Pinterest, Yandex and others already use these vocabularies to power

rich, extensible experiences.

Founded by Google, Microsoft, Yahoo and Yandex, Schema.org vocabularies are developed by

an open community process , using the public-schemaorg@w3.org mailing list and through 60

GitHub platform.

A shared vocabulary makes it easier for webmasters and developers to decide on a schema and

get the maximum benefit for their efforts. It is in this spirit that the founders, together with

the larger community have come together - to provide a shared collection of schemas.

58 Schema.org. ​Welcome to Schema.org​. (https://goo.gl/AVBrs5)
59 W3C. (January 2014). ​JSON-LD 1.0 - A JSON-based Serialization for Linked Data​.
(https://goo.gl/yNWkwN)
60 W3C. ​Schema.org community group ​ (https://goo.gl/6PBsqb)

43

CHAPTER 1 - THE WORLD WIDE WEB

Types and properties
Schema.org describes a variety of other item types, each of which has its own set of properties

that can be used to describe the item.

The broadest item type is ​Thing , which has four properties: name, description, url, and 61

image.

More specific types share properties with broader types.

For example, a ​Place is a more specific type of ​Thing​, and a ​LocalBusiness is a more

specific type of ​Place​.

More specific items inherit the properties of their parent.

For example, a ​LocalBusiness is a more specific type of ​Place and a more specific type of

Organization, so it inherits properties from both parent types.

The commonly used item types are: creative works such as ​Book​, ​Movie​, ​Music​, ​Recipe​, etc.;

events and people such as ​Event​, ​Organization​, ​Person​, ​Place and embedded non-text

objects, such as ​AudioObject​, ​ImageObject​, ​VideoObject​, etc.

61 Schema.org. ​Schema.org extensions ​. (https://goo.gl/TTkHXY)

44

CHAPTER 1 - THE WORLD WIDE WEB

5.3 Open Graph Protocol
The Open Graph protocol enables any web page to become a rich object in a social graph . 62

It is used on Facebook to allow any web page to have the same functionality as any other

object on Facebook.

While many different technologies and schemas exist and could be combined together, there

isn't a single technology which provides enough information to richly represent any web page

within the social graph. The Open Graph protocol builds on these existing technologies and

gives developers one thing to implement. 63

5.3.1 Metadata
Basic Metadata
To turn web pages into open graph objects, you need to add basic metadata.

The required metadata properties for every page are:

- og:title​ - the title of your object as it should appear within the graph;

- og:type​ - the type of your object;

- og:image​ - an image URL which should represent your object within the graph;

- og:url​ - the canonical URL of your object that will be used as its ID in the graph.

For example:

<​html​ prefix="og: http://ogp.me/ns#">
 <​head​>
 <​title​>The Rock (1996)</​title​>
 <​meta​ property="og:title" content="The Rock" />
 <​meta​ property="og:type" content="video.movie" />
 <​meta​ property="og:url"
 content="http://www.imdb.com/title/tt0117500/" />

 <​meta​ property="og:image"
 content="http://ia.media-imdb.com/images/rock.jpg" />

 ...

 </​head​>
...

</​html​>

62 Open Web Foundation. ​The Open Graph protocol ​ (https://goo.gl/CkzZJC)
63 Facebook. ​The Open Graph Protocol Design Decisions ​. (https://goo.gl/R8hi2K)

45

CHAPTER 1 - THE WORLD WIDE WEB

Optional Metadata
The following properties are optional for any object and are generally recommended:

- og:audio​ - a URL to an audio file to accompany this object.

- og:description​ - a one to two sentence description of your object.

- og:determiner​ - the word that appears before this object's title in a sentence.

- og:locale​ - the locale these tags are marked up in.

- og:locale:alternate​ - an array of other locales this page is available in.

- og:site_name​ - the name of the web site the object belongs to.

- og:video​ - a URL to a video file that complements this object.

Structured metadata
Some properties can have extra metadata attached to them. These are specified in the same

way as other metadata with property and content, but the property will have extra :.

For example, the og:image property has some optional structured properties:

- og:image:url​ - identical to og:image.

- og:image:secure_url​ - an alternate url to use if the webpage requires HTTPS.

- og:image:type​ - a MIME type for this image.

- og:image:width​ - the number of pixels wide.

- og:image:height​ - the number of pixels high.

- og:image:alt​ - a description of what is in the image (not a caption).

5.3.2 Types
The types used when defining attributes are:

- Boolean: a true or false value: true, false, 1, 0.

- DateTime: a temporal value composed of a date and a time, in ISO 8601 . 64

- Enum: a set of constant string values (enumeration members).

- Float: a 64-bit signed floating point number.

- Integer: a 32-bit signed integer.

- String: a sequence of Unicode characters (with no escape characters)

- URL: a sequence of Unicode characters that identify an Internet resource.

64 Wikipedia. ​ISO 8601​ (https://goo.gl/6s2N7K)

46

CHAPTER 1 - THE WORLD WIDE WEB

5.4 AMP
AMP HTML is a subset of HTML for authoring content pages such as news articles in a way

that guarantees certain baseline performance characteristics . 65

Being a subset of HTML, it puts some restrictions on the full set of tags and functionality

available through HTML but it does not require the development of new rendering engines:

existing user agents can render AMP HTML just like all other HTML.

AMP HTML documents can be uploaded to a web server and served just like any other HTML

document: no special configuration for the server is necessary. However, they are designed to

be optionally served through specialized AMP serving systems that proxy AMP documents,

applying transformations that provide additional performance benefits, such as:

- replace image references with images sized to the viewer’s viewport;

- inline images that are visible above the fold;

- inline CSS variables;

- preload extended components;

- minify HTML and CSS.

AMP HTML uses a set of contributed but centrally managed and hosted custom elements to

implement advanced functionality such as image galleries. While it does allow styling the

document using custom CSS, it does not allow author written JavaScript beyond what is

provided through the custom elements to reach its performance goals.

By using the AMP format, content producers are making the content in AMP files available to

be crawled (subject to robots.txt restrictions), cached, and displayed by third parties.

AMP HTML documents should be annotated with standardized metadata, such as the Open

Graph Protocol, and marked up with schema.org CreativeWork or any of its more specific

types such as NewsArticle or BlogPosting.

65 Google. ​AMP HTML Specification​. (https://goo.gl/1SWGYd)

47

CHAPTER 1 - THE WORLD WIDE WEB

The AMP HTML format
HTML tags can be used unchanged in AMP HTML.

Certain tags have equivalent custom tags, such as ​<amp-img> for ​​, ​<amp-video> for

<video>​, ​<amp-audio> for ​<audio>​, while other tags are outright prohibited, such as

<script> (unless the type is application/ld+json), ​<base>​, ​<frame>​, ​<frameset>​, ​<object>​,

<param>​, ​<applet>​, and ​<embed>​.

For example:

<!doctype html>

<​html​ amp>
 <​head​>
 <​meta​ charset="utf-8">
 <​title​>Sample document</​title​>
 <​link​ rel="canonical" href="./regular-html-version.html">
 <​meta​ name="viewport"
 content="width=device-width, minimum-scale=1, initial-scale=1">

 <​style​ amp-custom>​/* AMP style */​</​style​>
 <​script​ type="application/ld+json">
 {

 "@context": "http://schema.org",

 "@type": "NewsArticle",

 "headline": "Article headline",

 "image": ["thumbnail-1.jpg", "thumbnail-2.jpg"],

 "datePublished": "2018-09-16T07:00:00+01:00"

 }

 </​script​>
 <​script​ async custom-element="amp-carousel"
 src="https://cdn.ampproject.org/v0/amp-carousel-0.1.js"></ ​script​>
 <​style​ amp-boilerplate>​/* AMP style */​</​style​>
 <​noscript​><​style​ amp-boilerplate>​/* AMP style */​</​style​></​noscript​>
 <​script​ async src="https://cdn.ampproject.org/v0.js"></ ​script​>
 </​head​>
 <​body​>
 <​h1​>Sample document</​h1​>
 <​p​>Some text</​p​>
 <​amp-img​ src=sample.jpg width=300 height=300></​amp-img​>
 <​amp-ad​ width=300 height=250 type="a9" data-aax_size="300x250"
 data-aax_pubname="test123" data-aax_src="302"></ ​amp-ad​>
 </​body​>
</​html​>

48

CHAPTER 1 - THE WORLD WIDE WEB

6 The centralization of the Web
When the Web first took off in the mid ‘90s, the dream wasn’t just big, it was distributed. The

Web consisted of nodes joined by links, with no center. Everyone would have their own

homepage, everyone would post their writings, everyone would own their own data, and there

was no one around offering to own it for them. Without asking anyone permission, everyone

could “ ​put information onto the Web​” . 66

But as the Web has grown into a global medium for communication, journalism, and

entertainment, the power dynamics have shifted. Now, a handful of companies own vast

swaths of web activity, Google for searching, Facebook for social networking, Amazon for

e-commerce, and quite literally own the data their users have provided and generated.

This gives these companies unprecedented power over users, and gives them such a

competitive advantage that it’s not realistic to think to start up a business that’s going to beat

them at their own game.

66 W3C. (April 1995). ​Putting information into the Web​. (https://goo.gl/uaKd4G)

49

CHAPTER 1 - THE WORLD WIDE WEB

6.1 Google
Google is the most-used search engine on the Web.

It controls over the 72% of all search traffic . 67

The origin
Sergey Brin and Larry Page, students at Stanford University, were intrigued with the idea of

extracting meaning from the mass of data accumulating on the Internet, so they began

working to devise a new type of search technology, which they dubbed BackRub.

In mid-1998, Brin and Page founded the Google Inc..

The basic idea
The basic idea was to leverage Web users' own ranking abilities by tracking each website’s

“backing links”, that is, the number of other pages linked to them.

Most search engines simply returned a list of websites ranked by how often a search phrase

appeared on them. Brin and Page incorporated into the search function the number of links

each Web site had; i.e., a website with thousands of links would logically be more valuable

than one with just a few links, and the search engine thus would place the heavily linked site

higher on a list of possibilities. Further, a link from a heavily linked Web site would be a more

valuable “vote” than one from a more obscure website.

The growth
By mid-1999, when Google received a $25 million round of venture capital funding, Google

was processing 500,000 queries per day.

In 2000, when Google became the client search engine for Yahoo!, one of the Web’s most

popular sites, activity began to explode.

By 2004, when Yahoo! dispensed with Google’s services, Google was processing 200 million

queries per day.

By 2012 Google was handling some 3 billion searches per day: that growth only continued.

67 Net Market Share. ​Search Engine Market Share​ (https://goo.gl/Fvzgoh)

50

CHAPTER 1 - THE WORLD WIDE WEB

Why the name
The name “Google” was derived from a misspelling of Page’s original planned name “googol”,

that is the mathematical term for the number one followed by 100 zeroes.

The company’s name has become so ubiquitous that it entered the lexicon as a verb: “to

google'' became a common expression for searching the Internet.

The infrastructure
To accommodate the enormous mass of data, Google built 11 data centres around the world,

each of them containing several hundred thousand servers (basically, multiprocessor personal

computers and hard drives mounted in specially constructed racks).

Google's interlinked computers probably number several million.

The heart of Google's operation, however, is built around three proprietary solutions:

- Google File System (GFS) - a distributed file system;

- Bigtable - a distributed database management system;

- MapReduce - a programming model and an associated implementation for processing

and generating big data sets on a cluster of distributed servers mapreduce.

The business
Google’s strong financial results reflected the rapid growth of Internet advertising in general

and Google’s popularity in particular.

Analysts attributed part of that success to a shift in advertising spending toward the Internet

and away from traditional media, including newspapers, magazines, and television.

For example, American newspaper advertising fell from a peak of $64 billion in 2000 to $20.7

billion in 2011, while global online advertising grew from approximately $6 billion in 2000 to

more than $72 billion in 2011.

Google began as an online search firm, but it now offers more than 50 Internet services and

products, from e-mail (Gmail) and online document creation (Drive) to software for mobile

phones (Android).

Despite this myriad of products, its original search tool remains the core of its success.

In 2016, all of its revenue was earned from advertising based on users search requests.

51

CHAPTER 1 - THE WORLD WIDE WEB

6.2 Facebook
Facebook is no doubt the largest social network in the world.

It control over the online identities of 2.2 billion people . 68

Brief history
Facebook was created by Mark Zuckerberg at Harvard University.

The social network, initially called ​TheFacebook​, was launched in February 2004.

The growth
By June 2004 it counted 250,000 students from 34 schools in the US. By the end of 2004,

TheFacebook had reached one million monthly active users.

In 2005, it allowed high-school students and universities outside the US to join the service. By

the end of 2005, it had had reached six million monthly active users.

In 2006, it allowed to anyone over the age of 13, beyond students, to join the service.

In 2008 Facebook surpassed Myspace as the most-visited social media website.

The IPO
In February 2012 Facebook filed to become a public company.

Its initial public offering (IPO) in May raised $16 billion, giving it a market value of $102.4

billion. By contrast, the largest IPO of an Internet company to date was that of the

search-engine company Google Inc., which had raised $1.9 billion when it went public in

2004.

Using Facebook
Users can create profiles, upload photos, connect with each other, join groups, chat with each

other and send each other private messages, share content, images and videos.

Users can signal their approval of content they post with the Like button, a feature that also

has appeared on many other websites since its introduction.

Users can add tags to photos, identifying themselves and others in images that could be seen

by other users.

68 Statista. ​Number of monthly active Facebook users worldwide as of 1st quarter 2018

(https://goo.gl/MukFsW)

52

CHAPTER 1 - THE WORLD WIDE WEB

Identities
Users are forbidden from adopting false identities.

The attractiveness of Facebook stems in part from cofounder Zuckerberg’s insistence from the

very beginning that members be transparent about who they are. The company’s management

argued that transparency is necessary for forming personal relationships, sharing ideas and

information, and building up society as a whole.

Privacy
Privacy remains an ongoing problem for Facebook. It first became a serious issue for the

company in 2006, when it introduced News Feed, which consisted of every change that a

user’s friends had made to their pages. After an outcry from users, Facebook swiftly

implemented privacy controls in which users could control what content appeared in News

Feed. In 2007 Facebook launched a short-lived service called Beacon that let members’

friends see what products they had purchased from participating companies. It failed because

members felt that it encroached on their privacy. Indeed, a survey of consumers in 2010 put

Facebook in the bottom 5 percent of companies in customer satisfaction largely because of

privacy concerns, and the company continues to be criticized for the complexity of its user

privacy controls and for the frequent changes it makes to them.

Advertising
Access to Facebook is free of charge, and the company earns most of its money from

advertisements on the website. The bottom-up, peer-to-peer connectivity among users makes

it easier for businesses to connect their products with consumers.

As Zuckerberg had predicted, advertisers were able to create new and effective customer

relationships. This direct consumer engagement on such a large scale had not been possible

before Facebook, and more companies began using the social network for marketing and

advertising.

API
Facebook encourages third-party software developers to use the service.

In 2006 it released its application programming interface (API) so that programmers could

write software that Facebook members could use directly through the service.

53

CHAPTER 1 - THE WORLD WIDE WEB

6.3 The attempts to re-decentralize the Web
There have been many attempts to re-decentralize the Web.

Tim Berners-Lee is leading a new project at MIT, that aims to radically change the way Web

apps work today, resulting in true data ownership as well as improved privacy . 69

6.3.1 Solid
Solid (derived from “social linked data”) is a proposed set of conventions and tools for

building decentralized social applications based on Linked Data principles.

On the better web Berners-Lee envisions, users control where their data is stored and how it’s

accessed: social networks would still run in the cloud, but users could store their data locally,

or they could choose a different cloud server run by a company or community they trust . 70

Nevertheless, technical feasibility alone does not guarantee the sort of widespread adoption

necessary to build a useful platform. Some of the more mature tools developed in this space

have faced serious difficulties in attracting a permanent user base, and the problems those

platforms suffer from may hinder the growth of new systems as well. Social networks, in

particular, are difficult to bootstrap due to network effects. We generally join social networks

because our friends are already there.

Taking a competitive, rather than complementary, position in the market creates a difficult

barrier to entry for new projects. Similarly, interoperable protocols require adoption at the

developer level. Solid, which hopes to bridge between existing and novel social networks, faces

a serious adoption challenge: Why should developers choose to switch to Solid’s new data

model, and what's the incentive for Facebook to make their data interoperable without legal

requirements forcing them to do so? 71

Even though promising, since it’s still based on the same protocols, and since it’s mainly

focused on social networks, it doesn’t really solve all the problems the Web suffers from.

69 D. Weinberger. (August 2016). ​How the father of the World Wide Web plans to reclaim it
from Facebook and Google.​ (https://goo.gl/hkYxzT)
70 MIT. ​What is Solid?​ (https://goo.gl/8tCvLK)
71 Chelsea​ ​Barabas, Neha​ ​Narula, Ethan​ ​Zuckerman. (August 2017). ​Defending​ ​Internet ​
​Freedom ​ ​through​ ​Decentralization: Back​ ​to ​ ​the​ ​Future?​ (https://goo.gl/325M7p)

54

CHAPTER 1 - THE WORLD WIDE WEB

7 The problems of the Web
The centralization of the Web is the most important problem, which brings other problems.

7.1 ​The censored Web
Over the past decade, we have witnessed many attempts to erode the civil liberties, to censor

the freedom of information, in the real world, and so even on the Web.

At 8am local time on April 29th, 2017, Wikipedia went dark for everyone in Turkey. According

to the independent watchdog group Turkey Blocks, the Turkish government has issued a court

order that permanently restricts access to the online encyclopedia . 72

The Chinese government has blocked Wikipedia , the New York Times , and other sites from 73 74

its citizens . And so do other countries every once in a while . 75 76

In January 2016, all content on Medium has been unavailable for Malaysian internet users . 77

In April 2016, Medium was blocked in mainland China after information from the leaked

Panama Papers was published on the site . 78

In June 2017, Medium has been blocked in Egypt along with more than 60 online media

websites in a crackdown by the Egyptian government. The list of blocked sites also includes Al

Jazeera, the Huffington Post's Arabic website and Mada Masr . 79

The Web is for everyone, but not everyone is for the Web.

72 D. Morris. (April 2017). ​Turkey Blocks All Versions of Wikipedia​. (https://goo.gl/tzkw2s)
73 J. Li and C. Wickenkamp. (June 2015). ​Chinese Regime China Now Blocked From
Accessing Wikipedia​. (https://goo.gl/d2unFs)
74 K. Bradsherd. (December 2008). ​China Blocks Access to The Times’s Web Site​.
(https://goo.gl/ntpy2r)
75 B. Xu and E. Albert. (February 2017). ​Media Censorship in China​. (https://goo.gl/pQ3U83)
76 E. Schmidt and J. Cohen. (April 2013). ​Web censorship: the net is closing in​.
(https://goo.gl/hAjTUj)
77 Medium. ​The Post Stays Up ​. (https://goo.gl/hqYdhA)
78 Steven Millward. (April 2016). ​Medium is now blocked in China​. (https://goo.gl/CCWS1H)
79 Al Jazeera. ​Egypt bans Medium as media crackdown widens ​. (https://goo.gl/UqiJ6w)

55

CHAPTER 1 - THE WORLD WIDE WEB

7.2 The Fake Web
Berners-Lee added his voice to the chorus of people gravely concerned about the explosion of

fake news.

Fake news consist in a deliberate misinformation designed to appeal to readers’ biases and

make money through viral clicks . 80

In an interview, Tim Berners-Lee said : 81

Through the use of data science and armies of bots, those with bad intentions can

game the system to spread misinformation for financial or political gain.

In December, Facebook announced new steps to curb fake news on its platform after months

of continuous criticism. The plan included new tools to make it easier for Facebook users to

flag fake stories and a collaboration with the respected journalism organization the Poynter

Institute to independently investigate claims.

In another interview, Tim Berners-Lee said : 82

We must push back against misinformation by encouraging gatekeepers such as

Google and Facebook to continue their efforts to combat the problem, while avoiding

the creation of any central bodies to decide what is “true” or not.

The real problem is that gatekeepers themselves, i.e. Google and Facebook, in the end, can be

traced back to the cause of the problema, i.e. clickbait , for their remunerative advertising 83

system . 84

80 Helle Hunt. ​What is fake news? How to spot it and what you can do to stop it ​.
(https://goo.gl/U3syy8)
81 CBS News. Shanika Gunaratna (March 2017). ​Web inventor Tim Berners-Lee on the biggest
problems with the internet today​. (https://goo.gl/gxtjZb)
82 Telegraph. ​Sir Tim Berners-Lee, World Wide Web inventor, urges crackdown on 'shocking'
fake news ​. (https://goo.gl/5RFbzr)
83 Wikipedia. ​Clickbait ​. (https://goo.gl/r6Y743)
84 Google. ​Discover how easy it is to use AdSense​. (https://goo.gl/SRSY4u)

56

CHAPTER 1 - THE WORLD WIDE WEB

7.3 The Advertising Web
The advertising industry, a business whose very raison d’être is often at odds with the goals of

people trying to achieve a task as quickly as possible, unsurprisingly, abused of the language:

exploiting the possibility of opening browser windows dynamically, something that previously

could only be done by the user manually.

A young developer named Ethan Zuckerman realised that he could spawn a new window with

an advertisement in it. That allowed advertisers to put their message in front of website

visitors. Not only that, but JavaScript could be used to spawn multiple windows, some of them

visible, some of them hidden behind the current window. It was a fiendish solution.

Twenty years later, Zuckerman wrote : 85

I wrote the code to launch the window and run an ad in it. I’m sorry.

Pop-up (and pop-under) windows became so intolerable that browsers had to provide people

with a means to block them.

However, the advertising industry later found other ways to abuse JavaScript. Ad-supported

online publishers injected bloated and inefficient JavaScript into their pages, making them

slow to load. JavaScript was also used to track people from site to site.

85 E. Zuckerman. (August 2014). “ ​The internet’s original sin​”. (https://goo.gl/kFxeXP)

57

CHAPTER 1 - THE WORLD WIDE WEB

7.4 The Tracking Web
Every time you search using Google Search; see Google’s Adsense adverts; or visit a site that

uses Google’s Analytics web statistics analysis, you are identifying yourself to Google.

Google can store your documents, e-mails and contacts for you, so you can conveniently

access them from anywhere; and they can conveniently own great swathes of information

about millions of people.

Google can track you because of the way the Web works. Your browser automatically sends

certain information to a website whenever you click on a link or type in the address of a web

page, that are: the IP address, which the website needs to reply to you, and the cookies.

Cookies are bits of information from a website, which are stored on your computer, and sent

back to the website every time your browser connects to that site again. For example cookies

often contain your password for a website, or the last time you visited it. That way, the website

can identify you as a previous visitor and maybe personalise the site layout for you.

Your browser identifies you via cookies whenever it requests external elements on a page.

Virtually all sites incorporate content not physically located on their own servers, such as

pictures, music, videos, etc., as well as, Google maps, Google site search boxes, Google

Adsense adverts. Every time they load, Google get their cookie, so they can know what sites

you’re reading.

Regardless of whether this could be considerate a legitimate trade off between privacy and

personalization, this was not how the Web was intended for. The old “ ​nothing to hide, nothing

to fear ​” platitude should not be the right reaction.

58

CHAPTER 1 - THE WORLD WIDE WEB

7.5 The Inefficient Web
The Web is inefficient. Even if a thousand people have downloaded a thousand copies of the

same file, to a thousand different physical locations locations, like phone, tablet, computer,

etc., all references to that file would still point to that original, single location.

As of this writing, the most viewed video of all time on Youtube has over 5 billions views . 86

Let’s make some assumptions. The video clocks in at 100 Mb, that means: at most 500

Petabytes of data for the video file alone has been sent since this was published.

If we assume a total expense of 1 cent per gigabyte, that would include bandwidth and all of

the server costs, $5 Millions has been spent on distributing this one file so far.

HTTP lowered the price of publishing, but it still costs money, and these costs can really add

up. Distributing this much data from central datacenters is potentially very expensive if not

done at economies of scale.

86 Youtube. ​The most viewed video of all time​. (https://goo.gl/VhtkGM ​)

59

CHAPTER 1 - THE WORLD WIDE WEB

7.6 The Lost Web
The so idealized “Web of documents” actually is a “Web of documents on specific machines”.

If a document is moved in another location or just renamed, any link to that document is no

longer traversable. Also, if the server is turned off, or if it’s made inaccessible, in any way, for

whatever reason, any document hosted by that server is no longer available.

Paraphrasing Thomas Reid “ ​a chain is as strong as the weakest ring​” , location-addressing 87

approach result to be the weak ring of the chain. Unreliable, breakable links lead to an

unreliable, broken Web.

If “ ​a picture picture is worth a thousand of words ​” , the following detailed flowchart shows 88

the problem in detail.

404

Also, if a document is updated, remaining in the same location, the previous version of the

document is no longer accessible: the Web only exists in the land of the perpetual present.

As far back as 2003, a large-scale study of the evolution of web pages , discovered that about 89

one link out of every 200 disappeared each week from the Web, leaving the average lifespan of

a web page at just 100 days . 90

87 ​The meaning and origin of the expression: A chain is only as strong as its weakest link.
(https://goo.gl/Ya8Wws)
88 University of Regina. ​The history of a picture's worth​. (https://goo.gl/q3Tg6f)
89 Dennis Fetterly, Mark Manasse, Marc Najork, Janet Wiener. ​A Large-Scale Study of the
Evolution of Web Pages ​. (https://goo.gl/ZStQgx)
90 Mike Ashenfelder. (November 2011). The Average Lifespan of a Webpage.
(https://goo.gl/nWqQGa)

60

CHAPTER 1 - THE WORLD WIDE WEB

7.7 The Offline Web
Usually, if you have no Internet connection, you can not navigate the Web, built over Internet.

Techniques such as caching, through Service Workers, in HTML5 compliant web browsers,

tries to alleviate the problems, but, in general, the Web is not built to live offline.

The following picture shows the problem in details.

That is: the on-line—or—no-live Web.

61

CHAPTER 1 - THE WORLD WIDE WEB

Conclusions
The World Wide Web is enormous, but it has also shown to be very fragile and unreliable. It

has unified the information of the entire world, standardizing how we distribute and present

information to each other, but the way content is distributed is fundamentally flawed.

The Web is centralized. When content is hyper-centralized, it makes us highly dependent on

the Internet backbones to the datacenters functioning. Aside from making it easy for

governments to block and censor content, there are also reliability problems. Even with

redundancies, major backbones sometimes get damaged, or routing tables go haywire, and the

consequences can be drastic.

While the Internet is a truly distributed system, designed so that if any one piece goes out, it

will still function — the Web, built on top of the Internet, is not.

Evolving the Web infrastructure is nearly impossible, given the number of backwards

compatibility constraints and the number of strong parties invested in the current model.

However, new protocols have emerged, gaining wide use since the emergence of the Web, that

can address and solve most of the problems the Web suffers from: the peer-to-peer protocols.

A truly-distributed Web should be built over a peer-to-peer network.

The next chapter is about the state-of-the-art peer-to-peer protocols and networks.

62

CHAPTER 2 - THE DISTRIBUTED NETWORKS

CHAPTER 2
THE DISTRIBUTED NETWORKS

In this chapter, the peer-to-peer distributed networks are explored.

From the very first peer-to-peer networks, primarily used to share music and movies, such as

Napster and BitTorrent, to the novel, general-purpose, distributed file-system. In particular,

the InterPlanetary File System (IPFS) and DAT; ZeroNet, a platform to build and deploy

websites over the BitTorrent network; and Secure Scuttlebot, a distributed database protocol

for unforgeable append-only message feeds.

63

CHAPTER 2 - THE DISTRIBUTED NETWORKS

TABLE OF CONTENTS

1 The peer-to-peer networks ​66

1.1 Architecture ​66

1.2 File-sharing applications ​67

1.2.1 Napster ​67

1.2.2 BitTorrent ​68

1.3 Modern Cryptography ​69

1.3.1 Private and Public Keys ​69

1.3.2 Key Formats ​70

2 The InterPlanetary File System ​71

2.1 Content-addressing ​71

2.1.1 The implications of content-addressing ​72

2.2 IPFS network ​73

2.3 IPFS Objects and Links ​74

2.3.1 File System ​74

2.4 The InterPlanetary Linked Data ​75

2.4.1 Merkle links ​76

2.4.2 Merkle DAG ​78

2.4.3 Data model ​79

2.5 The InterPlanetary Naming System ​80

3 Dat ​81

3.1 Beaker browser ​82

3.1.1 Website manifest ​82

3.1.2 DatArchive ​83

3.1.3 WebDB ​84

3.2 HashBase ​85

4 ZeroNet ​86

4.1 Using ZeroNet ​86

5 Secure Scuttlebutt ​88

5.1 Concepts ​88

5.2 Security properties ​91

5.3 Design Challenge ​92

Conclusions ​95

64

CHAPTER 2 - THE DISTRIBUTED NETWORKS

65

CHAPTER 2 - THE DISTRIBUTED NETWORKS

1 The peer-to-peer networks
A peer-to-peer network is a distributed application architecture that partitions tasks or

workloads between peers. Peers are equally privileged, equipotent participants in the

application.

1.1 Architecture
Peer-to-peer networks generally implement some form of virtual overlay network on top of

the physical network topology, where the nodes in the overlay form a subset of the nodes in

the physical network. Data is still exchanged directly over the underlying TCP/IP network, but

at the application layer peers are able to communicate with each other directly, via the logical

overlay links (each of which corresponds to a path through the underlying physical network).

Overlays are used for indexing and peer discovery, and make the P2P system independent

from the physical network topology.

The most successful distributed peer-to-peer networks have been peer-to-peer file-sharing

applications primarily geared toward large media (audio and video), such as Napster and

BitTorrent.

66

CHAPTER 2 - THE DISTRIBUTED NETWORKS

1.2 File-sharing applications
1.2.1 Napster
Napster is a file-sharing computer service created by American college student Shawn

Fanning in 1999. Napster allowed users to share, over the Internet, electronic copies of music

stored on their personal computers.

The arrival of Napster in 1999 marked the emergence of decentralized peer-to- peer (P2P)

sharing of music over the Internet. At its peak in 2001 there were as many as 1.5 million

people simultaneously sharing files worldwide by using Napster. Napster had embedded in

the consciousness of consumers the idea of downloading songs from the Internet — bypassing

the purchase of established distribution forms, such as records, tapes, or compact discs (CDs).

The file sharing that resulted set in motion a legal battle over digital rights and the

development of digital rights management software to prevent computer copyright piracy.

67

CHAPTER 2 - THE DISTRIBUTED NETWORKS

1.2.2 BitTorrent
BitTorrent is a protocol for sharing large computer files over the Internet. It was created in

2001 by Bram Cohen, an American computer programmer who was frustrated by the long

download times that he experienced using applications such as FTP.

Files shared with BitTorrent are divided into smaller pieces for distribution among the

protocol’s users, called “peers”. A peer who wishes to download a file is directed by a software

application called a “client” to access a Web site that hosts a tracker. The tracker keeps records

of all the peers who have previously downloaded the file and then allows pieces of their copies

of the file to be downloaded by the peer conducting the search.

By breaking the file into smaller pieces and allowing peers to download those pieces from each

other, BitTorrent uses much less bandwidth than would be the case if all the peers

downloaded the complete file from the original source. Once a file is completely downloaded,

it becomes a “seed”, that is, a file from which other peers can download pieces. However,

BitTorrent can also work without the existence of a seed; a group of peers can share pieces of a

file as long as they have among them all the pieces of the original complete file. Some tracker

Web sites encourage seeding by penalizing peers who do not seed their files after their

downloads are complete.

When content is distributed among unknown peers, the problem of privacy arises.

Modern cryptography, in particular the asymmetric encryption based on public/private keys,

offers a promising solution to the problem of the privacy in a peer-to-peer network Web.

68

CHAPTER 2 - THE DISTRIBUTED NETWORKS

1.3 Modern Cryptography
Public key cryptography was invented in the 1970s and is a mathematical foundation for

computer and information security. Since the invention of asymmetric cryptography, several

suitable mathematical functions, such as prime number exponentiation and elliptic curve

multiplication, have been discovered. These mathematical functions are practically

irreversible, meaning that they are easy to calculate in one direction and infeasible to calculate

in the opposite direction. Based on these mathematical functions, cryptography enables the

creation of digital secrets and unforgeable digital signatures.

There is a mathematical relationship between the public and the private key that allows the

private key to be used to generate signatures on messages. This signature can be validated

against the public key without revealing the private key.

1.3.1 Private and Public Keys
An identity in the distributed web is a key pair, consisting of a private key and a public key.

The private key ​k​ is a number, usually picked at random.

From the private key, we can use elliptic curve multiplication, a one-way cryptographic

function, to generate a public key ​K ​.
From the public key ​K ​, we can use a one-way cryptographic hash function to generate a

resource address ​A​.

Private Keys
A private key is simply a number, picked at random. Ownership and control over the private

key is the root of user control over all funds associated with the corresponding bitcoin

address. The private key must be backed up and protected from accidental loss, because if it’s

lost it cannot be recovered and the data secured by it are forever lost, too.

You can pick your private keys randomly using just a coin, pencil, and paper: toss a coin 256

times and you have the binary digits of a random private key. The public key can then be

generated from the private key.

69

CHAPTER 2 - THE DISTRIBUTED NETWORKS

Public Keys
The public key is calculated from the private key using elliptic curve multiplication, which is

irreversible.

K = k G

Where:

- k​ is the private key

- G​ is a constant point called the generator point

- K ​ is the resulting public key

The reverse operation, known as “finding the discrete logarithm”, calculating ​k if you know ​K ​,

is as difficult as trying all possible values of ​k​ (i.e., a brute-force search).

1.3.2 Key Formats
Both private and public keys can be represented in a number of different formats. These

representations all encode the same number, even though they look different.

These formats are primarily used to make it easy for people to read and transcribe keys

without introducing errors. However, these keys are very hard to remember.

Deterministic Key generation
A method for generating multiple keys is the deterministic key generation. Here you derive

each new private key, using a one-way hash function from a previous private key, linking them

in a sequence. As long as you can recreate that sequence, you only need the first key (known as

a seed or master key) to generate them all. Here, the private keys are all derived from a

common seed, through the use of a one-way hash function.

The seed is a randomly generated number that is combined with other data, such as an index

number or “chain code” to derive the private keys. The seed is sufficient to recover all the

derived keys, and therefore a single backup at creation time is sufficient.

70

CHAPTER 2 - THE DISTRIBUTED NETWORKS

2 The InterPlanetary File System
The InterPlanetary File System (IPFS) is a content-addressable, peer-to-peer hypermedia

distribution protocol, to create a permanent and decentralized method of storing and sharing

files . 1

IPFS is resistant to censorship and DDoS attacks, which HTTP struggles with: it presents an

opportunity to construct a more resilient Web, whose links do not rot, whose files are

deduplicated globally, with no single point of failure.

IPFS is a synthesis of well-tested internet technologies such as DHTs, the Git versioning

system and Bittorrent, to let multiple nodes supply parts of a file all at the same time: if a web

server goes down, it won’t take all of the files on it with it.

2.1 Content-addressing
IPFS identifies a content by its “fingerprint” rather than its location. This fingerprint is a

cryptographic hash of the content.

A cryptographic hash is a short string of letters and numbers that’s calculated by feeding the

content into a cryptographic hash function like SHA.

The hash of a content uniquely identifies exactly that content. As long as the content stays the

same, the hash of the content stays the same. If the content changes, even its hash changes.

Two different files, with different filename but identical content, will be tracked with the same

hash. Even though the files are distincts, if they have the same content, then they will produce

(and will be identified by) the same hash.

This way to identify content, using the content’s cryptographic hash instead of the location, is

called content-addressing.

The cryptographic hash for a piece of content never changes, which means content addressing

guarantees that the links will always return the same content, regardless of where the content

is retrieved from, regardless of who added the content to the network, and regardless of when

the content was added.

That’s the essential power of using a content-addressed protocol like IPFS instead of using a

location-addressed protocol like HTTP.

1 Juan Benet. (2014). ​IPFS - Content Addressed, Versioned, P2P File System (DRAFT 3)​.
(https://goo.gl/zP7RcG)

71

CHAPTER 2 - THE DISTRIBUTED NETWORKS

2.1.1 The implications of content-addressing
A data structure that uses content-addressed links is a persistent data structure. The following

are just a few implications of storing and sharing data using a content-addressed protocol . 2

Content-addressing increases the durability of data
It ensures that data will not become endangered as long as anyone is still relying on it because

anyone can hold a valid copy of the data they care about. You will not have to worry about

whether someone is going to turn off the servers where the data are hosted because you are

one of the hosts. You and your peers hold the data among yourselves and are able to share the

data directly with each other without relying on centralized points of failure.

Content-addressing increases the integrity of data
You can validate data by checking the data’s fingerprints against the links. That kind of

validation is impossible with location-addressed links. This is especially powerful on the large

scale, where millions of websites and datasets reference each other billions of times. With

location-addressed links, all of those connections are brittle. With content-addressed links,

the connections become resilient and reliable.

Content-addressing allow content to be unavailable for a period
As soon as any node has the content, everyone’s links start working. Even if someone destroys

all the copies on the network, it only takes one node adding the content in order to restore

availability. A cryptographic hash permanently points to the content it was derived from, so

links permanently point to their content. Even if the content becomes unavailable for a period,

the links will work as soon as anyone starts providing the content again.

Content-addressing is harder to attack and easier to recover
Even if the original publisher is taken down, the content can be served by anyone who has it.

As long as at least one node on the network has a copy of the content, everyone will be able to

get it. This means the responsibility for serving content can change over time without

changing the way people link to the content and without any doubt that the content you’re

reading is exactly the content that was originally published.

2 Matt Zumwalt. ​Lesson: The Power of Content-addressing​. (https://goo.gl/ATvFkv)

72

CHAPTER 2 - THE DISTRIBUTED NETWORKS

2.2 IPFS network
IPFS can work in partitioned networks. You don’t need a stable connection to the rest of the

Web, in order to access content through IPFS. As long as you are connected to at least one

node that can reach the content you want, you can access that content.

IPFS does not rely on DNS. If someone blocks your access to DNS or spoofs DNS in your

network, it will not prevent IPFS nodes from resolving content over the peer-to-peer network.

IPFS does not rely on the Certificate Authority System, so bad or corrupt Certificate

Authorities do not impact it.

If one IPFS node gets blocked, you can use another one. IPFS nodes are all capable of serving

the same content, so you’re not stuck relying on one point of failure. IPFS nodes work hard to

find each other on the network and to reconnect with each other after connections get cut.

With IPFS, people viewing the content are also helping distribute the content (unless they opt

out), and anyone can choose to pin a copy of some content on their node in order to help with

access and preservation.

Content can be moved via sneakernet. This is very useful in areas with poor connectivity, due

to resource limitations, security reasons, or censorship. Even if your network is physically

disconnected from the rest of the internet, you can write content from IPFS onto USB drives

or other external drives, physically move them to computers connected to a new network, and

re-publish the content on the new network.

Even though you’re on a separate network, IPFS will let nodes access the content using the

same identifiers in both networks as long as at least one node on the network has that content.

In IPFS you separate the steps to find a content into two parts: (i) identify the file with content

addressing, and (ii) go and find it.

When you have the hash then you ask the network you’re connected to who has the content

(identified by the hash), and you connect to the corresponding nodes and download it.

The result is a peer to peer overlay that gives you very fast routing.

