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Although multiple pulse and multi-dimensional NMR techniques

permit generation of off-diagonal density matrix elements and observation

of complex coherence transfer processes, eventually the density operator

returns to an equilibrium state in which all coherences (off-diagonal

elements of the density operator) have decayed to zero and the

populations of the energy levels of the system (diagonal elements of the

density operator) have been restored to the Boltzmann distribution.

Analogously with similar phenomena in other areas of spectroscopy, the

process by which an arbitrary density operator returns to the equilibrium

operator is called nuclear magnetic, or spin, relaxation. The following

sections will describe the general features of spin relaxation and important

consequences of spin relaxation processes for multi-dimensional NMR

experiments. In addition, other dynamic processes, such as chemical

reactions and conformational exchanges, that transfer nuclei between

magnetic environments can affect the NMR experiment; these processes

also are discussed.

As relaxation is one of the fundamental aspects of magnetic

resonance, an extensive literature on theoretical and experimental aspects

of relaxation has developed since the earliest days of NMR spectroscopy

(see (1 ) and references therein). At one level, relaxation has important

consequences for the NMR experiment: the relaxation rates of single

quantum transverse operators determine the linewidths of the resonances

detected during the acquisition period of an NMR experiment; the

relaxation rates of the longitudinal magnetization and off-diagonal

coherences generated by the pulse sequence determine the length of the

recycle delay needed between acquisitions; and the relaxation rates of
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operators of interest during multi-dimensional experiments determine the

linewidths of resonances in the indirectly detected dimensions and affect

the overall sensitivity of the experiments. At a second level, relaxation

affects quantitative measurement and interpretation of NMR experimental

parameters, including chemical shifts and scalar coupling constants and At

a third level, relaxation provides experimental information on the physical

processes governing relaxation, including molecular motions and

intramolecular distances. In particular, cross-relaxation gives rise to the

nuclear Overhauser effect (NOE) and makes possible the determination of

three-dimensional molecular structures by NMR spectroscopy.

Additionally, a variety of chemical kinetic processes can be studied

through effects manifested in the NMR spectrum; in many cases, such

phenomena can be studied while the molecular system remains in

chemical equilibrium.

Because the theoretical formalism describing relaxation is more

complicated mathematically than the product operator formalism, the

present treatment will emphasize application of semi-classical relaxation

theory to cases of practical interest, rather than fundamental derivations.

Semi-quantitative or approximate results are utilized when substantial

simplification of the mathematical formalism thereby is obtained. More

detailed descriptions of the derivation of the relaxation equations are

presented elsewhere (2, 1, 3) .

1 Introduction and survey of theoretical approaches

Introductory theoretical treatments of optical spectroscopy

emphasize the role of spontaneous and stimulated emission in relaxation
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from excited states back to the ground state of a molecule. The probability

per unit time, W , for transition from the upper to lower energy state of an

isolated magnetic dipole by spontaneous emission of a photon of energy ∆E

= hω is given by (2) ,

      
W = 2hγ 2ω3

3c3 [1]

in which c  is the speed of light. For a proton with a Larmor frequency of

500 MHz, W  ≈  10-21 s-1; thus, spontaneous emission is a completely

ineffective relaxation mechanism for nuclear magnetic resonance.

Calculation of stimulated emission transition probabilities is complicated

by consideration of the coil in the probe; nonetheless, stimulated emission

also can be shown to have a negligible influence on nuclear spin relaxation.

Spontaneous and stimulated emission are important in optical spectroscopy

because the relevant photon frequencies are orders of magnitude larger.

Instead, nuclear spin relaxation is a consequence of coupling of the

spin system to the surroundings . The surroundings have historically been

termed the lattice following the early studies of NMR relaxation in solids

where the surroundings were genuinely a solid lattice. The lattice includes

other degrees of freedom of the molecule containing the spins (such as

rotational degrees of freedom) as well as other molecules comprising the

system. The energy levels of the lattice are assumed to be quasi-

continuous with populations that are described by a Boltzmann

distribution. Furthermore, the lattice is assumed to have an infinite heat

capacity and consequently to be in thermal equilibrium at all times. The

lattice modifies the local magnetic fields at the locations of the nuclei and

thereby (weakly) couples the lattice and the spin system. Stochastic
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Brownian rotational motions of molecules in liquid solutions render the

local magnetic fields time-dependent. More precisely, the local fields are

composed of a rotationally invariant, and consequently time-independent,

component and a rotationally variant, time-dependent component. The

time-dependent local magnetic fields can be resolved into components

perpendicular and parallel to the main static field. In addition, the fields

can be decomposed by Fourier analysis into a superposition of

harmonically varying magnetic fields with different frequencies. Thus, the

Hamiltonian acting on the spins is given by

    

H = H z + H local t( )
= H z + H local

isotropic + H local
anisotropic t( )

= H z + H local
isotropic + H longitudinal

anisotropic t( ) + H transverse
anisotropic t( )

[2]

in which Hz is the Zeeman Hamiltonian,     H local
isotropic contains the isotropic

chemical shift and scalar coupling interactions and the stochastic,

anisotropic Hamiltonians have an ensemble average of zero by

construction, Alternatively, the stochastic Hamiltonians average to zero for

t >> τc (τc being defined as the correlation time of the stochastic process,

which in isotropic solution is approximately the rotational correlation time

of the molecular species).

Transverse components of the stochastic local field are responsible

for non-adiabatic  contributions to relaxation. If the Fourier spectrum of the

fluctuating transverse magnetic fields at the location of a nucleus contains

components with frequencies corresponding to the energy differences

between eigenstates of the spin system, then transitions between

eigenstates can occur. In this case, transition of the spin system from a

higher (lower) energy state to a lower (higher) energy state is
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accompanied by an energy-conserving transition of the lattice from a

lower (higher) to higher (lower) energy state. A transition of the spin

system from higher energy to lower energy is more probable because the

lattice is always in thermal equilibrium and has a larger population in the

lower energy state. Thus, exchange of energy between the spin system and

the lattice brings the spin system into thermal equilibrium with the lattice

and the populations of the stationary states return to the Boltzmann

distribution. Furthermore, transitions between stationary states caused by

non-adiabatic processes decrease the lifetimes of these states and

introduces uncertainties in the energies of the nuclear spin states through

a Heisenberg uncertainty relationship. As a result, the Larmor frequencies

of the spins vary randomly and the phase coherence between spins is

reduced over time. Consequently, non-adiabatic fluctuations that cause

transitions between states result in both thermal equilibration of the spin

state populations and decay of off-diagonal coherences.

Fluctuating fields parallel to the main static field are responsible for

adiabatic  contributions to relaxation. The fluctuating fields generate

variations in the total magnetic field in the z-direction, and consequently,

in the energies in the nuclear spin energy levels. Thus, adiabatic processes

cause the Larmor frequencies of the spins to vary randomly. Over time, the

spins gradually lose phase coherence and off-diagonal elements of the

density matrix decay to zero. The populations of the states are not altered

and no energy is exchanged between the spin system and the lattice

because transitions between stationary states do not occur.
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To illustrate these ideas, the chemical shift anisotropy relaxation

mechanism will be investigated. The chemical shift Hamiltonian is defined

a s

        
H = γI.σσ.B = IiσijBj

i, j=1

3

∑ [3]

in which σ  is the nuclear shielding tensor. In a particular molecular frame

of reference, called the principal axis system, the shielding tensor is

diagonal with elements σxx, σyy, and σzz. For simplicity, the tensor will be

assumed to be axially symmetric with σzz = σ || and σxx = σyy = σ⊥ .

Therefore, in the principal axis system,

H = γ(σ⊥ BxIx + σ⊥ ByIy + σ||BzIz) [4]

which can be written in the form

        H = 1
3 γ σ||+ 2σ⊥( )B ⋅ I + 1

3 γ σ||− σ⊥( ) 2 BzIz − BxIx − ByIy( ) [5]

Bx, By and Bz are the projections of the static field, B0 k , into the principal

axis reference frame and will depend on the orientation of the molecule

with respect to the laboratory reference frame. Clearly, for isotropic

solution,

<BxIx> = <ByIy> = <BzIz> [6]

and the first term in [5] is invariant to rotation and the second term in [5]

averages to zero under rotation. The second term is time-dependent as a

consequence of rotational diffusion and influences the spins for times on

the order of τ c. To proceed, the Hamiltonian must be transformed back into

the laboratory frame to give
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H = Hiso + HCSA(t) [7]

The rotationally invariant term is transformed trivially as

      H iso = 1
3 γ σ||+ 2σ⊥( ) B0Iz = γσisoB0Iz [8]

in which σ iso = (σ || + 2σ⊥ )/3. More complicated algebra (or use of Wigner

rotation matrices) gives the result for the anisotropic component:

  
H CSA t( ) = 2

3 γ σ|| − σ⊥( )B0
2
3Y2

0 Ω t( )[ ]Iz − 1
2 Y2

1 Ω t( )[ ]I+ + 1
2 Y2

−1 Ω t( )[ ]I−{ } [9]

in which     Y2
q Ω t( )[ ] are modified spherical harmonic functions (see Table

1)and Ω (t) = {θ(t), φ(t)} are the time-dependent angles defining the

orientation of the z-axis of the molecular principal axis system in the

laboratory frame. The term proportional to Iz represents the fluctuating

longitudinal interactions (giving rise to adiabatic relaxation) and the terms

proportional to I+ and I– represent the fluctuating transverse field (giving

rise to non-adiabatic relaxation). The ensemble average chemical shift

Hamiltonian has the expected form:

H = Hz + Hiso = -γB0Iz +γσisoB0Iz = -γ(1-σiso)B0Iz [10]

Of course, given the above intuitive model for the origin of spin relaxation,

the real problem is to determine theoretically the rate constants for

relaxation due to different fluctuating Hamiltonians.

1.1 Relaxation in the Bloch equations

In the simplest theoretical approach to spin relaxation, the relaxation

of isolated spins is characterized in the Bloch equations by two

phenomenological first order rate constants: the spin-lattice or longitudinal
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relaxation rate constant, R 1, and the spin-spin  or transverse  relaxation rate

constant, R2 (4) ,

      

dMz (t)
dt

= γ M (t) × B(t)( )z − R1 Mz (t) − M0( )
dMx (t)

dt
= γ M (t) × B(t)( )x − R2Mx (t)

dMy (t)

dt
= γ M (t) × B(t)( )y − R2My (t)

[11]

in which M (t) is the nuclear magnetization vector (with components M x(t) ,

M y(t), and M z(t)) and B (t) is the applied magnetic field (consisting of the

static and rf fields). In the following, rate constants rather than time

constants, are utilized; the two quantities are reciprocals of each other (for

example T1 = 1/R 1). The spin-lattice relaxation rate constant describes the

recovery of the longitudinal magnetization to thermal equilibrium, or,

equivalently, return of the populations of the energy levels of the spin

system (diagonal elements of the density operator) to the equilibrium

Boltzmann distribution. The spin-spin relaxation rate constant describes

the decay of the transverse magnetization to zero, or equivalently, the

decay of transverse single quantum coherences (off-diagonal elements of

the density matrix). Non-adiabatic processes contribute to both spin-lattice

and spin-spin relaxation. Adiabatic processes only contribute to spin-spin

relaxation; spin-lattice relaxation is not affected because adiabatic

processes do not change the populations of stationary states.

The Bloch formulation provides qualitative insights into the effects of

relaxation on the NMR experiment, and the phenomenological rate

constants can be measured experimentally. For example, the Bloch

equations predict that the FID is the sum of exponentially damped
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sinusoidal functions and that, following a pulse sequence that perturbs a

spins system from equilibrium, R 2 governs the length of time that the FID

can be observed and R 1 governs the minimum time required for

equilibrium to be restored. The Bloch formulation does not provide a

microscopic explanation of the origin or magnitude of the relaxation rate

constants, nor is it extendible to more complex, coupled spin systems. For

example, in dipolar-coupled two spin systems, multiple spin operators,

such as zero-quantum coherence, have relaxation rate constants that differ

from both R1 and R2.

In the spirit of the Bloch equations, the results for product operator

analyses of the evolution of a spin system under a particular pulse

sequence in many instances can be corrected approximately for relaxation

effects by adding an exponential damping factor for each temporal period

post hoc. Thus if product operator analysis of a two-dimensional pulse

sequence yields a propagator U  = U a(t2)U mU e(t1)U p, in which U p is the

propagator for the preparation period, etc., relaxation effects

approximately can be included by writing,

      σ t1, t2( ) = Uσ 0( )U−1 exp[− Rptp − Ret1 − Rmtm − Rat2 ] [12]

in which R p  is the (average) relaxation rate constant for the operators of

interest during the preparation time, tp , etc. Cross-correlation and cross-

relaxation effects are assumed to be negligible.