73

CHAPTER 2 - THE DISTRIBUTED NETWORKS

2.3 IPFS Objects and Links
IPFS is essentially a peer-to-peer system for retrieving and sharing IPFS objects. IPFS creates

a peer-to-peer swarm that allows the exchange of IPFS objects. The totality of IPFS objects

forms a cryptographically authenticated data structure, known as a Merkle DAG, that can be

used to model many other data structures . 3

An IPFS object is a data structure with two fields:

- Data - a blob of unstructured binary data of size < 256 kB.

- Links - an array of Link structures, that are links to other IPFS objects.

A Link structure has three data fields:

- Name - the name of the Link.

- Hash - the hash of the linked IPFS object.

- Size - the cumulative size of the linked IPFS object, including following its links; it’s

mainly used for optimizing the P2P networking.

IPFS objects are normally referred to by their Base58 encoded hash.

The data and named links gives the collection of IPFS objects the structure of a Merkle DAG.

Merkel means that the structure is cryptographically verified. DAG means that the structure is

a Directed Acyclic Graph. In fact it’s impossible to have cycles in this graph.

2.3.1 File System
IPFS can easily represent a file system consisting of files and directories.

A small file (< 256 kB) is represented by an IPFS object with data being the file contents (plus

a small header and footer) and no links, i.e. the links array is empty. Since the filename is not

part of the IPFS object, two files with different names and the same content will have the same

IPFS object representation and hence the same hash.

A large file (> 256 kB) is represented by a list of links to file chunks that are < 256 kB, and

only minimal Data specifying that this object represents a large file. The links to the file

chunks have empty strings as names.

A directory is represented by a list of links to IPFS objects representing files or other

directories. The names of the links are the names of the files and directories.

3 Protocol Labs. ​Technical specifications for the IPFS protocol stack​. (https://goo.gl/LvmS1h)

74

CHAPTER 2 - THE DISTRIBUTED NETWORKS

2.4 The InterPlanetary Linked Data
The InterPlanetary Linked Data (IPLD) is the data model of the content-addressable web for

all hash-inspired protocols: it allows to traverse links across protocols, and to explore data

regardless of the underlying protocol . 4

There are a variety of systems that use merkle-tree and hash-chain inspired data structures,

such as git, bittorrent, tahoe-lafs, sfsro, and of course even IPFS.

IPLD (Inter Planetary Linked Data) defines:

- merkle-links: the core unit of a merkle-graph.

- merkle-dag: any graphs whose edges are merkle-links.

- merkle-paths: unix-style paths for traversing merkle-dags with named merkle-links

- a data model: a flexible, JSON-based data model for representing merkle-dags.

- a serialized formats: a set of formats in which IPLD objects can be represented, for

example JSON, CBOR, CSON, YAML, Protobuf, XML, RDF, etc.

- a canonical format: a deterministic description on a serialized format that ensures the

same logical object is always serialized to the exact same sequence of bits. This is

critical for merkle-linking, and all cryptographic applications.

In short, IPLD is “JSON documents with named merkle-links that can be traversed”.

4 Protocol Labs. ​IPLD Specification​. (https://goo.gl/uniHsv)

75

CHAPTER 2 - THE DISTRIBUTED NETWORKS

2.4.1 Merkle links
A merkle-link is a link between two objects which is content-addressed with the cryptographic

hash of the target object, and embedded in the source object.

Content addressing with merkle-links allows (i) cryptographic integrity checking and (ii)

immutable data-structures.

Resolving a link’s value can be tested by hashing. In turn, this allows wide, secure, trustless

exchanges of data, as others cannot give you any data that does not hash to the link’s value.

Data structures with merkle links cannot mutate, which is a nice property for distributed

systems. This is useful for versioning, for representing distributed mutable state (e.g. CRDTs),

and for long term archival.

A merkle-link is represented in the IPLD object model by a map containing a single key ​/

mapped to a “link value”.

For example:

{

 "foo": {

 "bar": "/ipfs/QmUmg7BZC1YP1ca66rRtWKxpXp77WgVHrnv263JtDuvs2k",

 "baz": {

 "/": "/ipfs/QmUmg7BZC1YP1ca66rRtWKxpXp77WgVHrnv263JtDuvs2k"

 }

 }

}

where:

- foo/bar​ is not a link

- foo/baz​ is a link

- /​ is the link key

- /ipfs/QmUmg7BZC1YP1ca66rRtWKxpXp77WgVHrnv263JtDuvs2k​ is the link value

76

CHAPTER 2 - THE DISTRIBUTED NETWORKS

Pesudo link objects
A merkle link object cannot contain any other key besides “ ​/​”.

However, it’s possible to have pseudo link object.

For example:

{

 "files": {

 "cat.jpg": {

 "link": {

 "/": "/ipfs/QmUmg7BZC1YP1ca66rRtWKxpXp77WgVHrnv263JtDuvs2k"

 },

 "mode": ​0755​,
 "owner": "jbenet"

 }

 }

}

Where:

- files/cat.jpg​ is a pseudo “link object”:

it is not a link but it contains a link and other properties

- files/cat.jpg/link​ is the link

When dereferencing the link, the map itself is to be replaced by the object it points to unless

the link path is invalid. The link can either be a multihash, in which case it is assumed that it

is a link in the ​/ipfs hierarchy, or directly the absolute path to the object. Currently, only the

/ipfs​ hierarchy is allowed.

If an application wants to use objects with a single ​/ key for other purposes, the application

itself is responsible to escape the ​/ key in the IPLD object so that the application keys do not

conflict with IPLD’s special ​/​ key.

77

CHAPTER 2 - THE DISTRIBUTED NETWORKS

2.4.2 Merkle DAG
Objects with merkle-links form a graph, which necessarily is both directed, and which can be

counted on to be Acyclic, if the properties of the cryptographic hash function hold, a

merkle-dag. Hence all graphs which use merkle-linking (merkle-graph) are necessarily also

Directed Acyclic Graphs (DAGs, hence Merkle-DAG).

Merkle paths
A merkle-path is a unix-style path (e.g. ​/a/b/c/d​) which initially dereferences through a

merkle-link and allows access of elements of the referenced node and other nodes transitively.

General purpose filesystems are encouraged to design an object model on top of IPLD that

would be specialized for file manipulation and have specific path algorithms to query this

model.

A merkle-path is a unix-style path which initially dereferences through a merkle-link and then

follows named merkle-links in the intermediate objects. Following a name means looking into

the object, finding the name and resolving the associated merkle-link.

For example:

/ipfs/QmUmg7BZC1YP1ca66rRtWKxpXp77WgVHrnv263JtDuvs2k/a/b/c/d

Where:

- ipfs​ is a protocol namespace

- QmUmg7BZC1YP1ca66rRtWKxpXp77WgVHrnv263JtDuvs2k​ is a hash

- a/b/c/d​ is a path traversal, as in unix

Path traversals, denoted with ​/​, happen over two kinds of links:

- in-object traversals traverse data within the same object

- cross-object traversals traverse from one object to another

78

CHAPTER 2 - THE DISTRIBUTED NETWORKS

2.4.3 Data model
At its core, IPLD data-model “is just JSON” in that:

- it is also tree based documents with a few primitive types – it maps 1:1 to json,

- it can be used through JSON itself.

But, IPLD data-model “is not JSON” in that:

- it improves on some mistakes,

- it has an efficient serialized representation,

- it does not actually specify a single on-wire format, as the world is known to improve.

79

CHAPTER 2 - THE DISTRIBUTED NETWORKS

2.5 The InterPlanetary Naming System
IPFS hashes represent immutable data, which means they cannot be changed without the

content being different. This is a good thing because it encourages data persistence, but it’s

also desiderable to find the latest IPFS hash representing the last version of a content. IPFS

accomplishes this using the InterPlanetary Naming System (IPNS).

IPNS is a way to add a small amount of mutability to the permanent immutability of IPFS.

IPNS allows you to store a reference to an IPFS hash under the namespace of the IPFS node

you control.

Human-readable mutable addressing
IPFS/IPNS hashes are long strings that aren’t easy to memorize. So IPFS allows you to use the

existing Domain Name System (DNS) to provide human-readable links to IPFS/IPNS content.

It does this by allowing you to insert the hash into a TXT record on your nameserver.

Going forward, IPFS has plans to also support Namecoin, which could theoretically be used to

create a completely decentralized, distributed web that has no requirements for a central

authority in the entire chain. No ICANN, no central servers, no politics, no expensive

certificate “authorities”, and no choke points.

In IPFS a mutable IPNS address is resolved to its corresponding IPFS address.

For example:

/ipns/example.com/foo/bar/baz.png

/ipfs/QmW98pJrc6FZ6/foo/bar/baz.png

Where:

- /ipns/example.com​ is the IPNS address

- /ipfs/QmW98pJrc6FZ6​ is the corresponding IPFS address

- /foo/bar/baz.png​ is the path to the resource.

The IPFS/HTTP gateway
The IPFS implementation ships with an HTTP gateway. The IPFS/HTTP gateway allows

current web browsers to access IPFS until the browsers implement IPFS directly. It represents

the bridge between the old and the new Web.

80

CHAPTER 2 - THE DISTRIBUTED NETWORKS

3 Dat
Dat is a new peer-to-peer hypermedia protocol. It provides public-key-addressed file archives

which can be synced securely and browsed on-demand.

Dat archives sync from multiple sources at once, and result to be:

- secure, since all updates are signed and integrity-checked;

- resilient, since archives can change hosts without changing their URLs;

- versioned, since changes are written to an append-only version log;

- decentralized, since any device can host any archive.

Dat is a protocol designed for syncing folders of data, even if they are large or changing

constantly. Dat uses a cryptographically secure register of changes to prove that the requested

data version is distributed. A group of clients can connect to each other to form a public or

private network to exchange data between each other . 5

Dat is free software built for the public by Code for Science & Society, a nonprofit.

Researchers, analysts, libraries, and universities are already using dat to archive and

distribute scientific data . Developers are building applications on Dat for browsing 6

peer-to-peer websites and offline editable maps . 7

Usually moving large files and folders to other computers involves one of a few strategies:,

such as being in the same location (usb stick), using a cloud service (Dropbox), or using old

but reliable technical tools (rsync). However, none of these easily store, track, and share your

data securely over time, and users often are stuck choosing between security, speed, or ease of

use. Dat provides all three by using a state of the art technical foundation and user friendly

tools for fast and secure file sharing that you control.

5 K. M. Maxwell Ogden, M. B. Madsen, and Code for Science. (May 2017). ​Dat - Distributed
Dataset Synchronization And Versioning​. (https://goo.gl/CZDPm9)
6 The New York Times. Amy Harmon (March 2017). ​Activists Rush to Save Government
Science Data — If They Can Find It ​. (https://goo.gl/8nt4Xw)
7 Aliya Ryan (March 2017). ​Mapping Waorani Territory​. (https://goo.gl/uJcwqP)

81

CHAPTER 2 - THE DISTRIBUTED NETWORKS

3.1 Beaker browser
Beaker is a new kind of browser that gives you the power to create websites, share files, and

control your data . It is a peer-to-peer browser with tools to create and host websites over 8

DAT. It enhance the HTML5 API with the DatArchive API.

3.1.1 Website manifest
Websites and applications served over ​dat:// can include a manifest file to specify metadata

and configure special behaviors. The metadata file must be located at ​/dat.json in the root of

the website . Beaker automatically creates and manages the manifest for Dat archives created 9

with the DatArchive Web API.

For example:

{

 "url": "dat://4483a2..66/",

 "title": "My website",

 "description": "A simple website built with the Beaker Browser",

 "fallback_page": "/public/404.html",

 "web_root": "/public"

}

Where:

- url​ is the Dat archive’s URL.

- title​ is a short and descriptive human-friendly title.

- description​ is a description of the Dat archive.

- repository​ is the URL for the git repository associated with the Dat archive.

- fallback_page​ it the path to a fallback page to serve instead of the default 404 page.

- web_root​ it the path of the folder from which all requests should be served.

8 Paul Frazee (December 2016). ​Beaker: An Experimental P2P Browser ​.
(https://goo.gl/5Ly2D9)
9 Paul Frazee. ​dat.json site manifest ​. (https://goo.gl/H3X9re)

82

CHAPTER 2 - THE DISTRIBUTED NETWORKS

3.1.2 DatArchive
The DatArchive API is Beaker’s interface for reading and writing the Dat peer-to-peer

filesystem. Websites and applications can use the DatArchive API to create, write, and read

Dat archives . 10

By default, any ​dat:// website or application can read other ​dat:// pages with HTML

embeds, Ajax, or the DatArchive read interfaces.

By default, ​dat:// pages are granted permission to write to other ​dat:// pages that it

created. The user will be prompted to grant permission when a ​dat:// page attempts to

create a new Dat archive, or modify a ​dat:// page that was created by a different ​dat://

origin. Additionally, the user must be the owner of a given Dat archive in order to modify it.

The dat.json file is a special file that specifies metadata and configuration. It cannot be written

directly using the DatArchive API.

Disk usage
How Beaker manages a Dat archive’s disk usage depends on whether the user owns the Dat

archive, has chosen to seed the archive’s files, or is simply visiting and browsing the archive’s

files.

If the user owns a given Dat archive or has chosen to seed its files, Beaker keeps those files on

the local disk. All other ​dat:// websites, applications, and files are kept on the local disk

temporarily, and will be automatically deleted.

Files that are temporarily cached after visiting a ​dat:// page can also be manually purged in

the Beaker settings page.

10 Paul Frazee. ​DatArchive API​. (https://goo.gl/SQdQfP)

83

CHAPTER 2 - THE DISTRIBUTED NETWORKS

3.1.3 WebDB
WebDB is a database that reads and writes records on ​dat:// websites. It abstracts over the

DatArchive API to provide a simple database-like interface, inspired by Dexie.js , and 11

leveraging on the HTML5 IndexedDB API using the wrapper level.js . 12 13

How it works
WebDB scans a set of source Dat archives for files that match a path pattern: it caches and

indexes those files so they can be queried easily and quickly. WebDB also provides a simple

interface for adding, editing, and removing records from archives.

WebDB sits on top of Dat archives. It duplicates ingested data into IndexedDB, which acts as a

throwaway cache. The cached data can be reconstructed at any time from the source Dat

archives.

WebDB treats individual files in the Dat archive as individual records in a table. As a result,

there's a direct mapping for each table to a folder of JSON files. This is for performance and

linkability: when a record is created, peers in the network will only download the

newly-created file, instead of re-download the entire file; furthermore putting each record in

an individual file also makes each record linkable.

For example, a “posts” table might map to the ​/posts/*.json​ files.

WebDB's mutators, like ​put()​, ​add() and ​update()​, simply write records as JSON files in

the ​posts/ directory; while WebDB's readers and query-ers, like ​get() and ​where()​, simply

read from the IndexedDB cache.

WebDB watches its source archives for changes to the JSON files that compose its records.

When the files change, it syncs and reads the changes, then updates IndexedDB, keeping

query results up-to-date.

11 David Fahlander. ​A Minimalistic Wrapper for IndexedDB​. (https://goo.gl/zT8hnU)
12 W3C. ​Indexed Database API 3.0​ (https://goo.gl/29BJZA)
13 Max Ogden. ​An abstract-leveldown compliant store on top of IndexedDB​.
(https://goo.gl/6waAWj)

84

CHAPTER 2 - THE DISTRIBUTED NETWORKS

3.2 HashBase
Hashbase is a public peer for files published with the Dat protocol . 14

Publishing with Dat means that peers will contribute bandwidth, but only if they’re online and

sharing your files. If nobody’s hosting your files, then they won’t be accessible. Hashbase acts

as a “super peer” that makes sure your content is always available, so your files are always

available, even when you’re offline.

14 Paul Frazee. (July 2017). ​Introducing Hashbase​ (https://goo.gl/VEFBDB)

85

CHAPTER 2 - THE DISTRIBUTED NETWORKS

4 ZeroNet
ZeroNet is a distributed network and a tool to build and deploy websites over the BitTorrent

network, used to negotiate connection between peers, with the modern cryptography (the

same protocols used in BitCoin) , to let identify the website and to allow only the owner to 15

publish changes . 16

4.1 Using ZeroNet
Create a site
When you create a site, ZeroNet generates two keys: a private key and a public key.

The private allows you to sign new content for your site: it is impossible to modify your site

without it. It is private: it is not stored in a central registry, you only have it.

The public key is the site address: it allows anyone to verify if the site is not altered by others.

Every downloaded file is verified: this makes it safe from any malicious modification.

ZeroNet uses the same elliptic curve based encryption as in Bitcoin: using the current fastest

supercomputer, it would take around 1 billion years to "hack" a private key.

Visit a site
When you visit a ZeroNet site, ZeroNet:

- gathers your IP address and registers you as a visitor

- downloads a file named content.json,

Visitors start serving sites as soon as they visit them.

You can use the Tor network to hide your real IP address.

The content.json holds all other file-names, hashes and the site owner's cryptographic

signature, that is used to verify the files of the site.

15 T. Kysar. (March 2015). ​ZeroNet Expands Key Distributed And Anonymous Features​.
(https://goo.gl/3Hcktz)
16 Andy. (March 2016). ​Play: A P2P Distributed Torrent Site That’s Impossible to Shut Down​.
(https://goo.gl/iL72AL)

86

CHAPTER 2 - THE DISTRIBUTED NETWORKS

Update a site
When you update your site:

- ZeroNet signs the new content.json using your keys.

- ZeroNet sends the new content.json to a few number of visitors.

- Visitors check if the file is newer than their current file.

- Visitors downloads the changed files.

- ZeroNet sends the update to other visitors.

The browser is notified immediately about the file changes using the WebSocket API : this 17

allows real-time updated sites.

Update a site of another user
If you want to update the site of another user:

- you request permission from site owner by sending your auth address to site owner;

- the site owner creates a new file and set your auth address as the valid signer;

- the site owner publishes the new file and the changed permission to other visitors.

The site owner is able to remove misbehaving users.

The user files size can be limited to help avoid spamming.

An unique, BIP32 bases, valid BitCoin address is generated for every user of the site. 18

17 WhatWG (June 2018). ​HTML Living Standard - Web sockets ​. (https://goo.gl/LS29S4)
18 Bitcoin. ​BIP 32 Specification: Key derivation​. (https://goo.gl/ds4RiZ)

87

CHAPTER 2 - THE DISTRIBUTED NETWORKS

5 Secure Scuttlebutt
Secure Scuttlebutt (abbreviated SSB) is a database protocol for unforgeable append-only

message feeds: only the owner of a feed can update that feed, as enforced by digital signing.

This property makes Scuttlebutt useful for peer-to-peer applications.

SSB forms a global cryptographic social network with its peers. Each user is identified by a

public key, and publishes a log of signed messages, which other users follow socially.

Scuttlebutt searches the P2P mesh for new messages and files from followed users and from

FoaFs (friend of a friend’s). The messages and files are stored locally, indefinitely.

5.1 Concepts
Identities
An identity is simply a ed25519 key pair . The public key is used as the identifier. There is no 19

worldwide store of identities. Users must exchange public keys, either by publishing them on

their feeds, or out-of-band.

Users are identified by confirmations and signals in the social graph. This is known as a

Web-of-Trust. There is no global registry of usernames. Instead, users name themselves, and

share nicknames for each other. Discovery occurs by examining the social graph, or by

out-of-band sharing. Applications can analyze the follow-graph, and look for "flag" messages,

to determine who is trustworthy in the network.

Pub Servers
Pub servers (or “Pubs”) are bot-users that sync user feed across the Internet. They run at

public IPs and follow users to rehost the messages to other peers: they are essentially

mail-bots which improve uptime and availability.

Pubs have no special privileges, and are not trusted by users. Since Scuttlebot has no DHT or

NAT-traversal utilities, users must “join” a Pub to distribute their messages on the Internet.

Users can change Pubs, or join more than one, and sync directly over local networks. Identity

is not tied to the Pubs. The Scuttlebot community runs some Pubs, and anybody can create

and introduce their own.

19 D. J. Bernstein. ​Ed25519: high-speed high-security signatures ​. (https://goo.gl/18Hhm2)

88

CHAPTER 2 - THE DISTRIBUTED NETWORKS

Feeds
Each identity has exactly one feed. A feed is a signed append-only sequence of messages.

Append-only means you cannot delete an existing message, or change your history. This is

enforced by a per-feed blockchain. This is to ensure the entire network converges on the same

state.

Messages
Peers create messages. Each message contains the following fields:

- author​ - the signing public key

- previous​ - the content-hash of the previous message

- sequence​ - the sequence number of the message

- timestamp​ - the timestamp of the message

- hash​ - the identifier of the hashing algorithm in use (e.g. SHA 256)

- content​ - the content object

- signature​ - a signature of the message using the ​hash​ algorithm

For example:

{

 "author": "@hxGxqPrplLjRG2vtjQL87...0nNwE=.ed25519",

 "previous": "%26AC+gU0t74jRGVeDY01...MnutGGHM=.sha256",

 "sequence": ​216​,
 "timestamp": ​1442590513298​,
 "hash": "sha256",

 "content": {

 "type": "vote",

 "vote": {

 "link": "%WbQ4dq0m/zu5jxll9zUb...KjZ80JvI=.sha256",

 "value": ​1
 }

 },

 "signature": "Sjq1C3yiKdmi1TWvNqxI...gmAQ==.sig.ed25519"

}

89

CHAPTER 2 - THE DISTRIBUTED NETWORKS

Entity References
Messages can reference three types of SSB entities:

- messages

- feeds

- blobs (i.e. files)

Messages and blobs are referred to by their hashes, but a feed is referred to by its signing

public key.

Private sharing
For private sharing, SSB uses libsodium to encrypt confidential log-entries. Feed IDs are 20

public keys, and so once two feeds are mutually following each other, they can exchange

confidential data freely.

Replication
Since feeds are append-only, replication is simple: request all messages in the feed that are

newer than the latest message you know about. SSB maintains a table of known peers, which

it cycles through, asking for updates for all followed feeds.

Gossip
SSB protocol creates a global gossip network. Information is able to distribute across multiple

machines, without requiring direct connections between them: even though two peers lack a

direct connection, they can still exchange feeds, since gossip creates “transitive” connections

between the peers.

20 Frank Denis et al. ​The Sodium crypto library (libsodium) ​. (https://goo.gl/5c4EgD)

90

CHAPTER 2 - THE DISTRIBUTED NETWORKS

5.2 Security properties
SSB maintains useful security properties even when it is connected to a malicious database.

This makes it ideal as a store for peer-to-peer applications.

If you want to read from a feed for which you know the identity, but you’re connected to a

malicious SSB instance. As long as the malicious database does not have the private key:

- it cannot create a new feed with the same identifier;

- it cannot write new fake messages to the feed;

- it cannot reorder the messages in the feed;

- it cannot send you a new copy of the feed that omits messages from the middle;

- it just can refuse to send you the feed, or only send you a part of the feed

Additionally there is a protection from the feed owner, through the blockchain. The previous

content-hash prevent peers from changing the feed history after publishing, as a

newly-created message wouldn't match the hash of later messages which were already

replicated. This ensures the append-only constraint, and thus safe network convergence.

91

CHAPTER 2 - THE DISTRIBUTED NETWORKS

5.3 Design Challenge
SSB avoid both centralization and singletons, and it is robust to sybil attacks.

Avoiding Centralization
The danger of centralization is obvious: it creates a single point of failure that can easily be

attacked, or act as an attacker, and it creates a monoculture of information, as the central

point starts to control what information is trusted, or ranked highly . 21

To avoid centralization, SSB makes every peer the same.

Due to limitations inherent in the modern Internet, making every peer the same is hard to do:

home routers perform Network Address Translation to make a single IP address behave like

many, which makes it simple to make outgoing connections, but difficult to receive incoming

connections.

Most networked applications, including SSB, solve this by connecting to publicly addressable

servers. Sometimes P2P systems use clever techniques (TURN , STUN , ICE) to reduce the 22 23 24

role of the servers, but it is still necessary to have them. SSB uses the so-called “Pub” servers

to rehost the feeds and blobs of the users, which has the added benefit of improving network

availability - two peers don’t need to be online at the same time to exchange messages.

However, Pubs could be considered a centralization risk. To mitigate the risk SSB avoid

putting any special authority or trust in the Pubs. Users may be hosted by many pubs at once,

and can change pubs without losing the data or identity. A pub server may go down, and

others will still provide service.

Contrast this with email servers, which are ostensibly decentralized (you may run your own

email server) but you must have exactly one email server, and if it is down you will not receive

email, which makes running your own email server a considerable hassle (not to mention

handling spam).

21 Paul Frazee. Using Trust in Open Networks. (https://goo.gl/hzdRJt)
22 R. Mahy, P. Matthews, J. Rosenberg (April 2010). ​RFC 5766 - Traversal Using Relays
around NAT (TURN): Relay Extensions to Session Traversal Utilities for NAT (STUN)​.
(https://goo.gl/L3gw1Q)
23 J. Rosenberg, R. Mahy, P. Matthews, D. Wing (October 2008). ​RFC 5389 - Session
Traversal Utilities for NAT (STUN)​. (https://goo.gl/cAmYKQ)
24 J. Rosenberg (April 2010). ​RFC 5245 - Interactive Connectivity Establishment (ICE): A
Protocol for Network Address Translator (NAT) Traversal for Offer/Answer Protocols ​.
(https://goo.gl/JZtg4s)

92

CHAPTER 2 - THE DISTRIBUTED NETWORKS

Avoiding Singletons
SSB also avoids P2P structures that represent singletons - specifically, it avoids using a

Distributed Hash Table (DHT) or a global blockchain. Global blockchains are heavy, since

they require nodes to store entire chain and to waste CPU power, and DHTs are susceptible to

spam. These structures both make the network unprivate, by making all information available

globally.

Scuttlebutt avoids P2P singletons partially to show that it can be done (most P2P designs use

DHT or global blockchains) and also because those are just P2P versions of centralized

systems. Social Networks are already constructed around a decentralized experience. Popular

social networks (such as Facebook and Twitter) have centralized implementations, but users

use them to interact with their peers, so on that level they are P2P.

SSB takes the decentralized experience of social networks and maps the networking layer (the

key part of the implementation) on top of the decentralized human/user network.

93

CHAPTER 2 - THE DISTRIBUTED NETWORKS

Avoid Sybil Attacks
If it is possible for an anyone to connect to a computer system then it may be possible to

interfere with the operation of that system, and defenses against interference must be

designed in.

For example, email's design is vulnerable to spam. To send someone an email, all that is

required is to have their email address; email is unsolicited messaging, so it's easy to send

nuisance or fraud emails.

Email systems deal with spam by filtering it out. There are two basic approaches.

The simplest is pattern matching - messages are compared to models of the sort of messages

that spammers send. This produces an arms race between spammers and spam filterers.

Spammers must strive to create messages which beat the filter, while filterers have to improve

their model.

The other approach is to use social/trust networks. Services like Facebook or Twitter are

significantly less vulnerable to spam (if you do not consider the ads spam). Instead of

receiving personal messages from anyone who knows your address on a social network, you

only receive messages from other users you have “followed” or “friended”. This forms a

“Solicited Spam” system. Following someone means you think they are human, or at least, an

amusing bot. This is actually a pretty strong signal. Email doesn't have an explicit social

network, but the best spam filtered email systems (like Gmail) can use the implicit social

network in email: if a user send an email to another user, and the latter reply then they are

“friends”. Then graph analysis can be applied to the friend network - spammers may be

isolated, or clustered together and can be filtered out.

By building SSB around a social network, preventing spam becomes easy. Since, in a social

network application, you only communicate with trusted peers (friends) anyway, and there is

usually an explicit "follow" mechanism which expresses who you trust, and humans are pretty

good at detecting frauds. This is why SSB was made as an inherently social system.

94

CHAPTER 2 - THE DISTRIBUTED NETWORKS

Conclusions
The InterPlanetary File System can address and solve most of the problems the Web suffers

from, and enable a truly distributed Web.

There is no a common definition of the “Distributed Web”. We refer to the following.

The Distributed Web is a content-addressed information space, that is accessible from a Web

browser, and delivered by a peer-to-peer network.

The next chapters goes back to the Web, exploring the systems at the state-of-the-art that

allow to create websites for the Web, to know how we can use such systems, or improve them,

to build and deliver websites over a peer-to-peer network.

In particular, the next chapter, introduces the Web Content Management Systems.

95

CHAPTER 2 - THE DISTRIBUTED NETWORKS

96

CHAPTER 3 - WEB CONTENT MANAGEMENT SYSTEMS

CHAPTER 3
WEB CONTENT
MANAGEMENT SYSTEMS

In this chapter the Web Content Management Systems (Web CMSs) are explored.

The Web CMSs are systems that allow you to create, modify, review and publish content onto

the Web. Nowadays, there are hundreds of CMSs that can be used , but some of them have 1

clearly become predominant over the rest of the competition. In particular, the most used one

is running over one third of all the website in the Web: WordPress. Given its widely usage, the

chapter is focused on WordPress: in particular how it works and why it is so much used.

1 W3Techs. ​Usage of content management systems for websites ​. (https://goo.gl/6XqFst)

97

CHAPTER 3 - WEB CONTENT MANAGEMENT SYSTEMS

TABLE OF CONTENTS

1 Web Content Management Systems ​100

1.1 Designing websites ​100

1.2 Content-driven static websites ​101

1.2.1 Blog websites ​101

1.3 PHP websites ​104

1.3.1 Using PHP ​105

1.4 The Content Management Systems ​107

2 WordPress ​108

2.1 Basic concepts ​108

2.1.1 The Loop ​108

2.1.2 Templates files ​109

2.1.3 Template Hierarchy ​111

2.2 Architecture ​114

2.2.1 Plugins and themes ​114

2.2.2 Plugins and themes market ​115

2.3 Plugins ​116

2.3.1 Using plugins ​116

2.4 Plugin repositories ​117

2.4.1 Default Plugins ​117

2.4.2 Plugin Hooks ​118

2.5 Themes ​119

2.5.1 Required files ​120

2.5.2 Template files ​120

2.5.3 Template partials ​120

2.5.4 Common WordPress template files ​121

2.5.5 Post Types ​123

2.6 Open source community ​125

98

CHAPTER 3 - WEB CONTENT MANAGEMENT SYSTEMS

99

CHAPTER 3 - WEB CONTENT MANAGEMENT SYSTEMS

1 Web Content Management Systems

1.1 Designing websites
The Web is an exponentially growing set of interlinked pages. ​The indexed Web, which is the

portion of the Web that can be retrieved by a Web search engine, contains at least 4.8 billion

pages . The web page is the unit of measurement. However, web pages have a sense when 2

form a website.

Designing a website involves several facets. Most importantly you need to identify the purpose

of the website, the audience you target to, and the appropriate content, then to be aware of the

technical considerations involved in displaying a web page, looking at other website with a

similar purpose and coming up with an appropriate design, testing the website with more

than one computer system and browser.

Designing a website requires to come up with a scheme for presenting and arranging the

information. The presentation ought to support the fact that the information is related, and

the arrangement often should mirror the logical structure of the information.

A Web page can be written using a simple text editor, but there are other types of editors or

ways to create a Web page. These include HTML editors—text editors that include easy ways

to insert HTML tags into a file, and visual editors—editors that provide tools to produce a Web

page without you having to insert HTML.

Putting a website on the Web means taking the source files and placing them on a Web server.

Some Internet service providers, Web-based services, and organizations provide space for

Web pages.

2 WorldWideWebSize.org. (June 2018). ​The size of the World Wide Web (The Internet)​.
(https://goo.gl/94pFJP)

100

CHAPTER 3 - WEB CONTENT MANAGEMENT SYSTEMS

1.2 Content-driven static websites
Content is the raison d'être for any website. Without some sort of updated content, there is

little reason to visit a website more than once.

In general, essentially, content-driven websites present two kind of pages:

- a list page, or index page, that shows a list of entries in a summarized way

- an item page, or single page, that shows a particular item in a detailed way

For example, university sites show information about their campuses, faculties for each

campus, courses for each faculty; news sites show the latest news stories; personal blog sites,

show personal observations or reviews.

1.2.1 Blog websites
Consider Blog websites.

“Blog” is an abbreviated version of “weblog” (web-log), a term used to describe an ongoing

chronicle of information published onto the web. A Blog is website that maintains an ongoing

chronicle of information. A blog features diary-type commentary and links to articles on other

websites, usually presented as a list of entries, also known as “posts”, in reverse chronological

order. A blogs have multiple authors, each writing his/her own articles. 3

In a Blog, content range from the personal to the political, and can focus on one narrow

subject or a whole range of subjects. In the latter case, content is categorized by means tags.

3 WordPress.org. ​Introduction to Blogging​. (https://goo.gl/31spsJ)

101

CHAPTER 3 - WEB CONTENT MANAGEMENT SYSTEMS

Index page
For example, in ​index.html​:
<!DOCTYPE html>

<​html​>
<​head​>
 <​title​>My Blog</​title​>
</​head​>
<​body​>
 <​header​>
 <​h1​>My Blog</​h1​>
 <​h2​>Articles</​h2​>
 <​header​>
 <​section​>
 <​ul​>
 <​li​><​a​ href="/post-1.html">My first post</​a​></​li​>
 <​li​><​a​ href="/post-2.html">My second post</​a​></​li​>
 </​ul​>
 </​section​>
</​body​>
</​html​>

Every time a new post is added, the index.html code must be updated.

102

CHAPTER 3 - WEB CONTENT MANAGEMENT SYSTEMS

Single pages
For example, in ​/post-1.html​:
<!DOCTYPE html>

<​html​>
<​head​>
 <​title​>My Blog</​title​>
</​head​>
<​body​>
 <​header​>
 <​h1​>My first post</​h1​>
 <​header​>
 <​section​>
 <​p​>Hello static websites!</​p​>
 </​section​>
</​body​>
</​html​>

For example, in ​/post-2.html​:
<!DOCTYPE html>

<​html​>
<​head​>
 <​title​>My Blog</​title​>
</​head​>
<​body​>
 <​header​>
 <​h1​>My second post</​h1​>
 <​header​>
 <​section​>
 <​p​>Bye static websites!</​p​>
 </​section​>
</​body​>
</​html​>

Single pages share the same structures: they just differ in their content.

It is pleonastic that handwriting is not suitable to design web pages. Since the dawn of the web

emerged the need to automate the production of webpages. That is: programs or scripts that

resolve common tasks in web development and ease the production of webpages.

The most used scripting language to do so is PHP, used by over 83% of all the websites whose

server-side programming language is known . 4

4 W3Tech. ​Usage statistics and market share of PHP for websites ​. (https://goo.gl/1DeRxi)

103

CHAPTER 3 - WEB CONTENT MANAGEMENT SYSTEMS

1.3 PHP websites
PHP is a widely-used, open-source, general-purpose scripting language, that is specially

suited to web development.

PHP is free to download and use: it runs on various platforms (Windows, Linux, Unix, Mac 5

OS X, etc.) and it is compatible with almost all servers used today (Apache, IIS, etc.).

Today, PHP runs a considerable number of some of the largest websites on the planet, such as

Facebook, Wikipedia.org . 6

Why the name
PHP is the acronym of the original definition “ ​Personal Home Page/Forms Interpreter ​”, or

for the “recursive” definition “ ​PHP: Hypertext Preprocessor ​”.

Brief story
PHP development began in 1994 when Rasmus Lerdorf wrote several Common Gateway

Interface (CGI) programs in C, which he used to maintain his personal homepage. He

extended them to work with web forms and to communicate with databases. That

implementation would become PHP.

Rasmus Lerdorf believes there are four kinds of programmers: the first, the pragmatic ones

who are just after solving their own problems; the second kind finds programming as a means

of self-expression; the third are the real programmers who enjoy programming for its own

sake; the fourth are the open source zealots who wish to change the world.

He claims to be of the first kind. He programs to solve his problem and then moves on. He

confesses that he created PHP purely to serve his own interest, to solve his own set of

problems. Then, he made the source publicly available so others could benefit from it.

That decreted the success of PHP.

5 PHP.net. ​The official PHP resource website​. (https://goo.gl/zz9umJ)
6 W3Techs. ​Usage statistics and market share of PHP for websites ​. (https://goo.gl/WZfxeH)

104

CHAPTER 3 - WEB CONTENT MANAGEMENT SYSTEMS

1.3.1 Using PHP
PHP is mainly used to generate dynamic page content: its code is executed on the server and

produces plain HTML.

PHP can use the file system, to create, open, read, write, delete, and close files.

PHP can connect to and manipulate database: it can add, delete, modify data in database.

PHP supports a wide range of databases, such as MySQL.

MySQL is the most popular SQL database system used on the web with PHP.

MySQL is developed, distributed, and supported by Oracle Corporation, but is free to

download and use , on various platforms (Windows, Linux, Unix, Mac OS X, etc.). 7

Index page
For example, the index page could be something like the following:

<!DOCTYPE html>

<​html​>
<​head​>
 <​title​>My Blog</​title​>
</​head​>
<​body​>
<​header​>
 <​h1​><?php $blog->title ?></​h1​>
 <​h2​>Articles</​h2​>
<​header​>
<​section​>
 <​ul​>
 ​<?php​ $articles = $database.find($query_articles) ​?>
 ​<?php​ ​foreach​ ($articles ​as​ $article): ​?>
 <​li​><​a​ href="<?php echo $article->path ?>">
 ​<?php​ ​echo​ $article->title ​?>
 </​a​></​li​>
 ​<?php​ ​endforeach​ ​?>
 </​ul​>
</​section​>
</​body​>
</​html​>

7 MySQL.com. ​MySQL Downloads ​. (https://goo.gl/xV5g7Z)

105

CHAPTER 3 - WEB CONTENT MANAGEMENT SYSTEMS

Single page
For example, the index page could be something like the following:

<!DOCTYPE html>

<​html​>
<​head​>
 <​title​><?php $blog->title ?></​title​>
</​head​>
<​body​>
 ​<?php​ $articles = $database.find($query_articles) ​?>
 <​header​>
 <​h1​><?php $article->title ?></​h1​>
 <​header​>
 <​section​>
 <?php $article->content ?>

 </​section​>
</​body​>
</​html​>

We note that, every time a new post is added, or an existing post, you do not need to add or

update any page, because the HTML pages are dynamically generated, server-side rendered.

Routing
We also note that, dynamic websites, introduce the need for a new component, i.e. the ​router ​,

which takes request for a page and select the right template to be rendered to dynamically

generate the page.

106

CHAPTER 3 - WEB CONTENT MANAGEMENT SYSTEMS

1.4 The Content Management Systems
The introduction of PhP has facilitated the development of dynamic websites, but not enough

to allow all, even non-technical, to create websites.

In the article “ ​Putting Information onto the Web​” , preserved since 1995 for archival and 8

historical interest (as it is remarkably stated in the webpage), the W3C shows the ways to

publish on the Web:

If you would like to create information and place it on the World Wide Web, you can

approach this in several different ways […]

As an author, you will need to know how to create and edit hypertext […]

As a webmaster, you will probably want to learn how to organize large amounts of

hypertext […]

As a system administrator, you will need to know the actual installation and

configuration of a Web Server, and the use of things like CGI, forms, databases, and

applications which will work together on your system […]

Hypertext ​, ​Web Server ​, ​CGI​, ​forms ​, ​database​, ​applications ​: it is clear that publishing on the

Web is not accessible to all a priori.

Since the beginning of Web development, the need to simplify the Web publishing process

made the success of systems that support the management of the content of websites and the

delivery onto the Web: the Web Content Management Systems (the Web CMSs).