For example, the signal recorded in a 1H-15N HSQC spectrum is

proportional to     cos(ω Nt1) cos(ω Ht2 ) cos(πJH N Hα t2 ) , in which ωN  and ωH  are

the Larmor frequencies of the 15N and 1H, respectively and   JH N Hα  is the

proton scalar coupling constant between the amide and α  protons. The
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phenomenological approach modifies this expression to

    cos(ω Nt1) cos(ω Ht2 ) cos(πJH N Hα t2 )  exp[-R2Nt1-R2Ht2], in which R2N and R2H

are the transverse relaxation rate constants for the 15N and 1H operators

present during t1 and t2, respectively and relaxation during the INEPT

sequences has been ignored. Relaxation effects on HSQC spectra are

discussed in additional detail in §6.2. As a second example, product

operator analysis of the INEPT pulse sequence in the absence of relaxation,

yields a density operator term proportional to - 2IzSy  sin(2πJISτ ) .

Coherence transfer is maximized for 2τ  = 1/(2JIS). If relaxation is

considered, the result is modified to - 2IzSy  sin(2πJISτ ) exp(-2R2Iτ ), in

which R 2 I is the relaxation rate of the I spin operators present during the

period 2τ . Maximum coherence transfer is obtained for

2τ  = (πJIS)-1 tan-1(πJIS/R2I) ≤  1/(2JIS) [13]

1.2 The Solomon equations

Spin-lattice relaxation for interacting spins can be treated

theoretically by considering the rates of transitions of the spins between

energy levels, as was demonstrated first by Bloembergen, Pound and

Purcell (5). Figure 1 shows the energy levels for a two spin system with

transition frequencies labeled. The four energy levels are labeled in the

normal way as |m I m S>. The rate constants for transitions between the

energy levels are denoted by W 0, W I, W S  and W 2 and are distinguished

according to which spins change spin state during the transition. Thus, W I

denotes a relaxation process involving an I spin flip, W S  denotes a

relaxation process involving an S  spin flip, W 0 is a relaxation process in

which both spins are flipped in opposite senses (flip-flop transition); W 2 is
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a relaxation process in which both spins are flipped in the same sense

(flip-flip transition). A differential equation governing the population of

the state |αα > can be written by inspection:

    

dPαα
dt

= −(WI + WS + W2)Pαα + WI Pβα + WSPαβ + W2Pββ + K [14]

in which Pγδ is the population of the state |γδ> and K  is a constant chosen to

insure that the population P γδ  returns to the equilibrium value P
0
γδ . The

value of K  can be found by setting the left hand side of [14] equal to zero:

    
K = (WI + WS + W2)Pαα

0 − WI Pβα
0 − WSPαβ

0 − W2Pββ
0 [15]

Thus, writing ∆Pγδ = Pγδ - P
0
γδ  yields an equation for the deviation of the

population of the |αα > state from the equilibrium population,

    

d∆Pαα
dt

= −(WI + WS + W2)∆Pαα + WI∆Pβα + WS∆Pαβ + W2∆Pββ [16]

Similar equations can be written for the other three states:

    

d∆Pαβ
dt

= −(W0 + WI + WS )∆Pαβ + W0∆Pβα + WI∆Pββ + WS∆Pαα

d∆Pβα
dt

= −(W0 + WI + WS )∆Pβα + W0∆Pαβ + WI∆Pαα + WS∆Pββ

d∆Pββ
dt

= −(WI + WS + W2)∆Pββ + WI∆Pαβ + WS∆Pβα + W2∆Pαα

[17]



1 3

αα

ββ

αβ

βα

WI

WI

WS

W0

W2

WS

Figure 1. Transitions and
associated rate constants
for a two spin system.

Now utilizing <Iz>(t) = Tr{σ(t) Iz} = σ11 + σ22 - σ33 - σ44 = Pαα  + Pαβ -

Pβα - Pββ and <Sz>(t) = Tr{σ(t) Sz} = σ11 - σ22 + σ33 - σ44 = Pαα  - Pαβ + Pβα - Pββ

leads to

    

d∆Iz (t)
dt

= − (W0 + 2WI + W2 )∆Iz (t) − (W2 − W0 )∆Sz (t)

d∆Sz (t)
dt

= − (W0 + 2WS + W2 )∆Sz (t) − (W2 − W0 )∆Iz (t)
[18]

in which ∆Iz(t) = <Iz>(t) - <I
0
z > and <I

0
z > is the equilibrium magnitude of the

Iz operator. Corresponding relationships hold for Sz . Making the

identifications ρI = W 0 + 2W I + W 2, ρS = W 0 + 2W S + W 2, and σIS = W 2 - W 0

leads to the Solomon equations for a two spin system (6) :

  

d∆Iz t( )
dt

= −ρI∆Iz t( ) − σ IS∆Sz t( )

d∆Sz t( )
dt

= −ρS∆Sz t( ) − σ IS∆Iz t( )
[19]

The rate constants ρI and ρS  are the auto-relaxation rate constants (or the

spin-lattice relaxation rate constants, R1I and R1S, in the Bloch terminology)

for the I and S  spins, respectively, and σ IS is the cross-relaxation rate

constant  for exchange of magnetization between the two spins.
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The Solomon equations easily can be extended to N  interacting spins:

  

d∆Ikz t( )
dt

= −ρk∆Ikz t( ) − σkj∆I jz
j≠k
∑ t( ) [20]

in which

  
ρk = ρkj

k≠ j
∑ [21]

reflects the relaxation of the k th spin by all other spins (in the absence of

interference effects, see §2.1 below). Equation [20] written in matrix

nomenclature as,

    

d∆Mz t( )
dt

= −R∆Mz t( ) [22]

in which R  is a N  × N  matrix with elements Rkk = ρk and Rkj = σkj, and

∆M z(t) is a N  × 1 column vector with entries ∆M k(t) = ∆Ikz(t). The Solomon

equations in matrix form have the formal solution:

∆M z(t) = e-R t  ∆M z(0) = U -1e-D tU  ∆M z(0) [23]

in which D  is a diagonal matrix of the eigenvalues of R , U  is a unitary

matrix and,

D = URU-1 [24]

is the similarity transformation that diagonalizes R . These differential

equations show that if the populations of the energy levels of the spin

system are perturbed from equilibrium, then relaxation of a particular

spin is in general a multi-exponential process.

For a two-spin system,
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R =
ρI σ IS

σ IS ρS











D =
λ+ 0
0 λ−











λ± = 1
2 ρI + ρS( ) ± ρI − ρS( )2 + 4σ IS

2[ ]1 2







U =

−σ IS

ρI − λ+( )2 + σ IS
2[ ]1/2

−σ IS

ρI − λ−( )2 + σ IS
2[ ]1/2

ρI − λ+

ρI − λ+( )2 + σ IS
2[ ]1/2

ρI − λ−

ρI − λ−( )2 + σ IS
2[ ]1/2























[25]

and upon substituting into [23], the result obtained is

    

∆Iz (t)
∆Sz (t)









 =

aII (t) aIS (t)
aSI (t) aSS (t)











∆Iz (0)
∆Sz (0)









 [26]

in which

    

aII (t) = 1
2 1− ρI − ρS

λ+ − λ−( )






exp(− λ−t) + 1+ ρI − ρS

λ+ − λ−( )






exp(− λ+t)













aSS (t) = 1
2 1+ ρI − ρS

λ+ − λ−( )






exp(− λ−t) + 1− ρI − ρS

λ+ − λ−( )






exp(− λ+t)













aIS (t) = aSI (t) = −σ IS
λ+ − λ−( ) exp(− λ−t) − exp(− λ+t)[ ]

[27]

These equations frequently are written in the form,
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aII (t) = 1
2 1− ρI − ρS

RC







+ 1+ ρI − ρS
RC







exp(− RCt)












exp(− RLt)

aSS (t) = 1
2 1+ ρI − ρS

RC







+ 1− ρI − ρS
RC







exp(− RCt)












exp(− RLt)

aIS (t) = aSI (t) = −σ IS
RC

1− exp(− RCt)[ ]exp(− RLt)

[28]

by defining the cross rate constant, RC , and a leakage rate constant, RL:

    RC = λ+ − λ− = [(ρI − ρS )2 + 4σ IS
2 ]1/2

RL = λ– [29]

If ρI = ρS = ρ, and σIS = σ, [27] simplifies to:

    

aII (t) = aSS (t) = 1
2 exp − ρ − σ( )t{ } 1+ exp(−2σt)[ ]

aIS (t) = aSI (t) = − 1
2 exp − ρ − σ( )t{ } 1− exp(−2σt)[ ]

[30]

The time-dependence of the matrix elements aII(t) and aIS(t) are

illustrated in Figure 2.

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20

a ij(t)

t (sec)

Figure 2. Time
dependence of (—
—) aII(t) and (- -
-) a IS ( t)
calculated using
[30] with ρ = 0.30
s-1 and σ  = -0.15 s-

1.



1 7

To illustrate aspects of longitudinal relaxation as exemplified by the

Solomon equations, four different experiments are analyzed. For simplicity,

a homonuclear spin system with γI=γS , ρ I = ρS  = ρ , and σ IS = σ  are

assumed. The experiments use the pulse sequence:

180° – t – 90° – acquire [31]

The initial state of the longitudinal magnetization is prepared by

application of the 180° pulse to thermal equilibrium magnetization. The

longitudinal magnetization relaxes according to the Solomon equations

during the delay t. The final state of the longitudinal magnetization is

converted into transverse magnetization by the 90° pulse and recorded

during the acquisition period.

In the selective inversion recovery experiment, the 180° pulse is

applied selectively to the I spin. The initial conditions are ∆Iz(0) = <Iz>(0) -

<Iz
0> = -2<Iz

0>, and ∆Sz(0) = <Sz>(0) - <Sz
0> = 0. The time decay of the I spin

magnetization is given by

 
    

Iz (t) Iz
0 = 1− exp − ρ − σ( )t{ } 1+ exp(−2σt)[ ] [32]

and is generally bi-exponential. In the initial rate regime, the slope of the

recovery curve is given by

    

d Iz (t) Iz
0( )

dt
t=0

= 2ρ [33]

In the non-selective inversion recovery experiment, the 180° pulse is non-

selective. The initial conditions are ∆Iz(0) = <Iz>(0) - <Iz
0> = -2<Iz

0> and ∆Sz(0)
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= <Sz>(0) - <Sz
0> = -2<Sz

0>. The time course of the I spin magnetization is

given by

    

Iz (t) Iz
0 = 1− exp − ρ − σ( )t{ } 1+ exp(−2σt)[ ]

+ Sz
0 Iz

0( ) exp − ρ − σ( )t{ } 1− exp(−2σt)[ ]

= 1− 2 exp − ρ + σ( )t{ }

[34]

in which the last line is obtained by using <Sz
0>/<Iz

0> = γS/γI = 1. The

recovery curve is mono-exponential with rate constant ρ  + σ . In the initial

rate regime,

    

d Iz (t) Iz
0( )

dt
t=0

= 2 ρ + σ( ) [35]

In the transient NOE experiment, the S  spin longitudinal magnetization is

inverted with a selective 180° pulse to produce initial conditions ∆ Iz(0) =

<Iz>(0)- <Iz
0> = 0 and ∆Sz(0) = <Sz>(0) - <Sz

0> = - 2<Sz
0>. The time course of the I

spin magnetization is given by

    

Iz (t) Iz
0 = 1+ Sz

0 Iz
0( ) exp − ρ − σ( )t{ } 1− exp(−2σt)[ ]

= 1+ exp − ρ − σ( )t{ } 1− exp(−2σt)[ ]
[36]

and is bi-exponential. In the initial-rate regime,

    

d Iz (t) Iz
0( )

dt
t=0

= 2σ [37]

Thus, the initial rate of change of the I spin intensity in the transient NOE

experiment is proportional to the cross-relaxation rate, σ . In the decoupled
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inversion recovery experiment, the S  spin is irradiated by a weak selective

rf field (so as not to perturb the I spin) throughout the experiment in

order to equalize the populations across the S  spin transitions. In this

situation, <Sz >(t) = 0 for all t, and the S  spins are said to be saturated.