Nowadays, there are different CMSs that can be used, but few of them have become clearly

predominant over the rest of the competition. With over the 50% of the CMS market share,

WordPress is the most used Web CMS, followed by Joomla and Drupal, both with less than

10% of the CMS market share . 9

8 W3C (April 1995). ​Putting information into the Web​. (https://goo.gl/uaKd4G)
9 W3Techs. ​Usage of content management systems for websites ​. (https://goo.gl/LUfh5p)

107

CHAPTER 3 - WEB CONTENT MANAGEMENT SYSTEMS

2 WordPress
WordPress is the most used Web CMS.

WordPress is used by over 31% of all websites in the Web (over 15M websites), that is:

every three website you visit, one is made by WordPress.

Brief history
WordPress was designed by Matt Mullenweg and released in 2003 . 10

Since its release, in just a decade, WordPress would become the most used CMS in the Web.

2.1 Basic concepts
2.1.1 The Loop
The main process of WordPress is called “the Loop” . 11

In general, WordPress:

- verifies that all the files it needs are present;

- collects the default settings, e.g. the number of posts per page, from the database;

- checks the user request to determine which posts to fetch from the database;

- retrieves the specified information from the database;

- stores the results in a variable used to render the appropriate template.

In synthesis, when someone visits a page on your website, WordPress loads a template based

on the request. The type of content that is displayed in by the template file is determined by

the Post Type associated with the template file. The Template Hierarchy describes which 12

template file WordPress will load based on the type of request and whether the template exists

in the theme. The server then parses the PHP in the template and returns HTML to the visitor.

10 M. Mullenweg. (May 2003). WordPress Now Available. (https://goo.gl/whcSjD)
11 WordPress.org. ​The Loop. ​(https://goo.gl/9WSjWy)
12 WordPress.org. ​Post Types. ​(https://goo.gl/L1Gwgr)

108

CHAPTER 3 - WEB CONTENT MANAGEMENT SYSTEMS

2.1.2 Templates files
WordPress can use different template files for displaying the website in different ways.

In the default WordPress theme, there are template files for the index view, category view, and

archive view, as well as a template for viewing individual posts.

Index template
The index page is stored in the ​index.php​ file.

<?php​ get_header() ​?>
<?php​ ​if​ (have_posts()) : ​?>
 ​<?php​ ​while​ (have_posts()) : the_post() ​?>
 <​div​ class="post">
 <​h2​><​a​ href="<?php the_permalink() ?>">​<?php​ the_title() ​?>​</​a​></​h2​>
 <​small​>​<?php​ the_time('F jS, Y') ​?>​ by ​<?php​ the_author() ​?>​</​small​>
 <p ​class​="​postmetadata​">​Posted​ ​in​ <?​php​ ​the_category​(', ') ?></​p​>
 <​div​ class="entry">​<?php​ the_content('Read more;'); ​?>​</​div​>
 </​div​>
 ​<?php​ ​endwhile​ ​?>
 <​div​ class="navigation">
 ​<?php​ posts_nav_link('','','« Previous Entries') ​?>
 ​<?php​ posts_nav_link('','Next Entries »','') ​?>
 </​div​>
<?php​ ​else​ : ​?>
 <​h2​>Sorry! Page Not Found</​h2​>
<?php​ ​endif​ ​?>
<?php​ get_sidebar() ​?>
<?php​ get_footer() ​?>

Where:

- have_posts()​ checks for a next item in the current collection of posts.

- the_post()​ retrieves that next and makes it available for use.

- the_content()​ fetches the content of the post, filters it , and then displays it: 13

it accepts a string, that is used for the “Read More” link after the excerpt . 14

- posts_nav_link()​ displays navigation controls to move forward/backward.

Also, where:

- get_header()​, ​get_sidebar()​, ​get_footer()​ are Include Tags.

13 WordPress.org. ​Plugin API/Filter Reference. ​(https://goo.gl/THApRA)
14 WordPress.org. ​Customizing the Read More. ​(https://goo.gl/Ljh3rR)

109

CHAPTER 3 - WEB CONTENT MANAGEMENT SYSTEMS

Template Tags
To retrieve data from the database and print dynamic content into templates, WordPress

offers the template tags.

A template tag is simply a piece of code that contains PHP function with optional parameters,

that is used to print dynamic content, from the title of the page to an entire post.

For example:

- the_title()​ gets the title of the page.

- the_post()​ gets the current post.

- bloginfo("name")​ gets the blog name.

- bloginfo("version")​ gets the version of WordPress the website is running on.

Include Tags
To allow you to define a standard header, sidebar, footer for the website, WordPress offers the

Include Tags . 15

An include tag is simply a piece of code that dynamically include other PHP files into the

template. Any changes made to these files will immediately be made visible.

For example:

- get_header()​ prints the header.php file.

- get_sidebar()​ prints the sidebar.php file.

- get_footer()​ prints the footer.php file.

15 WordPress.org. ​Include Tags. ​(https://goo.gl/wugQSU)

110

CHAPTER 3 - WEB CONTENT MANAGEMENT SYSTEMS

2.1.3 Template Hierarchy
To decide which template or set of templates should be used to display the page, WordPress

uses the query string of the URL, and selects the template in the order determined by a

template hierarchy . 16

Since templates are hierarchically ordered, if WordPress cannot find a template file with a

matching name, it will skip to the next file in the hierarchy. If WordPress cannot find any

matching template file, it will use the index.php file.

For example, if a visitor requests for the page of category page, let it be A with ID 1,

WordPress will look in order for the following template files:

- a template file that matches the category slug, i.e. ​category-A.php​.
- a template file that matches the category ID, i.e. ​category-1.php​.
- a generic category template file, i.e. ​category.php​.
- a generic archive template file, i.e. ​archive.php​.
- the main theme template file, i.e. ​index.php​.

16 WordPress.org. ​Template Hierarchy. ​(https://goo.gl/tLGTxd)

111

CHAPTER 3 - WEB CONTENT MANAGEMENT SYSTEMS

Archive template
An archive is a collection of historical posts.

If a visitor requests for a specific year, month, or date, WordPress will prepare the Loop with

posts from that year, month or date only, using the archive template.

For example:

- http://example.org/blog/index.php?y=2018

- http://example.org/blog/index.php?m=2018-09

- http://example.org/blog/2018

- http://example.org/blog/2018/09

When WordPress prepares an archive view, it looks for a file named ​archive.php​.
If that file does not exist, for the template hierarchy, it use ​index.php​.
To visually disambiguate archives from the front page, create the ​archive.php . 17

Category template
If a visitor requests for a specific category, WordPress will prepare The Loop with posts from

that category only, using the category template.

For example:

- http://example.org/blog/index.php?c=category_name

When WordPress prepares a category view, it looks for a file named ​category.php​.
If that file does not exist, for the template hierarchy, it use ​index.php​.
To visually disambiguate category from the front page, create the ​category.php​.

17 WordPress.org. ​Creating an Archive Index. ​(https://goo.gl/xbTCXz)

112

CHAPTER 3 - WEB CONTENT MANAGEMENT SYSTEMS

Specific category template
It is possible to create separate template files for each category. Simply name the template file

category-X.php​, where ​X​ is the numerical ID of the category.

If you have two categories, let them be A with ID 1 and B with ID 2, which you want to display

in different ways, you could:

- use two separate files, category-1.php and category-2.php, or

- use a conditional test inside the default category.php file and

check whether the current category is A or B (or neither)

For example:

<?php​ ​if​ (is_category('1')): ​?>
 ​<!-- code for category A -->
<?php​ ​elseif​ (is_category('2')): ​?>
 ​<!-- code for category B -->
<?php​ ​endif​ ​?>

If you have another category, let it be C with category ID 3, which you want to display in a

significantly different way, then a separate ​category-3.php​ would be more appropriate.

Static Front Page
To disambiguate the view of the front page, you can use the ​is_home()​ template tag.

For example:

<?php​ get_header(); ​?>
<?php​ ​if​ (is_home()) : ​?>
 // we're on the home page

<?php​ ​endif​; ​?>

Where:

- is_home() will only produce a true value if the visitor is not requesting a specific

post, page, category, or date, so it only shows up on the "home" page.

113

CHAPTER 3 - WEB CONTENT MANAGEMENT SYSTEMS

2.2 Architecture
There are three major components to WordPress:

- core

- themes

- plugins

The core of WordPress is designed to be lean and lightweight, to maximize flexibility and

minimize code bloat. Plugins then offer custom functions and features so that each user can

tailor their site to their specific needs. Plugins are ways to extend and add to the functionality

that already exists in WordPress.

2.2.1 Plugins and themes
WordPress owes its success to the themes and plugins ecosystem.

Any software platform that aims to be widely used should provide a way to be customized,

extended, and to allow the community of developers to contribute to the rise of the platform.

So, a Web Content Management System that aims to be widely used should provide a themes

and plugins ecosystem.

WordPress users often turn to developer created premium themes and plugins to customize

and enhance their sites. These thriving marketplaces have actually sparked an entirely new

economy within the WordPress ecosystem, which offers numerous opportunities for theme

and plugin developers around the world.

Plugins control the behavior and add functionality to the site, whereas themes control the

presentation of content. If plugins are specifically designed to perform particular functions,

then themes affect the overall look and feel of a site. If plugins provide functionality, then

themes are the personality, and they are as diverse as the authors who create them.

Any theme you create should not add critical functionality. Doing so means that when a user

changes their theme, they lose access to that functionality. By moving critical features to

plugins, you make it possible for the design of your website to change, while the functionality

remains the same.

114

CHAPTER 3 - WEB CONTENT MANAGEMENT SYSTEMS

2.2.2 Plugins and themes market
Themes and plugins are two of the most profitable businesses in the WordPress workspace.

The industry has experienced a great deal of growth.

Since 2010, the plugin marketplace has grown over 3,000%. In 2014, WordPress.org counted

over 123M downloads of themes and over 1B downloads of plugins.

Plugins marketplace
There are currently more than 40,000 plugins available on WordPress.org, which have been

collectively downloaded more than 1.2 billion times. In particular: 19 plugins have reached

over 1 Million downloads; 11 plugins have reached over 7 Million downloads.

In CodeCanyon, a plugins marketplace (for WordPress and other CMSs), 80% of searches are

focused on functionality and interface elements (e.g. sliders, forms, calendars, etc.).

Utility plugins and interface elements are the two most profitable plugin types, each bringing

in over $7 million. The combined $14 million for the top two categories starkly contrasts with

the bottom three revenue types: plugins for SEO, forums, and auctions. These revenue

streams equal less than $1 million combined. Social networking ranked No. 8 out of 17 types

of plugins.

Themes marketplace
There are thousands upon thousands of themes to choose from with WordPress. While many

of the themes are available for free download, the more elaborate and skillful premium

designs come at a cost. WordPress.org recommends over 80 different companies that provide

themes, which are just the tip of the iceberg.

The market for themes is larger than the market for plugins, at least for now. Themes claim

over $232 million in total revenue compared with over $70 million for plugins. According to

Alexa.com, ThemeForest is one of the most popular 500 websites on the internet worldwide.

Actually, the site boasts over 6,300 WordPress themes available for purchase and download.

The theme categories are as varied as the plugins. However, the top two categories, corporate

and creative themes, account for over $125 million in revenue. That’s over 50% of the total

revenue of themes.

115

CHAPTER 3 - WEB CONTENT MANAGEMENT SYSTEMS

2.3 Plugins
Plugins are packages of code that extend the core functionality of the system.

In WordPress, plugins allow you to modify, customize, and enhance a WordPress website.

Instead of changing the core program code of WordPress, you can add functionality with

WordPress Plugins . 18

In WordPress, a plugin is a set of one or more PHP functions, that adds a specific set of

features to the website.

2.3.1 Using plugins
You can seamlessly integrate a plugin with the site using access points and methods provided

by the WordPress Plugin Application Program Interface (API).

Plugins allow you to extend the functionality of WordPress without touching WordPress core

itself. If there’s one cardinal rule in WordPress development, it’s this: “Don’t touch WordPress

core”. This means that you should not edit WordPress core files to add functionality to your

site, because, when WordPress updates to a new version, it overwrites all the core files.

Instead, to add functionality to your site, you should write a new plugin or choose an existed 19

one.

18 WordPress.org. ​Writing a Plugin. ​(https://goo.gl/ijr99c)
19 WordPress.org. ​Introduction to Plugin Development. ​(https://goo.gl/igchR4)

116

CHAPTER 3 - WEB CONTENT MANAGEMENT SYSTEMS

2.4 Plugin repositories
WordPress Plugins are available from several sources. The most popular and official source

for WordPress Plugins is the WordPress.org repo.

2.4.1 Default Plugins
The following two plugins are included with WordPress core. 20

Akismet
Askimet is an advanced hosted anti-spam service . 21

It is the most popular plugin of all time: it has reached over 35 Million active install marks.

It is not surprising that such a service is needed in the WordPress platform.

Hello Dolly
“Hello Dolly” is the world's first official WordPress Plugin . 22

This is not just a plugin, it symbolizes the hope and enthusiasm of an entire generation

summed up in two words sung most famously by Louis Armstrong: Hello, Dolly.

When enabled you will randomly see a lyric from “Hello, Dolly” in the Administration page.

20 WordPress.org. ​Plugins. ​(https://goo.gl/6AoQGj)
21 WordPress.org. ​Akismet Anti-Span WordPress plugin​. (https://goo.gl/gUcLbw)
22 WordPress.org. ​Hello Dolly WordPress plugin​. (https://goo.gl/ZxXfmm)

117

CHAPTER 3 - WEB CONTENT MANAGEMENT SYSTEMS

2.4.2 Plugin Hooks
To allow plugins to “hook into” the main process, WordPress provided hooks.

While WordPress is running, at various times it checks if there are functions registered to run

at that time: if so, then it execute these functions.

For example, before WordPress print the title of a post , it first checks if there are any function

registered for the filter hook ​the_title​: if so, the title text is passed in turn through each

registered function and the final output is the end result of any and all of these registered

functions.

Actions and Filters
WordPress provides two kinds of hooks: actions and filters.

Actions are functions triggered by specific events that take place in WordPress, such as

publishing a post or changing themes.

Filters are functions that WordPress passes data through, at certain points in execution, just

before taking some action with the data. Filters sit between the database and the browser

(when WordPress is generating pages), and between the browser and the database (when

WordPress is adding new posts to the database).

Sometimes the same goal can be accomplished with either an action or a filter.

For example, to change the text of a post, you might add a function to ​publish_post action

hook (so the post is modified as it is saved to the database), or a function to ​the_content

filter hook (so the post is modified as it is displayed in the browser screen).

118

CHAPTER 3 - WEB CONTENT MANAGEMENT SYSTEMS

2.5 Themes
A WordPress theme changes the design of your website, often including its layout. Changing

your theme changes how your site looks on the front-end, i.e. what a visitor sees when they

browse to your site on the web.

Themes take the content and data stored by WordPress and display it in the browser. When

you create a WordPress theme, you decide how that content looks and is displayed. There are

many options available to you when building your theme.

For example:

- Your theme can have different layouts, such as static or responsive.

- Your theme can display content anywhere you want it to be displayed.

- Your theme can specify which devices or actions make your content visible.

- Your theme can customize its typography and design elements using CSS.

WordPress themes are incredibly powerful. But, as with every web design project, a theme is

more than color and layout. Good themes improve engagement with your website’s content in

addition to being beautiful.

At their most basic level, WordPress themes are collections of different files that work

together to create what you see, as well as how your site behaves.

119

CHAPTER 3 - WEB CONTENT MANAGEMENT SYSTEMS

2.5.1 Required files
There are only two files absolutely required in a WordPress theme:

1. index.php – the main template file

2. style.css – the main style file

Though not required, you may see additional files in a theme’s folder including PHP files

(including template files), JavaScript, CSS files, Graphics and text files – usually license info, 23

readme.txt instructions, and a changelog file.

2.5.2 Template files
WordPress themes are made up of template files.

These are PHP files that contain a mixture of HTML, Template Tags , and PHP code. 24

When you are building your theme, you will use template files to affect the layout and design

of different parts of your website. For example, you would use the header.php template to

create a header, or the comments.php template to include comments.

The most critical template file is index.php, which is the catch-all template if a more-specific

template can not be found in the template hierarchy. Although a theme only needs a

index.php template, typically themes include numerous templates to display different content

types and contexts.

2.5.3 Template partials
A template partial is a piece of a template that is included as a part of another template, such

as a site header. Template partials can be embedded in multiple templates, simplifying theme

creation.

Common template partials include:

- header.php for generating the site’s header

- footer.php for generating the footer

- sidebar.php for generating the sidebar

You can create any number of template partials and include them in other template files.

23 WordPress.org. ​Template Files. ​(https://goo.gl/qq6esx)
24 WordPress.org. ​Template Tags. ​(https://goo.gl/hXc1Dg)

120

CHAPTER 3 - WEB CONTENT MANAGEMENT SYSTEMS

2.5.4 Common WordPress template files
The basic theme templates and files recognized by WordPress are:

.

├── assets (dir)

│ ├── js (dir)

│ ├── css (dir)

│ └── images (dir)

├── template-parts (dir)

│ ├── footer (dir)

│ ├── header (dir)

│ ├── navigation (dir)

│ ├── page (dir)

│ └── post (dir)

├── 404.php

├── archive.php

├── comments.php

├── footer.php

├── front-page.php

├── functions.php

├── header.php

├── index.php

├── page.php

├── README.txt

├── rtl.css

├── screenshot.png

├── search.php

├── searchform.php

├── sidebar.php

├── single.php

└── style.css

121

CHAPTER 3 - WEB CONTENT MANAGEMENT SYSTEMS

Where:

- index.php​ is the main template file.

- style.css​ is the main stylesheet.

- rtl.css​ is the right-to-left stylesheet, if the language’s text direction is right-to-left.

- front-page.php​ is the front page template

- home.php​ is the home page template, that is the front page by default.

- header.php​ is the header template file, that is the <head> of the HTML document.

- singular.php​ is the singular template.

- single.php​ is the single post template is used when a visitor requests a single post.

- single-{post-type}.php​ is the single post template for a custom post type.

- archive-{post-type}.php​ is the archive post type for a custom post type.

- page.php​ is the page template for individual pages.

- page-{slug}.php​ is the page template for a specific slug e.g. “about”.

- category.php​ is the category template to show posts by category.

- tag.php​ is the tag template to show posts by tag.

- taxonomy.php​ is the taxonomy term template to show a term in a custom taxonomy.

- author.php​ is the author page template.

- date.php​ is the date/time template to show posts by date or time.

- archive.php​ is the archive template to show posts by category, author, or date.

- search.php​ is the search results template to show users search results.

- attachment.php​ is the attachment template to show a single attachment.

- image.php​ is the image attachment template for a single image attachment.

- 404.php​ is the 404 template, used when a post, page, or other content, is not found.

122

CHAPTER 3 - WEB CONTENT MANAGEMENT SYSTEMS

2.5.5 Post Types
There are many different types of content in WordPress. These content types are normally

described as Post Types, that are the different types of content in WordPress.

Default Post Types
WordPress has the following default Post Types:

- post​ - for posts

- page​ - for pages

- attachment​ - for attachments

- revision​ - for revisions

- nav_menu_item​ - for navigation menus

The default Post Types can be modified and removed by a plugin or theme, but it is not

recommended that you remove built-in functionality for a widely-distributed theme or plugin.

The most common post types are: Post, Page and Attachment.

Post
Posts are used in blogs. They are:

- displayed in reverse sequential order by time, with the newest post first;

- have a date and time stamp;

- may have the default taxonomies of categories and tags applied; 25

- are used for creating feeds.

The template files that display the Post post type are: single.php and single-post.php;

category.php and all its iterations; tag.php and all its iterations; taxonomy.php and all its

iterations; archive.php and all its iterations; author.php and all its iterations; date.php and all

its iterations; search.php; home.php and index.php.

25
 ​WordPress.org. ​Categories, Tags, & Custom Taxonomies. ​(https://goo.gl/wKXsbB)

123

CHAPTER 3 - WEB CONTENT MANAGEMENT SYSTEMS

Page
Pages are a static Post Type, outside of the normal blog stream/feed. Their features are:

- non-time dependent and without a time stamp

- are not organized using the categories and/or tags taxonomies

- can have page templates applied to them

- can be organized in a hierarchical structure

The template files that display the Page post type are: page.php and all its iterations;

custom.php and all its iterations; front-page.php; search.php and index.php.

Attachment
Attachments are commonly used to display images or media in content, and may also be used

to link to relevant files. They contain information about files uploaded through the media

upload system, such as name and description, or, for images, such as size, location, etc.

The template files that display the Attachment post type are:

MIME_type.php; attachment.php; single-attachment.php; single.php and index.php

Custom Post Types
In addition to the default Post Types, you can also create Custom Post Types.

Using Custom Post Types, you can create your own post type.

The following templates can display Custom post types: are single-{post-type}.php;

archive-{post-type}.php; search.php; index.php.

While you generally won’t develop Custom Post Types in your theme, you may want to code

ways to display Custom Post Types that were created by a plugin. This ensures the portability

of your user’s content, and that if the theme is changed the content stored in the Custom Post

Types won’t disappear.

124

CHAPTER 3 - WEB CONTENT MANAGEMENT SYSTEMS

2.6 Open source community
A flourishing software ecosystem couldn’t exist without a fervent community behind it.

WordPress is available in over 160 languages around the world; its plugin authors are located

around the globe.

In 2014, there were 80 official WordCamps held in 29 countries.

There are over 840 meetup groups for WordPress all over the world. There are over 249,000

active members in WordPress meetup groups all over the world, in 66 countries and 535

cities. The official WordPress support forum counts over 2 million total topics.

Open source communities stood, and currently stand, for an ideology of communal work and

collaboration. Open source communities are driven by a commitment to the success of the

collective and to user contribution. Open source communities have become one of the

foremost proponents of democracy on the Internet. The strides made by the open source

community provide a continuing example of how a group can operate efficiently and build

outstanding projects and ideas, exemplifying the potential for participatory democratic

systems.

One of the greatest strengths of all open source communities is their flexibility: open source

projects can adapt to users’ needs with extreme efficiency, allowing development to remain

relatively unshackled from commercial pressure.

Contrary to many proprietary software companies and products, open source projects tend to

become increasingly user-friendly and the communities around them actively work to

welcome newcomers to the fold. The driven and radical altruism of many open source

communities offered this new movement the authenticity they hungered for and one-upped

the commercial competition’s biggest selling point: affordability.

125

CHAPTER 3 - WEB CONTENT MANAGEMENT SYSTEMS

Conclusions
The Web CMSs are systems that allow you to build and deploy content on the Web.

It is clear that the server-side dynamic rendering of web pages does not fit well in a

peer-to-peer platform, since it would introduce “special” peers devoted to generate the web

pages, and so single points of failure. However, an innovative aspect firstly implemented by

the Web Content Management Systems is the separation of content from presentation by

means a plugins and theming ecosystem.

Any software platform that aims to be widely used should provide a way to be customized,

extended, and to allow the community of developers to contribute to the rise of the platform.

WordPress owes its success to the themes and plugins ecosystem, as well as its flourishing

open-source community. A Web CMS that aims to be widely used should provide a themes

and plugins ecosystem, building and feeding an open-source community to support it.

Web Content Management Systems alternatives could be found in Static Website Generators,

while its evolution could be find in Decoupled Web Content Management Systems, in the

chapters that follow.

126

CHAPTER 4 - STATIC WEBSITE GENERATORS

CHAPTER 4
STATIC WEBSITE GENERATORS

When a user visits a website, expecting the latest content, the server (the website is hosted in),

i.e. the Web Content Management Systems (the website is built with) queries the database

layer to get the content, pass the results to the templating engine, that compose the HTML,

and let the server serve the dynamically generated page.

Static site generators shift the heavy load from the moment users request the webpage to the

moment the webpage actually changes (when the website is updated), generating a structure

of purely static HTML files that are ready to be delivered as are to the users.

In this chapter, Static Website Generators are explored.

127

CHAPTER 4 - STATIC WEBSITE GENERATORS

TABLE OF CONTENTS

1 Static website generators ​130

1.1 Using Static website generators ​130

1.2 Hosting static websites ​131

1.2.1 GitHub Pages ​131

1.3 Writing static websites ​132

1.3.1 Markdown ​132

2 Hugo ​134

2.1 Basic concepts ​134

2.1.1 Directory Structure ​134

2.2 Content ​136

2.2.1 Content Sections ​136

2.2.2 Content Types ​136

2.2.3 Content organization ​137

2.2.4 Override destination paths via front matter ​138

2.2.5 Page Bundles ​140

2.2.6 Shortcodes ​141

2.3 Archetypes ​142

2.4 Taxonomies ​143

2.5 Theme ​144

2.5.1 Using a theme ​144

2.5.2 Customizing a theme ​144

2.5.3 Theme components ​145

128

CHAPTER 4 - STATIC WEBSITE GENERATORS

1 Static website generators
Static website generators seem to have been becoming more and more popular, but they’re

not one of those ephemeral novelty things that grow in popularity as quickly as they fall into

oblivion shortly after. There’s a strong open source community maintaining and pushing

forward a wide range of engines with different flavours and features. For over a decade, many

different projects (more than 400) have been built with a wide range of programming 1

languages and technologies.

1.1 Using Static website generators
Static site generators don’t solve all the problems. It’s important to understand how they work

and what they can do in order to assess, on a per-project basis, whether or not they’re the

right tool to use.

Advantages
Since there are no database queries, no templating and no processing to run on every request

(by the user), but just (pre-built) HTML pages (sitting on the server, waiting to be served),

static websites result to be fast: every web page request is served back to the user pretty much

instantly.

Since content is stored in flat files, treated as any other component of the codebase (i.e. the

templates files), static website are ideal to be used with version control systems, like Git, to

allow website designers and content editors collaboratively work and control exactly who does

what and rollback changes when something goes wrong.

1 StaticSiteGenerators.net - ​The definitive listing of Static Site Generators ​.
(https://goo.gl/T4Mnyp)

129

CHAPTER 4 - STATIC WEBSITE GENERATORS

1.2 Hosting static websites
Static websites can be hosted anywhere, including hosting services like Netlify , Heroku , 2 3

GitHub Pages , GitLab Pages , Surge , Firebase , Google Cloud Storage , Amazon S3 , Azure , 4 5 6 7 8 9 10

and CloudFront and work well with CDNs. Hugo sites run without the need for a database or 11

dependencies on server runtimes like Ruby, Python, or PHP.

1.2.1 GitHub Pages
GitHub Pages is a free static site hosting service that is designed to host content contained in a

GitHub project. It is used by 0.2% of all the websites in the Web.

It comes with a built-in static site generator, called Jekyll. It takes a template directory

containing raw text files in various formats, like Markdown, and spits out a complete,

ready-to-publish static website.

There are platforms that provide a web interface for managing content (creating, editing and

deleting files) directly on a GitHub repository, such as Prose, a content WYSIWYG editor for

GitHub . 12

2 ​Netlify Docs​. (https://goo.gl/V6EDTM)
3 Getting Started on Heroku​. (https://goo.gl/cCbw6F)
4 ​What is GitHub Pages?​ (https://goo.gl/9Zm8c2)
5 ​GitLab Pages.​ (https://goo.gl/rdAXhV)
6 ​Getting started with Surge.​ (https://goo.gl/PjkEKn)
7 ​Firebase Hosting. ​(https://goo.gl/NR7CNG)
8 Google Cloud Platform Documentation.​ ​(​https://goo.gl/QrxkzC​)
9 Amazon S3. ​(https://goo.gl/7s6qPs)
10 Andrew Coates (January, 2016).​ Publish a static web site using Azure Web Apps.
(https://goo.gl/WzjjAX)
11 ​Amazon CloudFront. ​(https://goo.gl/JjGDpm)
12 M. Aufreiter. (June 2012). ​Introducing Prose: A Content Editor for GitHub​.
(https://goo.gl/rJE7dj)

130

CHAPTER 4 - STATIC WEBSITE GENERATORS

1.3 Writing static websites
Essentially, static site generators take the content, typically stored in flat files rather than in

databases, pass it to a templating engine, and generate a static version of the website.

The content source is often written in Markdown.

1.3.1 Markdown
Markdown is an easy-to-read/easy-to-write plain text formatting syntax, that can be

converted to structurally valid HTML.

Markdown is intended to be as easy-to-read and easy-to-write as is feasible. The overriding

design goal for Markdown formatting syntax is to make it as readable as possible.

A Markdown-formatted document should be publishable as-is, as plain text, without looking

like it’s been marked up with tags or formatting instructions. While Markdown syntax has

been influenced by several existing text-to-HTML filters, such as Textile and

reStructuredText, the single biggest source of inspiration for Markdown syntax is the format

of plain text email.

Therefore, Markdown syntax is comprised entirely of punctuation characters, which have

been carefully chosen so as to look like what they mean. E.g., asterisks around a word actually

look like *emphasis*.

Markdown and HTML
Markdown syntax is intended for one purpose: to be used as a format for writing for the web.

Markdown is not a replacement for HTML, or even close to it. Its syntax is very small,

corresponding only to a very small subset of HTML tags. The idea is not to create a syntax that

makes it easier to insert HTML tags.

The idea for Markdown is to make it easy to read, write, and edit prose. HTML is a publishing

format; Markdown is a writing format. Thus, Markdown formatting syntax only addresses

issues that can be conveyed in plain text.

131

CHAPTER 4 - STATIC WEBSITE GENERATORS

For any markup that is not covered by Markdown syntax, you can use HTML itself. There’s no

need to preface it or delimit it to indicate that you’re switching from Markdown to HTML; you

just use the tags.

The only restrictions are that block-level HTML elements (e.g. ​<div>​, ​<table>​, ​<pre>​, ​<p>​,

etc.), must be separated from surrounding content by blank lines, and the start and end tags

of the block should not be indented with tabs or spaces. Markdown is smart enough not to add

extra (unwanted) ​<p>​ tags around HTML block-level tags.

Markdown formatting syntax is not processed within block-level HTML tags.

For example, you can’t use Markdown-style ​*​emphasis​*​ inside a ​<div>​ block.

Markdown formatting syntax is only processed within span-level HTML tags.

For example, you can use Markdown-style ​**​strong​**​ inside a ​​ span.

For example:

This is a title

This is a subtitle

The following is a list:

item one

item two

item three

<​table​>
 <​tr​>
 <td>This is a table</td>

 </​tr​>
</​table​>

This is a regular ​**strong**​ paragraph.

132

CHAPTER 4 - STATIC WEBSITE GENERATORS

2 Hugo
Hugo is a fast and modern static site generator written in Go.

2.1 Basic concepts
In general, Hugo takes a source of content and template files (written in Markdown) and 13

create a complete static website.

2.1.1 Directory Structure
In general, the basic directory structure of a Hugo website project is the following:

.

├── config.json

├── content

├── data

├── static

└── themes

 └── <theme>

 ├── archetypes

 └── layouts

Where:

- config.json​ is the configuration file.

- content​ stores all content for the site.

- data​ stores configuration files that can be used to generate the site.

- static​ stores all the static content, such as images, CSS, JavaScript, etc.

- themes​ stores all the themes that can be used to generate the website.

In particular, in a theme:

- archetypes​ stores preconfigured templates to be used to generate your website.

- layouts​ stores templates in the form of .html files.

13 ​Templates. ​(​https://goo.gl/iQMFMs ​)

133

CHAPTER 4 - STATIC WEBSITE GENERATORS

Configuration file
Every Hugo project should have a configuration file at the root. Many sites may need little to

no configuration, but Hugo ships with a large number of configuration directives for more 14

granular directions on how you want Hugo to build your website.

For example:

{

 "baseURL": "https://yoursite.example.com/",

 "footnoteReturnLinkContents": "↩",

 "params": {

 "AuthorName": "Steve Francia",

 "GitHubUser": "spf13",

 "ListOfFoo": [

 "foo1",

 "foo2"

],

 "SidebarRecentLimit": ​5​,
 "Subtitle": "Welcome"

 },

 "permalinks": {

 "post": "/:year/:month/:title/"

 },

 "title": "My Hugo Site"

}

Where:

- params​ will populate the ​.Site.Params​ variable for use in templates 15

14 Configure Hugo. (​https://goo.gl/MLKtjt)
15 ​Site Variables. ​(​https://goo.gl/8y1Lhj​)

134

CHAPTER 4 - STATIC WEBSITE GENERATORS

2.2 Content
Content directory should be organized in a manner that reflects the rendered website.

2.2.1 Content Sections
Hugo assumes that your site will be organized into sections . 16

Hugo generates a Section tree that matches the content directory.

A Section is a collection of pages that gets defined based on the organization structure under

the /​content​ directory.

By default, the first-level directories under ​/content​ form their own sections (root sections).

If a user needs to define a section foo at a deeper level, they need to create a directory named

foo with an _index.md file.

Front matter allows you to keep metadata attached to an instance of a content type . 17

2.2.2 Content Types
Hugo assumes that each section represents a corresponding type. Each new piece of content

you place into a section will automatically inherit the type.

A content type can have a unique set of metadata (i.e., front matter) or customized template 18

and can be created via archetypes . 19

For example, a new file created at content/posts/new-post.md will automatically be assigned

the type posts, alternatively, you can set the content type in a content file’s front matter in the

field “type”.

To create a new content type, you have to define the templates and archetype unique to the

new content type.

If you do not specifically declare content types in your front matter or develop specific layouts

for content types, Hugo will assume the content type from the file path and section.

16 ​Content Sections. ​(​https://goo.gl/3w2kFJ​)
17 ​Content Types. ​(https://goo.gl/b1ME2z)
18 ​Front Matter. ​(https://goo.gl/7MdRdS)
19 ​Archetypes. ​(​https://goo.gl/5jYZAF ​)

135

CHAPTER 4 - STATIC WEBSITE GENERATORS

2.2.3 Content organization
Content can be nested at any level.

The top levels (the root sections) determine the content type.

For example:

content

├── pages

| ├── _index.md

| ├── page_1.md

| ├── page_2.md

| └── subpages

| └── subpage_1.md

└── posts

 ├── _index.md

 ├── post_1.md

 └── post_2.md

Where:

- /content/about/_index.md becomes /about.html

- /content/posts/post-1.md becomes /posts/post-1.html

- /content/posts/nested/nested-post.md becomes /posts/nested/post-2.html

- /content/quotes/quote-1.md becomes /quotes/quote-1.html

_index.md allows you to add front matter and content to your list templates , such as section 20

templates , taxonomy templates , taxonomy terms templates. 21 22

You can keep one _index.md for your homepage and one in each of your content sections,

taxonomies, and taxonomy terms.

Single pages
Single content files in each sections are going to be rendered as single page templates . 23

20 ​Lists of Content in Hugo. ​(https://goo.gl/2682Xi)
21 ​Section Page Templates.​ ​(​https://goo.gl/LmVSDb​)
22 Taxonomy Templates. ​(https://goo.gl/wr7iEc)
23 ​Single Page Templates. ​(​https://goo.gl/rpPuis ​)

136

CHAPTER 4 - STATIC WEBSITE GENERATORS

2.2.4 Override destination paths via front matter
In Hugo, the same structure that works to organize your source content is used to organize the

rendered site: the organization of the source content will be mirrored in the destination.

Hugo provides fields that can be specified in the front matter to override and determine the

destination of a specific piece of content.

Filename
This isn’t in the front matter, but is the actual name of the file minus the extension. This will

be the name of the file in the destination.

For example, ​content/posts/my-post.md​ will become

https://example.com/posts/my-post/

Slug
The value for slug is determined by the name of the content file or front matter overrides.

When defined in the front matter, the slug can take the place of the filename for the

destination.

For example, the following ​content/posts/old-post.md​ will be ​/posts/new-post/​:

title: New Post

slug: "new-post"

This is the title

This is the content

Section
Section is determined by a content’s location on disk and cannot be specified in the front

matter.

137

CHAPTER 4 - STATIC WEBSITE GENERATORS

Type
A content type is also determined by its location on disk but, unlike section, it can be specified

in the front matter.

This can come in especially handy when you want a piece of content to render using a

different layout.

For example, ​content/posts/my-post.md ​ with the following frontmatter,

will use ​layouts/new/mylayout.html​ to render the content:

title: My Post

type: new

layout: mylayout

This is the title

This is the content

URL
A complete URL can be provided. This will override all the above as it pertains to the end

destination. This must be the path from the baseURL (starting with a /).

The url will be used exactly as it provided in the front matter.

For example, the following ​content/posts/old-url.md​ will become ​/blog/new-url/​:

title: Old URL

url: /blog/new-url/

This is the title

This is the content

138

CHAPTER 4 - STATIC WEBSITE GENERATORS

2.2.5 Page Bundles
Page Bundles are a way to group page resources - images, other pages, documents etc. 24

A Page Bundle can be one of Leaf Bundle and a Branch Bundle.

Leaf Bundles
A Leaf Bundle has no children. It is a directory at any hierarchy within the content/directory,

that contains an index.md file. The hierarchy depth at which a leaf bundle is created does not

matter, as long as it is not inside another leaf bundle.

Branch Bundles
A Branch Bundle is any directory at any hierarchy within the ​content directory, that contains

at least an ​_index.md​ file (e.g. home page, section, taxonomy terms, taxonomy list).

The hierarchy depth at which a branch bundle is created does not matter.

The ​_index.md​ can also be directly under the ​content​ directory.

For example:

content/

├── branch-bundle-1

│ ├── branch-content-1.md

│ ├── branch-content-2.md

│ ├── image1.jpg

│ ├── image2.png

│ └── _index.md

└── branch-bundle-2

 ├── _index.md

 └── a-leaf-bundle

 └── index.md

24 Page Resources. ​(https://goo.gl/QMuA3E)

139

CHAPTER 4 - STATIC WEBSITE GENERATORS

2.2.6 Shortcodes
A shortcode is a simple snippet inside a content file used to render a predefined template.

Hugo uses Markdown because of its simple content format, but there are times when

Markdown falls short. Often, content authors are forced to add raw HTML (e.g., video

<iframes>) to Markdown content. But this contradicts the beautiful simplicity of Markdown’s

syntax. To circumvent these limitations, Hugo created shortcodes.

Note that shortcodes will not work in template files. If you need the type of drop-in

functionality that shortcodes provide but in a template, you most likely want a partial

template instead. 25

Using shortcodes
In your content files, a shortcode can be called by calling:

{{% shortcodename parameters %}}

Shortcode parameters are space delimited, and parameters with internal spaces can be

quoted. Depending upon how the shortcode is defined, the parameters may be named,

positional, or both, although you can’t mix parameter types in a single call. The format for

named parameters is name="value", similar to HTML attributes.

Some shortcodes use or require closing shortcodes.

For example:

{{% highlight javascript %}} javascript code here {{% /highlight %}}

25 Partial Templates. ​(https://goo.gl/tkk7ts)

140

CHAPTER 4 - STATIC WEBSITE GENERATORS

2.3 Archetypes
Archetypes are templates used when creating new content that contain preconfigured front

matter and possibly also a content disposition for your website’s content types.

Hugo uses the content-section to find the most suitable archetype template in your project. If

your project does not contain any archetype files, it will also look in the theme.

For example, for the content in content/posts/my-first-post.md,

Hugo will use the first archetype file found of these:

1. archetypes/posts.md

2. archetypes/default.md

3. themes/<theme-name>/archetypes/posts.md

4. themes/<theme-name>/archetypes/default.md

For example, the following archetype stored in archetypes/new-archetype.md will create a

new new-archetype type of content file based on the archetype template.

title: "{{ replace .Name "-" " " | title }}"

date: {{ .Date }}

draft: true

Insert Lead paragraph here.

New posts

{{ range first 10 (where .Site.RegularPages "Type" "new-type") }}

* ​{{ .Title }}
{{ end }}

141

CHAPTER 4 - STATIC WEBSITE GENERATORS

2.4 Taxonomies
Hugo includes support for user-defined groupings of content called taxonomies.

Taxonomies are classifications of logical relationships between content.

A Taxonomy is a categorization that can be used to classify content.

A term in a taxonomy is a key within the taxonomy.

A value in a taxonomy is a piece of content assigned to a term.

When taxonomies are used—and taxonomy templates are provided—Hugo will automatically

create both a page listing all the taxonomy’s terms and individual pages with lists of content

associated with each term.

For example, a website about movies could include the taxonomies, such as Actors, Directors,

Studios, Genre. Year, Awards, etc. If, for each of your movies, you specify terms for each of

these taxonomies (i.e., in the front matter of each of your movie content files), Hugo would

automatically create pages for each each of these taxonomies, with each listing all of the pages

that matched that specific taxonomy.

Hugo natively supports taxonomies, for tags and categories.

For example, a taxonomy for categories A, B and C, will create a single page (at ​/categories​)

that lists all the terms within the categories A, B and C and individual taxonomy list pages for

each of the categories that shows a listing of all pages marked as part of that taxonomy within

any content file’s front matter (at ​/categories/A​, ​/categories/B​, and ​/categories/C​) .

142

CHAPTER 4 - STATIC WEBSITE GENERATORS

2.5 Theme
Hugo provides a theming system.

The community-contributed themes are hosted in a centralized GitHub repository . 26

2.5.1 Using a theme
To use a theme, you have to install the theme in the /themes directory.

Hugo applies the decided theme first and then applies anything that is in the local directory.

This allows for easier customization while retaining compatibility with the upstream version

of the theme.

2.5.2 Customizing a theme
To customize a theme, you should not edit the theme’s files directly, but you should override

theme layouts and static assets in your top-level project directories. Hugo permits you to

supplement or override any theme template or static file with files in your working directory.

This provides the added flexibility of tweaking a theme to meet your needs while staying

current with a theme’s upstream.

Anytime Hugo looks for a matching template, it will first check the working directory before

looking in the theme directory. To modify a template, simply create that template in your local

layouts directory. The template lookup order determines which template to use for a given 27

piece of content.

26 ​Hugo themes. (​https://goo.gl/mqkgYg)
27 ​Hugo's Lookup Order. ​(​https://goo.gl/NdXJZr​)

143

CHAPTER 4 - STATIC WEBSITE GENERATORS

2.5.3 Theme components
A theme consists of templates and static assets, such as JavaScript and CSS files.

Layout templates
Hugo is built around the concept that things should be as simple as possible. Fundamentally,

website content is displayed in two different ways, a single piece of content and a list of

content items. With Hugo, a theme layout starts with the defaults. As additional layouts are

defined, they are used for the content type or section they apply to. This keeps layouts simple,

but permits a large amount of flexibility.

The default single file layout is located at ​layouts/_default/single.html​.
The default list file layout is located at ​layouts/_default/list.html​.

Partial templates
Theme creators should liberally use partial templates throughout their theme files. Not only is

a good DRY (Don’t Repeat Yourself) practice to include shared code, but partials are a special

template type that enables the themes end user to be able to overwrite just a small piece of a

file or inject code into the theme from their local /layouts. These partial templates are perfect

for easy injection into the theme with minimal maintenance to ensure future compatibility.

Static files
Everything in the static directory will be copied directly into the final site when rendered. No

structure is provided here to enable complete freedom. It is common to organize the static

content into /css, /js and /img folders.

144

CHAPTER 4 - STATIC WEBSITE GENERATORS

Conclusions

Static Website Generators seem to be a good fit for a peer-to-peer platform. Using these

systems, webpages are generated once and can be served by static web servers or delivered by

Content Delivery Network.

145

CHAPTER 4 - STATIC WEBSITE GENERATORS

146

CHAPTER 5 - DECOUPLED WEB CONTENT MANAGEMENT SYSTEMS

CHAPTER 5
DECOUPLED WEB CONTENT
MANAGEMENT SYSTEMS

Choosing a Web ​CMS means accepting not only the language it is written in, but also its

editing and administration tools, its database, its templating system, etc. Decoupled Web

CMSs aim to improve this situation.

A Decoupled CMS is essentially a regular full stack of content management, delivery, and

presentation solution but allows for content stored within it to be leveraged by other systems.

In this chapter, the Decoupled Web CMS are described. What they are. How they works. In

particular, as an explanatory instance, ​Contentful ​ is presented.

147

CHAPTER 5 - DECOUPLED WEB CONTENT MANAGEMENT SYSTEMS

TABLE OF CONTENTS

1 Decoupled Web CMS ​150

Tightly-coupled vs loosely-coupled systems ​150

1.1 Headless CMS ​151

2 Contentful ​152

2.1 APIs ​152

Content Delivery API ​152

Content Management API ​152

Content Preview API ​152

Images API ​152

2.2 Domain Model ​153

User ​153

Organization ​153

Space ​153

Environment ​153

2.3 Data model ​154

2.3.1 Content Types ​154

Fields ​154

2.3.2 Modeling Relationships ​156

Resolve relationships ​156

2.3.3 Modeling attachments ​157

2.3.4 Controlling field appearance ​158

Applicable widgets per field type ​158

Widget settings ​160

2.3.5 UI Extensions ​160

2.4 Locales ​161

148

CHAPTER 5 - DECOUPLED WEB CONTENT MANAGEMENT SYSTEMS

149

CHAPTER 5 - DECOUPLED WEB CONTENT MANAGEMENT SYSTEMS

1 Decoupled Web CMS
Choosing a Web ​CMS means accepting not only the language it’s written in, but also its

editing and administration tools, its database, its templating system, etc.

Decoupled Web CMSs aim to improve this situation . 1

There is a trend for software architecture that tends to decouple the parts of a system.

Tightly-coupled vs loosely-coupled systems
In any system, from a urban infrastructure to a computer program, the designer of the system

can choose the degree to which the pieces of the system depend on one another . 2

In a tightly-coupled system: every piece depends each other; each part of the system can make

assumptions about the other parts; if one piece fails, it could take the whole system with it.

Tightly-coupled systems can be designed quite quickly, but at a price: they lack resilience.

In a loosely-coupled system: all the pieces are independent; each part has little to no

knowledge of the other pieces; individual parts of the system can be swapped out with a

minimum of knock-on effects.

Loosely-coupled system can take more work to be designed, but with a payoff: the overall

result is more resilient to failure.

Decoupled software architectures come with a wide range of advantages and promises. They

are better at fulfilling the requirements for flexibility and for agility as well as the ever growing

need for scalability. This trend applies to all sort of software, especially for Web architectures

and systems.

A Decoupled CMS is essentially a regular full stack of content management, delivery, and

presentation solution but allows for content stored within it to be leveraged by other systems.

1 D. Buchmann. (March 2015). ​The benefits of decoupling your CMS ​. (https://goo.gl/gFx59L)
2 J. Keith. (2015). ​Resilient web design​. (https://goo.gl/MvnUFv)

150

CHAPTER 5 - DECOUPLED WEB CONTENT MANAGEMENT SYSTEMS

1.1 Headless CMS
A Headless CMS is a Decoupled CMS where the content management repository system is

independent of the content delivery and presentation tools.

While traditional CMSs have to be hosted and built together with the website every time it’s

served, a Headless CMS doesn’t care where it’s serving its content to, since it’s no longer

attached to the frontend . 3

The notion of a “headless” website refers to a situation where:

- there is a traditional database-driven CMS which editors use to maintain the content

for the site, usually via the same old admin interface as always;

- the content for the site is accessible via a web-service API, usually in a RESTful

manner and in a mashup-friendly format such as JSON;

- the end-user experience is delivered by a Javascript application rendering the output

of this API into HTML, frequently making use of a modern application framework.

A headless CMS can manage content for websites that doesn’t need a server and can be hosted

directly on a CDN. In particular, there are two ways it works:

- API-driven CMS

- git-based flat-file CMS

In API-driven CMSs, the content is stored in a (typically NoSQL) database, and handled via

(HTTP) API.

In git-based CMSs, the content is stored as flat text files in a git repository, and handled using

the git workflow.

3 T. Schadler and M. Grannan. (Mach 2016). ​The Rise Of The Headless Content Management
System ​. (https://goo.gl/KLrk1q)

151

CHAPTER 5 - DECOUPLED WEB CONTENT MANAGEMENT SYSTEMS

2 Contentful

2.1 APIs
Contentful provides a content infrastructure that comprises four REST APIs:

- Content Delivery API - to retrieve content to display to users in a website ; 4

- Content Management API - to programmatically create or update content items ; 5

- Content Preview API - to retrieve unpublished content to show in-context previews ; 6

- Images API - to retrieve and apply transformations to images . 7

Content Delivery API
The Content Delivery API is a read-only API for delivering content from Contentful to apps,

websites and other media. Content is delivered as JSON data, and images, videos and other

media as files. The API is available via a globally distributed content delivery network, to

improve the availability of content. The server closest to the user serves all content, both

JSON and binary, to minimize latency.

Content Management API
The Content Management API is a read-write API for managing content. It can be used to

import content from WordPress or other traditional CMS, to integrate with other backend

systems, or to build custom editing experiences. Unlike the Content Delivery API, the

management API requires you to authenticate.

Content Preview API
The Content Preview API is a variant of the Content Delivery API for previewing content

before delivering it. It can be used in combination with a "preview" deployment of the website,

that allows content managers to view their work in-context, as if it were published.

Images API
The Images API allows you to resize and crop images, change their background color and

convert them to different formats.

4 Contentful. ​Content Delivery API​. (https://goo.gl/w2Njc2)
5 Contentful. ​Content Management API​. (https://goo.gl/RMjzNP)
6 Contentful. ​Content Preview API​. (https://goo.gl/4Q1EsQ)
7 Contentful. ​Images API​. (https://goo.gl/Fg5rhg)

152

CHAPTER 5 - DECOUPLED WEB CONTENT MANAGEMENT SYSTEMS

2.2 Domain Model
At its core, a domain model creates a web of interconnected objects. Each object within this

model is representational and incorporates both behavior and data.

Contentful has four main object types: user, organization, space and environment.

User
A user is anyone with an account with management authentication information.

Users can either be invited to an existing organization, or sign up individually. If a user has

signed up individually, a new organization is automatically created. However, a user can

always create additional organizations or be invited to other existing organizations.

Organization
An organization serves, first and foremost, as a way to group users.

Organizations uses a role-based access model, meaning that users will have different levels of

access based on their organization role.

Space
A space is a child of the organization—it acts as a container for your content and any settings

related to that content. Spaces allow you to separate your data according to the structure of

your projects or services.

Environment
Environments are entities within a space that allow you to create and maintain multiple

versions of the space-specific data and configuration, and make changes to them in isolation.

By default, each space has one environment, called master; additionally, multiple sandbox

environments can be created. Sandbox environments allow you to modify the data in the

space without affecting the data in the master environment.

Environments are made up of content model , content, and media . 8 9

Environments are characterized by locales and UI extensions . 10 11

8 Contentful. ​Content modelling basics​. (https://goo.gl/zcGbtr)
9 Contentful. ​Working with media in Contentful ​. (https://goo.gl/bQx7sx)
10 Contentful. ​Locales ​. (https://goo.gl/cNv1gq)
11 Contentful. UI Extensions. (https://goo.gl/qBrv4W)

153

CHAPTER 5 - DECOUPLED WEB CONTENT MANAGEMENT SYSTEMS

2.3 Data model
Contentful organizes content into spaces, that allows you to group all the related resources for

a project together, this includes content entries, media assets, and settings for localizing

content into different languages. Each space has a content model that represents the content

types you create.

2.3.1 Content Types
Each content type contain basic information, such as:

- sys​​ - an object of common system properties.

- name​ - the name of the content type.

- description​ - the description of the content type.

- fields​ - a list of fields of the content type.

- controls​ - a list of widget used to display the fields.

Fields
Each content type consists of a set of fields, such as:

- Symbol​ - a short text (e.g. for titles and names).

- Text​ - a long text (e.g. for paragraphs of text).

- Integer​ - a whole number.

- Number​ - a decimal number.

- Date​ - a date and time (in ISO 8601 format).

- Location​ - a coordinate object (latitude and longitude of a location).

- Boolean​ - a value that has two states (e.g. yes/no or true/false).

- Media​ - a link to an asset.

- Link​ - a link to another entry.

- Array​ - a list values.

- Object​ - a set of key/value pairs.

Fields also contain metadata, such as validations and widget appearance.

Items of content are stored as entries, which represent textual or structural information based

on the content type used.

Items can also be assets, which are binary files, such as images, videos or documents.

Assets have three fixed fields: name, description and attached file.

154

CHAPTER 5 - DECOUPLED WEB CONTENT MANAGEMENT SYSTEMS

For example, a Blog Post type with the following fields:

- title​ (​Symbol​) - the title of the post

- author​ (​Link​ to Author) - the author of the post

- excerpt​ (​Text​) - the excerpt of the post

- body​ (​Text​) - the content of the post

- cover (Media) - the cover image of the post

- media (​Array​ of ​Media​) - a list of media

- tags​ (​Array​ of ​Symbol​) - the list of tags

- is_draft​ (​Boolean​) - a flag for the publishing state

- published_at​ (​Date​) - the publishing date

For example, an Author type with the following fields:

- full_name​ (​Symbol​) - the full name of the author

- picture​ (​Media​) - a (profile) picture of the author

{

 "name": "Author",

 "description": "Author Type",

 "fields": [

 {

 "id": "full_name",

 "name": "Full Name",

 "required": true,

 "localized": true,

 "type": "Symbol"

 },

 {

 "id": "picture",

 "name": "Picture",

 "required": false,

 "type": "Link",

 "linkType": "Media"

 },

 …

],

 …

}

155

CHAPTER 5 - DECOUPLED WEB CONTENT MANAGEMENT SYSTEMS

2.3.2 Modeling Relationships
Linking an entry to another entry represents a relationship.

Links are a powerful way to model relationships between content. You can use a URI query

parameter to retrieve an entire chain of related content. A single HTTP request lets you

retrieve the entire set of linked resources.

Entries can have link fields which point to other entries or assets.

For example, in a Blog Post Type:

- author​ is a singular relationship.

- tags​ is plural relationship.

- cover​ is a singular attachment.

- media​ is a plural attachment.

Relationships are clearly defined and validated by specific content type fields.

Entry links can be validated by content type (e.g., only allow Symbol for fields.tags).

Asset links can be validated by file type (e.g., only allow Images for fields.photo)

Resolve relationships
By default, a response includes the first level of linked content. To set the number of levels you

want to return, you can use the ​include​ parameter.

Link resolution works regardless of how many results are there in items.

Only links between entries, spaces and assets are resolved. Links between spaces and content

types are not included in the response.

In the JSON response of a successful query, linked items are placed in the includes array,

when not already fetched in the items array.

Before resolving links to items, Contentful matches the filter conditions of a query. This

changes the response contained within the items array to reflect the search criteria of the

querying URL.

156

CHAPTER 5 - DECOUPLED WEB CONTENT MANAGEMENT SYSTEMS

2.3.3 Modeling attachments
Below is the example JSON structure of an entry with an asset attached:

{

 "fields": {

 "title": {

 "en-US": "Hello, World!"

 },

 "reference_field": {

 "en-US": [

 {

 "sys": {

 "type": "Link",

 "linkType": "Asset",

 "id": "id1"

 }

 },

 {

 "sys": {

 "type": "Link",

 "linkType": "Asset",

 "id": "id2"

 }

 }

 …

]

 }

 }

}

157

CHAPTER 5 - DECOUPLED WEB CONTENT MANAGEMENT SYSTEMS

2.3.4 Controlling field appearance
An editor interface represents the look and feel of content type fields in the web app.

The look and feel are tightly coupled to a content type and define which widget is rendered for

the content type fields.

For example, in the Blog Post type:

{

 …

 "fields": [

 { "id": "title", "name": "Title", "type": "Text" },

 { "id": "body", "name": "Body", "type": "Text" },

 { "id": "category", "name": "Category", "type": "Symbol" }

],

 "controls": [

 { "fieldId": "title", "widgetId": "singleLine" },

 { "fieldId": "body", "widgetId": "multipleLine" },

 { "fieldId": "category", "widgetId": "dropdown" }

]

}

Where:

- the ​title​ field is rendered as an input field (using the ​singleLine​ widget)

- the ​body​ is rendered as a normal text area (using the ​multipleLine​ widget)

- the ​category​ is rendered as a dropdown field (using the ​dropdown​ widget)

Applicable widgets per field type
There are sets of applicable widgets per content type field type.

For the ​Asset​ type:

- assetLinkEditor​ - search, attach, and preview an asset.

- assetLinksEditor​ - search, attach, reorder, and preview multiple assets.

- assetGalleryEditor​ - search, attach, reorder, preview multiple assets in a gallery

For the ​Boolen​ type:

- boolean​ - radio buttons with customizable labels.

For the ​Date​ type:

- datePicker - select date, time, and timezone.

158

CHAPTER 5 - DECOUPLED WEB CONTENT MANAGEMENT SYSTEMS

For the ​Entry​ type:

- entryLinkEditor​ - search and attach another entry.

- entryLinksEditor​ - search and attach multiple entries.

- entryCardEditor​ - search, attach, and preview another entry.

- entryCardsEditor​ - search, attach and preview multiple entries.

For the ​Number​ type:

- numberEditor​ - simple input for numbers.

- rating​ - uses stars to select a number.

For the ​Location​ type:

- locationEditor​ - a map to select or find coordinates from an address.

For the ​Object​ type:

- objectEditor​ - a code editor for JSON.

For the ​Symbol​ type:

- urlEditor​ - a text input that also shows a preview of the given URL.

- slugEditor​ - generates a slug and validates its uniqueness across entries.

- listInput​ - text input that splits values on , and stores them as an array.

- checkbox​ - a group of checkboxes

- tagEditor​ - a text input to add a string to the list.

For the ​Text​ type:

- multipleLine​ - a simple textarea input

- markdown​ - a full-fledged markdown editor

- singleLine​ - a simple text input field

- dropdown​ - a select element.

- radio​ - a group of radio buttons.

159

CHAPTER 5 - DECOUPLED WEB CONTENT MANAGEMENT SYSTEMS

Widget settings
You can pass custom settings to a control that change the behavior or presentation of a

widget.

For example, the entry for a field of type Boolean would look like this:

{

 "fieldId": "is_draft",

 "widgetId": "boolean",

 "settings": {

 "helpText": "Is the post in draft?",

 "trueLabel": "yes",

 "falseLabel": "no",

 }

}

Where:

- helpText​ shows extra information with the widget.

- trueLabel​ shows this text next to the radio button that sets this value to “true”.

- falseLabel​ shows this text next to the radio button that sets this value to “false”.

2.3.5 UI Extensions
The Contentful Web App uses components (called appearances) to make the fields of a

content type editable. UI Extensions are enabling developers to replace these components

with HTML5 applications so the editing experiences of the Contentful Web App can be

customized . 12

In Contentful, a UI Extension lives in a sandboxed ​<iframe> which interacts with the

Contentful Web App through the UI Extensions SDK. This SDK is a proxy to the Content

Management API. The code of the UI Extension is fully custom and can either be uploaded to

Contentful or be self-hosted.

12 Contentful. ​UI Extensions API Reference​. (https://goo.gl/dtDHan)

160

CHAPTER 5 - DECOUPLED WEB CONTENT MANAGEMENT SYSTEMS

2.4 Locales
If you are working with content that needs to be available in multiple languages, locales let

you define localizations of content and select a specific locale when querying the Content

Delivery API.

Every Space has its own set of locales, and each locale is uniquely identified by its ISO code

(e.g., en-US or it-IT). There’s always one default locale defined when you create a space used

for Content Delivery API queries that do not request a specific locale.

After adding a locale to a space, you can define which fields in your content types you want be

localized using the Content Management API.

161

CHAPTER 5 - DECOUPLED WEB CONTENT MANAGEMENT SYSTEMS

Conclusions

A Decoupled Web Content Management System is essentially regular full-stack of content

management, delivery, and presentation solution but allows for content stored within it to be

leveraged by other systems.

A Headless CMS is a Decoupled Web CMS where the content management solution is

independent of the content delivery and presentation tools.

Decoupled CMSs give the web designer the honors and burdens to build the front-end of the

websites. In general, a front-end Web Framework should be used. In the chapter that follow,

the front-end Web frameworks are explored.

162

CHAPTER 6 - FRONT-END WEB FRAMEWORKS

CHAPTER 6
FRONT-END WEB FRAMEWORKS

In this chapter, the Front-end Web Frameworks, used to build the websites client-side, i.e.

Single Page Applications, are explored.

163

CHAPTER 6 - FRONT-END WEB FRAMEWORKS

TABLE OF CONTENTS

1 Front-end Web Frameworks ​166

1.1 Single Page Applications ​167

1.1.1 Frameworks vs. Libraries ​168

1.2 MVC Front-end Web Frameworks ​169

1.2.1 MVC pattern ​169

1.2.2 Observer pattern ​171

1.3 Templating System ​173

1.3.1 Dynamic rendering ​174

2 Angular ​175

2.1 Basic concepts ​175

2.1.1 Modules ​175

2.1.2 Components ​176

2.1.3 Templates ​177

2.1.4 Data binding ​178

3 Vue.js ​180

3.1 Basic concepts ​180

4 React ​182

4.1 Basic Concepts ​182

4.1.1 JSX ​184

4.1.2 Components ​187

4.1.3 The data flow ​190

4.1.4 The Virtual DOM ​191

5 Redux ​193

5.1 Principles ​194

5.2 Concepts ​195

6 Web Components ​198

6.1 Custom Elements ​199

6.1.1 Templates ​203

6.2 Shadow DOM ​204

164

CHAPTER 6 - FRONT-END WEB FRAMEWORKS

165

CHAPTER 6 - FRONT-END WEB FRAMEWORKS

1 Front-end Web Frameworks
When Tim Berners Lee invented the web he was looking for a system to publish scientific

documents remotely accessible, easy to code and easy to use for a non-technical person. For

this reason, the Web was conceived as a document based system with pages and links.

Over the years, there has been a strong effort to adapt the web paradigm of pages and links to

more sophisticated application development, to enable the Web as a platform for web-based

applications.

As much as the web platform has changed, so have the needs of tools we use to build the

applications.

Over the past couple of years, we have seen the rise of the most mature set of frameworks. A

virtual cornucopia of options. By and large, these all focus on creating extremely rich UI/UX

experiences that work across the gamut of devices from desktop to mobile. Some frameworks

provide highly structured ways to build applications and some focus on solving just a single

problem, expecting to be incorporated into other frameworks to build a whole application.

166

CHAPTER 6 - FRONT-END WEB FRAMEWORKS

1.1 Single Page Applications
A single-page application (SPA) is a website that interacts with the user by dynamically

rewriting the current page rather than loading entire new pages from a server. This approach

avoids interruption of the user experience between successive pages, making the website

behave more like a desktop application.

In an SPA, either all necessary code – HTML, JavaScript, and CSS – is retrieved with a single

page load, or the appropriate resources are dynamically loaded and added to the page as

necessary, usually in response to user actions.

The single page does not reload at any point in the process, nor does control transfer to

another page, although the location hash or the HTML5 History API can be used to provide 1

the perception and navigability of separate logical pages in the application.

Interaction with the single page application often involves dynamic communication with the

web server behind the scenes.

In general, to ease the development of an application, a frameworks and programming

libraries are often used. Similarly, to ease the development of a Single Page Application, a

Front-end Web Framework is often used.

1 W3C. ​The History API Spec​. (https://goo.gl/BfQEks)

167

CHAPTER 6 - FRONT-END WEB FRAMEWORKS

1.1.1 Frameworks vs. Libraries
A library is a collection of implementations of behavior, written in terms of a language, that

has a well-defined interface by which the behavior is invoked . 2

In Web development, a library, i.e. a JavaScript library, is a collection of JavaScript functions,

that define specific operations in a domain specific area.

For example, mathematics libraries let you use complex mathematical functions without redo

the implementation of how an algorithm works.

A framework is an abstraction, in which software, providing generic functionality but

suggesting a particular workflow, can be selectively changed by additional user-written code,

to provide application-specific software.

In Web development, a framework, i.e. a JavaScript framework, is a collection of

interdependent classes that define a skeleton to build structured Web applications.

For example, Web UI Frameworks let you build Web UI, focusing on what you want to design,

hiding the complexity of data management, event handling, scoped styling, etc.

2 Hubert Narożny (October 2016). ​Framework vs Library - differences in web development ​.
(https://goo.gl/wMRbPm)

168

CHAPTER 6 - FRONT-END WEB FRAMEWORKS

1.2 MVC Front-end Web Frameworks
Traditionally used for desktop graphical user interfaces (GUIs), MCV architecture has become

popular for designing Web applications.

MVC (which stands for Model–View–Controller) is commonly used for developing software

that divides an application into three interconnected parts: models, views and controllers.

This is done to separate internal representations of information, the model, from the ways

information is presented to, the views, and accepted from the user, the controller.

Several Web frameworks have been created in the MVC architecture. These frameworks vary

in their implementation, mainly in the way the MVC responsibilities are divided.

The first front-end Web framework that implemented the MVC pattern was Backbone.js.

Since Backbone.js, various frameworks have been created: actually, TodoMVC — a project 3

which offers the same Todo application implemented using MV* concepts in most of the

popular JavaScript MV* frameworks of today — counts 64 front-end Web frameworks.

1.2.1 MVC pattern
As with other software patterns, MVC expresses the “core of the solution” to a problem while

allowing it to be adapted for each system . 4

The model is the central component of the pattern:

- it expresses the application's behavior in terms of the problem domain;

- it directly manages the data, logic and rules of the application;

- it is independent of the user interface;

- it receives user input from the controller.

The view can be any output representation of information (the model):

- it receives the model and use the model to render a part of the app.

The controller, accepts input and converts it to commands for the model or the view:

- it receives user input and passes them to the model.

3 TodoMVC. ​Helping you select an MV* framework​. (https://goo.gl/gJBLw2)
4 Steve Burbeck (1992). ​Applications Programming in Smalltalk-80(TM): How to use
Model-View-Controller (MVC). ​(https://goo.gl/bRKNBv)

169

CHAPTER 6 - FRONT-END WEB FRAMEWORKS

Advantages
The advantages are:

- Simultaneous development – different developers can work simultaneously on the

different components, i.e. models, views and controllers.

- High cohesion – related actions on a controller are logically grouping together. The

views for a specific model are also grouped together.

- Low coupling – The very nature of the MVC framework is such that there is low

coupling among models, views or controllers.

- Ease of modification – Because of the separation of responsibilities, future

development or modification is easier.

Disadvantages
The disadvantages could be:

- Code navigability – the code can be complex since it introduces new layers of

abstraction and requires to adapt to the decomposition criteria of MVC.

- Multi-artifact consistency – decomposing a feature into three artifacts could cause

scattering, since it requires to maintain the consistency of multiple parts at once.

170

CHAPTER 6 - FRONT-END WEB FRAMEWORKS

1.2.2 Observer pattern
One of the motivations of using the MVC pattern is to make the model independent from of

the views. However, if the model had to notify the views of changes, you would reintroduce

the dependency you were looking to avoid. This is where the Observer pattern come in.

The Observer pattern provides a mechanism to alert other objects of state changes without

introducing dependencies on them.

The individual views implement the Observer interface and register with the model.

The model tracks the list of all observers that subscribe to changes.

The model never requires specific information about any views.

When the model changes (updates its data), it iterates through all registered observers and

notifies them of the change.

This approach is often called “publish-subscribe”.

For example, a simple implementation of the view:

class​ ​View​ () {

 ​constructor​ (model) {
 model.register(​this​)
 }

 render (data) {

 ​//render view
 }

}

171

CHAPTER 6 - FRONT-END WEB FRAMEWORKS

For example, a simple implementation of the model:

class​ ​Model​ () {

 ​constructor​ () {
 ​this​.listeners = []
 ​this​.data = {}
 }

 register (listener) {

 ​this​.listeners.push(listener)
 }

 notify () {

 ​for​ (​let​ listener ​of​ ​this​.listeners) {
 listener.render(​this​.data)
 }

 }

 update (data) {

 ​//update view
 ​this​.notify()
 }

}

With this generic way of communicating between the subject and observers, collaborations

can be built dynamically instead of statically. Due to the separation of notification logic and

synchronization logic, new observers can be added without modifying the notification logic,

and notification logic can also be changed without affecting the synchronization logic in

observers. The code is now much more separate, and thus easier to maintain and reuse.

172

CHAPTER 6 - FRONT-END WEB FRAMEWORKS

1.3 Templating System
To simplify the process of rendering model data into display-ready markup, a templating

system is commonly used.

A templating system is composed by:

- a template engine - the primary processing component of the system.

- a template resource - specified according to a template language.

- a content resource - any of various kinds of input data.

The template engine combine the template resource and the content resources to produce the

HTML code.

Using a templating system simplifies the dynamic rendering of HTML, especially as the size

and complexity of the rendering increases.

For example, the following template resource, combined with the following content resource,

will produce the following HTML code.

<​h1​>{{ ​data.message​ }}</​h1​>
<​h2​>I’m {{ ​data.author​ }}</​h2​>

{

 "message": "Hello Wonderland!"

 "author": "Alice"

}

<​h1​>Hello Wonderland!</​h1​>
<​h2​>I’m <​em​>Alice</​em​></​h2​>

173

CHAPTER 6 - FRONT-END WEB FRAMEWORKS

1.3.1 Dynamic rendering
There are two techniques to dynamically update the template:

- Data binding

- Virtual DOM

Data binding
Data binding is the process that establishes a connection between the view and the model.

If the binding has the correct settings and the data provides the proper notifications, then,

when the data changes its value, the elements that are bound to the data reflect changes

automatically.

Actually, the most used UI Framework driven by data-binding is Angular by Google, and 5

Vue.js by Evan You. 6

Virtual DOM
Actually, the most (and the first) used UI Framework powered by Virtual DOM is React.js by 7

Facebook.

5 Angular.io. ​One Framework. Mobile & Desktop​. (https://goo.gl/pYMtU6​)
6 Vue.js. ​The Progressive JavaScript Frameworks ​. (https://goo.gl/L33cPi)
7 React.js. ​A JavaScript library for building user interface​. (https://goo.gl/vAAEUb​)

174

CHAPTER 6 - FRONT-END WEB FRAMEWORKS

2 Angular
Angular is a framework for building Web applications in HTML and TypeScript . TypeScript is 8

a typed superset of JavaScript, developed by Microsoft, that compiles to plain JavaScript

output . Angular is itself written in TypeScript. 9

2.1 Basic concepts
2.1.1 Modules
Angular apps are modular and Angular has its own modularity system called NgModules.

An NgModule is a container for a cohesive block of code dedicated to an application domain, a

workflow, or a closely related set of capabilities. It can import functionality that is exported

from other NgModules, and export selected functionality for use by other NgModules.

Organizing your code into distinct functional modules helps in managing development of

complex applications, and in designing for reusability. In addition, this technique lets you take

advantage of lazy-loading—that is, loading modules on demand—in order to minimize the

amount of code that needs to be loaded at startup.

Root module
Every Angular app has at least one NgModule class, the root module, which is conventionally

named AppModule and resides in a file named app.module.ts. Every Angular app is launched

by bootstrapping the root NgModule.

While a small application might have only one NgModule, most apps have many more feature

modules. The root NgModule for an app is so named because it can include child NgModules

in a hierarchy of any depth.

NgModules provide a compilation context for their components.

8 Angular. ​Architecture overview ​. (https://goo.gl/JGphQ4)
9 Microsoft. ​TypeScript ​. (https://goo.gl/tTwqqQ ​)

175

CHAPTER 6 - FRONT-END WEB FRAMEWORKS

2.1.2 Components
Every Angular app has at least one component, the root component, that connects a

component hierarchy with the page DOM. Each component defines a class that contains

application data and logic, and is associated with an HTML template that defines a view to be

displayed in a target environment.

For example:

@Component({

 selector: 'my-component,

 templateUrl: './my-component.component.html'

})

export class​ MyComponent ​implements​ OnInit {
 ngOnInit() {

 /* component is initialized */

 }

}

Where:

- @Component decorator identifies the class immediately below it as a component, and

provides the template and related component-specific metadata.

- selector is a CSS selector that tells Angular to create and insert an instance of the

component wherever it finds the corresponding tag in template HTML.

- templateUrl is the module-relative address of this component's HTML template.

Alternatively, you can provide the HTML template inline, as the value of the template

property. This template defines the component's host view.

- OnInit indicates the class implements the ​ngOnInit method, that is called when the

component is initialized.

Decorators are functions that modify JavaScript classes . Angular defines a number of such 10

decorators that attach specific kinds of metadata to classes, so that it knows what those classes

mean and how they should work.

10 Addy Osmani (July 2015). ​Exploring EcmaScript Decorators ​. (https://goo.gl/fvCTbY)

176

CHAPTER 6 - FRONT-END WEB FRAMEWORKS

2.1.3 Templates
You define a component's view with its companion template. A template is a form of HTML

that tells Angular how to render the component.

Views are typically arranged hierarchically, allowing you to modify or show and hide entire UI

sections or pages as a unit. The template immediately associated with a component defines

that component's host view. The component can also define a view hierarchy, which contains

embedded views, hosted by other components.

A view hierarchy can include views from components in the same NgModule, but it also can

(and often does) include views from components that are defined in different NgModules.

Template syntax
A template looks like regular HTML, except that it also contains Angular template syntax , 11

which alters the HTML based on your app's logic and the state of app and DOM data. Your

template can use data binding to coordinate the app and DOM data, pipes to transform data

before it is displayed, and directives to apply app logic to what gets displayed.

11 Angular.io. ​Template Syntax​. (https://goo.gl/JEXAKL)

177

CHAPTER 6 - FRONT-END WEB FRAMEWORKS

2.1.4 Data binding
Angular supports four forms of data binding markup.

Text interpolation
For example:

<​div​ id="el">Hello {{name}}!</​div​>

Property binding
For example, the following are equivalent:

<​a​ id="el" [title]="message">link</​a​>

<​a​ id="el" bind-title="message">link</​a​>

Event handling
For example, the following are equivalent:

<​a​ id="el" (click)="onClick()">link</​a​>

<​a​ id="el" on-click="onClick()">link</​a​>

Two-way binding
For example, the following are equivalent:

<​div​ id="app">
 <​input​ id="input" [(ngModel)]="name">
 <​div​ id="el">Input: {{name}}</​div​>
</​div​>

<​div​ id="app">
 <​input​ id="input" bindon-ngModel="name">
 <​div​ id="el">Input: {{name}}</​div​>
</​div​>

178

CHAPTER 6 - FRONT-END WEB FRAMEWORKS

HTML Attributes vs. DOM properties
Attributes are defined by HTML. Properties are defined by the DOM.

- A few HTML attributes have 1:1 mapping to properties, for example id.

- Some HTML attributes don't have corresponding properties, for example colspan.

- Some DOM properties don't have corresponding attributes, for example textContent.

- Many HTML attributes appear to map to properties in particular ways.

The HTML attribute value specifies the initial value. The DOM value property specifies the

current value.

For example, the following HTML element creates a corresponding DOM node with a value

property initialized to "Alice".

<​input​ type="text" value="Alice">

Where:

- if the user enters "Bob" into the input field, the DOM element value property becomes

"Bob", but the HTML value attribute remains unchanged (to "Alice").

The HTML attribute and the DOM property are not the same thing, even when they have the

same name.

For example, the HTML button disabled attribute initializes the button's disabled property to

true just with its presence alone. Adding and removing the disabled attribute disables and

enables the button. Changing the value of the attribute is irrelevant.

<​button​>Enabled</​button​>
<​button​ disabled>Disabled</​button​>
<​button​ disabled="false">Still Disabled</​button​>.

179

CHAPTER 6 - FRONT-END WEB FRAMEWORKS

3 Vue.js
Vue (pronounced /vjuː/, like view) is a framework for building Web user interfaces.

The core library is focused on the view layer only, and can be integrated with other libraries.

3.1 Basic concepts
Vue allows you to declaratively render data to the DOM using a special template syntax.

Binding inner text
To dynamically insert text in an element, you use the double-curly-brace syntax.

For example:

<​div​ id="element">Hello {{ name }}!</​div​>

const ​el =​ ​'#element'
const​ data = {
 name: 'Vue'

}

const​ app = ​new​ Vue({ el, data })

Binding attributes
To bind an element attribute, you use the ​v-bind:​attribute​ syntax.

For example:

<​a​ id="element" v-bind:title="message">link</ ​a​>

const ​el =​ ​'#element'
const​ data = { message: "This is the title" }
const ​app = ​new​ Vue({ el, data })

180

CHAPTER 6 - FRONT-END WEB FRAMEWORKS

Conditional rendering
To toggle an element, you use the ​v-if​ binding.

For example:

<​div​ id="element" v-if="seen">Now you see me</ ​div​>

const ​el =​ ​'#element'
const​ data = { seen: true }
const ​app = ​new​ Vue({ el, data })

Repeat rendering
To repeat an element, you use the ​v-if​ binding.

For example:

<​div​ id="app">
 <​ol​>
 <​li​ v-for="todo in todos">
 {{ todo.text }}

 </​li​>
 </​ol​>
</​div​>

const ​el =​ ​'#app'
const​ data = {
 todos: [

 { text: 'Learn HTML' },

 { text: 'Learn CSS' },

 { text: 'Learn JavaScript' }

]

}

const ​app = ​new​ Vue({ el, data })

181

CHAPTER 6 - FRONT-END WEB FRAMEWORKS

4 React
React is a library for building composable user interfaces. It encourages the creation of

reusable UI components which present data that changes over time.

React isn’t an MVC framework.

React embraces the fact that rendering logic is inherently coupled with other UI logic: how

events are handled, how the state changes over time, and how the data is prepared for display.

Then, instead of separating technologies by putting markup and logic in separate files, React

separates concerns with loosely coupled units called “components” that contain both.

4.1 Basic Concepts
Elements
Elements are the smallest building blocks of React apps.

The smallest React example looks like this:

const element = <​h1​>Hello, world!</​h1​>
ReactDOM.render(element, ​document​.root)

It displays a heading element saying “Hello, world!” on the page.

React apps are usually written in JSX.

182

CHAPTER 6 - FRONT-END WEB FRAMEWORKS

React elements are immutable . Once you create an element, you can not change its children 12

or attributes. An element is like a single frame in a movie: it represents the UI at a certain

point in time.

React only updates what is necessary.

React DOM compares the element and its children to the previous one, and only applies the

DOM updates necessary to bring the DOM to the desired state.

For example:

function Clock​ () {
 ​return​ (
 <​div​>It is ​<pre>​{new Date().toLocaleTimeString()}​</pre>​</​div​>
)

}

function​ ​tick​ () {
 ReactDOM.render(Clock, ​document​.root)
}

setInterval(tick, ​1000​)

In the example, ​render() is called every second from the ​setInterval() callback ​tick()​:

even though we create an element describing the whole UI tree on every tick, only the text

node whose contents has changed gets updated by React DOM.