Equation [19] reduces to

    

d Iz (t)
dt

= −ρ Iz (t) − Iz
0[ ] + σ Sz

0

= −ρ Iz (t) − Iz
0 1+ σ

ρ
















[38]

Following the 180° pulse, ∆Iz(0)= <Iz>(0) - <Iz
0> = - 2<Iz

0> and the time course

of the I spin magnetization is given by

    
Iz (t) Iz

0 = 1+ σ
ρ

− 2 + σ
ρ







exp −ρt( ) [39]

In the initial-rate regime,

d Iz (t) Iz
0( )

dt
t=0

= 2ρ + σ [40]

In this case, the recovery curve is mono-exponential with rate constant ρ .

The above analyses indicate that, even for an isolated two spin system, the

time dependence of the longitudinal magnetization usually is bi-

exponential. The actual time course observed depends upon the initial

condition of the spin system prepared by the NMR pulse sequence.

Examples of the time courses of the I spin magnetization for these

experiments are given in Figure 3.
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Figure 3. Magnetization
decays for inversion
recovery experiments. (—
—) selective inversion
recovery calculated
using [32]; (· · ·) non-
selective inversion
recovery calculated
using [34]; (– · –)
transient NOE recovery
calculated using [36]; and
(– – –) decoupled
inversion recovery
calculated using [39].
Calculations were
performed for a
homonuclear IS  spin
system with γI = γS , ρ =
0.30 s-1, and σ = -0.15 s-1.

The present derivation does not provide theoretical expressions for

the transition rate constants, W 0 W I, W S , and W 2. Bloembergen, et al. (5)

derived expressions for the transition rate constants; however, herein, the

transition rate constants will be calculated using the semi-classical

relaxation theory as described in §2. As will be shown, the transition rate

constants depend upon the different frequency components of the

stochastic magnetic fields [113]. Thus, the transition characterized by W I is

induced by molecular motions that produce fields oscillating at the Larmor

frequency of the I spin, and the transition characterized by W S  is induced

by molecular motions that produce fields oscillating at the Larmor

frequency of the S  spin. The W 0 pathway is induced by fields oscillating at

the difference  of the Larmor frequencies of the I and S  spins, and the W 2

pathway is induced by fields oscillating at the sum  of the Larmor

frequencies of the two spins. Most importantly, the cross-relaxation rate

constant is non-zero only if W 2 - W 0  0; therefore, the relaxation

mechanism must generate non-zero rate constants for the flip-flip (double
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quantum) and flip-flop (zero-quantum) transitions. For biological

macromolecules, dipolar coupling between nuclear spins is the main

interaction for which W 2 and W 0 are non-zero. The Solomon equations are

central to the study of the NOE and will be discussed in additional detail in

§7.

1.3 Bloch, Wangsness and Redfield theory

A microscopic semi-classical theory of spin relaxation was

formulated by Bloch, Wangsness and Redfield (BWR) and has proven to be

the most useful approach for practical applications (7, 8). In the semi-

classical approach the spin system is treated quantum mechanically and

the surroundings (the heat bath or lattice) are treated classically. This

treatment suffers primarily from the defect that the spin system evolves

toward a final state in which energy levels of the spin system are

populated equally. Equivalently, the semi-classical theory is formally

correct only for an infinite Boltzmann spin temperature; at finite

temperatures, an ad hoc correction is required to the theory to ensure that

the spin system relaxes toward an equilibrium state in which the

populations are described by a Boltzmann distribution. A fully quantum

mechanical treatment of spin relaxation overcomes this defect and predicts

the proper approach to equilibrium; however, the computational details of

the quantum mechanical relaxation theory are outside the scope of this

text (2, 8) .

2 The Master Equation

In the semi-classical theory of spin relaxation, the Hamiltonian for

the system is written as the sum of a deterministic quantum-mechanical
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Hamiltonian that acts only on the spin system, Hdet(t) and a stochastic

Hamiltonian, H1(t) that couples the spin system to the lattice:

H(t) = Hdet(t) + H1(t) = H0 + Hrf(t) + H1(t) [41]

in which H0 represents the Zeeman and scalar coupling Hamiltonians and

H rf(t) is the Hamiltonian for any applied rf fields. The Liouville equation of

motion of the density operator is:

dσ(t)/dt = -i [H(t), σ(t) ] [42]

The Hamiltonians Hrf(t) and H1(t) are regarded as time-dependent

perturbations acting on the main time-independent Hamiltonian, H0. The

explicit influence of H0 can be removed by transforming the Liouville

equation into a new reference frame, which is called conventionally the

interaction frame. In the absence of an applied rf field (see §2.3 for the

effects of rf fields), the density operator and stochastic Hamiltonian in the

interaction frame are defined as

σT(t) = exp{iH0t} σ(t) exp{-iH0t} [43]

H
T
1(t) = exp{iH0t} H1(t) exp{-iH0t} [44]

The form of the transformed Liouville equation is determined as follows:
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dσσT (t)
dt

= i exp(iH 0t)H 0σσ(t) exp(− iH 0t) − i exp(iH 0t)σσ(t)H 0 exp(− iH 0t)

+ exp(iH 0t)
dσσ(t)

dt
exp(− iH 0t)

= i exp(iH 0t)[H 0 ,, σσ(t)] exp(− iH 0t) − i exp(iH 0t)[H 0 ++ H 1(( t )) ,, σσ(t)] exp(− iH 0t)

= − i exp(iH 0t)[H 1(( t )) ,, σσ(t)] exp(− iH 0t)

= − i exp(iH 0t)H 1(( t )) σσ(t) exp(− iH 0t) + i exp(iH 0t)σσ(t)H 1(( t )) exp(− iH 0t)

= − iH 1
T (( t )) σσT (t) + iσσT (t)H 1

T (( t ))

[45]

with the final result that,

dσΤ(t)/dt = -i [H
T
1(t), σΤ(t)] [46]

The transformation into the interaction frame is isomorphous to the

rotating frame transformation; however, important differences exist

between the two. The rotating frame transformation removes the explicit

time-dependence of the rf Hamiltonian and renders the Hamiltonian time-

independent in the rotating frame. The Hamiltonian H0 is active in the

rotating frame. The interaction frame transformation removes the explicit

dependence on H0; however, H
T
1(t) remains time dependent. As discussed in

§2.3, the rotating frame and interaction frame transformations are

performed sequentially in some circumstances.

Equation [46] can be solved by successive approximations  to second

order as illustrated below. First, [46] is formally integrated:
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dσσT ( ′t )
d ′t

= − i H 1
T ( ′t ), σσT ( ′t )[ ]

dσσT ( ′t )
0

t

∫ = − i d ′t H 1
T ( ′t ), σσT ( ′t )[ ]

0

t

∫

σσT (t) = σσT (0) − i d ′t H 1
T ( ′t ), σσT ( ′t )[ ]

0

t

∫

[47]

The last line of [47] can be written equivalently as

      
σσT ( ′t ) = σσT (0) − i d ′′t H 1

T ( ′′t ), σσT ( ′′t )[ ]
0

′t

∫ [48]

If [48] is substituted for σT(t ′) in [47], the result obtained is

      

σσT (t) = σσT (0) − i d ′t H 1
T ( ′t ), σσT (0) − i d ′′t H 1

T ( ′′t ), σσT ( ′′t )[ ]
0

′t

∫










0

t

∫

= σσT (0) − i d ′t H 1
T ( ′t ), σσT (0)[ ]

0

t

∫ − d ′t d ′′t H 1
T ( ′t ), H 1

T ( ′′t ), σσT ( ′′t )[ ][ ]
0

′t

∫
0

t

∫

[49]

Repeating the above, procedure, [49] can be written as

      
σσT ( ′′t ) = σσT (0) − i d ′t H 1

T ( ′t ), σσT (0)[ ]
0

′′t

∫ − d ′t d ′′′t H 1
T ( ′t ), H 1

T ( ′′′t ), σσT ( ′′′t )[ ][ ]
0

′t

∫
0

′′t

∫

[50]

and substituted for σT(t′′ ) in [49] to yield

      

σσT (t) = σσT (0) − i d ′t H 1
T ( ′t ), σσT (0)[ ]

0

t

∫ − d ′t d ′′t H 1
T ( ′t ), H 1

T ( ′′t ), σσT (0)[ ][ ]
0

′t

∫
0

t

∫
+  higher  order  terms

[51]
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If the higher order terms are dropped, then all three terms on the left of

the equal sign depend on σT(0). Having truncated the expansion for σT(t) to

second order, a differential equation for σT(t) can now be derived. First,

[51] is differentiated to yield

      

σσT (t)
dt

= − i H 1
T (t), σσT (0)[ ] − d ′′t H 1

T (t), H 1
T ( ′′t ), σσT (0)[ ][ ]

0

t

∫ [52]

Next a change of variable τ  = t - t′′  yields

      

σσT (t)
dt

= − i H 1
T (t), σσT (0)[ ] − dτ H 1

T (t), H 1
T (t − τ ), σσT (0)[ ][ ]

0

t

∫ [53]

This equation describes the evolution of the density operator for a

particular realization of H1(t). To obtain the corresponding equation for a

macroscopic sample, both sides of the equation must be averaged over the

ensemble of subsystems (each described by a particular realization of

H 1(t)). The ensemble average is performed under the following

assumptions:

1. The ensemble average of H
T
1(t) is zero. Any components of H

T
1(t)

that do not vanish upon ensemble averaging can be

incorporated into H0.

2. H
T
1(t) and σT(t) are uncorrelated so that the ensemble average

can be taken independently for each quantity.

3. The characteristic correlation time for H
T
1(t), τ c, is much shorter

than t. In liquids, τ c is on the order of the rotational diffusion

correlation time for the molecule, 10-12–10-18 s.
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The result after performing the ensemble average is

      

dσσT (t)
dt

= − dτ
0

t

∫ [H 1
T (t), [H 1

T (t − τ ), σσT (0)]] [54]

in which the overbar indicates ensemble averaging over the stochastic

Hamiltonians and σT(t) now designates the ensemble average of the

density matrix (the overbar is omitted). Equation [54] is converted into a

differential equation for σT(t) by making a number of a priori assumptions

whose plausibility can be evaluated post facto:

1. σT(0) can be replaced with σT(t) on the right hand side of [54].

Eventually, the present theory will predict that the relaxation

rate constants for the density matrix elements, σ ij, are on the

order of       Rij = H 1
2 t( )τc. To first order, the fractional change in

σ(t) is given by [σ(t) - σ(0)] / σ(0) = -Rijt. For a time t << 1/Rij,

σ(t) and σ(0) differ negligibly and σT(t) can be substituted for

σT(0) in [54].

2. The limit of the integral can be extended from t to infinity. For

times τ >> τc,  H
T
1(t) and  H

T
1(t-τ ) are uncorrelated and the value

of the integrand in [54] is zero. Therefore, if t >> τc, extending

the limit to infinity does not affect the value of the integral.

3. σT(t) can be replaced by σT(t) - σ0, in which

σ0 = exp[-ihH0/(kBT)]/Tr{exp[-ihH0/(kBT)]} [55]

is the equilibrium density operator. By construction, σ
T
0 = σ0.

This assumption insures that the spin system relaxes toward
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thermal equilibrium. The term σ0 naturally enters the

differential equation in a full quantum mechanical derivation.

More detailed discussion of the range of validity of these assumptions can

be found elsewhere (2, 3). The resulting differential equation is

      

dσσT (t)
dt

= − dτ
0

∞

∫ [H 1
T (t), [H 1

T (t − τ ), σσT (t) − σσ0 ]] [56]

which is valid for a “coarse-grained time scale” given by τc << t <<

      
H 1

2 t( )τc






−1
. The restrictions on t would appear to constitute a fatal

weakness because relaxation in NMR experiments normally must be

considered for times T  > 1/Rij. To rectify this, T  is defined as T  = nt, in

which n  is an integer and t satisfies the above “coarse-grained” temporal

restrictions, and relaxation over the period T  is calculated by piecewise

evaluation of [56] for each of the n  intervals in succession.