12 ​Immutable object ​. (https://goo.gl/xee6Wd)

183

CHAPTER 6 - FRONT-END WEB FRAMEWORKS

4.1.1 JSX
JSX is a syntax extension to JavaScript, that produces React “elements”.

React doesn’t require using JSX, but when working with UI inside the JavaScript code it

become visually necessary . 13

JSX is compiled down to ​React.createElement()​ calls.

For example:

const​ element = <​h1​ className="greeting">Hello!</​h1​>
const​ compiled = React.createElement('h1', { className: 'greeting' }, 'Hello!')

React.createElement()​ essentially creates an object that describe the element.

For example:

const​ element = {
 type: 'h1',

 props: {

 className: 'greeting',

 children: 'Hello, world!'

 }

}

These objects are called “React elements”. You can think of them as descriptions of what you

want to see on the screen. React reads these objects and uses them to construct the DOM and

keep it up to date.

Because after compilation, JSX expressions become regular JavaScript function calls and

evaluate to JavaScript objects, you can use JSX inside of if statements and for loops, assign it

to variables, accept it as arguments, and return it from functions.

13 ​React Without JSX ​. (https://goo.gl/t7LoUk)

184

CHAPTER 6 - FRONT-END WEB FRAMEWORKS

Updating attributes and properties
You can use curly braces to embed a JavaScript expression in an attribute.

For example:

const​ element = <​img​ src={url}></​img​>

Conditional rendering
Conditional rendering in React works the same way conditions work in JavaScript.

You can use JavaScript operators ​if​, or the conditional operator, to create elements.

For example:

function​ ​Greeting​ (name) {
 ​if​ (name) {
 ​return​ <​h1​>Hello, {name}!</​h1​>
 }

 ​return​ <​h1​>Hello, Stranger.</​h1​>
}

Repeat rendering
Repeat rendering in React works the same way conditions work in JavaScript.

You can use JavaScript Array methods, such as ​map​, ​filter​, etc., to create elements.

For example:

function​ ​NumberList​ (numbers) {
 ​return​ (
 <​ul​>
 {numbers.map(number => (

 <​li​>{number}</​li​>
))}

 </​ul​>
)

}

185

CHAPTER 6 - FRONT-END WEB FRAMEWORKS

Handling events
Handling events with React elements is very similar to handling events on DOM elements,

except some syntactic differences:

- React events are named using camelCase, rather than lowercase.

- With JSX you pass a function as the event handler, rather than a string.

When using React you should generally not need to call addEventListener to add listeners to a

DOM element after it is created. Instead, just provide a listener when the element is initially

rendered. When you define a component using an ES6 class, the event handler should be a

method on the class.

For example:

class​ ​Button​ ​extends​ ​React​.​Component​ {

 handleClick (event) {

 console.log​(​'Touchè'​)
 }

 render () {

 ​return​ (
 <​button​ onClick={this.handleClick.bind(this)}>Click me</ ​button​>
);

 }

}

ReactDOM.render(<​Button​ />, ​window​.root)

186

CHAPTER 6 - FRONT-END WEB FRAMEWORKS

4.1.2 Components

Defining Components
Components let you split the UI into independent, reusable pieces, and think about each piece

in isolation. Conceptually, components are like JavaScript functions. They accept arbitrary

inputs (called “props”) and return React elements describing what should appear on the

screen.

You can also use an JavaScript class to define a component. 14

For example, the followings produce the same element:

function​ ​Welcome ​(props) {
 ​return​ <​h1​>Hello, {props.name}</​h1​>
}

class​ ​Welcome​ ​extends​ ​React​.​Component​ {
 render() {

 ​return​ <​h1​>Hello, {this.props.name}</​h1​>
 }

}

const​ element = <​Welcome​ name="Alice" />

When React sees an element representing a user-defined component, it passes JSX attributes

to this component as a single object, called “props”.

14 ​Classes ​. (https://goo.gl/2jRyMC)

187

CHAPTER 6 - FRONT-END WEB FRAMEWORKS

Composing Components
Components can refer to other components in their output. This lets us use the same

component abstraction for any level of detail. A button, a form, a dialog, a screen: in React

apps, all those are commonly expressed as components.

For example:

function​ ​Welcome ​(props) {
 ​return​ <​h1​>Hello, {props.name}</​h1​>
}

function​ ​App ​() {
 ​return​ (
 <div>

 <Welcome name="Alice" />

 <Welcome name="Bob" />

 </div>

)

}

Typically, new React apps have a single App component at the very top. However, if you

integrate React into an existing app, you might start bottom-up with a small component like

Button and gradually work your way to the top of the view hierarchy.

188

CHAPTER 6 - FRONT-END WEB FRAMEWORKS

Component props
Components props are read-only: whether you declare a component as a function or a class , 15

it must never modify its own props.

React is pretty flexible but it has a single strict rule: “all React components must act like pure

functions with respect to their props”.

Of course, application UIs are dynamic and change over time.

The state of a component is represented by another object, called state.

Component state
State allows components to change their output over time in response to user actions, network

responses, and anything else.

To change the state, you must call the method ​setState()​.
This method lets React to know if the state has changed, and to call the ​render()​ method.

State updates may be asynchronous.

For performance reasons, React may batch multiple ​setState()​ calls into a single update.

Because components props and state may be updated asynchronously, you should not rely on

their values for calculating the next state.

// Wrong

this​.setState({
 counter: ​this​.state.counter + ​this​.props.increment,
})

// Correct

this​.setState((prevState, props) => ({
 counter: prevState.counter + props.increment

}))

State updates are merged.

When you call ​setState()​, React merges the object you provide into the current state.

For example, the state may contain several independent variables (e.g. ​a and ​b​), but you can

update them independently with separate ​setState() calls. The merging is shallow, so

this.setState({ a })​ leaves ​this.state.b​ intact, but completely replaces ​this.state.a​.

15 ​Functional and Class Components. ​(https://goo.gl/w2otnd)

189

CHAPTER 6 - FRONT-END WEB FRAMEWORKS

4.1.3 The data flow
The data flows down.

Neither parent nor child components can know if a certain component is stateful or stateless,

and they shouldn’t care whether it is defined as a function or a class. This is why state is often

called local or encapsulated. It is not accessible to any component other than the one that

owns and sets it.

A component may choose to pass its state down as props to its child components.

For example:

class​ ​FormattedDate​ ​extends​ ​React​.​Component​ {
 render () {

 ​return​ (<​h2​>It is {props.date.toLocaleTimeString()}.</ ​h2​>)
 }

}

class​ ​Clock​ ​extends​ ​React​.​Component​ {
 render () {

 ​return​ (<​FormattedDate​ date={this.state.date} />)
 }

}

In the example, the FormattedDate component would receive the date in its props and

wouldn’t know whether it came from the Clock’s state, from the Clock’s props, or was typed by

hand.

The data flows, “top-down” or “unidirectional”. Any state is always owned by some specific

component, and any data or UI derived from that state can only affect components “below”

them in the tree.

If you imagine a component tree as a waterfall of props, each component’s state is like an

additional water source that joins it at an arbitrary point but also flows down.

In React apps, whether a component is stateful or stateless is considered an implementation

detail of the component that may change over time. You can use stateless components inside

stateful components, and vice versa.

190

CHAPTER 6 - FRONT-END WEB FRAMEWORKS

4.1.4 The Virtual DOM
When a component is first initialized, the ​render() method is called, generating a lightweight

representation of the view. From that representation, a string of markup is produced, and

injected into the document. When data changes, the render method is called again.

In order to perform updates as efficiently as possible, the library diff the return value from the

previous call to render with the new one, and generate a minimal set of changes to be applied

to the DOM.

The data returned from render is neither a string nor a DOM node —it’s a lightweight

description of what the DOM should look like, called the Virtual DOM.

Because this re-render is so fast, the developer doesn’t need to explicitly specify data bindings.

This process is called reconciliation.

Reconciliation
React provides a declarative API so that you don’t have to worry about exactly what changes

on every update. This makes writing applications a lot easier, but it might not be obvious how

this is implemented within React.

191

CHAPTER 6 - FRONT-END WEB FRAMEWORKS

Motivation
When you use React, at a single point in time you can think of the render() function as

creating a tree of React elements. On the next state or props update, that render() function

will return a different tree of React elements. React then needs to figure out how to efficiently

update the UI to match the most recent tree.

There are some generic solutions to this algorithmic problem of generating the minimum

number of operations to transform one tree into another.

However, the state of the art algorithms have a complexity in the order of O(​n​3​) where n is the

number of elements in the tree . That is: displaying 1000 elements would require in the order 16

of one billion comparisons.

Instead, React implements a heuristic O(​n​) algorithm based on two assumptions, that, in

practice, are valid for almost all practical use cases:

1. Two elements of different types will produce different trees.

2. The developer can hint at which child elements may be stable across different renders

with a ​key​ prop.

16 Philip Bille. ​A Survey on Tree Edit Distance and Related Problems ​.
(https://goo.gl/D7wBix)

192

CHAPTER 6 - FRONT-END WEB FRAMEWORKS

5 Redux
As the requirements for JavaScript single-page applications have become increasingly

complicated, the application must manage more state than ever before. This state can include

server responses and cached data, as well as locally created data that has not yet been

persisted to the server. UI state is also increasing in complexity, as we need to manage active

routes, selected tabs, spinners, pagination controls, and so on.

Managing this ever-changing state is hard. If a model can update another model, then a view

can update a model, which updates another model, and this, in turn, might cause another

view to update. At some point, you no longer understand what happens in your app as you

have lost control over the when, why, and how of its state. When a system is opaque and

non-deterministic, it's hard to reproduce bugs or add new features.

This complexity is difficult to handle as we're mixing two concepts that are very hard for the

human mind to reason about: mutation and asynchronicity.

Libraries like React attempt to solve this problem in the view layer by removing both

asynchrony and direct DOM manipulation. However, managing the state of your data is left

up to you. This is where Redux enters.

Redux is a predictable state container for JavaScript apps. Where predictables means you can

alway know how and when states updates happen.

Following in the steps of Flux , CQRS , and Event Sourcing , Redux attempts to make state 17 18 19

mutations predictable by imposing certain restrictions on how and when updates can happen.

These restrictions are reflected in the following principles.

17 ​Flux - Application architecture for building user interfaces ​. (https://goo.gl/2dvsNq)
18 Martin Fowler (July 2011). ​CQRS​. (https://goo.gl/mu6Dts)
19 Martin Fowler (December 2005). ​Event Sourcing​. (https://goo.gl/WbJbei)

193

CHAPTER 6 - FRONT-END WEB FRAMEWORKS

5.1 Principles
Redux can be described in the following fundamental principles:

Single source of truth
The state of your whole application is stored in an object tree within a single store.

A single state tree makes it easier to debug or inspect an application; it also enables you to

persist your app’s state in development, for a faster development cycle.

Since all of your state is stored in a single tree, some functionality which has been traditionally

difficult to implement - e.g. undo/redo - can become trivial to implement.

State is read-only
The only way to change the state is to emit actions.

Actions are just plain objects that express an intent to transform the state.

Since actions are plain objects, they can be logged, serialized, stored, and later replayed for

debugging or testing purposes.

Since all changes are centralized and happen one by one in a strict order, there are no subtle

race conditions to watch out for.

Immutability
The state is immutable. It can be a plain object, an Immutable object, or anything else. You

can use any data storage library as long as it supports immutability.

Changes are made with pure functions
To specify how the state tree is transformed by actions, you write pure reducers.

Reducers are just pure functions that take the previous state and an action, and return the

next state. Reducers must return new state objects, instead of mutating the previous state.

Reducers can be split off into smaller reducers that manage specific parts of the state tree.

Since reducers are just functions, you can control the order in which they are called, pass

additional data, or even make reusable reducers for common tasks.

194

CHAPTER 6 - FRONT-END WEB FRAMEWORKS

5.2 Concepts
To change something in the state, you need to dispatch an action.

An action is a plain JavaScript object that describes what happened.

Enforcing that every change is described as an action lets you have a clear understanding of

what’s going on in the app. If something changed, you know why it changed.

To tie state and actions together, reducers takes state and action as arguments, and returns

the next state of the app.

Actions
Actions are payloads of information that send data from your application to your store.

They are the only source of information for the store.

You send them to the store using ​store.dispatch()​.

For example:

{ type: 'ADD_TODO', text: 'This is an action' }

{ type: 'TOGGLE_TODO', id: 1 }

Actions are plain JavaScript objects, with at least the ​type property, that indicates the type of

action being performed. Other than type, the structure of an action object is really up to you.

Action creators
Action creators are functions that create actions. They simply return an action. They can also

be asynchronous and have side-effects.

For example:

function​ ​addTodo ​(text) {
 ​return​ { type: 'ADD_TODO', text }
}

function​ ​toggleTodo ​(id) {
 ​return​ { type: 'TOGGLE_TODO', id }
}

195

CHAPTER 6 - FRONT-END WEB FRAMEWORKS

Reducers
Actions only describe what happened, but don't describe how the application's state changes.

Reducers specify how the application's state changes in response to actions sent to the store.

In Redux, all the application state is stored as a single object. Reducers acts over states.

The reducer is a pure function that takes the previous state and an action, and returns the next

state.

new_state​ = ​reducer ​(​previous_state​, ​action​)

A reducer must stays pure. A reducer must never mutate its arguments. Given the same

arguments, it should calculate the next state and return it, without side effects.

function​ ​todoApp ​(state, action) {
 ​switch​ (action.type) {
 ​case​ ​'​ADD_TODO​'​:
 ​const​ todo = { text: action.text, completed: ​false​ }
 ​const​ todos = [...state.todos, todo]
 ​const​ new_state = { ...state, todos }
 ​return​ new_state

 case​ ​'​TOGGLE_TODO​'​:
 ​const​ todos = state.todos.map((todo, index) => {
 ​if​ (index === action.index) {
 ​const​ new_todo = {...todo, completed: !todo.completed }
 ​return​ new_todo
 }

 ​return​ todo
 })

 ​const​ new_state = { ...state, todos }
 ​return​ new_state

 default​:
 ​return​ state
 }

}

Note we never write directly to state or its fields, and instead we return new objects.

The fresh todo was constructed using the data from the action.

The new todos is equal to the old todos concatenated with the new todo.

Because we want to update a specific item in the array without resorting to mutations, we

have to create a new array with the same items except the item at the index.

196

CHAPTER 6 - FRONT-END WEB FRAMEWORKS

Store
The actions represent the facts about “what happened” and the reducers that update the state

according to those actions . 20

The Store is the object that brings actions and reducers together:

- it holds application state;

- it allows access to state (via ​getState()​)

- it allows state to be updated (via ​dispatch(action)​)

- it registers/unregisters listeners (via ​subscribe(listener)​)

In a Redux application, there is only a single store. When you want to split your data handling

logic, you'll use reducer composition instead of many stores.

Once you have created a store, you can test the update logic even without any UI.

// Create the store

const​ store = createStore(todoApp)​

// Log the initial state

console​.log(store.getState())
​
// Every time the state changes, log it

const​ unsubscribe = store.subscribe(() =>
 ​console​.log(store.getState())
)

​
// Dispatch some actions

store.dispatch(addTodo('Learn about Redux'))

store.dispatch(addTodo('Learn about CSS frameworks'))

store.dispatch(toggleTodo(​0​))

// Stop listening to state updates

unsubscribe()

20 Redux Store​. (https://goo.gl/3j9Vgs)

197

CHAPTER 6 - FRONT-END WEB FRAMEWORKS

6 Web Components
Components have become a central concept in Web development workflow. Components

provide a robust model for architecting and scaling complex applications, allowing for

composition from smaller and simpler encapsulated parts.

Modern frameworks like Angular, Vue and Rect have put components at the forefront of

development, keeping them as core primitives in their architecture. However, even though

component architectures have become more common, arguably the diversity of frameworks

and libraries has led to a siloed and fragmented components market. This fragmentation has

often kept teams locked into a specific framework, even as times and technologies change.

The desire to tackle this fragmentation, and standardise the web component model has been

an ongoing endeavor. Its beginnings sit in the genesis of the “Web Components” specifications

circa 2011 and were first presented to the world by Alex Russell at Fronteers Conference the 21

same year . The web components specifications grew out of the desire to provide a canonical 22

way of creating components that browsers can understand.

In theory, these specifications and implementations are paving the way for interoperability

and composition of components from different vendors. Here we examine the building blocks

of Web Components.

The HTML5 Web Components is a set of standard, such as Custom elements, Templates and

Shadow DOM , to build components. 23

21 W3C (November 2011). ​Web Components Spec - GitHub repository - first commit ​.
(https://goo.gl/WCVog7)
22 Alex Russell. ​Web Components and Model Driven Views ​. (https://goo.gl/unphU5 ​)
23 MDN Web Docs. ​Web Components ​. (https://goo.gl/evYHpG)

198

CHAPTER 6 - FRONT-END WEB FRAMEWORKS

6.1 Custom Elements
Defining a custom element
To define a custom element, you create a class that extends HTMLElement or one of its

subclasses (for example, another custom element), that defines its behavior and public API.

class​ ​MyComponent​ ​extends​ ​HTMLElement​ {
 ​static​ get is () { ​return​ "my-component" }

 ​constructor​ () {
 ​super​()
 }

}

window​.customElements.define("my-component", MyComponent)

window​.customElements.define(MyComponent.is, MyComponent)

Custom Element name
By specification, the custom element’s name must start with a lower-case ASCII letter and

must contain a dash (​-​). There’s also a short list of prohibited element names that match

existing names . 24

24 W3C. ​Custom Element ​. (https://goo.gl/rs8VpU)

199

CHAPTER 6 - FRONT-END WEB FRAMEWORKS

Custom Element constructor
When the element is “upgraded”, that is, when it is created or when a previously created

element becomes defined, the element constructor is called.

The element constructor has a few special limitations:

- it must call the parameter-less super method;

- it can’t include a return statement, unless the return is a simple early return;

- it can’t examine the element’s attributes or children;

- it can’t add any attributes or children to the element.

The HTML5 Custom Element spec provides a set of callbacks called “custom element

reactions” that allow you to run user code in response to certain life-cycle changes.

Using a custom element
Using a custom element is like using a standard element.

For example, in HTML:

<​my-component​></​my-component​>

For example, in JavaScript:

const​ myComponent = ​document​.createElement("my-component")

const​ myComponent = ​document​.createElement(MyComponent.is)

const​ myComponent = ​new​ MyComponent();

200

CHAPTER 6 - FRONT-END WEB FRAMEWORKS

Custom element reactions
A custom element can define special lifecycle hooks for running code during interesting times

of its existence. These are called custom element reactions : 25

- constructor() - called when an instance of the element is created or upgraded.

Useful for initializing state, settings up event listeners, or creating shadow dom.

- connectedCallback()​ - called every time the element is inserted into the DOM.

Useful for running setup code, such as fetching resources or rendering.

- disconnectedCallback()​ - called every time the element is removed from the DOM.

Useful for running clean up code.

- attributeChangedCallback(attrName, oldVal, newVal) - called when an

observed attribute —listed in the ​observedAttributes property— has been added,

removed, updated, or replaced, or when an element is created or upgraded

- adoptedCallback() - called when the custom element has been moved into a new

document (e.g. if ​document.adoptNode(element)​ is called).

For example:

class​ ​MyComponent​ ​extends​ ​HTMLElement​ {
 ​static​ get is () { ​return​ "my-component" }
 ​static​ get observedAttributes () { ​return​ ["color"] }

 ​constructor​ () {
 ​super​()
 ​console​.log("The element is created")
 }

 conntectedCallback() {

 ​console​.log("The element is inserted into the DOM")
 }

 disconnectedCallback() {

 ​console​.log("The element is removed from the DOM")
 }

 attributeChangedCallback(attrName, oldVal, newVal) {

 ​console​.log(`Attribute ${attrName} changed from ${oldVal} to ${newVal}`)
 }

}

window​.customElements.define("my-component", MyComponent)

25 Google Developers. ​Custom Elements v1: Reusable Web Components - Custom elements
reactions.​ (https://goo.gl/Xex28W​)

201

CHAPTER 6 - FRONT-END WEB FRAMEWORKS

Custom elements content
Custom elements can manage their own content by using the DOM APIs inside element code.

Reactions come in handy for this.

For example, inserting the following element will produce the following HTML:

class​ ​MyElement​ ​extends​ ​HTMLElement​ {
 ​static​ get is () { ​return​ 'my-element' }

 connectedCallback() {

 ​this​.innerHTML = "<div>This content was injected</div>";
 }

 …

}

window​.customElements.define(MyElement.is, MyElement);

<my-element>

 <​div​>This content was injected</​div​>
</my-element>

Overwriting an element's children with new content is generally not a good idea because it's

unexpected. Users would be surprised to have their markup thrown out. A better way to add

element-defined content is to use shadow DOM.

202

CHAPTER 6 - FRONT-END WEB FRAMEWORKS

6.1.1 Templates
The ​<template> element allows you to declare fragments of DOM which are parsed, inert at

page load, and can be activated later at runtime. Templates are an ideal placeholder for

declaring the structure of a custom element.

<​template​ id="custom-template>
 <h1>This is an HTML Template</h1>

</​template​>

const​ template = ​document​.getElementById("custom-template")
const​ templateContent = template.content
const​ container = ​document​.getElementById("container")
const​ templateInstance = templateContent.cloneNode(​true​)
container.appendChild(templateInstance)

203

CHAPTER 6 - FRONT-END WEB FRAMEWORKS

6.2 Shadow DOM
Shadow DOM provides a way for an element to own, render, and style a chunk of DOM that's

separate from the rest of the page.

To use Shadow DOM in a custom element, call this.attachShadow inside the constructor:

const​ template = ​document​.createElement('template')
template.innerHTML = `

 <div>This is the shadow DOM</div>

`

class​ ​MyElement​ ​extends​ ​HTMLElement​ {

 ​static​ get is () { ​return​ 'my-element' }

 ​constructor​() {
 ​super​()
 ​const​ shadowRoot = ​this​.attachShadow({mode: 'open'})
 ​const​ content = template.content.cloneNode(​true​)
 shadowRoot.appendChild(content)

 }

 …

}

window​.customElements.define(MyElement.is, MyElement)

<​my-element​>
 #shadow-root

 <​div​>This is the shadow DOM</​div​>
</​my-element​>

Shadow DOMs can either be ​open or ​closed​: ​open allows access the subtree DOM using

element.shadowRoot whereas ​closed makes this property return null. Creating a Shadow

DOM, in turn, creates a shadow boundary, which alongside encapsulating elements, also

encapsulates styles.

204

CHAPTER 6 - FRONT-END WEB FRAMEWORKS

Conclusions

Front-end Web framework allow web designer to build client-side rendered, reactive,

sophisticated, websites.

Modern front-end Web Frameworks introduce a component system to build the website using

reusable, customizable, piece of User Interface, called components.

The main factor in customizing a component, and a website, is its stylization. In the chapter

that follow, the CSS Frameworks are explored.

205

CHAPTER 6 - FRONT-END WEB FRAMEWORKS

206

CHAPTER 7 - CSS FRAMEWORKS

CHAPTER 7
CSS FRAMEWORKS

In this chapter, the CSS Frameworks are explored.

207

CHAPTER 7 - CSS FRAMEWORKS

TABLE OF CONTENTS

1 CSS frameworks ​210

2 Bootstrap ​212

2.1 Layout ​212

2.1.1 Grid system ​212

2.1.2 Responsive breakpoint ​214

2.1.3 Alignment ​216

2.1.4 Reordering ​217

2.2 Utilities ​218

2.3 Components ​219

3 Atomic CSS ​223

3.1 Dimensions ​223

3.2 Spacing ​225

3.3 Grid system ​227

3.3.1 Flexbox ​227

4 Maintainable CSS ​228

4.1 Semantics ​228

4.1.1 Advantages ​229

4.1.2 Reuse ​231

4.1.3 Conventions ​232

4.1.4 Modules ​233

4.1.5 State ​234

4.1.6 Modifiers ​235

5 Styling React Components ​236

5.1 Styled Components ​236

6 Styling Web Components ​240

6.1 ::part and ::theme pseudo-elements ​242

6.1.1 ::part pseudo-element ​242

6.1.2 ::theme pseudo-element ​246

208

CHAPTER 7 - CSS FRAMEWORKS

209

CHAPTER 7 - CSS FRAMEWORKS

1 CSS frameworks
Thinking about the relationship between HTML and CSS in terms of “separation of concerns”,

could not be the right way to think about HTML and CSS.

Separation of concerns is very black and white, there is or there is not. Thinking about

dependency direction, is a more eliciting way to think about HTML and CSS.

There are two ways to write HTML and CSS:

- write CSS that depends on HTML

- write HTML that depends on CSS

That means:

- write restyleable HTML

- write reusable CSS

There is no a “right” approach. There is the best decision made based on what's more

important to the specific context of the project you are working on.

Restyleable HTML
Naming elements classes based on the content treats the HTML as a dependency of the CSS.

The HTML is independent, it doesn't care how it looks, it just exposes hooks that the HTML

controls.

On the other hand, the CSS is not independent; it needs to know what classes the HTML

exposes, and it needs to target those classes to style the HTML.

In this model, the HTML is restyleable, but the CSS is not reusable.

CSS Zen Garden by Dave Shea takes this approach. 1

1 Dave Shea. ​CSS ZEN GARDEN - The Beauty of CSS Design​. (https://goo.gl/bZvopv)

210

CHAPTER 7 - CSS FRAMEWORKS

Reusable CSS
Naming elements classes in a content-agnostic way after the repeating patterns in the UI

treats the CSS as a dependency of the HTML.

The CSS is independent, it doesn't care what content it's being applied to, it just exposes a set

of building blocks that can be applied to the markup.

The HTML is not independent, it's making use of classes that have been provided by the CSS,

and it needs to know what classes exist so that it combine them however it needs to to achieve

the desired design.

In this model, the CSS is reusable, but the HTML is not restyleable.

UI frameworks like Bootstrap by Twitter or Foundation by Zurb take this approach. 2 3

2 Twitter. ​Bootstrap ​. (https://goo.gl/kYfa1W)
3 ZURB.​ Foundation​. (https://goo.gl/9V8kT4)

211

CHAPTER 7 - CSS FRAMEWORKS

2 Bootstrap
Bootstrap is the world’s most popular framework for building responsive web sites.

2.1 Layout
2.1.1 Grid system
Bootstrap’s grid system uses a series of containers, rows, and columns to layout and align

content. This grid system is built with flexbox and is fully responsive. 4

For example:

<​div​ class="container">
 <​div​ class="row">
 <​div​ class="col-sm">
 One of three columns

 </​div​>
 <​div​ class="col-sm">
 One of three columns

 </​div​>
 <​div​ class="col-sm">
 One of three columns

 </​div​>
 </​div​>
</​div​>

Containers
Containers provide a means to center and horizontally pad your site’s contents.

Use ​.container​ for a responsive pixel width.

Use ​.container-fluid​ for ​width: 100%​ across all viewport and device sizes.

Containers are wrappers for rows.

Rows
Rows are wrappers for columns. Each row can contains up to 12 columns.

Only columns may be immediate children of rows.

4 W3C. ​CSS Flexible Box Layout Module Level 1​. (https://goo.gl/3AAdw5)

212

CHAPTER 7 - CSS FRAMEWORKS

Columns
Columns are the only place where content should be placed.

Columns have horizontal ​padding​ (called gutter) for controlling the space between them.

The column horizontal ​padding is counteracted on the rows with negative horizontal margins.

This way, all the content inside columns is visually aligned down the left side. However, you

can remove the margin from rows and the padding from columns with ​.no-gutters on the

.row​.

Column classes indicate the number of columns to use out of the possible 12 per row.

For example:

<​div​ class="container">
 <​div​ class="row">
 <​div​ class="col-6"></​div​>
 <​div​ class="col-4"></​div​>
 <​div​ class="col-2"></​div​>
 </​div​>
</​div​>

Column ​width​s are set in percentages, so they’re always fluid and sized relative to their parent

element. Columns without a specified ​width​ will automatically layout as equal width columns.

Columns can have different ​width​s for different device breakpoints.

213

CHAPTER 7 - CSS FRAMEWORKS

2.1.2 Responsive breakpoint
Since Bootstrap is developed to be mobile first, it uses media queries to create sensible 5

breakpoints for layouts and interfaces. These breakpoints are mostly based on minimum

viewport widths and allow elements to scale up as the viewport changes.

Bootstrap primarily uses the following media query ranges—or breakpoints— for layout, grid

system, and components:

- Extra small <576px: ​.col-
- Small ≥576px: ​.col-sm-
- Medium ≥768px: ​.col-md-
- Large ≥992px: ​.col-lg-
- Extra large ≥1200px: ​.col-xl-

/* Extra small devices (portrait phones, less than 576px) */

/* No media query since this is the default in Bootstrap */

/* Small devices (landscape phones, 576px and up) */

@​media​ (min-width: ​576px​) { ... }

/* Medium devices (tablets, 768px and up) */

@​media​ (min-width: ​768px​) { ... }

/* Large devices (desktops, 992px and up) */

@​media​ (min-width: ​992px​) { ... }

/* Extra large devices (large desktops, 1200px and up) */

@​media​ (min-width: ​1200px​) { ... }

Grid breakpoints are based on minimum width media queries, meaning they apply to that one

breakpoint and all those above it.

For example, ​.col-sm-4​ applies to all breakpoints, is equal to ​.col-4​;
.col-sm-4​ applies to all breakpoints, but not the first xs breakpoint;

.col-md-4​ applies for medium, large and extra large device; etc.

5 W3C. ​Media Queries ​. (https://goo.gl/eC1bxW)

214

CHAPTER 7 - CSS FRAMEWORKS

There are also media queries and mixins for targeting a single segment of screen sizes using

the minimum and maximum breakpoint widths.

/* Extra small devices (portrait phones, less than 576px) */

@​media​ (max-width: ​575.98px​) { ... }

/* Small devices (landscape phones, 576px and up) */

@​media​ (min-width: ​576px​) and (max-width: ​767.98px​) { ... }

/* Medium devices (tablets, 768px and up) */

@​media​ (min-width: ​768px​) and (max-width: ​991.98px​) { ... }

/* Large devices (desktops, 992px and up) */

@​media​ (min-width: ​992px​) and (max-width: ​1199.98px​) { ... }

/* Extra large devices (large desktops, 1200px and up) */

@​media​ (min-width: ​1200px​) { ... }

For example, the following columns are 50% wide on mobile and 33.3% wide on desktop:

<​div​ class="row">
 <​div​ class="col-6 col-md-4"></​div​>
 <​div​ class="col-6 col-md-4"></​div​>
 <​div​ class="col-6 col-md-4"></​div​>
</​div​>

215

CHAPTER 7 - CSS FRAMEWORKS

2.1.3 Alignment
To vertically and horizontally align columns, Bootstrap provides flexbox alignment utilities.

Vertical alignment
To vertically align columns in a row, the following classes can be applied to the row:

- .align-items-start

- .align-items-center

- .align-items-end

Otherwise, the following classes can be applied directly to the columns:

- .align-self-start

- .align-self-center

- .align-self-end

Horizontal alignment
To horizontally align columns in a row, the following classes can be applied to the row:

- .justify-content-start

- .justify-content-center

- .justify-content-end

- .justify-content-around

- .justify-content-between

For example, the following column is vertically and horizontally centered:

<​div​ class="row align-items-center justify-content-center">
 <​div​ class="col-4"></​div​>
</​div​>

216

CHAPTER 7 - CSS FRAMEWORKS

2.1.4 Reordering

Order classes
To control the visual order of a column, use ​.order-​breakpoint ​-​column​ classes.

Where:

- breakpoint ​ is one of ​xs​, ​sm​, ​md​, ​lg​, ​xl
- column​ is a number between ​1​ and ​12

There are also responsive ​.order-first and ​.order-last classes that change the order of

an element by applying ​order: -1​ and ​order: 13​, respectively.

For example:

<​div​ class="container">
 <​div​ class="row">
 <​div​ class="col order-last">First, but last</ ​div​>
 <​div​ class="col">Second, but unordered</​div​>
 <​div​ class="col order-first">Third, but first</ ​div​>
 </​div​>
</​div​>

Offset classes
To move columns to the right, use ​.offset-​breakpoint ​-​column​ classes.

Where:

- breakpoint ​ is one of ​xs​, ​sm​, ​md​, ​lg​, ​xl
- column​ is a number between ​1​ and ​12

For example:

<​div​ class="row">
 <​div​ class="col-md-4"></​div​>
 <​div​ class="col-md-4 offset-md-4"></​div​>
</​div​>

217

CHAPTER 7 - CSS FRAMEWORKS

2.2 Utilities
Border
To style the border and border-radius of an element, use:

- border-0​ to remove any border

- border-​position​ to add a border at ​position

- border-​position​-0​ to remove a border at ​position

- border-​color​ to color the border

- rounded-​position​ to add rounded border at ​position

- rounded-circle​ to add circle border

- rounded-0​ to remove rounded border

Where:

- position​ is one of: ​top​, ​right​, ​bottom​, ​left
- color is one of: ​primary​, ​secondary​, ​success​, ​danger​, ​warning​, ​info​, ​light​, ​dark​,

white

Colors
To change the color, use:

- text-​color​ to change the text color

- bg-​color​ to change the background color

Where:

- position​ is one of: ​top​, ​right​, ​bottom​, ​left
- color is one of: ​primary​, ​secondary​, ​success​, ​danger​, ​warning​, ​info​, ​light​, ​dark​,

white

Display
To change the value of the display property, use

- d-​value​ for ​xs

- d-​breakpoint ​-​value​ for ​sm​, ​md​, ​lg​, and ​xl​.

Where:

- value is one of: ​none​, ​inline​, ​inline-block​, ​block​, ​flex​, ​inline-flex​, ​table​,

table-cell​, ​table-row

218

CHAPTER 7 - CSS FRAMEWORKS

2.3 Components
Alerts
For example:

<​div​ class="alert alert-primary" role="alert">Primary</ ​div​>
<​div​ class="alert alert-secondary" role="alert">Secondary</ ​div​>
<​div​ class="alert alert-success" role="alert">Success</ ​div​>
<​div​ class="alert alert-danger" role="alert">Danger</ ​div​>
<​div​ class="alert alert-warning" role="alert">Warning</ ​div​>
<​div​ class="alert alert-info" role="alert">Info</ ​div​>
<​div​ class="alert alert-light" role="alert">Light</ ​div​>
<​div​ class="alert alert-dark" role="alert">Dark</ ​div​>

Badges
For example:

<​span​ class="badge badge-primary">Primary</​span​>
<​span​ class="badge badge-secondary">Secondary</ ​span​>
<​span​ class="badge badge-success">Success</​span​>
<​span​ class="badge badge-danger">Danger</​span​>
<​span​ class="badge badge-warning">Warning</​span​>
<​span​ class="badge badge-info">Info</​span​>
<​span​ class="badge badge-light">Light</​span​>
<​span​ class="badge badge-dark">Dark</​span​>

Breadcrumb
For example:

<​nav​ aria-label="breadcrumb">
 <​ol​ class="breadcrumb">
 <​li​ class="breadcrumb-item"><​a​ href="#">Home</​a​></​li​>
 <​li​ class="breadcrumb-item"><​a​ href="#">Library</​a​></​li​>
 <​li​ class="breadcrumb-item active" aria-current="page">Data</ ​li​>
 </​ol​>
</​nav​>

219

CHAPTER 7 - CSS FRAMEWORKS

Buttons
For example:

<​button​ type="button" class="btn btn-primary">Primary</ ​button​>
<​button​ type="button" class="btn btn-secondary">Secondary</ ​button​>
<​button​ type="button" class="btn btn-success">Success</ ​button​>
<​button​ type="button" class="btn btn-danger">Danger</ ​button​>
<​button​ type="button" class="btn btn-warning">Warning</ ​button​>
<​button​ type="button" class="btn btn-info">Info</ ​button​>
<​button​ type="button" class="btn btn-light">Light</ ​button​>
<​button​ type="button" class="btn btn-dark">Dark</ ​button​>
<​button​ type="button" class="btn btn-link">Link</ ​button​>

Card
For example:

<​div​ class="card">
 <​div​ class="card-header">Card header</​div​>
 <​img​ class="card-img-top" src="..." alt="Card image cap">
 <​div​ class="card-body">
 <​h5​ class="card-title">Card title</​h5​>
 <​h6​ class="card-subtitle mb-2 text-muted">Card subtitle</ ​h6​>
 <​p​ class="card-text">Card content.</​p​>
 <​a​ href="#" class="card-link">Card link</​a​>
 <​a​ href="#" class="card-link">Another link</ ​a​>
 </​div​>
 <​div​ class="card-footer text-muted">Card footer</ ​div​>
</​div​>

Nav

<​ul​ class="nav">
 <​li​ class="nav-item">
 <​a​ class="nav-link active" href="#">Active</ ​a​>
 </​li​>
 <​li​ class="nav-item">
 <​a​ class="nav-link" href="#">Link</​a​>
 </​li​>
 <​li​ class="nav-item">
 <​a​ class="nav-link" href="#">Link</​a​>
 </​li​>
 <​li​ class="nav-item">
 <​a​ class="nav-link disabled" href="#">Disabled</ ​a​>
 </​li​>
</​ul​>

220

CHAPTER 7 - CSS FRAMEWORKS

Forms
For example:

<​form​>
 <​div​ class="form-group">
 <​label​ for="email">Email</​label​>
 <​input​ id="email" type="email" class="form-control" aria-describedby="help">
 <​small​ id="help" class="form-text text-muted">
 We'll never share your email with anyone else.

 </​small​>
 </​div​>
 <​div​ class="form-group">
 <​label​ for="password">Password</​label​>
 <​input​ id="password" type="password" class="form-control">
 </​div​>
 <​div​ class="form-check">
 <​input​ id="check" type="checkbox" class="form-check-input" >
 <​label​ for="check" class="form-check-label">Check me out</ ​label​>
 </​div​>
 <​button​ type="submit" class="btn btn-primary">Submit</ ​button​>
</​form​>

List group
For example:

<​ul​ class="list-group">
 <​li​ class="list-group-item">Item</​li​>
 <​li​ class="list-group-item list-group-item-primary">Primary</ ​li​>
 <​li​ class="list-group-item list-group-item-secondary">Secondary</ ​li​>
 <​li​ class="list-group-item list-group-item-success">Success</ ​li​>
 <​li​ class="list-group-item list-group-item-danger">Danger</ ​li​>
 <​li​ class="list-group-item list-group-item-warning">Warning</ ​li​>
 <​li​ class="list-group-item list-group-item-info">Info</ ​li​>
 <​li​ class="list-group-item list-group-item-light">Light</ ​li​>
 <​li​ class="list-group-item list-group-item-dark">Dark</ ​li​>
</​ul​>

Pagination
<​ul​ class="pagination">
 <​li​ class="page-item"><​a​ class="page-link" href="#">Previous</​a​></​li​>
 <​li​ class="page-item"><​a​ class="page-link" href="#">1</​a​></​li​>
 <​li​ class="page-item"><​a​ class="page-link" href="#">2</​a​></​li​>
 <​li​ class="page-item"><​a​ class="page-link" href="#">3</​a​></​li​>
 <​li​ class="page-item"><​a​ class="page-link" href="#">Next</​a​></​li​>
</​ul​>

221

CHAPTER 7 - CSS FRAMEWORKS

Dynamic components
Other components require a mix of CSS and JavaScript, to enable dynamic behaviours.

These components are:

- Carousel

- Collapse

- Modals

- Popovers

- Progress

- Scrollspy

- Tooltips

Bootstrap components depends on the JavaScript library jQuery . 6

6 jQuerty. ​The write less, do more JavaScript library​. (https://goo.gl/vPx9zD​)

222

CHAPTER 7 - CSS FRAMEWORKS

3 Atomic CSS
Atomic CSS, like inline styles, offers single-purpose units of style, but applied via classes. This

allows for the use of handy things such as media queries, contextual styling and

pseudo-classes. The lower specificity of classes also allows for easier overrides. And the short,

predictable classnames are highly reusable and compress well.

3.1 Dimensions
Border-box
This module only applies the ​border-box​ model to certain elements.

The benefit of ​border-box as opposed to ​content-box (which is the default per the CSS spec)

is that when you declare a width, that is the width of the element, regardless of how much

border or padding you add to the element.

Display
Single purpose classes for setting the display of an element at any breakpoint.

The ​display property defines box’s display type, which consists of the two basic qualities of

how an element generates boxes: the inner display type, which defines the kind of formatting

context it generates, dictating how its descendant boxes are laid out. the outer display type,

which dictates how the box participates in its parent formatting context. 7

 ​d​<​modifier ​>

Where ​modifier ​ is one of the following:

- n​ = none

- b​ = block

- ib​ = inline-block

- it​ = inline-table

- t​ = table

- tc​ = table-cell

- t-row​ = table-row

- t-columm​ = table-column

- t-column-group​ = table-column-group

7 W3C. ​CSS Display Module Level 3​. (https://goo.gl/T5kmqy)

223

CHAPTER 7 - CSS FRAMEWORKS

Widths
The widths module contains both a five-step width scale based on powers of two as well as a

series of percentage values that can be combined with floats for an infinitely nestable and fully

responsive grid system.

w​<​modifier ​>

Where ​modifier ​ is one of the following:

- 1​, ​2​, ​3​, ​4​, ​5​ = from 1st to 5th step in width scale

- -10​, -20, -25, -30, -33, -34, -40, -50, -60, -70, -75, -80, -90, -100 = percentage

- -third​, ​-two-thirds​ = fraction

- -auto​ = string value auto

Max widths
The max-widths module contains both a ten-step scale based on powers of two as well as the

ability to constrain element widths to a maximum of 100%.

Max widths can be combined with widths to ensure that your content doesn’t get too wide on

larger monitors. Max-widths can also help keep embedded media within the canvas.

mw​<​modifier ​>

Where ​modifier ​ is one of the following:

- 1​ to ​9​ = 1st to 9th step in width scale

- -100​ = literal value %

- -none​ = none

Heights
The heights module contains both a five-step height scale based on powers of two as well as a

series of percentage values. Explicit values can be used inside of any parent. Percentage values

will only work inside of a parent element that has a declared height.

h​<​modifier ​>

Where ​modifier ​ is one of the following:

- 1​ to ​5​ = from 1st to 5th step in height scale

- -25​, ​-50​, ​-75​, ​-100​ = percentage

- -auto​ = string value auto

224

CHAPTER 7 - CSS FRAMEWORKS

3.2 Spacing
Spacing comes in two flavors. Depending on borders and background colors, the difference

between padding and margin can be invisible to the user, but not to the designer.

Good design is based on math. Certain patterns and ratios are so prevalent in nature and

music that they can’t be denied as elegant design solutions. Even in the 18th century, pages in

books were designed with ratios. In the 21st century, we have gotten away from this on the

web, often using magic numbers to match a ‘spec’ that has been produced in a graphics

program such as photoshop, illustrator, or sketch. While these programs are useful for

sketching ideas, they are not 100% accurate in their reflection of how the web works across

device sizes or how things get drawn to the screen.

Tachyons features a spacing scale based on powers of two that starts at .25rem (for most

devices this will be the equivalent of 4px). Since tachyons uses rem units with px as a fallback,

if a user has declared a different base font-size for their device, your spacing will scale based

on a defined ratio that has stood the test of time. As powers of two will always produce

integers, there will be no problems with sub pixel rendering across browsers. Computers

aren’t that great at math and so decimals lead to inconsistencies across platforms.

Inconsistencies should be avoided where possible. You’ll find that when using a well thought

out scale - things just line up. It works, with little effort, regardless of your design knowledge

or sensibilities.

225

CHAPTER 7 - CSS FRAMEWORKS

Margin and padding
An eight step powers of two scale ranging from 0 to 16rem.

<​base​><​modifier ​><​size​>

Where:

- base​ is one of the following:

- p​ = padding

- m​ = margin

- modifiers ​ is one of the following:

- a​ = all

- h​ = horizontal

- v​ = vertical

- t​ = top

- r​ = right

- b​ = bottom

- l​ = left

- size​ is an integer from 0 (none) to 7 (7th step in spacing scale)

For example:

- pa0​ = no padding

- ph1​ = one space unit horizontal padding

- pv2​ = 2 space units vertical padding

- pl3​ = 3 space units left padding

- mr4​ = 4 space units right margin

- mt5​ = 5 space units top margin

- mb7​ = 7 space units bottom margin

226

CHAPTER 7 - CSS FRAMEWORKS

3.3 Grid system
You can combine display, float, padding, and widths to construct a wide variety of grids, or

use the flexbox module.

3.3.1 Flexbox

Flex
The flexbox module provide the following classes:

- flex​ to display child elements into a single row.

- flex-wrap​ to wrap child elements to multiple rows if they overflow the parent.

- flex-wrap-reverse​ like ​flex-wrap​ but in reverse ordering.

- flex-column​ to display child elements into a single column.

- flex-column-reverse​ like ​flex-column​ but in reverse ordering.

Align items
To align items in a flex container:

- items-center​ to pack items from the center

- items-start​ to pack items from the start

- items-end​ to pack items from the end

Justify content
To justify content in a flex container:

- center​ to justify items from the center

- between​ to equally divide free space between items

- around​ to equally divide free space around items

227

CHAPTER 7 - CSS FRAMEWORKS

4 Maintainable CSS
“Maintainable CSS” is an approach, introduced by Adam Silver, to writing modular, scalable,

maintainable CSS . 8

It is not a library or framework. It is a set of principles and conventions to help you write CSS

for small or large-scale websites.

Maintainable means that you can make styling changes without worrying about accidentally

causing problems elsewhere.

Scalable means that as CSS increases in size, it’s still easy to maintain.

Modular means that independent units that can be combined with other modules to form a

more complex structure.

4.1 Semantics
Semantic HTML is not only about the elements you use, but mainly for the names you chose

for the element classes. Naming is the most important aspect of writing maintainable CSS.

There are two main approaches: the semantic approach and the non-semantic approach.

Non-semantic vs semantic classes
Non-semantic classes give you an idea of what an element looks like.

Non-semantic classes do not convey what an element represents.

For example:

<​div​ class="border-0">
<​div​ class="pull-left">
<​div​ class="col-xs-4">

Semantic classes give you an idea of what an element represents.

Semantic classes do not convey the style of an element.

For example:

<​div​ class="basket">
<​div​ class="product">
<​div​ class="searchResults">

8 Adam Silver. ​Maintainable CSS ​. (https://goo.gl/RSk6Um)

228

CHAPTER 7 - CSS FRAMEWORKS

4.1.1 Advantages

Semantic classes are readable
Non-semantic classes usually are abbreviations. Abbreviations are hard to read. It’s easier to

read words than abbreviations. Abbreviations have to be broken down and mapped

cognitively, assuming we know what they mean in the first place.

However, even when not abbreviated, you need to wade through many classes to work out

what’s happening; which classes override which; which apply at certain breakpoint; etc.

The content is obfuscated by the surrounding HTML.

For example:

<​div​ class="pb3 pb4-ns pt4 pt5-ns mt4 black-70 fl-l w-50-l">
 <​h1​ class="f4 fw6 f1-ns lh-title measure mt0">Heading</ ​h1​>
 <​p​ class="f5 f4-ns fw4 b measure dib-m lh-copy">Tagline</ ​p​>
</​div​>

Semantic classes are easy to read. They do not require any mental mapping.

The content is no longer obfuscated. We know where the content begins and ends.

The CSS is easy to read because it has dedicated language constructs that exist for this

purpose already.

For example:

<​div​ class="hero">
 <​h1​ class="hero-title">Heading</​h1​>
 <​p​ class="hero-tagline">Tagline</​p​>
</​div​>

Semantic class ease building responsive sites
To make a column system actually responsive (a-la bootstrap) we would need to introduce a

naming convention such as ​col-xs- ​, ​col-md-​, ​col-lg- ​, ​col-xl-​, to disambiguate the cases.

This means recreates language constructs already found and standardised in CSS. At certain

breakpoints, the classes are misleading and redundant.

Semantic classes are encapsulated to the module’s design and content.

It’s easy to style elements without having to write a multitude of classes and changing the

HTML again. These classes are meaningful in small and big screens.

Media queries can be used to clear elements only when needed.

229

CHAPTER 7 - CSS FRAMEWORKS

Semantic class are easier to find and to debug
Since semantic classes are unique, a search yields only one result, making it easy to track

down the HTML. Searching for HTML with a non-semantic class yields many results.

Inspecting an element with a multitude of atomic classes, means wading through many

selectors. With a semantic class, there’s only one, making it far easier to work with.

Semantic class eliminate the risk of regression
Updating a visual class could cause regression across a multitude of elements. Updating a

semantic class only applies to the module in question, eliminating regression altogether.

Semantic class provide hooks for automated tests and JavaScript
Automated functional tests work by searching for, and interacting with elements, like clicking

a link, finding a text box, typing in text, submitting a form, verifying some criteria, etc.

We can’t use non-semantic classes to target specific elements. And adding hooks specifically

for tests is wasteful as the user has to download this stuff.

We can’t use non-semantic classes to target specific elements in order to enhance them with

Javascript as well.

Semantic class don’t need maintaining
If we name a thing based on what it is, we won’t have to update the HTML again e.g. a heading

is always a heading, no matter what it looks like.

With visual classes, both the HTML and the CSS need updating (assuming there aren’t any

selectors available for use).

Semantic class are recommended by the standards
Last but not least, semantic class are recommended by the W3C HTML5 Standard.

On using the class attribute, HTML5 Specs say in 3.2.3.6 : 9

Authors are encouraged to use values that describe the nature of the content, rather

than values that describe the desired presentation of the content.

9 W3C. HTML5 Spec. ​Elements ​. (https://goo.gl/dsGSwo​)

230

CHAPTER 7 - CSS FRAMEWORKS

4.1.2 Reuse
“Do not Repeat Yourself” (or DRY) is a principle of software development aimed at reducing

repetition of software patterns, replacing it with abstractions, or repetition of the same data,

using data normalization to avoid redundancy.

As Harry Roberts says:

DRY is often misinterpreted as the necessity to never repeat the exact same thing

twice. This is impractical and usually counterproductive, and can lead to forced

abstractions, over-thought and over-engineered code.

This forced abstraction, over-thought and over-engineered code often results in visual and

atomic classes.

In CSS, you can apply a set of rules to more than one selector.

Using a post-processor like SASS you do this using @extend.

For example:

.some-thing,

.another-thing {

 ​/* shared rules */
}

This approach should be used for convenience, not for performance.

If the abstraction only has one rule, we’re simply exchanging one line of code for another.

If a selector deviates from the rules inside the abstraction, it should be removed from the

comma-separated list of selectors for that abstraction. Otherwise it could regress the other

selectors and cause override issues.

We often overthink performance and get obsessed with tiny details. Even if CSS did total more

than 100kb, there’s little to gain from mindlessly striving for DRYness.

Making CSS small makes HTML big. CSS can always be cached. But HTML often contains

dynamic and personalised content—so it can’t be cached.

Striving for DRY leads to over-thought and over-engineered code. In doing so we make

maintenance harder, not easier. Instead of obsessing over styles, we should focus on reusing

tangible modules.

231

CHAPTER 7 - CSS FRAMEWORKS

4.1.3 Conventions
Maintainable CSS has the following convention:

.<​module​>[-<component>][-<state>] {}

Where:

- square brackets are optional depending on the module.

For example:

/* Module container */

.searchResults {}

/* Component */

.searchResults-heading {}

/* State */

.searchResults-isLoading {}

Where:

- component and state are both delimited by a dash

- names are written with lowerCamelCase

- selectors are prefixed with the module name

232

CHAPTER 7 - CSS FRAMEWORKS

4.1.4 Modules
A module is a distinct, independent unit, that can be combined with other modules to form a

more complex structure. If one of the units is taken away, the others still work.

For example, in a blog site, header, navigation, footer, post, post list, can all be considered to

be modules.

A module is made up of components.

For example, a logo module might consist of copy, an image and a link, each of which are

components.

A module, without the components, is incomplete or broken.

For example, the logo component, without the image is broken, without the link is incomplete.

Sometimes it’s hard to decide whether something should be a component or a module. There

is no a strict rule. It depends by the context.

A module, by definition, is a reusable chunk of HTML and CSS. Before a group of elements

can be upgraded into a module, we must first understand what it is and what its different use

cases are.

Only then, can we design the right abstraction. And in doing so, we avoid complexity at the

same time, which is the source of unmaintainable CSS.

233

CHAPTER 7 - CSS FRAMEWORKS

4.1.5 State
Quite often, particularly with richer user interfaces, styling needs to be applied in response to

an element’s change of state.

For example, a module (or component) could be represented in the following states:

- showing or hiding

- active or inactive

- disabled or enabled

- loading or loaded

- isEmpty or isFull

To represent state we need an additional class which should be added to the module (or

component) element to which it pertains.

The class name is prefixed with the module (or component) because whilst states might be

common, associated styles might not.

For example:

<​div​ class="card card-isEmpty">

Reusing state
There are two approaches: encapsulating state to the module or creating a global state class.

For example, encapsulating state to the module, the CSS could be:

.moduleA-isHidden,

.moduleB-isHidden {

 display: none;

}

The trade-off is that this list could grow quickly.

And every time you add behavior, you need to update the CSS.

For example, creating a global state class, the CSS could be:

.globalState-isHidden {

 display: none;

}

Thinking about state requires to consider how this state affects behaviour as well as style.

Different components may share the same behaviour, but they may look rather different.

234

CHAPTER 7 - CSS FRAMEWORKS

4.1.6 Modifiers
Like state, modifiers also override styles. They are useful when modules (or components) have

small and well understood differences. Because the differences are small and well understood,

this type of reuse is more maintainable.

For example, most sites have a primary and secondary button style. If all that changes is one

or two styles we can have a modifier for primary and secondary buttons as follows:

.button {

 ​/* shared button style */
}

.button--primary {

 ​/* primary button style */
}

.button--secondary {

 ​/* secondary button style */
}

235

CHAPTER 7 - CSS FRAMEWORKS

5 Styling React Components

5.1 Styled Components
Styled-components utilises tagged template literals to style your components.

It removes the mapping between components and styles. This means that when you're

defining your styles, you're actually creating a normal React component, that has your styles

attached to it.

For example:

// Create a Title component that'll render an <h1> tag with some styles

const​ Title = styled.h1`
 font-size: 1.5em;

 text-align: center;

 color: palevioletred;

`

// Create a Wrapper component that'll render a <section> tag with some styles

const​ Wrapper = styled.section`
 padding: 4em;

 background: papayawhip;

`

// Use styled Title and Wrapper like any other React component

render(

 <​Wrapper​>
 <​Title​>
 Hello Styled Components!

 </​Title​>
 </​Wrapper​>
)

236

CHAPTER 7 - CSS FRAMEWORKS

Interpolation
You can pass a function ("interpolations") to a styled component's template literal to adapt it

based on its props.

For example:

const​ Button = styled.button`
 background: ${props => props.primary ? 'palevioletred' : 'white'};

 color: ${props => props.primary ? 'white' : 'palevioletred'};

 font-size: 1em;

 margin: 1em;

 padding: 0.25em 1em;

 border: 2px solid palevioletred;

 border-radius: 3px;

`

render(

 <​div​>
 <​Button​>Normal</​Button​>
 <​Button​ primary>Primary</​Button​>
 </​div​>
)

237

CHAPTER 7 - CSS FRAMEWORKS

Styling any components
The styled method works perfectly on all of your own or any third-party components as well,

as long as they pass the className prop to their rendered sub-components, which should pass

it too, and so on. Ultimately, the className must be passed down the line to an actual DOM

node for the styling to take any effect.

If you're using any external library, you can consider using this pattern to turn them into

styled components. The same pattern works for your own components as well, if you need

some components to stay unstyled on their own.

For example:

const​ Link = ({ className, children }) => (
 <​a​ className={className}>
 {children}

 </​a​>
)

const​ StyledLink = styled(Link)`
 color: palevioletred;

 font-weight: bold;

`;

render(

 <​div​>
 <​Link​>Unstyled, boring Link</​Link​>
 <​br​ />
 <​StyledLink​>Styled, exciting Link</​StyledLink​>
 </​div​>
);

238

CHAPTER 7 - CSS FRAMEWORKS

Extending Styles
Quite frequently you might want to use a component, but change it slightly for a single case.

Now you could pass in an interpolated function and change them based on some props, but

that's quite a lot of effort for overriding the styles once.

To do this in an easier way you can call extend on the component to generate another. You

style it like any other styled component. It overrides duplicate styles from the initial

component and keeps the others around.

// The Button from the last section without the interpolations

const​ Button = styled.button`
 color: palevioletred;

 font-size: 1em;

 margin: 1em;

 padding: 0.25em 1em;

 border: 2px solid palevioletred;

 border-radius: 3px;

`;

// We're extending Button with some extra styles

const​ TomatoButton = Button.extend`
 color: tomato;

 border-color: tomato;

`;

render(

 <​div​>
 <​Button​>Normal Button</​Button​>
 <​TomatoButton​>Tomato Button</​TomatoButton​>
 </​div​>
);

239

CHAPTER 7 - CSS FRAMEWORKS

6 Styling Web Components
Shadow DOM is a spec that gives you DOM and style encapsulation. This is great for reusable

web components, as it reduces the ability of these components’ styles getting accidentally

overwritten.

When talking about styling a component, there are usually two different problems you might

want to solve:

- styling a third-party element;

- theming a set of third-party elements.

There have been several previous attempts at solving this, some more successful than others.

:shadow and /deep/
First came :shadow and ​/deep/ (which have since been deprecated, and removed as of

Chrome 60). These were shadow-piercing selectors that allowed you to target any node in an

element’s Shadow DOM. Apart from slowing performance, they also required the user of an

element to be intimately familiar with some random element’s implementation, which was

unlikely and lead to them just breaking the whole element by accident.

Custom properties
Custom properties allow you to create custom CSS properties that can be used throughout a

document. In particular, they pierce the shadow boundary, which means they can be used for

styling elements with a Shadow DOM.

For example:

:root {

 --primary-color: coral;

}

element​ {
 background-color: ​var​(--primary-color);
}

240

CHAPTER 7 - CSS FRAMEWORKS

@apply rule
The problem with using just custom properties for styling/theming is that it places the onus

on the element author to basically declare every possible styleable property as a custom

property.

As a result, ​@apply was proposed, which basically allowed a custom property to hold an entire

ruleset.

For example:

/* outer page */

x-component​ {
 --heading-style: {

 color: red;

 text-decoration: underline;

 font-weight: bold;

 };

}

/* shadow DOM stylesheet */

.heading {

 @apply(--heading-style);

}

However, this approach was abandoned, since it interacted pretty poorly with pseudo classes

and elements (like ​:focus​, ​:hover​, ​::placeholder for ​input​), which still meant the element

author would have to define more combination of these properties to be used in the right

places.

241

CHAPTER 7 - CSS FRAMEWORKS

6.1 ::part and ::theme pseudo-elements
The current new W3C proposal is ::part and ::theme , a set of pseudo-elements that allow you 10

to style inside a shadow tree, from outside of that shadow tree.

Unlike :shadow and /deep/, ::part and ::theme do not allow you to style arbitrary elements

inside a shadow tree: they only allow you to style elements that an author has tagged as being

eligible for styling.

6.1.1 ::part pseudo-element
You can specify a “styleable” part on any element in your shadow tree.

For example:

<​x-element​>
 #shadow-root

 <​div​ part="some-box">
 <​span​></​span​> /* not styleable */
 </​div​>
 <​input​ part="some-input">
 <​div​></​div​> /* not styleable */
</​x-element​>

If you’re in a document that has an <x-foo> in it, then you can style those parts with:

x-element​::part(some-box) { … }

You can use other pseudo elements or selectors (that were not explicitly exposed as shadow

parts). For example:

x-element​::part(some-box):hover { … }

x-element​::part(some-input)::placeholder { … }

You cannot select inside of those parts. For example, the followings do not work:

x-element​::part(some-box) ​span​ { … }

x-element​::part(some-box)::part(some-other-thing) { … }

10 W3C. ​CSS Shadow Parts​. (https://goo.gl/1hpxnc)

242

CHAPTER 7 - CSS FRAMEWORKS

Forwarding parts
You cannot style this part more than one level up if you do not forward it.

So without any extra work, if you have an element that contains the x-element like this:

<​x-bar​>
 #shadow-root

 <​x-element​></​x-element​>
</​x-bar​>

You cannot select and style the the part like this:

x-element​::part(some-box) { ... }

However, you can explicitly forward a child’s part to be styleable outside of the parent’s

shadow tree. So to allow the some-box part to be styleable by x-element’s parent, it would

have to be exposed:

<​x-bar​>
 #shadow-root

 <​x-element​ part="* => bar-*"></​x-element​>
</​x-bar​>

You can explicitly forward x-foo’s parts that you know about (i.e. some-box and some-input)

as they are. For example:

<​x-foo​ part="some-box => some-box, some-input => some-input"></ ​x-foo​>

So, these selectors would match:

x-bar​::part(some-box) { … }

x-bar​::part(some-input) { … }

243

CHAPTER 7 - CSS FRAMEWORKS

Rename forwarding
You can explicitly forward (some) of x-element’s parts (i.e. some-input) but rename them.

<​x-bar​>
 #shadow-root

 <​x-element​ part="some-input => element-input"></​x-element​>
</​x-bar​>

These selectors would match:

x-bar​::part(element-input) { … }

These selectors would not match:

x-bar​::part(some-box) { ... }
x-bar​::part(some-input) { ... }

Prefix forwarding
You can implicitly forward all of x-element’s parts as they are, but prefixed.

<​x-element​ part="* => element-*"></​x-element​>

These selectors would match:

x-bar​::part(element-some-box) { … }

x-bar​::part(element-some-input) { … }

These selectors would not match:

x-bar​::part(some-box) { … }

x-bar​::part(some-input) { … }

244

CHAPTER 7 - CSS FRAMEWORKS

You can chain these, as well as add a part to x-foo itself.

All of these are valid:

<​x-bar​>
 #shadow-root

 <​x-element​ part="some-foo, * => bar-*"></​x-foo​>
</​x-bar​>

<​x-bar​>
 #shadow-root

 <​x-element​ part="some-foo, some-input => bar-input"></ ​x-element​>
</​x-bar​>

You cannot forward all parts at once, i.e. part="* => *" since this might break your element in

the future (if the nested shadow element adds new parts). So this is invalid:

<​x-form​>
 #shadow-root

 <​x-bar​ part="* => *">
 #shadow-root

 <​x-element​ part="* => *"></​x-element​>
 </​x-bar​>
</​x-form​>

However, you can forward all the parts if you prefix them. So this is valid:

<​x-form​>
 #shadow-root

 <​x-bar​ part="* => bar-*">
 #shadow-root

 <​x-element​ part="* => foo-*"></​x-element​>
 </​x-bar​>
</​x-form​>

This selector would be valid:

x-form​::part(bar-foo-some-input) { ... }

245

CHAPTER 7 - CSS FRAMEWORKS

6.1.2 ::theme pseudo-element
Given the above prefixing rules, to style all inputs in a document at once, you need to Ensure

that all elements correctly forward their parts and Select all their parts.

So given this shadow tree:

<​submit-form​>
 #shadow-root

 <​x-form​ part="some-input => some-input, some-box => some-box">
 #shadow-root

 <​x-bar​ part="some-input => some-input, some-box => some-box">
 #shadow-root

 <​x-foo​ part="some-input => some-input, some-box => some-box"></ ​x-foo​>
 </​x-bar​>
 </​x-form​>
</​submit-form​>

<​x-form​></​x-form​>
<​x-bar​></​x-bar​>

You can style all the inputs with:

:root::part(some-input) { ... }

This is a lot of effort on the element author, but easy on the theme user.

If you hadn’t forwarded them with the same name and some-input was used at every level of

the app (the non contrived example is just an <a> tag that’s used in many shadow roots), then

you’d have to write:

:root::part(form-bar-foo-some-input),

:root::part(bar-foo-some-input,

:root::part(foo-some-input),

:root::part(some-input) { ... }

This is a lot of effort on the theme user, but easy on the element author.

Both of these examples show that if an element author forgot to forward a part, then the app

can’t be themed correctly.

246

CHAPTER 7 - CSS FRAMEWORKS

::theme​ matches any parts with that name, anywhere in the document.

This means that if you hadn’t forwarded any parts, i.e.:

<​x-bar​>
 #shadow-root

 <​x-foo​></​x-foo​>
 <​x-foo​></​x-foo​>
 <​x-foo​></​x-foo​>
</​x-bar​>

You could style all of the inputs in x-bar with:

x-bar​::theme(some-input) { … }

This can go arbitrarily deep in the shadow tree. So, no matter how deeply nested they are, you

could style all the inputs with part="some-input" in the app with:

:root::theme(some-input) { … }

247

CHAPTER 7 - CSS FRAMEWORKS

248

CHAPTER 8 - STATIC PROGRESSIVE WEB APP GENERATORS

CHAPTER 8
STATIC PROGRESSIVE
WEB APP GENERATORS

Static progressive Web app generators offers the advantages of a static website generator and

the versatility of a Decoupled (or Headless) CMS plus a front-end Web Framework.

In this chapter, the Static Progressive Web App Generators are explored.

249

CHAPTER 8 - STATIC PROGRESSIVE WEB APP GENERATORS

TABLE OF CONTENTS

1 Progressive Web Apps ​252

1.1 The PRPL Pattern ​252

2 Gatsby.js ​253

Directory structure ​253

2.1 Components ​254

2.1.1 Page Component ​254

2.1.2 Page template components ​255

2.1.3 Layout components ​256

2.1.4 HTML component ​257

2.2 Data Management ​258

Data Nodes ​258

2.2.1 Querying Data Nodes with GraphQL ​260

2.2.2 Using GraphQL in Gatsby ​262

Gatsby’s GraphQL schema ​262

2.3 The processes ​263

2.3.1 The “bootstrap” process ​263

2.4 Plugins ​264

Plugins configuration ​264

2.4.2 Plugin types ​265

Source plugins ​265

Transformer plugins ​265

2.5 Building a Blog site ​266

2.5.1 Plugins ​266

Read and transform markdown files ​266

2.5.2 Components ​267

Posts page ​267

Post page ​268

Tags page ​269

Tag page ​270

2.5.3 Extensions ​271

Create pages ​271

250

CHAPTER 8 - STATIC PROGRESSIVE WEB APP GENERATORS

251

CHAPTER 8 - STATIC PROGRESSIVE WEB APP GENERATORS

1 Progressive Web Apps
The main core foundations of a good web experience are:

- fast - it respond quickly to user interactions with no janky scrolling.

- reliable - load instantly and reliably, even in uncertain network conditions.

Progressive Web Apps are Single Page Apps that offer such experience, by means the PRPL

pattern.

1.1 The PRPL Pattern
PRPL is a web site architecture developed by Google for building websites and apps that work

exceptionally well on smartphones and other devices with unreliable network connections . 1

PRPL stands for “Push, Render, Pre-cache, Lazy-load” that mean:

- Push critical resources for the initial URL route using <link preload> and http/2.

- Render initial route.

- Pre-cache remaining routes.

- Lazy-load and create remaining routes on demand.

1Addy Osmani (​February, 2018).​ ​The PRPL Pattern. ​(https://goo.gl/Tnk9Fe)

252

CHAPTER 8 - STATIC PROGRESSIVE WEB APP GENERATORS

2 Gatsby.js
Gatsby follows the PRPL architectural pattern. It renders a static HTML version of the initial

route, then it loads the code bundle for the page, then it starts pre-caching resources for pages

linked to from the initial route. When a user clicks on a link, Gatsby creates the new page on

demand on the client.

Directory structure
A basic directory structure of a project might look like this:

.

├── gatsby-config.js

├── package.json

└── src

 ├── html.jsx

 ├── pages

 | ├── index.jsx

 | └── posts

 | ├── post_1

 | | └── index.md

 | ├── post_2

 | … └── index.md

 ├── templates

 | └── post.jsx

 └── layouts

 └── index.jsx

Where:

- gatsby-config.js​ exports the configuration object

- package.json​ is the configuration for the Node.js package dependencies

- src​ directory contains the source for the app

Where, in ​src​:
- html.jsx​ is used to define the HTML document that host the page components

- pages​ directory contains the page components

- templates​ directory contains the page template components

- layouts​ directory container the page layout components

253

CHAPTER 8 - STATIC PROGRESSIVE WEB APP GENERATORS

2.1 Components
Everything in Gatsby is built using components, i.e. React Components.

Gatsby automatically tracks dependencies between different objects, e.g. a component page

can depend on certain nodes, enabling hot reloading, caching, incremental rebuilds, etc.

Gatsby support .js and .jsx component, but can also support other compile-to-js languages

through plugins.

2.1.1 Page Component
A page is a site page with a pathname, a template Page component.

A Page Component is a React component that renders a page.

It can optionally specify a layout component and a graphql query.

Page components are stored in ​src/pages​ directory.

Every .js or .jsx file in the ​src/pages​ directory must resolve to a react component, or a string.

For example, in ​src/pages/index.jsx​:
export default function​ ​IndexPage​ {
 ​return​ (
 <​div​ className="container">
 <​h1​>Welcome!</​h1​>
 <​a​ href="/about">Read more about me.
 </​div​>
)

}

For example, in ​src/pages/about.jsx​:
export default function​ ​AboutPage​ {
 ​return​ (
 <​div​ className="container">
 <​h1​>About me</​h1​>
 </​div​>
)

}

Page components become pages automatically with paths based on their file name.

For example:

- src/pages/index.jsx​ is mapped to ​http://example.org/

- src/pages/about.jsx​ is mapped to ​http://example.org/about/

254

CHAPTER 8 - STATIC PROGRESSIVE WEB APP GENERATORS

2.1.2 Page template components
All pages are React components, but very often these components are just wrappers around

data from files or other sources. You can programmatically create pages using page template

components.

Page template components are stored in ​src/templates​ directory:

For example:

export​ ​default​ ​function​ ​PostTemplate​ (queryResult) {
 ​const​ post = queryResult.data.markdownRemark
 ​return​ (
 <​div​>
 <​h1​>{post.frontmatter.title}</​h1​>
 <​div​ dangerouslySetInnerHTML={{ __html: post.html }} />
 </​div​>
)

}

export​ ​const​ pageQuery = graphql`
 query BlogPostBySlug($slug: String!) {

 markdownRemark(fields: { slug: { eq: $slug } }) {

 html

 frontmatter {

 title

 }

 }

 }

`

Where:

- pageQuery​ queries GraphQL for markdown data

- PostTemplate​ renders the page using the query result

255

CHAPTER 8 - STATIC PROGRESSIVE WEB APP GENERATORS

2.1.3 Layout components
Layout components wraps page components. You can use it for portions of pages that are

shared across pages, like headers and footers.

Layout components are stored in d ​src/layouts ​directory.

For example:

export​ ​default​ ​class​ ​Template​ ​extends​ ​React​.​Component​ {
 render() {

 ​return​ (
 <​header​ />
 <​div​>{this.props.children</​div​>
 <​footer​ />
)

 }

}

256

CHAPTER 8 - STATIC PROGRESSIVE WEB APP GENERATORS

2.1.4 HTML component
The component stored in ​src/html.jsx is responsible for the final HTML page where the

page component is injected.

In this file you can modify the ​<head> metadata, general structure of the document and add

external links, such as JavaScript, CSS, etc.

Typically, the default provided ​html.js file is suffice. If you need more control over server

rendering, then it’s valuable to have an html.js.

For example:

export​ ​default​ ​class​ ​HTML​ ​extends​ ​React​.​Component​ {
 render() {

 ​return​ (
 <html lang="en">

 <head>

 <meta charSet="utf-8" />

 <meta name="viewport" content="width=device-width,initial-scale=1.0" />

 {this.props.headComponents}

 </head>

 <body>

 <div id="___gatsby"

 dangerouslySetInnerHTML={{ __html: this.props.body }} />

 {this.props.postBodyComponents}

 </body>

 </html>

)

 }

}

257

CHAPTER 8 - STATIC PROGRESSIVE WEB APP GENERATORS

2.2 Data Management
Data Nodes
All data that’s added to Gatsby is modeled using nodes.

The “Node” is the center of Gatsby’s data system.

A Node is simply a data object.

Node fields can added to a node by plugins that the node does not control.

Node links, which are connection between nodes, gets converted to GraphQL relationships.

Node links can be created in a variety of ways as well as automatically inferred.

Parent/child links from nodes and their transformed derivative nodes are first class links.

Nodes are created by “source” plugins.

Existing nodes can be transformed to new type of nodes by “transformer” plugins.

Nodes created by transformer plugins are set as “children” of their “parent” nodes.

For example, the Remark (Markdown library) transformer plugin looks for new nodes that are

created with a mediaType of ​text/markdown and then transforms these nodes into

MarkdownRemark​ nodes which have an ​html​ field.

For another example, the YAML transformer plugin looks for new nodes with a media type of 2

text/yaml (e.g. a ​.yaml file) and creates new YAML child node(s) by parsing the YAML

source into JSON objects.

2 ​Gatsby-transformer-yaml Plugin. (​https://goo.gl/GwUGFC​)

258

CHAPTER 8 - STATIC PROGRESSIVE WEB APP GENERATORS

The basic node data structure is as follows:

{

 id: String,

 children: Array[String],

 parent: String,

 fields: Object,

 internal: {

 contentDigest: String,

 mediaType: String,

 type: String,

 owner: String,

 fieldOwners: Object,

 content: String

 }

}

Where:

- fields​ is reserved for plugins who wish to extend other nodes.

- mediaType​ is optional field that indicates this node has data to be further processed.

- type​ is a globally unique node type chosen by the plugin owner.

- owner is the plugin which created this node

- fieldOwners​ stores which plugins created which fields.

- content​ is an optional field exposing the raw content that can be further processed.

259

CHAPTER 8 - STATIC PROGRESSIVE WEB APP GENERATORS

2.2.1 Querying Data Nodes with GraphQL
There are many options for loading data into React components. One of the most popular and

powerful of these is a technology called GraphQL.

GraphQL is a query language (the QL part of its name). It was invented at Facebook to help

product engineers pull needed data into React components.

Gatsby uses GraphQL to enable page and layout components to declare what data they and

their sub-components need. Then, Gatsby makes that data available in the browser when

needed by your components. Using a special syntax, you describe the data you want in your

component and then that data is given to you.

GraphQL lets you ask for the exact data you need.

For example, the following GraphQL query return the following JSON:

{

 site {

 siteMetadata {

 title

 }

 }

}

{

 "site": {

 "siteMetadata": {

 "title": "Hello GraphQL!"

 }

 }

}

260

CHAPTER 8 - STATIC PROGRESSIVE WEB APP GENERATORS

For example, a basic page component with a GraphQL query might look like this:

export​ ​default​ ​function​ ​AboutPage​ ({ data }) {
 ​return​ (
 <​div​>
 <​h1​>About {data.site.metadata.title}</​h1​>
 <​p​>{data.site.metadata.description}</​p​>
 </​div​>
)

}

export​ ​const​ queryPage = graphql`
 query AboutQuery {

 site {

 siteMetadata {

 title,

 description

 }

 }

 }

`

The result of the query is automatically inserted into the component on the data prop.

GraphQL and Gatsby let you ask for data and then immediately start using it.

Note that queries are only executed from Page or Layout components.

261

CHAPTER 8 - STATIC PROGRESSIVE WEB APP GENERATORS

2.2.2 Using GraphQL in Gatsby
GraphQL is a flexible query language. People use GraphQL with many different programming

languages and for web and native apps. 3

GraphQL is usually run on a server to respond live to requests for data from clients. You

define a schema for your GraphQL server and then your GraphQL resolvers retrieve data from

databases and/or other APIs.

Gatsby uses GraphQL at build-time and not for live sites. This is unique, and it means you

don’t need to run additional services (e.g. a database and node.js service) to use GraphQL for

production websites. This makes Gatsby sites serverless.

Gatsby’s GraphQL schema
Most usages of GraphQL involve manually creating a GraphQL schema.

With Gatsby, you use (source) plugins which fetch data from different sources.

Gatsby use that data to automatically infer a GraphQL schema.

For example, if you give Gatsby the following data, Gatsby will create the following schema:

{

 "title": "A long long time ago"

}

title: ​String

This makes it easy to pull data from anywhere and immediately start writing GraphQL queries

against your data.

This can cause confusion as some data sources allow you to define a schema even when there’s

not any data added for parts or all of the schema. If parts of the data haven’t been added, then

those parts of the schema might not be recreated in Gatsby.

3 GraphQL.org. ​List of the more popular server-side frameworks, client libraries, services,
that use GraphQL​. (https://goo.gl/ewWez8)

262

CHAPTER 8 - STATIC PROGRESSIVE WEB APP GENERATORS

2.3 The processes
2.3.1 The “bootstrap” process
Gatsby has multiple processes. The most prominent is the “Bootstrap” process, that has

several sub-processes. These processes run both once during the initial bootstrap but also stay

alive during development to continue to respond to changes. This is what drives hot reloading

that all Gatsby data is “alive” and reacts to changes in the environment.

The Bootstrap process consists of the following processes:

1. load site config

2. load plugins

3. load source nodes

4. load transform nodes

5. create graphql schema

6. create pages

7. compile component graphql queries

8. run graphql queries

9. react to changes

During these processes there are various extension points where plugins can intervene.

During bootstrap, plugins can respond at various stages to APIs like ​onCreatePages​,

onSourceNodes​. All major processes have a ​onPre- and ​onPost​- extension points, e.g.

onPreBootstrap​ and ​onPostBootstrap​, or ​onPreBuild​ or ​onPostBuild​.

At each extension point, Gatsby identifies the plugins which implement the API and calls

them in serial following their order in the site’s gatsby-config.js.

263

CHAPTER 8 - STATIC PROGRESSIVE WEB APP GENERATORS

2.4 Plugins
In Gatsby, plugins are Node.js packages that implement Gatsby APIs . 4

The two top priorities of the API are enable a broad and robust plugin ecosystem and on top of

that a broad and robust theme ecosystem.

Plugins can extend Gatsby in many ways, such as:

- sourcing data (e.g. from the filesystem, or an API, or a database);

- transforming data from one type to another (e.g. a markdown file to HTML);

- creating pages (e.g. a directory of markdown files to pages);

- adding things to the rendered HTML (e.g. add meta tags);

- writing out things to build directory based on site data (e.g. sitemap, RSS feed).

Plugins can also depend on other plugins.

For example, ​gatsby-transformer-remark does basic markdown-to-html transformation

but exposes an API to allow other plugins to intervene in the conversion process, e.g.

gatsby-remark-prismjs which adds highlighting to code blocks. 5

Plugins configuration
Plugins are specified in the configuration file gatsby-config.js.

Gatsby configuration object includes a field ​plugins​ used to configure the plugins.

A plugin can be added as a string (the plugin name) either as an object (the plugin descriptor).