To proceed further, the stochastic Hamiltonian is decomposed as

        
H 1(t) = Fk

q (t) Ak
q

q=−k

k

∑ [57]

in which F
q
k(t) is a random function of spatial variables and A

q
k  is a tensor

spin operator (2, 9, 10). Additionally, A -q
k

 ≡ A
q
k

† and F -q
k

(t) ≡ F
q
k*(t). For the

Hamiltonians of interest in NMR spectroscopy, the rank of the tensor

operator, k , is one or two, and the decomposition is always possible. To

proceed, the operators A
q
k  are expanded in terms of basis operators,

      
Ak

q = Akp
q

p
∑ = cp

qH p
p
∑ [58]
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that satisfy the relationship:

      
H 0 , H p[ ] = ω pH p [59]

H p  and ωp  are called the eigenfunctions and eigenfrequencies of the

Hamiltonian commutation superoperator. Equation [59] implies the

additional property,

        exp -- iH 0t( )H p exp iH 0t( ) = exp − iω pt( )H p [60]

which can be proven as follows. First,

        

d
dt

exp -- iH 0t( )H p exp iH 0t( ){ }
= − i exp -- iH 0t( )H 0H p exp iH 0t( ) + i exp -- iH 0t( )H pH 0 exp iH 0t( )
= − i exp -- iH 0t( ) H 0 ,, H p[ ]exp iH 0t( )
= − iω p exp -- iH 0t( )H p exp iH 0t( )

[61]

which implies:

        

dn

dtn
exp -- iH 0t( )H p exp iH 0t( ){ } = − iω p( )n exp -- iH 0t( )H p exp iH 0t( ) [62]

Therefore, the Taylor series expansion of the left hand side of [60] is

        

exp -- iH 0t( )H p exp iH 0t( )
= H p − iω ptH p + 1

2 ω p
2t2H p +. . .

= 1− iω pt + 1
2 ω p

2t2 +. . .{ }H p

= exp − iω pt( )H p

[63]

which completes the proof.
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For example, if H0 = ωIIz + ωSSz, then the single element operator

2IzS+ = IαS+ - IβS+ = |αα ><αβ | - |βα><ββ| is an eigenoperator with

eigenfrequency ωS:

      

H 0 , Iα S+ − Iβ S+[ ]
= ω I Iz + ωSSz( ) αα αβ − βα ββ( ) − αα αβ − βα ββ( ) ω I Iz + ωSSz( )
= ω I Iz αα αβ − Iz βα ββ − αα αβ Iz + βα ββ Iz( )

+ωS Sz αα αβ − Sz βα ββ − αα αβ Sz + βα ββ Sz( )
= 1

2 ω I αα αβ + βα ββ − αα αβ − βα ββ( )
+ 1

2 ωS αα αβ − βα ββ + αα αβ − βα ββ( )
= ωS αα αβ − βα ββ( )
= ωS Iα S+ − Iβ S+( )

[64]

Applying [60], in the interaction frame,

        

Ak
qT = exp{ iH 0t }Ak

q exp{− iH 0t } = exp{ iH 0t }Akp
q exp{− iH 0t }

p
∑

= Akp
q exp{ iω pt }

p
∑

[65]

        

Ak
−qT = exp{ iH 0t }Ak

−q exp{− iH 0t } = exp{ iH 0t }Akp
−q exp{− iH 0t }

p
∑

= Akp
−q exp{− iω pt }

p
∑

[66]

Substituting [57], [65] and [66] into [56] yields

      

dσσT (t)
dt

= − exp{ i(−ω ′p + ω p ) t }[ Ak ′p
′q , [ Akp

q , σσT (t) − σσ0 ]]
p, ′p
∑

q, ′q
∑

× Fk
′q (t) Fk

q (t − τ ) exp{− iω pτ }
0

∞

∫ dτ

[67]
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The imaginary part of the integral leads to second order frequency shifts

of the resonance lines, which are called dynamic frequency shifts; these

shifts may be included in H0 and are not considered further. Considering

only the real part of the integral, [67] can be written as

      

dσσT (t)
dt

= − 1
2 exp{ i(−ω ′p + ω p ) t }[ Ak ′p

−q , [ Akp
q , σσT (t) − σσ0 ]]

p, ′p
∑

q
∑ jq (ω p )

[68]

in which the power spectral density function, jq(ω), is given by

    

jq (ω ) = Re Fk
−q (t) Fk

q (t − τ )
−∞

∞
∫ exp{− iωτ }dτ









= Re Fk
q (t) Fk

−q (t + τ )
−∞

∞
∫ exp{− iωτ }dτ









[69]

and the random processes F
q
k(t) and F

q ′
k (t) have been assumed to be

statistically independent unless q ′  = -q ; therefore, the ensemble average in

[67] vanishes if q ′  ≠  -q . Terms in [68] in which |ωp −ωp ′ | >> 0 are non-secular

in the sense of perturbation theory , and do not affect the long-time

behavior of σT(t) because the rapidly oscillating factors exp{i(-ωp’+ωp )}

average to zero much more rapidly than relaxation occurs. Furthermore, if

none of the eigenfrequencies are degenerate, terms in [68] are secular  and

non-zero only if p  = p ′ ; thus,

      

dσT (t)
dt

= − 1
2 [ Akp

−q , [ Akp
q , σT (t) − σ0 ]]

p
∑

q
∑ jq (ω p ) [70]

This equation can be transformed to the laboratory frame to yield the

Liouville–von Neuman differential equation for the density operator:
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dσσ(t)
dt

= − i[H 0 , σσ(t)] − Γ̂Γ (σσ(t) − σσ0 ) [71]

in which the relaxation superoperator is

      
Γ̂Γ = 1

2 jq (ω p )[ Akp
−q , [ Akp

q ,  ]]
p
∑

q
∑ [72]

Two critical requirements for a stochastic Hamiltonian to be effective

in causing relaxation are encapsulated in [71]: (i) the double commutator

      
[Akp

−q ,[Akp
q ,σ(t) − σ0 ]]  must not vanish, and (ii) the spectral density function

for the random process that modulates the spin interactions must have

significant components at the characteristic frequencies of the spin system,

ωp . The former requirement can be regarded as a kind of selection rule for

whether the term in the stochastic Hamiltonian that depends upon the

operator A  is effective in causing relaxation of the density operator. In

most cases, the stochastic random process is a consequence of molecular

reorientational motions. This observation is central to the dramatic

differences in spin relaxation and, thus, in NMR spectroscopy, of rapidly

rotating small molecules and slowly rotating macromolecules.

Equation [71] can be converted into an equation for product operator,

or other basis operators, by expanding the density operator in terms of the

basis operators to yield the matrix form of the master equation,

    
dbr (t) dt = {− iΩrsbs (t) −

s
∑ Γrs [bs (t) − bs0 ]} [73]

in which

        Ωrs = < Br|[H 0 , Bs ] > / < Br|Br > [74]

is a characteristic frequency,
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Γrs = < Br|Γ̂Bs > / < Br|Br >

= 1
2 {< Br|[ Akp

−q , [ Akp
q , Bs ]]

p
∑

q
∑ > / < Br|Br > } jq (ω p )

[75]

is the rate constant for relaxation between the operators B r and B s, and

      bj (t) = < B j|σ (t) > [76]

For normalized basis operators with Tr{Br2} = Tr{Bs2}, Γ rs = Γ rs. Equations

[73]-[76] are the main results of this section for relaxation in the

laboratory reference frame. As shown by [73], the evolution of the base

operators for a spin system is described by a set of coupled differential

equations. Diagonal elements Γ rr are the rate constants for auto- or self-

relaxation of B r; off-diagonal elements Γ rs are the rate constants for cross-

relaxation between B r and B s. Cross-relaxation between operators with

different coherence orders is precluded as a consequence of restricting [73]

to secular contributions; for example, cross-relaxation does not occur

between zero and single quantum coherence. Furthermore, if none of the

transitions in the spin system are degenerate (to within approximately a

linewidth), then cross-relaxation rate constants between off-diagonal

elements of the density operator in the laboratory reference frame are also

zero. Consequently, the matrix of relaxation rate constants between

operators has a characteristic block diagonal form, known as the Redfield

kite, illustrated in Figure 4.
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Populations   ZQT                    1QT                   2QT

P
opulations   Z

Q
T

                    1Q
T

                   2Q
T

Figure 4. Redfield kite.
Solid blocks indicate
non-zero relaxation rate
constants between
operators in the absence
of degenerate
transitions. Populations
have non-zero cross
relaxation rate
constants, but all other
coherences relax
independently. If
transitions are
degenerate, the dashed
blocks indicate the
additional non-zero
cross relaxation rate
constants observed
between coherences
with the same
coherence level.

Calculation of relaxation rate constants involves two steps: (i)

calculation of the double commutator and trace formation over the spin

variables, and (ii) calculation of the spectral density function. These two

calculations are pursued in the following sections.

2.1 Interference effects

In many instances, more than one stochastic Hamiltonian capable of

causing relaxation of a given spin may be operative. In this circumstance,

equation [57] is generalized to

        
H 1(t) = Fmk

q (t) Amk
q

q=−k

k

∑
m
∑ [77]

in which the summation over the index m  refers to the different relaxation

interactions or stochastic Hamiltonians. Using [77] rather than [57] in the

above derivation leads once more to [73] with Γ rs given by a generalization

of [75]
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Γrs = 1
2 {< Br|[ Amkp

−q , [ Amkp
q , Bs ]]

p
∑

q
∑ > / < Br|Br > } jq (ω p )

m
∑

+ 1
2 {< Br|[ Amkp

−q , [ Ankp
q , Bs ]]

p
∑

q
∑ > / < Br|Br > } jmn

q (ω p )
m,n
m≠n

∑

= Γrs
m

m
∑ + Γrs

mn

m,n
m≠n

∑

[78]

in which the cross-spectral density is

    
jmn
q (ω ) = Re Fmk

q (t) Fnk
−q (t + τ )

−∞

∞
∫ exp{− iωτ }dτ









[79]

Γ
m
rs is the relaxation rate due to the mth  relaxation mechanism and Γ

m n
r s  is

the relaxation rate constant arising from interference or cross-correlation

between the mth  and nth  relaxation mechanisms.

Clearly,   jmn
q ω( ) = 0 unless the random processes F

q
mk (t) and F

q
n k ( t)

are correlated. In the absence of correlation between the different

relaxation mechanisms, Γ
m n
r s  = 0 for all m  and n  and each mechanism

contributes additively to relaxation of the spin system.

The two most frequently encountered interference or cross-

correlation effects in biological macromolecules are interference between

dipolar and anisotropic chemical shift (CSA) interactions; and interference

between the dipolar interactions of different pairs of spins. The

prototypical example of the former is the interference between the dipolar

and CSA interactions for 15N (11). The prototypical example of the latter is

the interference between the dipolar interactions in a I2S  or I3S  spin

system such as a methylene (I2 represents the two methylene protons; S

represents either a remote proton or the methylene 13C) or methyl group
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(I3 represents the three methyl protons; S  represents either a remote

proton or the methyl 13C) (12). Most importantly, interference effects can

result in cross relaxation between pairs of operators for which cross

relaxation would not be observed otherwise. Thus, the observation of

otherwise “forbidden” cross relaxation pathways is one of the hallmarks of

interference effects (13) .

2.2 Like and unlike spins

A distinction frequently is made between like and unlike spins and

relaxation rate constants are derived independently for each case (2 ). Like

spins are defined as spins with identical Larmor frequencies and unlike

spins are defined as spins with widely different Larmor frequencies. Such

distinctions can obscure the generality of the theory embodied in [73]. In

actuality, the presence of spins with degenerate Larmor frequencies has

straightforward consequences for relaxation. First, particular operators

A
q
kp  in [57] may become degenerate (i.e. have the same eigenfrequency,

ωp) and are therefore secular with respect to each other. Thus, prior to

applying the secular condition, the set of A
q
kp  must be redefined as

    
Akp

q = Akm
q

m
∑ [80]

in which the summation extends over the operators for A
q
km  for which ωp =

ωm . For example, operators A
q
km  with eigenfrequencies of 0 and ωI - ωS

belong to different orders p  for unlike spins; the eigenfrequencies are

degenerate for like spins and the corresponding operators would be

summed to yield a single operator with eigenfrequency of zero. Second, for

spins that are magnetically equivalent, such as the three protons in a

methyl group, basis operators that exhibit the maximum symmetry of the
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chemical moiety can be derived using group theoretical methods (9, 14) .

Although such basis operators simplify the resulting calculations, the group

theoretical treatment of relaxation of magnetically equivalent spins is

beyond the scope of the present text; the interested reader is referred to

the original literature  (9, 14). As the distinction between like and unlike

spins is artificial within the framework of the semi-classical relaxation

theory, the following discussions will focus on spin systems without

degenerate transitions; results of practical interest that arise as a

consequence of degeneracy will be presented as necessary.

2.3 Relaxation in the rotating frame

In the presence of an applied rf field (for example in a ROESY or

TOCSY experiment), the transformation into the interaction frame involves

first a transformation into a rotating frame to remove the time dependence

of HRF(t) followed by transformation into the interaction frame of the

resulting time independent Hamiltonian. If H0 ≈  Hz, that is if the Zeeman

Hamiltonian is dominant (i.e. ignoring the scalar coupling Hamiltonian),

then the interaction frame is equivalent to a doubly rotating tilted frame.

For macromolecules with ω1τc << 1, in which ω1 = -γB1 is the strength of the

applied rf field and τ c is the rotational correlation time of the molecule,

jq(ω+ω1) ≈  jq(ω), and approximate values for the relaxation rate constants in

the rotating frame can be calculated using [76] in which the operators B r

and B s are replaced by the corresponding operators in the tilted frame, B ′ r

and B ′s. Thus,

      

′Γrs = < ′Br|Γ̂ ′Bs > / < ′Br| ′Br >

= 1
2 {< ′Br|[ Akp

−q , [ Akp
q , ′Bs ]]

p
∑

q
∑ > / < ′Br| ′Br > } jq (ω p )

[81]
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For an rf field applied with x-phase, the Cartesian operators are

transformed as

    

′Ix

′Iy

′Iz

















=
cos θI 0 − sin θI

0 1 0
sin θI 0 cos θI

















Ix
Iy
Iz

















[82]

in which

 tanθI = ω1/(ωI-ω0) [83]

and ωI-ω0 is the resonance offset frequency in the rotating reference frame

(if B r and B s refer to different spins, then θΙ  may differ for each spin). The

relative orientation of the tilted and untilted reference frames are

illustrated in Figure 5. If θI = 0, either because ω1 = 0 or because ω1 <<

|ωI-ω0|, [81] reduces to [76]; if the rf field is applied on-resonance (ωI =ω0 ),

θI = π/2. If the rf field is applied midway between the Larmor frequencies

of two spins, or if ω1 >> ωI-ω0 for the spins of interest, then the effective

frequencies in the rotating frame are degenerate, and the relaxation

superoperator in the rotating frame is calculated as for like spins (§2.2).

Iz

Ix

θ
I'z

-Iy = -I'y

I'x

Figure 5. Relative
orientations of the
laboratory and tilted
reference frames used
to determine the
transformation [82].
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In general, operators that do not commute with the Hamiltonian in

the rotating frame decay rapidly as a consequence of rf inhomogeneity.

Thus, if a CW rf field is applied, as in a ROESY experiment, only operators

with effective frequencies in the rotating frame equal to zero must be

considered; such operators are usually limited to longitudinal operators

and homonuclear zero quantum operators. If the rf field is phase

modulated to compensate for resonance offset and rf inhomogeneity, e.g.

by applying the DIPSI-2 or other coherent decoupling scheme, single and

multiple quantum operators also must be considered (15). For operators

containing transverse components in the rotating frame, the relaxation rate

constant given by [81] is an instantaneous rate constant; the effective

average rate constant is obtained by averaging the rate constant over the

trajectory followed by the operator under the influence of the Hamiltonian

in the rotating frame (16 ) .

3 Spectral density functions

A general expression for the spectral density function is given by

[69]. For relaxation in isotropic liquids in the high-temperature limit (17) ,

jq(ω) = (-1)qj0(ω) ≡ (-1)qj(ω) [84]

therefore, only one auto-spectral density function need be calculated. The

relaxation mechanisms of interest in the present context arise from

tensorial operators of rank k  = 2. The random functions F
0
2(t) can be

written in the form

F
0
2(t) = c0(t) Y

0
2[Ω(t)] [85]

and, consequently,
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j ω( ) = Re c0 t( )c0 t + τ( )Y2
0 Ω t( )[ ]Y2

0 Ω t + τ( )[ ]exp − iωτ( )dτ
−∞

∞

∫












= Re C τ( ) exp − iωτ( )dτ
−∞

∞

∫












[86]

in which the stochastic correlation function is given by

    C τ( ) = c0 t( )c0 t + τ( )Y2
0 Ω t( )[ ]Y2

0 Ω t + τ( )[ ] [87]

c0(t) is a function of physical constants and spatial variables, Y
0
2[Ω(t)] is a

modified second order spherical harmonic function, Ω (t) = {θ(t), φ(t)} are

polar angles in the laboratory reference frame. The polar angles define the

orientation of a unit vector that points in the principal direction for the

interaction. For the dipolar interaction, the unit vector points along the line

between the two nuclei (or between the nucleus and the electron for

paramagnetic relaxation). For CSA interaction with an axially symmetric

chemical shift tensor, the unit vector is collinear with the symmetry axis of

the tensor. For the quadrupolar interaction, the unit vector is collinear with

the symmetry axis of the electric field gradient tensor. The modified

spherical harmonics are given in Table 1 (18). The functions c0(t) for

dipolar, CSA and quadrupolar interactions are given in Table 2.
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Table 1: Modified Second Order Spherical Harmonics

q Y
q
2 Y -q

2  = Y
q
2

*

0 (3 cos2θ - 1)/2 (3 cos2θ - 1)/2

1 √3/2 sinθ cosθ eiφ √3/2 sinθ cosθ e-iφ

2 √3/8 sin2θ  ei2φ √3/8 sin2θ   e-i2φ

The modified spherical harmonic functions are normalized
(to give the conventional spherical harmonic functions)
by multiplying by [5/(4π)]1 /2 .

Table 2: Spatial Functions for Relaxation Mechanisms

Interact ion c(t)

Dipolar √ 6 (µ0/4π)h γIγS rIS(t)- 3

CSA1 √2/3 (σ || - σ⊥ ) γIB0

Quadrupolar2       e
2qQ / [4hI (2I − 1)]

1The chemical shift tensor is assumed to be axially
symmetric with principal values σzz = σ || and σxx  = σyy  = σ⊥ .

2Q  is the nuclear quadrupole moment and e  is the charge of
the electron. The electric field gradient tensor is assumed
to be axially symmetric with principal value V zz  = eq , and
V xx  = V yy .

The power spectral density function measures the contribution to

orientational (rotational) dynamics of the molecule from motions with

frequency components in the range ω toω + dω. Not surprisingly, as a

molecule rotates stochastically in solution due to Brownian motion, the
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oscillating magnetic fields produced are not distributed uniformly over all

frequencies. A small organic molecule tumbles at a greater rate than a

biological macromolecule in the same solvent, and the distribution of

oscillating magnetic fields resulting from rotational diffusion of the two

molecules will be different.

For a rigid spherical molecule undergoing rotational Brownian

motion, c0(t) = c0 is a constant and the auto-spectral density function is

    j(ω ) = d00J (ω ) [88]

in which the orientational spectral density function is

    
J (ω ) = Re C00

2 (τ ) exp{− iωτ }dτ
−∞

∞
∫









[89]

the orientational correlation function is

    C00
2 (τ ) = Y2

0[Ω(t)]Y2
0[Ω(t + τ )] [90]

and d00 =     c0
2 . For isotropic rotational diffusion of a rigid rotor or spherical

top, the correlation function is given by (12) ,

    C00
2 (τ ) = 1

5 exp −τ / τc[ ] [91]

in which the correlation time, τ c, is approximately the average time for the

molecule to rotate by one radian. The correlation time varies due to

molecular size, solvent viscosity and temperature, but generally τ c is of the

order of picoseconds for small molecules and of the order of nanoseconds

for biological macromolecules in aqueous solution (§6.1). The

corresponding spectral density function is,
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J (ω ) = 2

5
τc

(1+ ω2τc
2 )

[92]

The functional form of the spectral density function for a rigid rotor is

Lorentzian; a graph of J(ω) versus ω is shown in Figure 6. The plot of J(ω) is

relatively constant for ω2τ 2c << 1 and then begins to decrease rapidly at

ω2τ2c  1. If molecular motion is sufficiently rapid to satisfy ω2τ 2c << 1, then

the extreme narrowing condition obtains and J(ω) ≈  J(0). For sufficiently

slow molecular motion, ω2τ2c >> 1, J(ω) ∝  ω-2, and the slow tumbling regime

or spin diffusion limit is reached.

0

1

2

3

4

5

100 102 104 106 108 1010

J(
ω

) 
×  

10
-9

 (s
ec

)

ω (rad/sec)

Figure 6. Spectral
density functions for
an isotropic rotor.
Calculations were
performed using [92]
with (——) τc = 2 ns and
(· · ·) τ c  = 10 ns.

Local fields are modulated stochastically by relative motions of

nuclei in a molecular reference frame as well as by overall rotational

Brownian motion. Rigorously for isotropic rotational diffusion and

approximately for anisotropic rotational diffusion, the total correlation

function is factored as (19) ,

C(τ) = CO(τ)CI(τ) [93]
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The correlation function for overall motion, CO(τ ), is given by [91]. The

correlation function for internal motions, CI(τ ), is given by [87], in which

the orientational variables are defined in a fixed molecular reference

frame, rather than the laboratory reference frame, Calculations of C I(τ )

have been performed for a number of diffusion and lattice jump models

for internal motions. N -site lattice jump models assume that the nuclei of

the relevant spins jump between N  allowed conformations. The jumps are

assumed to be instantaneous; therefore the transition rates reflect the

lifetimes of each conformation.

Rather than describing in detail calculations of spectral density

functions for diffusion and jump models of intramolecular motions, two

useful limiting cases of N -site models are given without proof (see (10) for

a more extensive review). The spectral density function depends upon the

time scale of the variation in the spatial variables, c0(t). If the transition

rates between sites approaches zero, then

    
j ω( ) = J ω( ) pκ c0κ

2

κ =1

N

∑ = J ω( )c0
2 [94]

in which pκ  is the population and c0κ  is the value of the spatial function for

site κ . If the transition rates between sites approaches infinity, then

    
j ω( ) = J ω( )

q=−2

q

∑ pκ c0κY2
q Ωk( )

κ =1

N

∑
2

= J ω( ) c0Y2
q Ω( )

2

m=−2

2

∑ [95]

in which Ω k are the polar angles for site k .

An extremely useful treatment that incorporates intramolecular

motions in addition to overall rotational motion is provided by the Lipari-
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Szabo model free formalism (19, 20). In this treatment, the spectral

density function is given by

    
j (ω ) = 2

5
c0
2 S2τc

1+ (ωτc )2
+ (1− S2 )τ

1+ (ωτ )2












[96]

in which     τ
−1 = τc

−1 + τe
−1, S2 is the square of the generalized order parameter

that characterizes the amplitude of the intramolecular motion in a

molecular reference frame, and τ e is the effective correlation time for

internal motions. The order parameter is defined by

    
S2 = c0

2





−1
c0Y2

q Ω( )
2

q=−2

2

∑ [97]

in which the overbar indicates an ensemble average performed over the

equilibrium distribution of orientations Ω  in the molecular reference

frame. The order parameter satisfies the inequality, 0 ≤  S2 ≤  1, in which

lower values indicate larger amplitudes of internal motions. A significant

advantage of the Lipari-Szabo formalism is that specification of the

microscopic motional model is not required. If τ e approaches infinity, [96]

reduces to the same form as [94]; if τ e approaches zero, [96] reduces to the

same form as [95]. Equation [96] has been used extensively to analyze spin

relaxation in proteins (21, 22) .

The expressions given in [94], [95], and [96] are commonly

encountered in discussions of dipolar relaxation between two spins, I and

S. Using c0(t) from Table 2 gives:

    j ω( ) = ζJ ω( )rIS
−6 [98]
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j ω( ) = ζJ ω( ) Y2
q Ωk( )
rIS

3

2

q=−2

2

∑ [99]

    
j (ω ) = 2

5
ζ rIS

−6 S2τc

1+ (ωτc )2
+ (1− S2 )τ

1+ (ωτ )2












[100]

    

S2 = rIS
−6





−1 Y2
q Ω( )
rIS

3

2

q=−2

2

∑ [101]

in which

      ζ = 6 (µ0 / 4π )hγ Iγ S[ ]2 [102]

Equation [98] (slow internal motion) is called “r-6 averaging” and [99] (fast

internal motion) is called “r-3 averaging” with respect to the conformations

of the molecule. The former equation is appropriate for treating the effects

of aromatic ring flips and the latter equation is appropriate for treating

methyl group rotations  in proteins (23, 24) .