For example:

{

 plugins: [

 {

 resolve: `gatsby-source-filesystem`,

 options: {

 path: `${__dirname}/path/to/markdown/files`,

 name: "markdown-pages",

 },

 },

 `gatsby-transformer-remark`

]

}

4 ​Gatsby Node APIs. ​(https://goo.gl/wii4ve)
5 ​Gatsby-remark-prismjs Plugin. ​(https://goo.gl/nLLUfX)

264

CHAPTER 8 - STATIC PROGRESSIVE WEB APP GENERATORS

2.4.2 Plugin types

Source plugins
Source plugins create new nodes.

For example, ​gatsby-source-filesystem plugin turns files on disk into ​File​ nodes. 6

Transformer plugins
Transformer plugins create new types of nodes by transforming source nodes.

A transform plugin looks at the media type of every new node, that is created by the source

plugins, to decide if it can transform the new node or not.

Transformer plugins are decoupled from source plugins.

For example, a markdown transformer plugin can transform markdown from any source

—without any other configuration— provided the created node supports markdown in some of

its data fields.

6 ​Gatsby-source-filesystem Plugin. ​(https://goo.gl/EoVhkp)

265

CHAPTER 8 - STATIC PROGRESSIVE WEB APP GENERATORS

2.5 Building a Blog site
Building a Blog site in Gatsby includes the following tasks:

- Read (from the filesystem) and transform markdown files.

- Create the Page Template Components for the Post and the Tag nodes.

- Create the static pages

The Page Template Components to create are:

- PostsTemplate​ (for ​/posts​ page)

- PostTemplate​ (for ​/posts/{post}​ pages)

- TagsTemplate​ (for ​/tags​ page)

- TagTemplate​ (for ​/tags/{tag}​ pages)

The static pages are created at build time, in the ​gatsby-node.js​ file.

2.5.1 Plugins

Read and transform markdown files
Using ​gatsby-source-filesystem​ plugin, you can read files from the file-system.

Using the ​gatsby-transformer-remark plugin, you can transform the markdown content to

HTML and the YAML frontmatter to JSON data.

The Gatsby configuration object will result:

{

 plugins: [

 {

 resolve: `gatsby-source-filesystem`,

 options: {

 path: `${__dirname}/path/to/markdown/files`,

 name: "markdown-pages",

 },

 },

 `gatsby-transformer-remark`

]

}

266

CHAPTER 8 - STATIC PROGRESSIVE WEB APP GENERATORS

2.5.2 Components
Posts page
In ​src/pages/index-page.jsx​:
export default function​ IndexPage (queryResult) {
 ​const​ data = queryResult.data
 ​const​ allMarkdownRemark = data.allMarkdownRemark
 ​const​ edges = allMarkdownRemark.edges
 ​const​ posts = edges.filter(({node}) => (!!node.frontmatter.date))

 ​return​ (
 <​div​>
 {posts.map(({node}) => (

 <​Link​ key={node.id} to={node.post.frontmatter.path} />
 {node.post.frontmatter.title} ({node.post.frontmatter.date})

 </​Link​>
))}

 </​div​>
)

}

export​ ​const​ pageQuery = graphql`
 query IndexQuery {

 allMarkdownRemark(sort: { order: DESC, fields: [frontmatter___date] }) {

 edges {

 node {

 id

 excerpt(pruneLength: 250)

 frontmatter {

 date(formatString: "MMMM DD, YYYY")

 path

 title

 }

 }

 }

 }

 }

`

267

CHAPTER 8 - STATIC PROGRESSIVE WEB APP GENERATORS

Post page
In the ​/src/templates/postTemplate.jsx​:
export​ ​default​ ​function​ ​Post​Template ​(queryResult) {
 ​const​ data = queryResult.data
 ​const​ content = data.markdownRemark
 ​const​ frontmatter = content.frontmatter
 ​const​ html = content.html;
 ​return​ (
 <​div​ className="blog-post-container">
 <​div​ className="blog-post">
 <​h1​>{frontmatter.title}</​h1​>
 <​h2​>{frontmatter.date}</​h2​>
 <​div​ className="blog-post-content"
 dangerouslySetInnerHTML={{ __html: html }}></ ​div​>
 </​div​>
 </​div​>
)

}

export const​ pageQuery = graphql`
 query PostByPath($path: String!) {

 markdownRemark(frontmatter: { path: { eq: $path } }) {

 html

 frontmatter {

 date(formatString: "MMMM DD, YYYY")

 path

 title

 }

 }

 }

`

268

CHAPTER 8 - STATIC PROGRESSIVE WEB APP GENERATORS

Tags page
In ​src/pages/tags-page.jsx​:
export default function​ TagsPage (queryResult) {
 ​const​ data = queryResult.data
 ​const​ group = data.allMarkdownRemark.group

 ​return​ (
 <​div​>
 <​h1​>Tags</​h1​>
 <​ul​>
 {group.map(tag => (

 <​li​ key={tag.fieldValue}>
 <​Link​ to={`/tags/${kebabCase(tag.fieldValue)}/`}>
 {tag.fieldValue} ({tag.totalCount})

 </​Link​>
 </​li​>
))}

 </​ul​>
 </​div​>
)

}

export​ ​const​ pageQuery = graphql`
 query TagsQuery {

 allMarkdownRemark(

 limit: 1000

 filter: { frontmatter: { published: { ne: false } } }

) {

 group(field: frontmatter___tags) {

 fieldValue

 totalCount

 }

 }

 }

`;

269

CHAPTER 8 - STATIC PROGRESSIVE WEB APP GENERATORS

Tag page
In ​src/templates/tag-page.js​:
export​ ​default​ ​function​ ​TagPage​ (queryResult) {
 ​const​ pathContext = queryResult.pathContext
 ​const​ tag = pathContext.tag
 ​const​ data = queryResult.data
 ​const​ edges = data.allMarkdownRemark

 ​return​ (
 <​div​>

 <​ul​>
 {edges.map(({ node }) => (

 <​li​ key={node.id}>
 <​Link​ to={node.frontmatter.path}>
 {node.frontmatter.title}

 </​Link​>
 </​li​>
)

)}

 </​ul​>
 <​Link​ to="/tags">All tags</​Link​>
 </​div​>
)

}

export​ ​const​ pageQuery = graphql`
 query TagPage($tag: String) {

 allMarkdownRemark(

 limit: 2000

 sort: { fields: [frontmatter___date], order: DESC }

 filter: { frontmatter: { tags: { in: [$tag] } } }

) {

 totalCount

 edges {

 node {

 frontmatter {

 title

 path

 }

 }

 }

 }

 }

`

270

CHAPTER 8 - STATIC PROGRESSIVE WEB APP GENERATORS

2.5.3 Extensions
Create pages

export default async​ ​function​ createPages(app) {
 ​const​ query = `
 {

 allMarkdownRemark(

 sort: { order: DESC, fields: [frontmatter___date] }

 limit: 1000

) {

 edges {

 node {

 frontmatter {

 path

 tags

 }

 }

 }

 }

 }`

 ​const ​queryResult = ​await​ app.graphql(query)
 ​if​ (queryResult.errors) {
 ​return​ queryResult.errors
 }

 ​const​ postPageTemplate = path.resolve("src/templates/postPage.js")
 _createPostPages(app, queryResult, postPageTemplate)

 ​const​ tagPageTemplate = path.resolve("src/templates/tagPage.js")
 _createTagPages(app, queryResult, tagPageTemplate)

}

271

CHAPTER 8 - STATIC PROGRESSIVE WEB APP GENERATORS

function _createPostPages​ (app, queryResult, component) {
 ​const​ posts = queryResult.data.allMarkdownRemark.edges
 posts.forEach(({ node }) => {

 app.boundActionCreators.createPage({

 path: node.frontmatter.path,

 component: blogPostTemplate

 })

 })

}

function _createTagPages​ (app, queryResult, component) {
 ​const​ posts = queryResult.data.allMarkdownRemark.edges
 const​ tags = []

 posts.forEach(({ node }) => {

 node.frontmatter.tags.forEach(tag => {

 ​if​ (!tags.includes(tag)) {
 tags.push(tag)

 })

 })

 tags.forEach(tag => {

 app.boundActionCreators.createPage({

 path: `/tags/${tag}/`,

 component: tagTemplate,

 context: { tag }

 })

 })

}

272

CHAPTER 9 - PANTAREI

CHAPTER 9
PANTAREI
THE RESILIENT FRONT-END WEB FRAMEWORK
BASED ON WEB COMPONENTS

In this chapter, a resilient front-end framework, ​Pantarei ​, is presented.

Pantarei allow you to build interactive Web Components.

There are two prevailing approaches for how to componentize a web app: “abstract the

Platform” or “embrace the Platform”.

Abstract the Platform means to avoid HTML, CSS and DOM as much as possible, and to write

everything in JavaScript. Then use all of the wonderful features of JavaScript to componentize

your app. This is the approach of React , the Web Framework promoted by Facebook. 1

Embrace the platform means to use the recently added componentization features of the web

platform itself. This is what the W3C Web Components spec is all about . This is the approach 2

of Polymer , the Web Framework promoted by Google. 3

Pantarei is based on the HTML5 Web Components standards, in order to ease the process to

extend and customize websites, to design components that can be generally used in the most

natural and longeval way for the Web: using Web Standards.

1 Facebook. React.js. (https://goo.gl/pCTL56)
2 D. Cooney. (July 2014). ​Introduction to Web Components ​. (https://goo.gl/geUZLf)
3 Google. Polymer Project. (https://goo.gl/uCwnHt)

273

CHAPTER 9 - PANTAREI

TABLE OF CONTENTS

1 Pantarei ​276

1.1 Motivation ​276

1.2 Principles ​278

Why the name ​278

1.3 Directives ​279

1.3.1 Sintax ​280

1.3.2 The Element constructor ​281

1.3.3 Built-in directives ​282

1.3.4 Update an attribute ​282

1.3.5 Update a property ​283

1.3.6 Update the class list ​284

1.3.7 Update the inner text ​285

1.3.8 Repeat rendering ​286

Nested repeat ​287

1.3.9 Conditional rendering ​288

1.3.10 Handling Events ​289

1.4 Custom directives ​290

1.4.1 Create a custom directive ​290

Install a new directive ​290

1.4.2 Extend built-in or custom directives ​291

1.4.3 Directives mapping ​292

1.5 Components ​294

1.5.1 Component definition ​294

1.5.2 Component properties ​296

Properties validation ​297

1.5.3 Composition ​298

1.5.4 Distribution ​299

1.6 Example ​300

1.6.1 TodoMVC ​300

274

CHAPTER 9 - PANTAREI

275

CHAPTER 9 - PANTAREI

1 Pantarei

1.1 Motivation
There is no task in software engineering today quite as challenging as web development. To

tackle the problem of building attractive, interactive user interfaces for the Web, the web

development community has evolved a vast ecosystem of web frameworks.

A framework is not just a mere technology, a framework expresses a design philosophy.

Developers might like to think that they are in control of their tools, that they bend them to

their will, but the truth is that all software is opinionated software.

S​oftware, like all technologies, is inherently political. Code inevitably reflects the

choices, biases and desires of its creators. 4

Choosing a framework is the main decision that strongly influence the overall system design.

Web frameworks tend to be overarching in every parts of the project, leading to lock-in from

day one.

Migrating off from a framework, or sometimes even upgrading a framework, is so challenging,

that usually switching to another framework means starting the entire project from scratch.

But thinking of not changing, or not upgrading, wouldn’t simply reflect the reality: Web

application requirements and device and browser capabilities are constantly evolving, and the

Web development community is constantly craving the next new thing.

Web frameworks came and go. Here one day, out the next. Hot today, obsolete in a year.

There is the risk to pick something it’ll be irrelevant long before the life of the project built

with it.

To finally solve the “Framework Churn” , it’s important to understand what a modern 5

front-end Web framework is and why it causes lock-in and subsequent violent churn as

another framework shows web developers to better grasp the design needs of the moment.

4 Jamais Cascio. (November 2007). ​Openness and the Metaverse Singularity​.
(https://goo.gl/vYm8wV)
5 Max Lynch. (September 2017). ​The framework churn problem ​. (https://goo.gl/zK1ehr)

276

CHAPTER 9 - PANTAREI

Fundamentally, a modern frontend framework provides a component model, e.g Angular,

Vue, React, etc., define its own component model, and a way to make components reactives,

e.g. implementing Virtual DOM or binding the data model to element directives.

A component model specifies how components work along with tools for templating,

component loading and more, how they expect to be created, initialized, rendered, updated,

destroyed, how they expect to be customized and stylized, and especially how they interact

with each other.

Components built in one framework don’t work in another framework, due to the systems the

framework provides to make the components run. This makes frameworks obsolete.

Fortunately, a new Web Standard has been defined: the HTML5 Web Components. After

being slowly implemented by browser vendors , actually WebComponents is supported by all 6

the major browsers.

HTML5 Web Components provide an standardized way to build components for the Web, but

does not provide any support for dynamic rendering, reactivity, UX patterns, etc.

Enter Panterei. Pantarei is a light layer built on top of the HTML5 Web Components

standards, that allow you to build resilient, reactive Web Components, in order to ease the

process to extend and customize websites in the most natural and longeval way for the Web:

using Web Standards.

6 Alex Rauschmayer. (August 2015). ​What happened to Web Components?
(https://goo.gl/6PZspi)

277

CHAPTER 9 - PANTAREI

1.2 Principles
Every framework conveys a design philosophy, even if not explicitly. After all, even “there are

no rules” is a rule.

Every choice in computing, from data formats to algorithms, has a tradeoff. And even with a

great deal of planning, decisions may lead to breaking changes down the road. Allowing

systems to evolve and grow is important, rather fundamental. Pantarei paves the way for the

resilience: it pursuits the ​separation of concerns​ in every aspect of the design.

Pantarei makes a clear separation between how the UI is componentized and how the UI is

made reactive: it uses components to encapsulate UI units that have their own view and data

logic; it uses directives to declare and isolate reactive behaviour.

Pantarei makes a clear separation between data logic and presentation: it isolates logic in

JavaScript classes, and presentation in HTML templates; it doesn’t fill the HTML templates

with imperative control flow, nor any logical expression.

Why the name
The expression φαντα-ρει, from greek panta-rei, that means “everything flows”, either was

spoken by Heraclitus or survived as a quotation of his.

All entities move and nothing remains still.

Ever-newer waters flow on those who step into the same rivers.

—​Heraclitus

As a Web Framework, “panta-rei” recalls the mutability of the views as well as the flow of the

data that make the views reactive.

278

CHAPTER 9 - PANTAREI

1.3 Directives
Pantarei makes the view reactive by means directives.

Directives are special attributes attached to an element, that tells the element what to do

everywhen the data associated with the element changes.

For example, a directive could tell an element to: update an attribute, update a property,

update the inner text, update the style, handler an event, etc.

Basically, a directive is assigned to an element simply as a common attribute.

An element can have more than one directive assigned to it.

In general, in Pantarei a directive is defined as follows:

directive_name​ ​.​ ​key​ =“ ​value​ ”

Where:

- directive​ acts as an attribute name space, it’s used to identify the directive

- key​ is a parameter name used by the directive

- value is the name of a property/expression/function assigned to the element that

determines the reactiveness of the element

For example:

<​a​ attr.href="data.url">this is a link</​a​>

279

CHAPTER 9 - PANTAREI

1.3.1 Sintax
In Pantarei, a directive is simply identified by the namespace.

In Pantarei, unlike other Web frameworks, the syntax used for directive is compliant to the

HTML spec . 7

In Pantarei, unlike other Web frameworks, a directive does not contain any logic instruction

nor any boolean expression, but only the name of the data property that could trigger the

directive, that could be a property of the data associated to the element, or a method of the

element itself, for example used as an event handler.

In Angular, for instance, the official guide suggests to keep simplicity : 8

Although it’s possible to write quite complex template expressions, you should avoid

them. Confine application and business logic to the component itself, where it will be

easier to develop and test.

In Pantarei, template expressions are not allowed at all.

7 W3C. ​The HTML syntax​. (https://goo.gl/MnJGGg)
8 Google. Angular.js. ​Template Syntax: Simplicity​ (https://goo.gl/obKxin)

280

CHAPTER 9 - PANTAREI

1.3.2 The Element constructor
To make an element reactive, Pantarei provides the constructor ​Element​, that is an extension

of the ​HTMLElement​ native class.

Given an HTML element (to be made reactive), and a adata object (to trigger the reactions),

the constructor ​Element executes the following procedure to the element and recursively for

each child of the element:

- for each attribute of the element:

- parse the attribute using the directive parsers

- if the parsed attribute represents a known directives:

- create the directive using the directive constructor

- assign the directive to element

Once an element is parsed and bounded to a data object, it reacts to the changes of the

bounded data object.

In the following example, everytime the data property count is incremented, the element inner

text updates.

<​div​ id="el" text.inner="count"></​div​>

const​ element​ = ​window​.el
const​ data = { count: ​0​ }
const​ app = ​new​ Pantarei.Element({ element, data })

function​ tick () {
 app.data.count++

}

window​.setInterval(tick, ​1000​)

281

CHAPTER 9 - PANTAREI

1.3.3 Built-in directives
Pantarei comes with a minimal set of built-in directives, that correspond to the basic way an

element could be updated:

- DirectiveAttribute​, to update the element attribute

- DirectiveProperty​, to update the element property

- DirectiveClassName​, to update the element class list

- DirectiveText​, to update the inner text

- DirectiveRepeat​, to repeat rendering

- DirectiveToggle​, to toggle rendering

- DirectiveEvent​, to handle native and custom events

1.3.4 Update an attribute
The directive attribute allows you to bind an element’s attribute with a data property.

By default, it is defined as follows:

attr.​attribute​="​value​"

Where:

- attr.​ is the prefix to identify a directive attribute

- attribute​ is the name of the element attribute to be bound

- value​ is the name of the data property to be bound

In practice, the value of the attribute ​attribute​ is bound to the value of the data property ​key​.
When the value of the data property ​key​ changes, the value of the attribute ​attribute​ changes.

In the following example, the element attribute title is bound to the data property message.

<​a​ id="element" attr.title="message">link</ ​a​>

const ​element = ​document​.element
const​ data = {
 message: "Hello Pantarei!"

}

const ​app = ​new​ Pantarei.Element({ element, data })

282

CHAPTER 9 - PANTAREI

1.3.5 Update a property
The directive property allows you to bind an element’s property with a data property.

By default, it’s defined as follows:

prop. property =“ value ”

Where:

- prop. is the prefix to identify a directive property

- property is the name of the element property to be bound

- value is the name of the data property to be bound

In the following example, the element property disabled is bound to the data property test.

<​button​ id="el" prop.disabled="test">button</​button​>

const​ element = ​window​.el
const​ data = {
 test: ​true
}

const ​app = ​new​ Pantarei.Element({ element, data })

283

CHAPTER 9 - PANTAREI

1.3.6 Update the class list
The directive class allows you to toggle an element’s classname.

By default, It is defined as follows:

class. classname =“ value ”

Where:

- class. is the prefix to identify a directive class

- classname is the classname of the element classlist to be bound

- value is the name of the data property used to toggle the classname

In practice, if toggle is true, the class classname is added to the classlist, otherwise, it’s

removed (if present).

For example:

<​style​>
 ​#el​ { visibility: hidden; }
 ​#el​.visible { visibility: visible; }
</​style​>
<​div​ id="el" class.visible="show">Hello Web!</ ​div​>

const ​element​ = ​window​.el
const​ data = {
 show: ​true
}

const​ app = ​new​ Pantarei.Element({ element, data })

function ​toggle () {
 app.data.show = !app.data.show

}

window​.setInterval(toggle, 1000)

284

CHAPTER 9 - PANTAREI

1.3.7 Update the inner text
The directive text allows you to update the text that is inner (or before, or after) an element.

By default, it is defined as follows:

text. position =“ value ”

Where:

- text. is the prefix to identify a directive text

- position is the position where to insert the text: it can be inner, before or after

- value is the name of the data property to be bound For example:

<​div​ id="el" text.inner="message"></​div​>

const​ element​ = ​window​.el
const​ data = { message: "Hello Web!" }
const​ app = ​new​ Pantarei.Element({ element, data })

285

CHAPTER 9 - PANTAREI

1.3.8 Repeat rendering
The directive repeat allows you to repeat the elements according to a list of items.

The element to be repeated should be contained in a template element.

By default, it is defined as follows:

repeat.items=​"​value​ ​"

Where:

- repeat.items​ identifies a directive repeat

- value​ is the name of the data property (that must be an array) to be bound

For example:

<​ul​ id="el">
 <​template​ repeat.items="items" repeat.item="item">
 <​li​ text.inner="item"></​li​>
 </​template​>
</​ul​>

const​ element = ​window​.el
const​ data = {
 items: ["a", "b", "c"]

}

const​ app = ​new​ Pantarei.Element({ element, data })

286

CHAPTER 9 - PANTAREI

Nested repeat
Nested repeat is also allowed. For example:

<​div​ id="el">
 <​template​ repeat.items="table" repeat.item="row">
 <​template​ repeat.items="row" repeat.item="col">
 <​div​ text.inner="col"></​div​>
 </​template​>
 </​template​>
</​div​>

const​ element = ​window​.el
const​ data = {
 table: [

 [1, 2, 3],

 [4, 5, 6],

 [7, 8, 9]

]

}

const​ app = ​new​ Pantarei.Element({ element, data })

The repeated element can access their relative item through the object specified in the

repeat.item attribute. To change the name of this accessor, the directive repeat assigned to a

template element, check for the presence of the repeat.item attribute, and if present, use its

value to rename the item, otherwise use the name item.

Renaming the item is indispensable to avoid conflicts in nested repeat. In the previous

example, the iterated items are renamed row and col.

287

CHAPTER 9 - PANTAREI

1.3.9 Conditional rendering
The directive toggle allows you to toggle an element. The element to be toggled should be

contained in a template element.

By default, it is defined as follows:

if.​boolean ​=​"​value​"

Where:

- if.​ identifies a directive toggle

- boolean​ is the boolean value to test, that must be true or false

- value​ is the name of the data property to be bound

If the value of value is equals to the value expressed by boolean, then the element will be

shown, otherwise it will be hidden.

For example:

<​div​ id="el">
 <​p​ if.true="truly">visible</​p​>
 <​p​ if.true="falsy">hidden</​p​>
 <​p​ if.false="truly">hidden</​p​>
 <​p​ if.false="falsy">visible</​p​>
</​div​>

const​ element =​ ​window​.el
const​ data = {
 truly: ​true​,
 falsy: ​false
}

const ​app = ​new​ Pantarei.Element({ element, data })

288

CHAPTER 9 - PANTAREI

1.3.10 Handling Events
The event directive allows you to bind handlers to events (let them be custom or native). The

type name of the directive is ev. Event handling is based on event delegation: registering an

event to a repeated element results in just one listener.

By default, it is defined as follows:

ev.​ ​event​ ​=​"​handler ​"

Where:

- ev.​ identifies a directive event

- event ​ is the event name

- handler ​ is the handler name (the name of a method of the element)

For example:

<ul id="el">

 <​template​ repeat.items="numbers">
 <​li​ ev.click="on_click" text.inner="item"></ ​li​>
 </​template​>

const​ element = ​window​.el
const​ data = {
 items: [​1​, ​2​, ​3​]
}

const​ handlers = {
 on_click (event) {

 alert('Clicked number ${event.target.innerText}')

 }

}

const​ app = ​new​ Pantarei.Element({ element, data, ...handlers })

289

CHAPTER 9 - PANTAREI

1.4 Custom directives
Pantarei allows you to create new directives, as well as customize existing ones.

1.4.1 Create a custom directive
Directives extends from the parent ​Directive​ class.

To create a new directive you must extend the Directive class.

The ​DirectiveParser​ class exposes the following interface, that must be overridden:

- static match(attr)​ to check if the attribute ​attr​ is a directive

- static parse(el, attr)​ to parse the directive and assign it to ​el

The ​Directive​ class exposes the following interface, that must be overridden:

- constructor(el)​ to bind this directive to the element ​el
- run(data)​ to run the directive on the binded element (​el​) using ​data

Install a new directive
To install a custom directive (e.g., ​MyCustomDirective​), just add it to the array of directives

of the ​Pantarei.Element​ class.

Pantarei.Element.directives.push(MyCustomDirective)

If a directive is added after the element has been initialized, it will not have any effect.

290

CHAPTER 9 - PANTAREI

1.4.2 Extend built-in or custom directives
The way to be resilient pass through the ability to customize what is already provided.

Customizing a built-in directive could be useful to change the default behaviour or even the

syntax used by the framework to identify the directive.

For example, In the following example, the definition of the directive attribute is modified to

match the following syntax (similar to the syntax used by Angular and Vue):

[​ ​attribute​ ​]=​"​ ​value​ ​"

Where:

- attribute​ is the name of the element attribute to be bound

- value​ is the name of the data property to be bound

class​ AttributeDirectiveParser ​extends​ DirectiveParser {
 ​static​ match (attribute) {
 ​return​ (/\[\w+\]/gi).test(attribute.name)
 }

 ​static ​parse (element, attribute) {
 ​const​ regexp = /\[\(w+)\]/gi
 ​const​ matches = regexp.exec(attribute.name)
 ​const​ key = matches[​1​]
 ​const​ value = attribute.value
 ​const​ directive = ​new​ AttributeDirective({ element, key, value })
 ​return​ directive
 }

}

The customized directive attribute can be used as follow:

<​a​ id="el" [title]="message">link</​a​>

const ​element = ​document​.element
const​ data = { message: "Hello Web!" }
const​ app = ​new​ Pantarei.Element({ element, data })

291

CHAPTER 9 - PANTAREI

1.4.3 Directives mapping
One of the most powerful aspect of directives in Pantarei is that they could be distributed over

a DOM tree (an element and its children) dynamically, in a so called “transparent” way, using

the ​directives​ mapping.

{

 "element_selector": {

 "directive_type_1": {

 "key1": "value1",

 "key2": "value2",

 …

 },

 "directive_type_2": {

 …

 },

 …

}

The directives object option acts in a similar way of a stylesheet.

We could say, a directive mapping is for reactivity as a stylesheet is for styling.

In this way, the presentation is completely separated from the data logic: the HTML is totally

clean and independent from any additional syntax.

292

CHAPTER 9 - PANTAREI

For example:

<​div​ id="el">
 <​button​ id="button"></​button​>
</​div​>

const​ data = ​window​.el
const​ data = {
 message: "Hello Web!"

}

const​ directives = {
 "#button": {

 "event": {

 "click": "on_click",

 "over": "on_over"

 },

 "text": "Click me"

 }

}

const​ handlers = {
 on_click () {

 alert('Touchè!')

 }

 on_over () {

 console.log('The mouse is over!')

 }

}

const​ app = ​new​ Pantarei.Element({ element, data, directives, ...handlers })

293

CHAPTER 9 - PANTAREI

1.5 Components
Pantarei allows you to build components to componentize the app. Components help extend

basic HTML elements to encapsulate reusable code.

Pantarei Components provide syntactic sugar to Custom Elements definition, using HTML

Template and Shadow DOM.

1.5.1 Component definition
Using HTMLElement:

const​ content = `
<style>/* scoped style */</style>

<div>Shadow DOM</div>

`

class​ ​MyElement​ ​extends​ ​HTMLElement​ {

 ​constructor​ () {
 ​super​()
 ​const​ shadow = ​this​.attachShadow({mode: 'open'})
 ​const​ template = ​document​.createElement('template')
 template.innerHTML = content

 }

 connectedCallback () {}

 disconnectedCallback () {}

 adoptedCallback () {}

 attributeChangedCallback () {}

}

window​.customElements.define('my-element', MyElement)

294

CHAPTER 9 - PANTAREI

Using Pantarei.Element:

const​ style = `
/* scoped style */

`

const​ content = `
 <div>Shadow DOM</div>

`

class​ ​MyElement​ ​extends​ ​Pantarei​.​Element​ {

 ​static​ get is () { ​return​ 'my-element' }

 ​static​ get content () { ​return​ style }

 ​static​ get content () { ​return​ content }

 ​constructor​ () {}

 ready () {}

 connected () {}

 disconnected () {}

 adopted () {}

}

window​.customElements.define(MyElement.is, MyElement)

295

CHAPTER 9 - PANTAREI

1.5.2 Component properties
Every component instance has its own isolated scope. This means you can not (and should

not) directly reference parent data in a child component’s template.

Data can be passed down to child components using the ​props option. A property defined in

props is a custom property for passing information from parent components. A child

component needs to explicitly declare the properties it expects to receive using the ​props

option.

For example:

class​ ​MyComponent​ ​extends​ ​Pantarei​.​Component​ {

 ​static​ get is () { ​return​ "my-component" }

 ​static​ get props () {
 ​return​ ["test"]
 }

}

const​ my_component = ​document​.createElement("my-component")
my_component.test = "This will trigger re-rendering"

296

CHAPTER 9 - PANTAREI

Properties validation
It is possible to specify requirements for the properties of a component.

This is especially useful for the component documentation, maintenance and reuse.

The type can be one of the following native constructors: ​String​, ​Number​, ​Boolean​, ​Date​,

Function​, ​Object​, ​Array​, ​Symbol​. In addition, type can also be a custom constructor

function and the assertion will be made with an ​instanceof​ check.

When property validation fails, a console warning will be produced.

For example:

class​ ​BlogPost​ ​extends​ ​Pantarei.Component​ {

 ​static​ get is () { ​return​ blog-post }

 ​static​ get props () {
 ​return​ {
 "title": {

 type: String

 },

 "author": {

 type: String

 },

 "is_draft": {

 type: Boolean,

 value: ​true
 },

 "excerpt": {

 type: String

 },

 "content": {

 type: String

 },

 "published_at": {

 type: Date

 }

 }

 }

}

297

CHAPTER 9 - PANTAREI

1.5.3 Composition
Components are meant to be used together, most commonly in parent-child relationships.

Component A may use component B in its own template. They inevitably need to

communicate to one another: the parent may need to pass data down to the child, and the

child may need to inform the parent of something that happened in the child.

However, it is also very important to keep the parent and the child as decoupled as possible

via a clearly-defined interface. This ensures each component’s code can be written and

reasoned about in relative isolation, thus making them more maintainable and potentially

easier to reuse.

In Pantarei, the parent-child component relationship can be summarized as “props go down,

events bubble up”. The parent passes data down to the child via props, and the child sends

messages to the parent via events.

298

CHAPTER 9 - PANTAREI

1.5.4 Distribution
When using components, it is often desired to compose them.

Pantarei rely on Web Components, so it can leverage on the special ​<slot> element to serve

as distribution outlets for the original content.

For example:

<​app-container​>
 <​part-header​ slot="header"></​part-header​>
 <​div​ id="content" slot="main"></​div​>
 <​part-footer​ slot="footer"></​part-footer​>
</​app-container​>

There are two things to note here.

The ​<app-container> component does not know what content it will receive. It is decided by

the component using ​<app-container>​.
The ​<app-container> component very likely has its own template. To make the composition

work, we need a way to interweave the parent “content” and the component’s own template.

This is a process called content distribution.

299

CHAPTER 9 - PANTAREI

1.6 Example
1.6.1 TodoMVC
In ​todo-app.html​:
<​div​>
 <​ul​ repeat="items" item="todo">
 <​li​ text="todo.text"></​li​>
 </​ul​>
 <​form​ ev.submit="on_submit">
 <​label​ for="new-todo">What needs to be done?</​label​>
 <​input​ id="new-todo" ev.change="on_change" prop.value="state.text" />
 </​form​>
</​div​>

In ​todo-app.js​:
class​ ​TodoApp​ ​extends​ ​Pantarei​.​Component​ {

 static​ get props () {
 return {

 items: { value: [] },

 text: { value: '' }

 }

 }

 on_change (event) {

 ​this​.update({ text: event.target.value })
 }

 on_submit (event) {

 event.preventDefault()

 ​if​ (!​this​.state.text.length) {
 ​return
 }

 ​const​ new_item = {
 text: ​this​.state.text,
 id: ​Date​.now()
 }

 ​const​ items = [...this.items, new_item]
 ​const​ text = ''
 ​this​.update({ items, text })
 }

}

300

CHAPTER 9 - PANTAREI

301

CHAPTER 9 - PANTAREI

302

CHAPTER 10 - DESIDERA

CHAPTER 10
DESIDÈRA
THE STATIC PROGRESSIVE WEBSITE GENERATOR
FOR THE DISTRIBUTED WEB

In this chapter, a novel proposal for a system/approach to design, build and deploy websites

over a distributed, content-addressing based, peer-to-peer file system is presented.

303

CHAPTER 10 - DESIDERA

TABLE OF CONTENTS

1 Desidera ​306

1.1 Motivation ​306

1.2 Principles ​309

1.3 Website ​311

1.4 Models ​312

1.4.1 Content types ​312

1.5 Content ​316

1.5.1 Organizing content ​316

1.5.2 Pages ​318

1.5.3 Resources ​319

1.6 Theme ​320

1.7 The App ​322

1.7.1 The main files ​322

1.7.2 Routing ​323

1.7.3 The main process ​325

1.8 The workflow ​326

1.8.1 Creating a website ​326

1.8.2 Updating a website ​327

1.8.3 Publishing a website ​328

1.8.4 Linking a website ​329

1.9 Designing a website ​330

1.9.1 The website ​330

1.9.2 Models ​331

1.9.3 Content ​333

1.9.4 Theme ​336

304

CHAPTER 10 - DESIDERA

305

CHAPTER 10 - DESIDERA

1 Desidera

1.1 Motivation
The systems used to build and deploy websites onto the Web, such as the Web Content

Management Systems and the static site generators, have not been thought and engineered for

the development and the delivery of websites over a peer-to-peer distributed network.

However, we can draw the main features that made the success of these systems, and we can

see if and how to combine these features in a distributed environment.

From Web Content Management Systems
Web CMSs introduced the “separation of content from presentation” by means a templating

system, developing a themes-&-plugins ecosystem.

Any software platform that aims to be widely used should provide a way to be customized,

extended, and to allow the community of developers to contribute to the rise of the platform.

For this reason, a Web CMS that aims to be widely used should provide a themes and plugins

ecosystem.

So, our system should provide a themes and plugins ecosystem.

Web CMS dynamically generate web pages server-side.

This is not feasible in a distributed peer-to-peer networks, because the server that would

generate the web pages introduces a point-of-control, that is a point-of-failure.

To overcome the request-time server-side web-page generation aspect, traditional Static Site

Generators are used.

From Static Site Generators
Static site generators introduced the “static-content-driven” website developing. A website is

statically generated at build-time. So, the server the server only needs to serve the pages that

have already been generated. For this reason, websites only need to be hosted by a static

server, and can also be delivered by a Content Delivery Network.

So, our system should provide all the content to build the website ready to be hosted by any

server or delivered by a Content Delivery Network, i.e. the distributed peer-to-peer network.

306

CHAPTER 10 - DESIDERA

From Headless Content Management Systems
Choosing a Web ​CMS means accepting not only the language it’s written in, but also its

editing and administration tools, its database, its templating system, etc.

Decoupled Web CMSs aim to improve this situation.

Decoupled software architectures come with a wide range of advantages and promises. They

are better at fulfilling the requirements for flexibility and for agility as well as the ever growing

need for scalability. This trend applies to all sort of software, especially for Web architectures

and systems.

A Decoupled CMS is essentially a regular full stack of content management, delivery, and

presentation solution but allows for content stored within it to be leveraged by other systems.

A Headless CMS is a Decoupled CMS where the content management repository system is

independent of the content delivery and presentation tools.

While traditional CMSs have to be hosted and built together with the website every time it’s

served, a Headless CMS doesn’t care where it’s serving its content to, since it’s no longer

attached to the frontend. This is fundamental, in a distributed environment.

So, our system should be a decoupled system.

Headless CMSs introduced the “data-driven” content developing. Content is structured and

defined by data structures. Headless CMS provide the infrastructure to build the content by

means data structures with which the website is built.

So, our system should provide the infrastructure to build the content. That is: implement a

typing system and data structures, to define data, to create content, to develop websites.

From Static Progressive Web App Generators
Decoupled CMS gives the web designer the honors and burdens to build the front-end of the

website. Usually a Single Page Application is built, by means a Front-End Web Framework.

Static Progressive Web App generators allow to build the Single Page Applications, or Web

Apps, so that they can be statically served. These systems combine the advantages of

decoupled systems and static site generators with the potential of a web app.

So, our system should provide a way to build Single Page Apps that can be statically served,

and that can exploit the potential of the Web Platform.

307

CHAPTER 10 - DESIDERA

To Desidera
Desidera is a static progressive website generator to build data-driven websites based on Web

Components and delivered over the peer-to-peer distributed network, provided by the

InterPlanetary File System.

Why the name
From latin

- de-​, the privative particle which means from or away from, to indicate the place from

which someone or something departs or withdraws.

- sidera​, the plural of ​sidus ​, which means star, constellation.

Desidera​ means desire.

Etymologically, to desire means to be far from the stars, to be deprived of them. Desire is

therefore disorientation, lack of precise references.

It seems a paradox. And yet, precisely that “lack of stars” turns into yearning, in research,

when you feel lost and the difficulty of living can push you to find yourself.

Then, when curiosity rises, the desire becomes a precious gift. It becomes the yearning that

guides us to travel the distance between us and our stars. The force that moves our steps.

Desidera as the desire to discover, to know, to share the knowledge.

308

CHAPTER 10 - DESIDERA

1.2 Principles
Desidera promotes the content-first design approach, firmly pursuing the “separation of

concerns” principle.

Design content at first
Content is why a website exists, it is what gives a website meaning, it is why people visit a

website, it is what keeps people engaged.

Content should be at the core of the design process of a website, drawing people in, and

allowing them to understand, a website’s purpose and take action. Without any sort of

structured and organized content, building a website would be a more time-consuming

process, visiting a website would be a frustrating experience.

The content-first design approach allows you present the information in an organized way.

This focus allows the design to highlight the information and lead to an improved user

experience.

The content-first design approach brings together designers and content creators.

Requirements and limitations in either area will affect the work for each of these roles.

Content creators and designers are empowered to produce stronger work when they share a

common goal and understand how all the pieces work together . 1

1 Jeff Cardello (September 2017). ​The modern web design process: putting content first ​.
(https://goo.gl/mVuJ8P)

309

CHAPTER 10 - DESIDERA

Design content by data
Information is large, complex, and rife with relationships that are important to its meaning

but impossible for a computer to decipher.

Dealing with data is much easier than dealing with information: data is small, simple, and all

its relationships are clearly known or else ignored.

Content is a compromise between the usefulness of data and the richness of information:

content is a digestible form of information, it is rich information wrapped in simple data.

For the “content compromise”, the problem of information management is simplified,

creating a set of data that represents the best guess of the important aspects of the

information to manage, and then, using the data capabilities of the information management

system to manage the information via the simplified data.

310

CHAPTER 10 - DESIDERA

1.3 Website
In Desidera, a website is organized as follows.

├── models

├── content

├── theme

├── index.json

├── index.html

└── index.js

Where:

- models​ directory contains the content data types.

- content​ directory contains the content files.

- theme​ directory contains the theme for the content.

- index.json​ file stores the sitemap and lists all the files used in the content.

- index.js​ file contains the necessary code to launch the website.

- index.html​ file is the entry point of the website.

311

CHAPTER 10 - DESIDERA

1.4 Models
1.4.1 Content types
Each content type contain basic information, such as:

- name​ - the name of the content type.

- description​ - the description of the content type.

- properties​ - a list of fields of the content type.

- controls​ - a list of widget used to display the fields.