The Lipari-Szabo model free formalism can be modified in a

straightforward fashion to account for cross-correlations between

relaxation interactions with fixed relative orientations (25). The cross-

spectral density function is given by

    

jmn (ω ) = 2
5

c0
mc0

n Smn
2 τc

1+ (ωτc )2
+

P2 cos θmn( ) − Smn
2{ }τ

1+ (ωτ )2

















[103]

in which     τ
−1 = τc

−1 + τe
−1,

    
Smn

2 = c0
mc0

n





−1
c0

mY2
q Ωm( ) c0

nY2
q Ωn( )

q=−2

2

∑ [104]
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P 2(x) = (3x2 - 1)/2, and θmn  is the angle between the principal axes for the

two interactions.

Other expressions for j(ω) have been derived for molecules that

exhibit anisotropic rotational diffusion or specific internal motional models;

although, the resulting expressions are often cumbersome (12) .

4 Relaxation mechanisms

A very large number of physical interactions give rise to stochastic

Hamiltonians capable of mediating spin relaxation. In the present context,

only the intramolecular magnetic dipolar, anisotropic chemical shift (CSA),

quadrupolar, and scalar coupling interactions will be discussed.

Intramolecular paramagnetic relaxation has the same Hamiltonian as for

nuclear dipolar relaxation, except that the interaction occurs between a

nucleus and an unpaired electron. Other relaxation mechanisms are of

minor importance for macromolecules or are only of interest in very

specialized cases. For spin 1/2 nuclei in diamagnetic biological

macromolecules, the dominant relaxation mechanisms are the magnetic

dipolar and anisotropic chemical shift mechanisms. For nuclei with spin >

1/2, notably 14N and 2H in proteins, the dominant relaxation mechanism is

the quadrupolar interaction.

Relaxation rate constants for nuclei in proteins depend upon a large

number of factors, including: overall rotational correlation times, internal

motions, the geometrical arrangement of nuclei, and the relative strengths

of the applicable relaxation mechanisms. If the overall correlation time and

the three-dimensional structural coordinates of the protein are known,

relaxation rate constants can be calculated in a relatively straightforward
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manner using expressions derived in the following sections.  In general, 1H

relaxation in proteins is dominated by dipolar interactions with other

protons (within approximately 5Å) and by interactions with directly

bonded heteronuclei. The latter arise from dipolar interactions with 13C

and 15N in labeled proteins or from scalar relaxation of the second kind

between the quadrupolar 14N nuclei and amide protons. Relaxation of

protonated 13C and 15N heteronuclei is dominated by dipolar interactions

with the directly bonded protons, and secondarily by CSA (for 15N spins

and aromatic 13C spins). Relaxation of unprotonated heteronuclei, notably

carbonyl 13C and unprotonated aromatic 13C spins, is dominated by CSA

interactions.

4.1 Intramolecular dipolar relaxation for IS spin system

Any magnetic nucleus in a molecule generates an instantaneous

magnetic dipolar field that is proportional to the magnetic moment of the

nucleus. As the molecule tumbles in solution, this field fluctuates and

constitutes a mechanism for relaxation of nearby spins. Most importantly

for structure elucidation, the efficacy of dipolar relaxation depends on the

nuclear moments and on the inverse sixth power of the distance between

the interacting nuclei. As a result, nuclear spin relaxation can be used to

determine distances between nuclei. Protons have a large gyromagnetic

ratio; therefore, dipole-dipole interactions cause the most efficient

relaxation of proton spins and constitute a sensitive probe for internuclear

distances.

Initially, a two spin system, IS, will be considered with ωI >> ωS and

scalar coupling constant JIS = 0. The energy levels of the spin system and
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the associated transition frequencies are shown in Figure 7. The terms A
q
2p

are given in Table 3. The spatial functions for the different interactions are

given in Tables 1 and 2.

αα

ββ

αβ

βα

ωI

ωI

ωS

ωS

ωI - ωS

ωI + ωS

Figure 7. Transitions and
associated
eigenfrequencies for a
two spin system.

Table 3: Tensor Operators for the Dipolar Interaction

q p A
q
2p A -q

2p
 = A

q
2p

† ωp

0 0 (2/√ 6 )IzSz (2/√ 6 )IzSz 0

0 1 -1/(2√ 6) I+S– -1/(2√ 6) I–S+ ωI - ωS

1 0 -(1/2) IzS + (1/2) IzS– ωS

1 1 -(1/2) I+S z (1/2) I–Sz ωI

2 0 (1/2) I+S+ (1/2) I–S– ωI + ωS

The relaxation rate constants are calculated using [75]. To aid in the

calculation of the double commutators, the commutation relations given in

Table 4 are useful. To begin, the identity operator can be disregarded

because it has no effect on the relaxation equations. Next, the block

structure of the relaxation matrix can be derived from the coherence
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orders of the operators and the secular condition. The zero order block

consists of the operators with coherence order equal to zero for both the I

and S  spins: Iz, Sz and 2IzSz. Each of the other operators consists of a

unique combination of coherence order for the I and S  spins; consequently,

each of these operators comprises a block of dimension one and each

operator relaxes independently of the others.

Table 4: Commutator Relationships1

[Ix, Iy] = iIz

[Iα , 2IβSγ] = 2[Iα , Iβ]Sγ

[2IαSγ, 2IβSε] = [Iα , Iβ]δγε

1Iα  = Ix , Iy , or Iz; Sγ = Sx , Sy , or Sz. Equivalent expressions
for S  operators are obtained by exchanging I  and S  labels.
δγε is the Kronecker delta.

The relaxation matrix for the zero order block has dimensions 3 × 3,

with individual elements, Γ rs, giving the rate constant for relaxation

between operators B r and B s for r, s = 1, 2, and 3 and B1 = Iz, B2 = Sz, and

B3 = 2IzSz. The double commutators [A -q
2p

, [A
q
2p, Iz]] are calculated as

follows for each combination of p  and q  in Table 3:



5 0

[A
0
20, [A

0
20, Iz]] = (2/3) [IzSz, [IzSz, Iz]] = 0

[A -0
21, [A

0
21, Iz]] = (1/24) [I–S+, [I+S–, Iz]] = -(1/24) [I–S+, I+S–]

= (1/12) {I–I+Sz - S–S+Iz}

= (1/24) {Iz - Sz}

[A
0
21, [A-0

21, Iz]] = (1/24) [I+S–, [I–S+, Iz]] = (1/24) [I+S–, I–S+]

= (1/12) {I+I–Sz - S+S–Iz}

= (1/24) {Iz - Sz}

[A
-1
20, [A

1
20, Iz]] = -(1/4) [IzS–, [IzS+, Iz]] = 0

[A
1
20, [A

-1
20, Iz]] = -(1/4) [IzS+, [IzS–, Iz]] = 0

[A
-1
21, [A

1
21, Iz]] = -(1/4) [I–Sz, [I+Sz, Iz]] = (1/4) Sz2[I–, I+]

= -(1/2) Sz2Iz = -(1/8) Iz

[A
1
21, [A

-1
21, Iz]] = -(1/4) [I+Sz, [I–Sz, Iz]] = -(1/4) Sz2[I+, I–]

= -(1/2) Sz2Iz = -(1/8) Iz

[A
-2
20, [A

2
20, Iz]] = (1/4) [I–S–, [I+S+, Iz]] = -(1/4) [I–S–, I+S+]

= (1/2) {I+I–Sz + S–S+Iz}

= (1/4) {Sz + Iz}

[A
2
20, [A-2

20, Iz]] = (1/4) [I+S+, [I–S–, Iz]] = (1/4) [I+S+, I–S–]
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= (1/2) {I+I–Sz + S–S+Iz}

= (1/4) {Sz + Iz} [105]

For auto-relaxation of the Iz operator, the above operators are

premultiplied by Iz and the trace operation performed:

(1/24) <Iz|{Iz - Sz}> = (1/24) <Iz2-IzSz>

= (1/24) {<αα |Iz2-IzSz|αα > + <αβ |Iz2-IzSz|αβ>

+ <βα|Iz2-IzSz|βα> + <ββ|Iz2-IzSz|ββ>}

= 1/24

-(1/8) <Iz|Iz > = -(1/8) <Iz2>

= -(1/8) {<αα |Iz2|αα > + <αβ|Iz2|αβ>

+ <βα|Iz2|βα> + <ββ|Iz2|ββ>}

= -1/8

(1/4) <Iz|{Sz + Iz}> = (1/4) <Iz2+IzSz>

= (1/4) {<αα |Iz2+IzSz|αα > + <αβ|Iz2+IzSz|αβ>

+ <βα|Iz2+IzSz|βα> + <ββ|Iz2+IzSz|ββ>}

= 1/4 [106]

For cross-relaxation between the Sz and the Iz operator, the above

operators are premultiplied by Sz and the trace operation performed:

(1/24) <Sz|{Iz - Sz}> = (1/24) <IzSz-Sz2>
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= (1/24) {<αα |IzSz-Sz2|αα > + <αβ |IzSz-Sz2|αβ>

+ <βα|IzSz-Sz2|βα> + <ββ|IzSz-Sz2|ββ>}

= -1/24

-(1/8) <Sz|Iz > = -(1/8) <IzSz>

= -(1/8) {<αα |IzSz|αα > + <αβ|IzSz|αβ>

+ <βα|IzSz|βα> + <ββ|IzSz|ββ>}

= 0

(1/4) <Sz|{Sz + Iz}> = (1/4) <Sz2+IzSz>

= (1/4) {<αα |Sz2+IzSz|αα> + <αβ|Sz2+IzSz|αβ>

+ <βα|Sz2+IzSz|βα> + <ββ|Sz2+IzSz|ββ>}

= 1/4 [107]

For cross-relaxation between the 2IzSz operator and the Iz operator, the

above operators are premultiplied by 2IzSz and the trace operation

performed:

(1/24) <2IzSz |{Iz - Sz}> = (1/12) <Iz2Sz -IzSz2>

= (1/12) {<αα |Iz2Sz -IzSz2|αα > + <αβ |Iz2Sz -IzSz2|αβ>

+ <βα |Iz2Sz -IzSz2|βα> + <ββ|Iz2Sz -IzSz2|ββ>}

= 0

-(1/8) <2IzSz |Iz > = -(1/4) <Iz2Sz >
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= -(1/4) {<αα |Iz2Sz |αα > + <αβ |Iz2Sz |αβ>

+ <βα|Iz2Sz |βα> + <ββ|Iz2Sz |ββ>}

= 0

(1/4) <2IzSz |{Sz + Iz}> = (1/2) <Iz2Sz +IzSz2>

= (1/2) {<αα |Iz2Sz +IzSz2|αα > + <αβ |Iz2Sz +IzSz2|αβ>

+ <βα|Iz2Sz +IzSz2|βα> + <ββ|Iz2Sz +IzSz2|ββ>}

= 0 [108]

Autorelaxation and cross-relaxation of the Sz operator can be

obtained by exchanging I and S  operators in the above expressions.

Substituting the values of the trace operations above into [75] (and using

<Iz|Iz> = 1) yields

Γ11 = (1/24) {j(ωI - ωS) + 3j(ωI) + 6j(ωI + ωS)}

Γ22 = (1/24) {j(ωI - ωS) + 3j(ωS) + 6j(ωI + ωS)}

Γ12= (1/24) {-j(ωI - ωS) + 6j(ωI + ωS)}

Γ13 = 0

Γ23 = 0 [109]

If the I and S  spins are separated by a constant distance, rIS, then,

Γ11 = (d00/4) {J(ωI - ωS) + 3J(ωI) + 6J(ωI + ωS)}

Γ22 = (d00/4) {J(ωI - ωS) + 3J(ωS) + 6J(ωI + ωS)}
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Γ12= (d00/4) {-J(ωI - ωS) + 6J(ωI + ωS)} [110]

in which

      d00 = µ0 4π( )2 h2γ I
2γ S

2rIS
−6 [111]

Dipolar cross relaxation between the operators 2IzSz and Iz does not occur;

therefore, the 2IzSz operator relaxes independently of the Iz and Sz

operators. This result can be anticipated using symmetry and group

theoretical arguments beyond the scope of this text (9, 14, 12). Cross-

relaxation between these operators does arise due to interference between

dipolar and CSA relaxation mechanisms (11) .

Thus, the evolution of the longitudinal operators, Iz and Sz, are

governed by

d( <Iz>(t) - <Iz0>)/dt = -Γ11 ( <Iz>(t) - <Iz0>) - Γ12( <Sz>(t) - <Sz0>)

d( <Sz>(t) - <Sz0>)/dt = -Γ22( <Sz>(t) - <Sz0>) - Γ12( <Iz>(t) - <Iz0>) [112]

Making the identification Γ 11 = ρI (= R1I), Γ 22 = ρS (= R1S) and Γ 12 = σIS puts

[112] into the form of the Solomon equations [19] in which ρI and ρS are

the auto-relaxation rate constants and σ IS is the cross-relaxation rate

constant. The Solomon transition rate constants (§1.2) are

W 0 = j(ωI - ωS)/24

W I = j(ωI) /16

W S = j(ωS)/16

W2 = j(ωI + ωS)/4 [113]
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Now consider the relaxation of the transverse I+ operator; as a

consequence of the secular approximation, this operator is immediately

seen to relax independently of all other operators except, potentially, for

2I+Sz. The double commutators [A
- q
2p, [A

q
2p, I+]] are calculated as follows for

each combination of p  and q  in Table 3:

[A
0
20, [A

0
20, I+] = (2/3) [IzSz, [IzSz, I+]] = (2/3) I+Sz2 = (1/6) I+

[A -0
21, [A

0
21, I+] = (1/24) [I–S+, [I+S–, I+] = 0

[A
0
21, [A-0

21, I+]] = (1/24) [I+S–, [I–S+, I+]] = -(1/12) [I+S–, IzS+]

= (1/6) I+IzSz– + (1/12) I+S+S– = (1/24)I+

[A
-1
20, [A

1
20, I+]] = -(1/4) [IzS–, [IzS+, I+]] = (1/8) [IzS–, I+S+] = -(1/8) I+

[A
1
20, [A

-1
20, I+]] = -(1/4) [IzS+, [IzS–, I+]] = -(1/8) [IzS+, I+S–] = -(1/8) I+

[A
-1
21, [A

1
21, I+]] = -(1/4) [I–Sz, [I+Sz, I+]] = 0

[A
1
21, [A

-1
21, I+]] = -(1/4) [I+Sz, [I–Sz, I+]] = (1/2) Sz2[I+, Iz] = -(1/8) I+

[A
-2
20, [A

2
20, I+]] = (1/4) [I–S–, [I+S+, I+]] = 0

[A
2
20, [A

-2
20, I+]] = (1/4) [I+S+, [I–S–, I+]] = -(1/2) [I+S+, IzS–] = (1/4) I+

[114]

Note that all non-zero results are proportional to I+; therefore, since the

operator basis is orthogonal, no operator cross-relaxes with I+. For auto-

relaxation of the I+ operator, the above operators are premultiplied by I+

and the trace operation performed:

<I+|I+> = <I–I+> =
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= {<αα |I–I+|αα> + <αβ|I–I+|αβ>

+ <βα|I–I+|βα> + <ββ|I–I+|ββ>}

= 2 [115]

This same factor is the normalization in the denominator of [75]. Thus,

R2I = (1/48) {4j(0) + j(ωI - ωS) + 3j(ωI) + 6j(ωS )+ 6j(ωI + ωS)} [116]

a n d

d<I+>/dt = -iωI<I+> - R2I<I+> [117]

If rIS is constant:

R2I = (d00/8){4J(0) + J(ωI - ωS) + 3J(ωI) + 6J(ωS )+ 6J(ωI + ωS)} [118]

Analogous equations can be written by inspection for the I–, S+ and S–

operators. The complete set of dipolar relaxation rate constants for the

basis operators for the two spin system are given in Table 5 .

The dependence of R1 and R2 on τ c for a rigid molecule is illustrated

in Figure 8. R1 has a maximum for ω0τc = 1 whereas R2 increases

monotonically with τc.
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Figure 8. Relaxation rate
constants for 1H- 15N
dipolar spin system. (——)
1 5N R 1  spin-lattice rate
constants. (· · ·) 1 5 N
R 2  spin-spin rate
constants. Calculations
were performed using
expressions given in
Table  5 together with
[111] and [92].
Parameters used were B 0
= 11.74 T, γI = 2.675 × 108

T-1 s-1 (1H),γS = -2.712 ×
107 T-1 s-1 (15N), and rI S
= 1.02 Å.
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Table  5: Relaxation Rate Constants for IS Dipolar Interaction

Coherence
Level

Operator1 Relaxation Rate Constant2

Iz (d00/4) {J(ωI - ωS) + 3J(ωI) + 6J(ωI + ωS)}

Populations Sz (d00/4) {J(ωI - ωS) + 3J(ωS) + 6J(ωI + ωS)}

Iz ↔  Sz (d00/4) {-J(ωI - ωS) + 6J(ωI + ωS)}

0 2 IzSz (3d00/4) {J(ωI) + J(ωS )}

ZQx, ZQy (d00/8) {2J(ωI - ωS) + 3J(ωI) + 3J(ωS )}

I+, I– (d00/8) {4J(0) + J(ωI - ωS) + 3J(ωI) + 6J(ωS )+ 6J(ωI +

ωS)}

± 1 S+, S– (d00/8) {4J(0) + J(ωI - ωS) + 3J(ωS) + 6J(ωI )+ 6J(ωI +

ωS)}

2I+Sz, 2I–Sz (d00/8) {4J(0) + J(ωI - ωS) + 3J(ωI) + 6J(ωI + ωS)}

2IzS+, 2IzS– (d00/8) {4J(0) + J(ωI - ωS) + 3J(ωS) + 6J(ωI + ωS)}

± 2 DQx, DQy (d00/8) {3J(ωI) + 3J(ωS )+ 12J(ωI + ωS)}

1Cross relaxation only occurs between Iz  and S z .

2d00 = (µ0/4π)2h2γI2γS2 rIS-6.
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4.2 Intramolecular dipolar relaxation for scalar coupled IS spin

s y s t e m

The Iz and Sz operators both commute with the scalar coupling

Hamiltonian; consequently dipolar spin-lattice relaxation is unaffected by

the scalar coupling interaction and the expressions given in [109] and [112]

remain valid. The in-phase and anti-phase transverse operators, I+ and

2I+Sz are coupled together by the scalar coupling Hamiltonian. Applying

[73] yields the following equations in the laboratory frame:

d<I+>(t)/dt = -iωI<I+>(t) - iπJIS<2I+Sz>(t) - R2I<I+>(t)

d<2I+Sz >(t)/dt = -iωI<2I+Sz >(t) - iπJIS<I+>(t) - RIS<2I+Sz >(t) [119]

in which R 2I and R IS are given in Table 5. These equations are written in

matrix form as

    

I+ (t)

2I+Sz (t)















= −
iω I + R2I iπJIS

iπJIS iω I + R2IS











I+ (t)

2I+Sz (t)















[120]

and are solved by analogy to [23] to yield:

    

I+ (t) = 1
2 1− R2I − R2IS

λ+ − λ−( )






exp(− λ−t) + 1+ R2I − R2IS

λ+ − λ−( )






exp(− λ+t)













I+ (0)

− iπJIS
λ+ − λ−( ) exp(− λ−t) − exp(− λ+t)[ ] 2 I+Sz (0)

2 I+Sz (t) = 1
2 1+ R2I − R2IS

λ+ − λ−( )






exp(− λ−t) + 1− R2I − R2IS

λ+ − λ−( )






exp(− λ+t)













2 I+Sz (0)

− iπJIS
λ+ − λ−( ) exp(− λ−t) − exp(− λ+t)[ ] I+ (0)

[121]
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in which

    
λ± = iω + R2I + R2IS( ) / 2 ± R2I − R2IS( ) / 2( )2 − πJIS( )2




1 2

[122]

If (2πJIS)2 >> (R2I - R2IS)2, then

    

I+ (t) = 1
2 exp − iω − iπJIS + Rave( )t{ } + exp − iω + iπJIS + Rave( )t{ }[ ] I+ (0)

− exp − iω − iπJIS + Rave( )t{ } − exp − iω + iπJIS + Rave( )t{ }[ ] 2 I+Sz (0)

2 I+Sz (t) = 1
2 exp − iω − iπJIS + Rave( )t{ } + exp − iω + iπJIS + Rave( )t{ }[ ] 2 I+Sz (0)

− exp − iω − iπJIS + Rave( )t{ } − exp − iω + iπJIS + Rave( )t{ }[ ] I+ (0)

[123]

wi th

Rave = (R2I + R2IS)/2 = (1/48) {4j(0) + j(ωI - ωS) + 3j(ωI) + 3j(ωS )+ 6j(ωI +

ωS)} [124]

Equation [123] predicts that the signal arising from I+ has the expected

form of a doublet with linewidth R ave/π. The doublet is in-phase if

<2I+Sz>(0) = 0 and anti-phase if <I+>(0) = 0. Evolution of the scalar coupling

interaction on a faster time scale than the relaxation processes averages

the two relaxation rate constants because coherence is rapidly exchanged

between the I+ and 2I+Sz operators.

For the purely dipolar IS  interaction in the spin diffusion limit,

      
R2I − R2IS = 3d00J (ωS ) / 8 =

3µ0
2h2γ I

2

320π2B0
2rIS

6 τc
[125]
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normally is quite small. For example, if I = 15N, S  = 1H, and τc = 5 ns, then

R2I - R2IS = 0.016 s-1, compared with JIS = 92 Hz. However, the Sz operator

may have relaxation pathways other than the IS  dipolar interaction. In the

cited example, the proton Sz operator would be dipolar coupled to other

protons, and the relaxation rate constant for the 2I+Sz operator contains a

contribution, Rext, from proton dipolar longitudinal relaxation. Ignoring

cross-correlation and cross-relaxation effects, R ext is simply additive to

R2IS. The additional contribution from Rext has two important effects. First,

Rave is increased by Rext/2, as seen from [124]. Practical consequences of

the increased linewidth in heteronuclear NMR spectra are discussed in

§6.2. Second, if Rext is sufficiently large, then (R2I - R2IS - Rext)2      Rext
2  >>

(2πJIS)2, λ+ = iω + R2I, λ– = iω + R2IS + Rext, and [121] reduces to:

    

I+ (t) = I+ (0) exp − iω + R2I( )t[ ]
2I+Sz (t) = 2I+Sz (0) exp − iω + R2IS + Rext( )t[ ] [126]

The expected doublet has been reduced to a singlet resonance in a process

commonly called self-decoupling, which is similar both to scalar relaxation

of the second kind (§4.5) and chemical exchange (§5.2). For (R2I - R2IS -

R ext)2  (2πJIS)2, the doublet is partially decoupled and broadened as for

intermediate chemical exchange (§5.2). Self-decoupling can complicate the

measurement of scalar coupling constants (26) .

A similar set of equations can obtained for the S+ and 2S+Iz

coherences by interchanging the I and S  labels. Notice that for an

uncoupled IS  spin system, R2I ≠  R2S , but for a scalar coupled spin system

undergoing free precession, R ave is identical for the I and S  spins.
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4.3 Intramolecular dipolar relaxation for IS spin system in the

rotating frame

An IS  homonuclear spin system, in which the two spins interact

through the dipolar interaction but are not scalar coupled, will be treated.

The spin lock field is assumed to be applied along with x-phase. The auto-

relaxation rate constant of the I ′ z operator and the cross-relaxation rate

constant between the I ′ z and S ′ z operators will be calculated in the tilted

rotating frame. As discussed in §2.3, in the presence of the spin lock field

the I and S  spins are degenerate and are treated as like spins; thus, the

components of the dipolar interaction listed in Table 3 must be redefined

according to [80] as

A
0
2 = A

0
20 + A-0

21 + A
0
21

A
±1
2  = A

±1
20 + A±1

21

A
±2
2  = A

±2
20 [127]

From [82],

I′z = sinθIIx + cosθIIz,

S′z = sinθSSx + cosθSSz, [128]

Applying [81], the double commutators [A
-q
2 , [A

q
2 , I ′z]] are calculated first.