Properties
Each property contain basic information, such as:

- name - the name of the property

- description - the description of the property

- type - the type of the property

- metadata depending of the type

A property type can be one of the following:

- String​ - a short text (e.g. for titles and names).

- Text​ - a long text (e.g. for paragraphs of text).

- Number​ - a decimal number.

- Date​ - a date and time (in ISO 8601 format).

- Location​ - a coordinate object (latitude and longitude of a location).

- Boolean​ - a value that has two states (e.g. yes/no or true/false).

- Media​ - a link to an asset.

- Link​ - a link to another entry.

- Array​ - a list values.

- Object​ - a set of key/value pairs.

312

CHAPTER 10 - DESIDERA

Controls
Each property can be edited by a widget.

Controls is a list of property/widget pairings.

For example, in the Blog Post type:

{

 …

 "properties": [

 { "id": "title", "name": "Title", "type": "Text" },

 { "id": "body", "name": "Body", "type": "Text" },

 { "id": "category", "name": "Category", "type": "Symbol" }

],

 "controls": [

 { "property_id": "title", "widget": "single_line" },

 { "property_id": "body", "widget": "multiple_line" },

 { "property_id": "category", "widget": "dropdown" }

]

}

Where:

- the ​title​ field is rendered as an input field (using the ​single_line​ widget)

- the ​body​ is rendered as a normal text area (using the ​multiple_line​ widget)

- the ​category​ is rendered as a dropdown field (using the ​dropdown​ widget)

Applicable widgets per field type
There are sets of applicable widgets per content type field type.

For the ​Asset​ type:

- asset_link​ - search, attach, and preview an asset.

- asset_links​ - search, attach, reorder, and preview multiple assets.

- asset_gallery​ - search, attach, reorder, preview multiple assets in a gallery

For the ​Boolen​ type:

- boolean​ - radio buttons with customizable labels.

For the ​Date​ type:

- date_picker​ - select date, time, and timezone.

313

CHAPTER 10 - DESIDERA

For the ​Entry​ type:

- entry_link​ - search and attach another entry.

- entry_links​ - search and attach multiple entries.

- entry_card​ - search, attach, and preview another entry.

- entry_cards​ - search, attach and preview multiple entries.

For the ​Number​ type:

- number​ - simple input for numbers.

- rating​ - uses stars to select a number.

For the ​Location​ type:

- location​ - a map to select or find coordinates from an address.

For the ​Object​ type:

- object​ - a code editor for JSON.

For the ​Symbol​ type:

- url​ - a text input that also shows a preview of the given URL.

- slug​ - generates a slug and validates its uniqueness across entries.

- list_input​ - text input that splits values on , and stores them as an array.

- checkbox​ - a group of checkboxes.

- tag​ - a text input to add a string to the list.

For the ​Text​ type:

- single_line​ - a simple text input field.

- multiple_line​ - a simple textarea input.

- dropdown​ - a select element.

- markdown​ - a full-fledged markdown editor.

- radio​ - a group of radio buttons.

314

CHAPTER 10 - DESIDERA

Widget settings
You can pass custom settings to a control that change the behavior or presentation of a

widget.

For example, the entry for a field of type Boolean would look like this:

{

 "property_id": "is_draft",

 "widget_id": "boolean",

 "settings": {

 "help_text": "Is the post in draft?",

 "true_label": "yes",

 "false_label": "no",

 }

}

Where:

- help_text​ shows extra information with the widget.

- true_label​ shows this text next to the radio button that sets this value to “true”.

- false_label​ shows this text next to the radio button that sets this value to “false”.

315

CHAPTER 10 - DESIDERA

1.5 Content
The content folder contains the site content.

The structure of the site is determined based on the structure of this folder. The same

structure that works to organize the source content is used to organize the rendered site. This

is why content organization is extremely important, and must be designed first.

1.5.1 Organizing content
When confronted with a new and complex information system, users build mental models.

They use these models to assess relations among topics and to guess where to find things they

haven’t seen before.

The success of the organization of a website will be determined largely by how well the

website’s information architecture matches the users’ expectations. A logical, consistently

named site organization allows users to make successful predictions about where to find

things. Consistent methods of organizing and displaying information permit users to extend

their knowledge from familiar pages to unfamiliar ones.

If a website mislead users with a structure that is neither logical nor predictable, or constantly

uses different or ambiguous terms to describe site features, users will be frustrated by the

difficulties of getting around and understanding what the website has to offer. Organized

content leads to enjoyable website.

In Desidera, each folder - that is in the content folder - represents a page: it should contain all

the content used by the page. Each folder is a page, and each subfolder is a subpage. The name

of the folder that contains a page determines the route path to that page.

316

CHAPTER 10 - DESIDERA

For example, the following content organization:

content

├── pages

│ ├── page_1

│ │ ├── meta.json

│ │ └── index.md

│ └── page_2

│ ├── meta.json

│ └── index.md

└── posts

 ├── post_1

 │ ├── meta.json

 │ └── index.md

 └── post_2

 ├── meta.json

 └── index.md

generates the following routes paths:

- #/

- #/pages

- #/pages/page_1

- #/pages/page_2

- #/posts

- #/posts/post_1

- #/events/post-2

317

CHAPTER 10 - DESIDERA

1.5.2 Pages
A folder has at least one file, called meta, that contains the metadata of the page.

To create a page on the site, you have to create a folder and create a ​meta.json​ file within it.

The home page corresponds to the ​/content​ directory.

The metadata of the home page is the ​/content/meta.json​ file.

The metadata of a page includes the following fields:

- type​ - the content type

- title​ - the title for the content

- description​ - the description for the content

- keywords​ - the meta keywords for the content

- draft​ - if true, the content will not be rendered

- priority​ - the priority to order the content

- data​ - data specific to the content type

A page can be of different type (specified it the type field).

Any type of content could have a specific set of metadata (specified in the data field).

The ​data​ object depends on the type of the page.

For example, if the page represent a blog post, the data would contains fields such as the

excerpt, the creation timestamp, the publishing timestamp, the author, etc.

A website is organized into sections, and each section contains pages of the same type.

For example, the folder posts contains only pages (folders) of same type (e.g. post).

In a static site generator, page metadata are stored within the page, in the “frontmatter”, in

the head of the document (separated from the content with a special sequence of characters).

Here, metadata and content are stored in separated files.

Separating content and metadata allows to modify them independently.

Metadata files could be written in JSON, as well as YAML or TOML.

Desidera detect the type of the file and use the appropriate parser to get the data.

318

CHAPTER 10 - DESIDERA

1.5.3 Resources
Any resource used in a page could have metadata associated with it. As for the content file,

metadata for a file are kept separate from the file. For convention, metadata for a file are

stored in a document with the same name of the file they refer to with the postfix meta.json.

For example, the metadata for the image picture.jpg are stored in the document

picture.meta.json.

The metadata of a file include the following fields:

- name​ - the file name

- extension​ - the file extension

- fullname​ - the file name with extension

- type​ - the type of file

319

CHAPTER 10 - DESIDERA

1.6 Theme
The theme folder contains the code that makes the content live.

Desidera doesn’t force to use a particular frontend framework, but promotes the use of Web

standards, such as Web Components. Web Components are a set of HTML5 APIs to create

new custom, reusable, encapsulated HTML tags to be used in web pages. Web Components

work across modern browsers, and can be used with any JavaScript library or framework that

works with HTML5.

Websites could be as complex as any other software applications. It’s essential to find the right

way to divide up the development work with minimal overlap between systems in order to be

more efficient. Componentization (in general) is how this is done. Any component system

should reduce overall complexity by providing isolation, or a natural barrier that hides the

complexity of one system from another. Good isolation also makes reusability and

serviceability easier . 2

In a Desidera theme, “ ​everything is a component ​”.

A theme must contain at least one component: the default component for pages.

There are components to build different types of page (by convention, the page-* components)

and to build different parts within a page (by convention, the part-* components), such as the

header (part-header), the footer (part-footer), the navigation menu (part-nav).

2 T. Leithead and A. Eicholz. (July 2015). ​Bringing componentization to the web: An
overview of Web Components ​. (https://goo.gl/6A49af)

320

CHAPTER 10 - DESIDERA

Pages
In Desidera, a page-component is a top-level component.

A page-component represents a page, and it is composed by part-components.

A page-component should extend the provided Page class.

The Page class exposes the following methods/life-cycle hooks:

- ready​ - when the page is ready to be rendered.

- connected​ - when the component is mounted to the app-container.

- disconnected​ - when the page is unmounted from the app-container.

A page-component, once mounted to the app-container, has access to a data object, that

includes at least the following fields:

- name​ - the name of the page folder

- path​ - the path of the directory

- route​ - the route to access the page

- meta​ - the meta data object of the page

- children​ - the list of subfolders in the page folder

- files​ - the list of files in the page folder

Parts
Desidera default theme provides a built-in set of components, focused to design

content-driven websites, such as: page-post to render a page for a single post, page-posts to

render a page for a list of posts, part-header to render the header, part-footer to render the

footer, part-nav to render the navigation menu.

321

CHAPTER 10 - DESIDERA

1.7 The App
1.7.1 The main files

index.js
The index.js contains the code to start the website.

In Desidera, a website results to be a content-driven single-page progressive-web-app (driven

by this file).

index.html
The current Web is actually driven by HTML: if you want to run a script in a web browser, you

need to load an HTML document that imports the code to run by means the ​<script>​ tag.

In Desidera, the index.html is used just to import the starting code contained in index.js.

<!DOCTYPE html>

<​html​>
<​head​>
 <​title​>Desidera</​title​>
 <​meta​ charset="utf-8">
</​head​>
<​body​>
 <​script​ type="module" src="index.js"></​script​>
</​body​>
</​html​>

index.json
The ​index.json file contains the sitemap of the website and the list of all the resources files

(texts, images, video, etc.) used in the website.

The sitemap contains a reference to the (eventual) previous version of the website, that results

in a sort of merkle chain, called sitechain.

A sitechain can be navigated to access previous versions of the website back in time.

Whenever the website is updated (a page is added, updated, or deleted) and then published, a

new sitemap is generated (and a new ring is added to the sitechain).

This file is the only entry file that the app needs in order to launch the website.

322

CHAPTER 10 - DESIDERA

1.7.2 Routing
In Desidera, routing treat routes like any other application data/state.

In traditional routing, a specific route is associated with a route handler that would link your

route to a specific view/component.

In Desidera, rather than the router updating the view, the view listens/subscribes to route

changes in order to update itself.

On a route change, you only need to re-render a portion of your app. Depending on where you

come from, for the same given route, a smaller or larger part of your application view will

need to be re-rendered. This is why route handlers are not helpful: routing is not about

mapping a route to a component, it is about going from a place to another.

The router just takes navigation instructions and output state updates.

Updating the browser history or listening to URL changes is considered a side-effect, because

they are specific to the environment where the website run (the browser).

In Desidera, the router updates the browser URL and translate URL change events to routing

instructions.

Tree of routes
Routes are organised in a tree, made of segments and nodes.

At the top will always be an unnamed root node (its name is an empty string).

Each node of the tree (except the root node) is a valid route.

A node of the tree is directly linked to its descendant node.

Links between nodes are called segments.

323

CHAPTER 10 - DESIDERA

Route transition
During a transition phase, the router will follow a transition path: it will deactivate some

segments and activate some new ones. The intersection node between deactivated and

activated segments is the transition node.

For example:

├── pages

│ ├── pages.page_1

│ └── pages.page_2

│

└── posts

 ├── posts.post_1

 └── posts.post_2

Where:

- the root node is directly linked to ​pages​ and ​posts​ nodes.

- pages​ note is directly linked to ​pages.page_1​ and ​pages.page_2
- posts​ note is directly linked to ​posts.post_1​ and ​posts.post_2

In a transition from ​pages​ to ​posts.post_1​:
- the root node is the transition node

- the ​pages​ segment is deactivated

- the ​posts​ segment is activated

- the ​posts.post_1​ segment is activated

In a transition from ​posts.post_1​ to ​posts.post_2​:
- the ​posts​ node is the transition node

- the ​posts.post_1​ segment is deactivated

- the ​posts​ segment remains activated

- the ​posts.post_2​ segment is activated

The router is unaware of your view and you need to bind your view to your router's state

updates.

324

CHAPTER 10 - DESIDERA

1.7.3 The main process
When the website is open (the ​index.html​ is fetched), Desidera executes the following steps:

- fetch the ​index.json​ file

- parse the sitemap contained in the ​index.json​ file

- for each page (each meta entry), register the relative route

- trigger the event ready

- check if the location hash already contains a path

- load and parse the metadata for the requested page (or for the homepage)

- instantiate the page component for the requested page (using the metadata)

- unmount the currently mounted page component (if any)

- the page component trigger the event disconnect

- mount the page component in the app container

- the page component trigger the event connect

- trigger the event open

The app exposes a data object that describe the website. This object contains a content object

and a theme object, that mirror the directory structure of, respectively, the content folder and

the theme folder.

When a page component is mounted, it takes the control. A mounted page component has

access to the app data, the page metadata, and the routing data.

325

CHAPTER 10 - DESIDERA

1.8 The workflow
1.8.1 Creating a website
To initialize a website, run the command:

desidera create

It creates the project scaffolding, organized as follows:

├── content

├── theme

├── index.json

├── index.html

└── index.js

Where:

- content​ directory contains the content files.

- theme​ directory contains the theme for the content.

- index.json​ file stores the sitemap and lists all the files used in the content.

- index.js​ file contains the necessary code to launch the website.

- index.html​ file is the entry point of the website.

326

CHAPTER 10 - DESIDERA

1.8.2 Updating a website
To update a website, run just one command:

desidera update

One of the main advantages to have the content separated from the structure/presentation, is

that any update to a file of the theme folder doesn’t affect any file of the content folder, and

vice versa.

This is very important in a platform where files are distributed and cached over multiple

nodes, especially if these files represents a content-centric websites, because content, that is

nearly immutable, doesn’t need to be rebuilt if its presentation changes.

In a traditional static generated website, any change (be it on the content, or on the theme)

requires the system to rebuild the entire website, that is: update just the updated page, if the

change affected the content of that page, or update all the pages, if the change affected the

presentation layer.

In a distributed network, having new pages on every change don’t let to take advantage of the

sharing fundamental aspect of the distributed network.

The command update create a new index.json file (that contains the sitemap of the website).

Running update to a website that has not been modified doesn’t produce any effect. Any

update is not propagated to the distributed network until the website is not published.

327

CHAPTER 10 - DESIDERA

1.8.3 Publishing a website
To publish a website, run just one command:

desidera publish

The command publish takes the hash of the last published website, and push it in an array of

previous versions, stored in the index.json file, then add the current version to the IPFS

network, using the IPFS API.

Everywhen the website is updated, Desidera updates the IPNS address to point to the latest

version of the website.

A link to a website explicitly refers to a specific version of that website. However, in some

cases, it’s desirable to have an ever-updated link to the last version of a website. Actually, even

updating a single link would trigger a waterfall of updates. For this reason, the website should

be published/linked using an IPNS address.

IPNS is a way to add a small amount of mutability to the permanent immutability of IPFS. It

allows to store a reference to an IPFS hash under the namespace of the id of the IPFS node

that publish the content.

328

CHAPTER 10 - DESIDERA

1.8.4 Linking a website
Once a website is published, its pages are ready to be linked by other webpages, or to be

pinned by other IPFS nodes.

A resource distributed over IPFS is content-addressed: its address is the cryptographic hash of

its content. Since the hash changes if the content changes, every version of the website has a

address. This prevents links to be broken, since at least one node in the IPFS network

maintains a copy of the linked website.

The address of a resource is composed by: the hash of the website root folder, followed by the

path to the resource (starting from the root folder).

As the website is a SPA, and there is no server, a rendered page address uses the fragment

identifier. The address of a rendered page is composed by: the hash of the website root folder,

followed by the fragment identifier #, followed by the path to the page folder.

329

CHAPTER 10 - DESIDERA

1.9 Designing a website
1.9.1 The website
The website organization is the following:

├── models

├── content

├── theme

├── index.json

├── index.html

└── index.js

Where:

- models​ directory contains the content data types.

- content​ directory contains the content files.

- theme​ directory contains the theme for the content.

- index.json​ file stores the sitemap and lists all the files used in the content.

- index.js​ file contains the necessary code to launch the website.

- index.html​ file is the entry point of the website.

330

CHAPTER 10 - DESIDERA

1.9.2 Models
In ​models/post/schema.json​:
{

 "name": "post",

 "plural": "posts",

 "type": "object",

 "properties": [

 { "name": "title", "type": "text", "required": ​true​ },
 { "name": "excerpt", "type": "string" },

 { "name": "content", "type": "string" },

 { "name": "published_at", "type": "datetime" },

 { "name": "is_draft", "type": "boolean" }

],

 "controls": [

 { "property": "title", "widget": "single_line" },

 { "property": "excerpt", "widget": "multiple_line" },

 { "property": "content", "widget": "multiple_line" },

 { "property": "published_at", "widget": "date_picker" },

 { "property": "is_draft", "widget": "boolean" }

]

}

In ​models/image/schema.json​:
{

 "name": "image",

 "plural": "images",

 "type": "object",

 "properties": [

 { "name": "name", "type": "string" },

 { "name": "description", "type": "string" },

],

 "controls": [

 { "property": "name", "widget": "string" },

 { "property": "description", "widget": "string" }

]

}

331

CHAPTER 10 - DESIDERA

In ​models/author/schema.json​:
{

 "name": "author",

 "plural": "authors",

 "type": "object",

 "properties": [

 { "name": "full_name", "type": "string" },

 { "name": "picture", "type": "image" }

],

 "controls": [

 { "property": "full_name", "widget": "string" },

 { "property": "picture", "widget": "image" }

]

}

332

CHAPTER 10 - DESIDERA

1.9.3 Content
In ​content/posts/post_1/meta.json​:
{

 "title": "My first post",

 "draft": ​false
}

In ​content/posts/post_1/content.md​:
This is my first post.

The following is a list:

- one

- two

- three

In ​content/posts/post_2/meta.json​:
{

 "title": "My first post",

 "draft": ​false
}

In ​content/posts/post_1/content.md​:
This is my first post.

The following is a list:

- one

- two

- three

333

CHAPTER 10 - DESIDERA

The directory structure is:

content

├── pages

│ ├── page_1

│ │ ├── meta.json

│ │ ├── content.md

│ │ └── cover.jpg

│ │

│ ├── page_2

│ … ├── meta.json

│ ├── content.md

│ ├── cover.jpg

│ ├── page_2_1

│ … ├── meta.json

│ ├── content.md

│ └── cover.jpg

│

├── posts

│ ├── post_1

│ │ ├── meta.json

│ │ ├── content.md

│ │ └── cover.jpg

│ ├── post_2

│ … ├── meta.json

│ ├── content.md

│ └── cover.jpg

│

├── authors

│ ├─ author_1

│ … ├── meta.json

│ ├── data.json

│ └── picture.jpg

│

├── meta.json

└── index.md

334

CHAPTER 10 - DESIDERA

Routes
In ​routes.json​:
[

 {

 "name": "home",

 "path": "/",

 "component": "page-home"

 },

 {

 "name": "pages",

 "path": "/pages",

 "component": "page-list"

 },

 {

 "name": "page",

 "path": "/pages/:path*",

 "component": "page-single"

 }

 {

 "name": "posts",

 "path": "/posts",

 "component": "page-posts"

 },

 {

 "name": "post",

 "path": "/posts/:post_id",

 "component": "page-post"

 },

 {

 "name": "tags",

 "path": "/tags",

 "component": "page-tags"

 },

 {

 "name": "tag",

 "path": "/tags/:tag_id",

 "component": "page-tag"

 }

]

335

CHAPTER 10 - DESIDERA

1.9.4 Theme
theme

├── config.json

├── index.js

├── components

… ├── page-home

 │ ├── index.js

 │ ├── template.html

 │ └── style.css

 │

 ├── page-post

 ├── page-posts

 ├── page-category

 ├── page-categories

 ├── page-tag

 ├── page-tags

 ├── page-search

 …

 ├── part-header

 ├── part-footer

 ├── part-menu

 ├── part-breadcrumbs

 ├── part-cover

 ├── part-content

 …

336

CHAPTER 10 - DESIDERA

Page Posts
In ​/theme/components/page-posts/template.html​:
<​div​ id="page">
 <​h1​ id="title"></​h1​>
 <​div​ id="posts">
 <​div​ id="post">
 <​h2​ id="title"></​h2​>
 <​div​ id="excerpt"></​div​>
 <​div​ id="published_date"></​div​>
 </​div​>
 </​div​>
</​div​>

In ​/theme/components/page-posts/directives.json​:
{

 "​#title​": {
 "text": "data.title"

 },

 "​#posts​": {
 "repeat": "data.posts",

 "item": "post"

 },

 "​#posts #post #title​": {
 "text": "post.title",

 },

 "​#posts #post #excerpt​": {
 "text": "post.excerpt"

 },

 "​#posts #post #published_date​": {
 "text": "post.published_date",

 "text.format": "yyyy-mm-dd"

 }

}

In ​/theme/components/page-posts/index.js​:
export​ ​class​ ​PagePost​ ​extends​ ​Page​ {

 connected (context) {

 ​this​.action('fetch_posts')
 }

}

337

CHAPTER 10 - DESIDERA

Page Post
In ​/theme/components/page-post/template.html​:
<​div​ id="post">
 <​h1​ id="title"></​h1​>
 <​img​ id="cover" />
 <​div​ id="content"></​div​>
</​div​>

In ​/theme/components/page-post/directives.json​:
{

 "​#title​": {
 "text": "data.title"

 },

 "​#cover​": {
 "src": "data.cover"

 },

 "​#content​": {
 "markdown": "data.content"

 }

}

In ​/theme/components/page-post/index.js​:
export​ ​class​ ​PagePost​ ​extends​ ​Page​ {

 connected (context) {

 ​let​ post_id = context.params.post_id
 ​this​.action('fetch_post', { post_id, resolve: { author: ​true​ } })
 }

}

338

CHAPTER 10 - DESIDERA

Page Tags
In ​/theme/component/page-tags/template.html​:
<​div​ id="page">
 <​h1​ id="title"></​h1​>
 <​div​ id="tags">
 <​div​ id="tag">
 <​h2​ id="title"></​h2​>
 </​div​>
 </​div​>
</​div​>

In ​/theme/component/page-tags/directives.js​:
{

 "​#title​": {
 "text": "data.title"

 },

 "​#tags​": {
 "repeat": "data.tags",

 "item": "tag"

 },

 "​#tag #title​": {
 "text": "tag.title",

 }

}

In ​/theme/components/page-tags/index.js​:
export​ ​class​ ​PageTags​ ​extends​ ​Page​ {

 connected (context) {

 ​this​.action('fetch_tags')
 }

}

339

CHAPTER 10 - DESIDERA

Page Tag
In ​/theme/component/page-tag/template.html​:
<​div​ id="page">
 <​h1​ id="title"></​h1​>
 <​div​ id="posts">
 <​div​ id="post">
 <​h2​ id="title"></​h2​>
 <​div​ id="excerpt"></​div​>
 <​div​ id="published_date"></​div​>
 </​div​>
 </​div​>
</​div​>

In ​/theme/component/page-tag/directives.json​:
{

 "​#title​": {
 "text": "data.title"

 },

 "​#posts​": {
 "repeat": "data.posts",

 "item": "post"

 },

 "​#post #title​": {
 "text": "post.title",

 },

 "​#post #excerpt​": {
 "text": "post.excerpt"

 },

 "​#post #published_date​": {
 "text": "post.published_date",

 "text.format": "yyyy-mm-dd"

 }

}

In ​/theme/components/page-posts/index.js​:
export​ ​class​ ​PageTag​ ​extends​ ​Page​ {

 connected (context) {

 ​let​ tag_id = context.params.tag_id
 ​this​.action('fetch_posts', { tag_id })
 }

}

340

CHAPTER 10 - DESIDERA

Store
In ​/theme/index.js​:
export default class​ ​extends​ ​Pantarei​.​Store​ {

 get initial_state () {

 ​return​ {
 post: ​undefined​,
 posts: []

 }

 }

 ​async​ update_post ({ post_id }) {
 ​let​ post = ​await​ ​this​.fetch_post({ post_id })
 ​this​.update({ post })
 }

 ​async​ fetch_post ({ post_id, resolve }) {
 ​let​ post = ​await​ ​this​.fetch(`/content/posts/${post_id}/data.json`)

 ​if​ (resolve.author) {
 ​let​ author = ​await​ ​this​.fetch(`/content/authors/${post.author}/data.json`)
 post.author = autor

 }

 ​return​ post
 }

 ​async​ fetch_posts ({ limit }) {
 ​let​ post_ids = ​await​ ​this​.fetch(`/content/posts/index.json`)
 ​let​ posts = []
 ​for​ (post_id ​of​ post_ids) {
 ​let​ post = ​await​ fetch_post({ post_id })
 posts.push(post)

 }

 ​return​ posts
 }

}

341

CHAPTER 10 - DESIDERA

342

CONCLUSIONS

CONCLUSIONS

In this chapter, the conclusions of the thesis are drawn. The evaluation of the proposal. The

future works.

343

CONCLUSIONS

TABLE OF CONTENTS

1 The state of the art ​346

2 The proposal ​347

2.1 Pantarei ​347

Learning Curve ​347

JavaScript idioms/extensions ​347

Component ecosystem ​348

Optimizations ​348

2.2 Desidera ​349

2.2.1 Content Delivery ​349

Delivery over a peer-to-peer network ​349

Delivery over a CDN ​349

2.2.2 Dev Op Experience ​349

Serverless ​349

Hosted ​349

2.2.3 User Experience ​350

Offline access ​350

Prefetch linked pages ​350

Page caching ​350

Progressive image loading ​350

Responsive image loading ​350

2.2.4 Content Developer Experience ​351

Refresh or link to preview ​351

Hot reload content ​351

Hot reload code ​351

2.2.5 Front-end Developer Experience ​352

Componentization ​352

Declarative component ​352

Unidirectional data flows ​352

Asset pipelines ​352

3 Future works ​353

Pantarei ​353

Desidera ​353

3.1 Enquire - the Search Engine for the Distributed Web ​354

YaCy ​354

3.1.1 Enquire ​355

Why the name ​355

344

CONCLUSIONS

345

CONCLUSIONS

1 The state of the art
In a sentence, “the Web is made by websites: building websites means building the Web”.

There are many ways to build a website:

- Content Management Systems (CMSs)

- Headless CMSs plus Front-end Web Frameworks

- Traditional Static Site Generators

- Static Progressive Web App Generators

- Site builders

CMS like Wordpress give you an online text editor to create content. They let you customize

the look and feel through choosing themes and plugins, or writing custom PHP or Javascript

code. Content is saved in a database, and it is retrieved and sent to users when they visit the

website. Depending on your requirements you can self-host your website, or use an official

hosting provider.

Headless CMSs like Contentful require you to build the front-end side, using a front-end Web

framework.

Traditional static site generators like Hugo let you put text or markdown in a specific directory

in a version-controlled codebase. They then build a specific kind of site, usually a blog, as

HTML files from the content you’ve added. These files can be cached and served from a CDN.

Progressive website generators like Gatsby let you build progressive web apps, with the

advantages of the static websites.

Site builders are a type of hosted closed-source CMS. They focus on making it fast to build a

website. However, they don’t allow self-hosting or enable you to export your website and

customize it.

346

CONCLUSIONS

2 The proposal

2.1 Pantarei
The primary purpose of Pantarei is to create a resilient Web Framework, to build a reliable

system of Web Components to build websites with.

Learning Curve
React, requires learning JSX, as well as CSS-in-JS methodologies for styling components.

In Angular, the API surface of the framework is huge and as a user you will need to familiarize

yourself with a lot more concepts before getting productive. The complexity of Angular is

largely due to its design goal of targeting only large, complex applications - but that does make

the framework a lot more difficult for less-experienced developers to pick up.

In Pantarei, you can start building non-trivial applications, having just familiarity with

HTML, CSS and plain JavaScript. It exposes just two basic concepts: directives and

components.

JavaScript idioms/extensions
React requires using JSX. Using React without JSX can be challenging.

Angular requires using TypeScript. Using Angular without TypeScript can be challenging.

TypeScript has its benefits - static type checking can be very useful for large-scale apps, and

can be a big productivity boost for developers with backgrounds in Java and C#. However, in

many smaller-scale use cases, introducing a type system may result in more overhead than

productivity gain.

Pantarei requires just plain JavaScript.

Javascript has become more powerful as a language in the last several years, making it easier

to write code, and making it useless to use alternative compiled-to-javascript languages.

For instance, the last version of the Standard introduced:

- language features such as modules and classes

- syntactic constructs for asynchronous programming such as async/await

- data structures/types such as maps, sets, weakmap and weakset

- syntactic sugar such as arrow functions, destructuring, template strings

347

CONCLUSIONS

Component ecosystem
React has several sets of out-of-the-box component libraries, as well as curated sets.

Pantarei is bases on HTML5 Web Components. There are thousands of user defined Web

Components that can already be used . 1

Optimizations
In React, when a component’s state changes, it triggers the re-render of the entire component

sub-tree, starting at that component as root. To avoid unnecessary re-renders of child

components, you need to programmatically specify the condition in which the component

should update, whenever you can.

In Angular, when there are a lot of watchers, rendering becomes slow, because every time

anything in the scope changes, all these watchers need to be re-evaluated again. Also, the

digest cycle may have to run multiple times to “stabilize” if some watcher triggers another

update. In some situations, there is no way to optimize a scope with many watchers.

In Pantarei, as well as Vue, component dependencies are automatically tracked during its

render, so the system knows precisely which components actually need to re-render when

state changes. This removes the need for a whole class of performance optimizations from the

developer’s plate, and allows them to focus more on building the app itself as it scales.

1 WebComponents.org. ​List of Web Components ​. (https://goo.gl/QPJSY6)

348

CONCLUSIONS

2.2 Desidera
The primary purpose of Desidera is to enable a truly distributed Web, that is: provide an

approach to design, build and deploy websites over a content-addressed space delivered by a

peer-to-peer network.

2.2.1 Content Delivery

Delivery over a peer-to-peer network
Desidera websites are delivered over the InterPlanetary File System.

Other systems do not support any peer-to-peer network.

Desidera websites result to be:

- censorship-resistant: the content is distributed over a peer-to-peer network; as long

as at least one node hosts the website, the website will be reachable.

- permanent: every update generates a new version of the website; previous versions

are still linkables.

Delivery over a CDN
Wordpress supports this through customization and plugins . 2 3

Hugo and Gatsby are built for this.

Desidera websites can be delivery over a CDN as well as over IPFS.

2.2.2 Dev Op Experience

Serverless
Serverless means not having to worry about security and framework upgrades.

WordPress requires a server to generate pages.

Desidera, as well as Hugo and Gatsby, are serverless.

Hosted
Wordpress comes with built-in hosting.

Gatsby and other static site generators can be plugged into static hosts.

Desidera is hosted by the peers of a distributed peer-to-peer network.

2 WordPress ​. How to serve static content from a cookieless domain​.
(https://goo.gl/MiFGWx)
3 WordPress ​. CDN Plugin ​(https://goo.gl/gEWgvT)

349

CONCLUSIONS

2.2.3 User Experience

Offline access
Offline access via Service Workers is one of the core principles of Progressive Web Apps.

Wordpress require maintaining dual PHP and JavaScript templates.

Gatsby supports this out of the box.

Desidera is offline-ready too.

Prefetch linked pages
When a page loads, the content needed to load the next link you click will be loaded in the

background while you browse the page.

Wordpress require maintaining dual PHP and JavaScript templates.

Desidera, as well as Gatsby, supports this out of the box.

Page caching
Fingerprinting static resources that aren’t expected to change lets browsers serve content

locally when a user visits a page they’ve already been to, as opposed to making an extra

network call.

Wordpress allows this via plugins.

Desidera, as well as Gatsby support this out of the box.

Progressive image loading
Progressive image loading means displaying a blurry placeholder image before loading the full

heavyweight asset. This prevents the display from “bouncing around” as images load in

addition to making the page feel complete before they have.

Desidera, as well as Gatsby, support this out of the box, using default plugins.

Responsive image loading
Responsive images enable modern browsers to load the right size of image assets given

browser size - that way users with high-resolution, large-screen devices can get a high-quality

image while users on low-resolution or small-screen devices don't spend extra time waiting

for the page to load when a low-resolution asset would suffice.

Desidera, as well as Gatsby, support this feature out of the box, using default plugins.

350

CONCLUSIONS

2.2.4 Content Developer Experience

Refresh or link to preview
Refreshing & Click-To-Preview are standard features of content creation workflows. When

you write or edit a post, in order to preview what your content looks like, you click a “Preview”

button, or refresh the page.

WordPress is built for this.

Hot reload content
Hot reloading content is an innovation of modern web development. As you edit content, you

see the resulting UI change in your local development environment browser without

refreshing the page.

Wordpress offers a partial version, in the administration panel.

Hugo offers this through plugins.

Desidera, as well as Gatsby, offers this out of the box.

Hot reload code
Hot reloading is an innovation of modern web development. As you edit code, you see the

resulting UI change in your local development environment browser without refreshing the

page.

Wordpress does not offer this feature while editing components.

Hugo offers this through plugins.

Desidera, as well as Gatsby, offers this out of the box.

351

CONCLUSIONS

2.2.5 Front-end Developer Experience

Componentization
Component systems allow developers to plug-n-play either external 3rd party components or

internal components from a shared codebase or component library.

WordPress support this through PHP.

Hugo does not support this.

Gatsby supports this through React.

Desidera support this through Pantarei, and HTML5 Web Components.

Declarative component
When components are behaving oddly, you can inspect their state and compare expected state

of each element in a hierarchy to the actual state, enabling faster debug cycles compared to

alternate frameworks.

Desidera support this through Pantarei, which allows a hierarchical UI construction by

declaratively passing properties down child trees.

Unidirectional data flows
One-directional data flows are essential to building complex frontend components by

removing complex cross-dependencies present in alternate data flow approaches, such as

two-way bindings.

Desidera support this through Pantarei, which uses a one-directional data binding system for

its components.

Asset pipelines
Asset pipelines are the compilers of the web stack - turning images and code in a variety of

developer-friendly languages (SCSS, LESS, CSS modules, templates, JSX, JS modules, ES7,

ES6, Typescript, Flow...) into minified, raw HTML, CSS and JS that browsers can parse.

Wordpress and Hugo don’t provide this, although you could set up your own.

Gatsby provides asset pipelining out of the box through its build system on top of Webpack

and Babel.

Desidera don’t provide this out of the box, but do not limit its usage.

352

CONCLUSIONS

3 Future works
The future works goes in two parallel directions:

- improve what already has been defined and designed: ​Pantarei ​ and ​Desidera​;
- define and design new tools: ​Enquire​.

Pantarei
The core of Pantarei can be extended in two parallel directions:

- create new directives;

- create new components.

For both the directions, creating the developer documentation.

Desidera
The Desidera platform can be extended in two parallel directions:

- create new themes (using Pantarei Components);

- create new plugins (using Node.js modules).

Again, for both the directions, creating the developer documentation.

The User Experience could be improved by:

- create new components;

- create new themes.

The Content-Designer Experience could be improved by the followings:

- create a wysiwyg editor (for Markdown content);

- create a real-time (using IPFS PubSub and HTML5 WebRTC) collaborative (using 4

CRDT - Convergent Replicated Data Types) wysiwyg editor. 5

The Theme-Designer Experience could be improved by the following:

- improve the default theme;

- create a Visual Composer to build themes.

4 W3C (June 2018). ​WebRTC 1.0: Real-time Communication Between Browsers ​.
(https://goo.gl/HG5uKZ)
5 Marc Shapiro, Nuno Preguiça, Carlos Baquero, Marek Zawirski (January 2011). ​A
comprehensive study of Convergent and Commutative Replicated Data Types ​.
(https://goo.gl/7jdtVQ)

353

CONCLUSIONS

3.1 Enquire - the Search Engine for the Distributed Web
Move to decentralized systems is not so straightforward. This is especially true for search

engines. Creating distributed systems that are nonetheless capable of scaling so that they can

index most of the Web is challenging.

Despite the challenge, distributed search engines do already exist, albeit in a fairly

rudimentary state, such as YaCy. Far from being a valid alternative to Google as of now, YaCy

offers a credible alternative model.

YaCy
YaCy is a free search engine that anyone can use to build a search portal for their intranet or

to help search the public internet. When contributing to the world-wide peer network, the

scale of YaCy is limited only by the number of users in the world and can index billions of web

pages. It is fully decentralized: all users of the search engine network are equal; the network

does not store user search requests and it is not possible for anyone to censor the content of

the shared index. Currently it has about 1.4 billion documents in its index and more than 600

peer operators contribute each month. About 130,000 search queries are performed with this

network each day . 6

Some search engines promise privacy, and while they look like real search engines, they are

just proxies. Their results don't come from their own index, but from the big incumbents

(Google, Bing, Yahoo) instead: the query is forwarded to the incumbent, and the results from

incumbent are relayed back to the user (even Bing uses Google). 7

6 YaCy. ​Web Search By The People for the People​. (https://goo.gl/h18Zrs ​)
7 Google Official Blog (February 2011). Microsoft’s Bing uses Google search results—and
denies it. (https://goo.gl/b3r21W)

354

CONCLUSIONS

3.1.1 Enquire
Enquire​ is the Distributed Search Engine for the Desidera/IPFS network.

In essence, since Desidera websites are already distributed, nodes of the network can also join

creating and sharing search results, using the documents they store. Peers communicate each

other using the IPFS real-time messaging layer PubSub . 8

In Desidera, content has a simplified syntax (using the human-readable markdown) which

ease the text mining process. Furthermore, content documents are paired with well defined

content structures (stored in separated metadata documents, i.e. ​metadata.json​, and

described in another separated document schema, i.e. ​schema.json​) which ease the indexing

process.

Actually, designing of ​Enquire​ is in progress.

Why the name
The name is a tribute to Tim Berners-Lee and its first attempt to create a distributed hypertext

“ ​Enquire​” that formed the conceptual basis for the future development of the World Wide

Web . (Without meaning to, ​Enquire​ is also the anagram of ​Enrique​). 9

8 Jeromy Johnson (May 2017). ​Take a look at pubsub on IPFS ​. (https://goo.gl/v1AzEc)
9 W3C. Tim Berners-Lee longer biography. (https://goo.gl/uQs5pk)

355

CONCLUSIONS

The future
On July 10, 2012, in one of his last known interviews , Aaron Swartz said: 10

There are two polarizing perspectives.

“Everything is great”: the internet has created all this freedom, and liberty, and

everything is going to be fantastic.

“Everything is terrible”: the internet has created only tools for cracking down, and

spying, and, you know, controlling what you said.

And the truth is that both are true. The internet has been both. And both are kind of

amazing and astonishing.

And which won in the long run, is up to us.

The future is up to us.

This thesis is a little step in the direction of answering the call by Brewster Kahle to “ ​unlock

the Web open​” , to have a more safer, more open, World Wide Web, as it was originally 11

intended : 12

for everyone.

10 Anonymous. (September 2014). ​The Story of Aaron Swartz Full Documentary​.
(https://goo.gl/sh1MEr)
11 B. Kahle. (August 2015). ​Locking the Web Open: A Call for a Decentralized Web​.
(https://goo.gl/fDUmgP)
12 J. Keith. (November 2013). ​This is for everyone​. (https://goo. gl/WofL58)

356