Straightforward, but tedious, calculations yield

[A
0
2, [A

0
2, I ′z]] = sinθI(5Ix + 4Sx)/24 + cosθI(Iz - Sz) /6

[A -1
2 , [A

1
2, I′z]] = [A

1
2, [A-1

2 , I′z]]
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= -sinθI(2Ix + 2Sx + 2I–)/8 - cosθIIz /8

[A -2
2 , [A

2
2, I′z]] = [A

2
2, [A-2

2 , I′z]]

= -sinθI I–/8 - cosθI(Iz + Sz) /8 [129]

The auto-relaxation rate constant is determined by premultiplying the

above expressions by I ′ z and forming the trace:

<sinθIIx + cosθIIz|sinθI(5Ix + 4Sx)/24 + cosθI(Iz - Sz)/6>

= (5/24) sin2θI + (1/12) cos2θI

<sinθIIx + cosθIIz|-sinθI(2Ix + 2Sx + 2I–)/8 - cosθIIz /8>

= -(3/16) sin2θI - (1/8) cos2θI

<sinθIIx + cosθIIz|-sinθII–/8 - cosθI(Iz + Sz)/8>

= (1/8) sin2θI + (1/4) cos2θI [130]

Thus, the auto-relaxation rate, R1(θI) (which commonly is called R1ρ) is

given by

R1(θI) = (1/48) {(2cos2θI + 5sin2θI) j(0) +

(6cos2θI + 9sin2θI) J(ω0) + (12cos2θI + 6sin2θI) j(2ω0) }

= R1I cos2θI + R2I sin2θI [131]

Similarly, the cross-relaxation rate constant is found by premultiplying the

expressions in [129] by S ′z and forming the trace:

<sinθS Sx + cosθS Sz|sinθI (5Ix + 4Sx)/24 + cosθI (Iz - Sz)/6>
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= (1/6) sinθSsinθI - (1/12) cosθS  cosθI

<sinθS Sx + cosθS Sz|-sinθI (2Ix + 2Sx + 2I–)/8 - cosθI Iz /8>

= -(1/8) sinθSsinθI

<sinθS Sx + cosθS Sz|-sinθI I–/8 - cosθI (Iz + Sz)/8>

= (1/4) cosθS cosθI [132]

Thus, the cross-relaxation rate, RIS(θI, θS) is given by

RIS(θI, θS) = (1/24) {(-cosθS cosθI + 2sinθSsinθI) j(0)

+ 3sinθSsinθI j(ω0) + 6cosθS cosθI j(2ω0) }

=     cos θI cos θSσ IS
NOE + sin θI sin θSσ IS

ROE [133]

in which pure laboratory frame cross-relaxation rate constant,   σ IS
NOE, is

given in [109] and the pure rotating frame cross-relaxation rate constant is

given by (27) :

    σ IS
ROE = (1 / 24){2 j (0) + 3 j (ω0 )} [134]

For both auto-relaxation and cross-relaxation, the effect of the tilted

field is to average laboratory (longitudinal) and rotating frame

(transverse) relaxation rate constants by the projection of the spin

operators onto the tilted reference frame.

4.4 Chemical shift anisotropy and quadrupolar relaxation

Chemical shifts are reflections of the electronic environments that

modify the local magnetic fields experienced by different nuclei. These
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local fields are anisotropic; consequently, the components of the local fields

in the laboratory reference frame vary as the molecule re-orients due to

molecular motion. These varying magnetic fields are a source of relaxation.

Very approximately, the maximum CSA for a particular nucleus is of the

order of the chemical shift range for the nucleus. CSA is important as a

relaxation mechanism only for nuclei with a large chemical shift range. In

the NMR spectroscopy of biological molecules, carbon, nitrogen and

phosphorous have significant CSA contributions to relaxation. CSA is

generally a negligible effect for proton relaxation. CSA rate constants have

a quadratic dependence on the applied magnetic field strength. Thus, use

of higher magnetic field strengths does not always increase the achievable

signal-to-noise ratio as much as expected theoretically, because increased

CSA relaxation broadens the resonance linewidths.

Nuclei with I > 1/2 also possess nuclear electric quadrupole moments.

The quadrupole moment is a characteristic of the particular nucleus and

represents a departure of the nuclear charge distribution from spherical

symmetry. The interaction of the quadrupole moment with local oscillating

electric field gradients (due to electrons) provide a relaxation mechanism.

Quadrupolar interactions can be very large and efficient for promoting

relaxation. Quadrupolar nuclei display broad resonance lines in NMR

spectra, unless the nuclei are in highly symmetric electronic environment

(which reduces the magnitudes of the electric field gradients at the

locations of the nuclei). As discussed in more detail elsewhere, Bloch spin-

lattice and spin-spin relaxation rate constants can only be defined for

quadrupolar nuclei under extreme narrowing conditions or for

quadrupolar nuclei with I = 1 (2) .
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The terms A
q
2p  for the CSA and quadrupolar interactions are given in

Tables 6 and 7. The spherical harmonic and spatial functions for the

different interactions are given in Tables 1 and 2. Relaxation rate constants

are calculated for a single spin I by using the basis operators, Iz, I–, I+.

Spin-lattice and spin-spin relaxation rate constants for the CSA and

quadrupolar interactions are calculated by the same procedure as for the

dipolar interactions and are given in Table 8. The results are calculated for

axially symmetric chemical shift and electric field gradient tensors (i.e. σx x

= σyy ≠  σzz and Vxx = Vyy ≠  Vzz). Extensions to these results for anisotropic

tensors are given elsewhere (2 ) .

Table 6: Tensor Operators for the CSA Interaction

CSA

q p A
q
2p A -q

2p
 = A

q
2p

† ωp

0 0 (2/√ 6) Iz (2/√ 6) Iz 0

1 0 -(1/2) I+ (1/2) I– ωI

2 0 — — 2ωI
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Table 7: Tensor Operators for the Quadrupolar Interaction

Quadrupolar

q p A
q
2p A -q

2p
 = A

q
2p

† ωp

0 0 (1/2√ 6) [4I
2
z  - I+I– -I–I+] (1/2√ 6) [4I

2
z  - I+I– -I–I+] 0

1 0 -(1/2) (IzI+ + I+Iz) -(1/2) (IzI– + I–Iz) ωI

2 0 (1/2) I+ I+ (1/2) I–I– 2ωI

Table 8: CSA and Quadrupolar Relaxation Rate Constants

Rate Constant CSA1 Quadrupolar2

R1 d00 J(ωI) 3d00 {J(ωI) + 2J(2ωI )}

R2 (d00/6) {4J(0) + 3J(ωI)} (3d00/2) {3J(0) + 5J(ωI) +

2J(2ωI )}

1
    d00 = σ||− σ⊥( )2 γ I

2B0
2 / 3 = σ||− σ⊥( )2 ω I

2 / 3.

2A spin-1 quadrupolar nucleus is assumed. 
      
d00 = e2qQ / (4h)[ ]2.

4.5 Scalar relaxation

The isotropic scalar coupling Hamiltonian, H J = 2πJIS I⋅S , slightly

perturbs the Zeeman energy levels of the coupled spins; the resonances

thereby are split into characteristic multiplet patterns. Spin I experiences a

local magnetic field that depends on the value of the coupling constant and

the state of spin S . The local magnetic field becomes time-dependent if the

value of JIS is time-dependent or if state of the S  spin varies rapidly. The

former relaxation mechanism is termed scalar relaxation of the first kind;
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the latter mechanism is termed scalar relaxation of the second kind. Scalar

relaxation of the first kind results from transitions of the spin system

between environments with different values of JIS. For example, the three-

bond scalar coupling constant for a pair of protons depends upon the

intervening dihedral angle according to the Karplus relationship. If the

dihedral angle is time-dependent, the consequent time-dependence of JI S

can lead to scalar relaxation. Scalar relaxation of the second kind results if

the S  spin relaxes rapidly (e.g. S  is a quadrupolar nucleus) or is involved in

rapid chemical exchange. Scalar relaxation of the second kind also can be

significant if the S  spin is a proton nucleus in a macromolecule, in which

case the homonuclear relaxation rate constants (reflecting the dipolar

interaction of the S  spin with protons other than the I spin) can be large.

Normally field fluctuations produced by this mechanism are not fast

enough for effective longitudinal relaxation, but transverse relaxation may

be induced.

In contrast to earlier sections, the relaxation rate constants for scalar

relaxation will not be explicitly calculated; instead, the appropriate

expressions for R
s c
1  and R

s c
2  are given by (2) :

    
R1

sc = 2 A2

3
S(S + 1)

τ2

1+ (ω I − ωS )2 τ2
2

    
R2

sc = A2

3
S(S + 1)

τ2

1+ (ω I − ωS )2 τ2
2 + τ1













[135]

for τ1, τ2 << 1/A. For scalar relaxation of the first kind, A  = 2π(p1p2)1/2(J1-

J2), in which J1 and J2 are the scalar coupling constants, p1 and p2 are the

relative populations (p1+p2 = 1), andτ1 = τ2 =τe are the exchange time
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constants for the two environments. For scalar relaxation of the second

kind, A  = 2πJIS, in which τ1 and τ2 are the spin-lattice and spin-spin

relaxation time constants for the S  spin, respectively. If the S  spin is a

quadrupolar nucleus, then the relaxation time constants can be calculated

using the expressions given in Table 8. A more general treatment of scalar

relaxation has been given by London (28) .

5 Chemical exchange effects in NMR spectroscopy

NMR spectroscopy provides an extremely powerful and convenient

method for monitoring the exchange  of a nucleus between environments

due to chemical reactions or conformational transitions. In the first

instance, the nucleus exchanges intermolecularly between sites in different

molecules; in the second, the nucleus exchanges intramolecularly between

conformations. The exchange process can be monitored by NMR

spectroscopy even if the sites are chemically equivalent provided that the

sites are magnetically distinct. Nuclear spins can be manipulated during

the NMR experiment without affecting the chemical states of the system,

because of the weak coupling between the spin system and the lattice.

Thus, chemical reactions and conformational exchange processes can be

studied by NMR spectroscopy while the system remains in chemical

equilibrium.

To establish a qualitative picture of the effects of exchange on an

NMR spectrum, suppose that a given nucleus exchanges with rate constant

k  between two magnetically distinct sites with resonance frequencies that

differ by ∆ω. On average, the resonance frequency of the spin in each site

can only be observed for a time of the order of 1/k  before the spin jumps
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to the other site and begins to precess with a different frequency. The

finite observation time places a lower limit on the magnitude of ∆ω

required to distinguish the two sites. If the exchange rate is slow  (k  << ∆ω) ,

then distinct signals are observed from the nuclei in the two sites; in

contrast, if the exchange rate is fast (k  >> ∆ω) then a single resonance is

observed at the population-weighted average chemical shift of the nuclei

in the two sites. Coalescence between the two signals occurs for

intermediate exchange (k = ∆ω). The NMR chemical shift timescale is

defined by the difference between the frequencies of the two exchanging

resonances.

In addition, chemical exchange can contribute to spin relaxation. As a

consequence of exchange, the resonance frequency (or effective Zeeman

Hamiltonian) of the affected nuclear spin fluctuates stochastically by

±∆ω/2. The fluctuating longitudinal field constitutes an adiabatic

relaxation mechanism and consequently contributes to transverse

relaxation (see §1). The magnitude of the relaxation rate constant depends

on the value of J(∆ω) for the exchange process. If J(ω) is assumed to be

Lorentzian [92], then the relaxation contributions from exchange are small

for k << ∆ω (slow exchange) or k >> ∆ω (fast exchange) and are maximal for

k  = ∆ω (intermediate exchange).

5.1 Chemical exchange for isolated spins

For simplicity, only the case of chemical exchange in spin systems

without scalar coupling interactions will be treated. In this situation, the

exchange process can be treated using an extension of the Bloch equations

(§1.1). An alternative derivation is given by Wennerström (29) .
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A first order chemical reaction (or two-site chemical exchange)

between two chemical species, A 1 and A 2, is described by the reaction

    
A1  

k−1
← 

k1  →  A2 [136]

in which k1 is the reaction rate constant for the forward reaction and k–1 is

the reaction rate constant for the reverse reaction. The chemical kinetic

rate laws for this system can be written in matrix form as

    

d
dt

[ A1](t)
[ A2 ](t)









 =

−k1 k−1
k1 −k−1











[ A1](t)
[ A2 ](t)









 [137]

For a coupled set of N  first-order chemical reactions between N  chemical

species, this equation can be generalized to

      
dA (t)

dt
= KA (t) [138]

in which the matrix elements of the rate matrix, K , are given by

    

Kij = kji (i ≠ j)

Kii = − kij
j=1
j≠i

N
∑

[139]

and the chemical reaction between the ith and jth species is

    
Ai  

kji
← 

kij   →  Aj [140]

The modified Bloch equations can be written in matrix form for the jt h

chemical species as
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dM jz (t)

dt
= γ (1− σ j )[M j (t) × B(t)]z − R1 j M jz (t) − M j0 (t){ } + K jkMkz (t)

k=1

N
∑

dM jx (t)

dt
= γ (1− σ j )[M j (t) × B(t)]x − R2 jM jx (t) + K jkMkx (t)

k=1

N
∑

dM jy (t)

dt
= γ (1− σ j )[M j (t) × B(t)]y − R2 jM jy (t) + K jkMky (t)

k=1

N
∑

[141]

wi th

      
M j0 (t) = M0[ Aj ](t) [ Aj ](t)

j=1

N
∑ [142]

The modified Bloch equations for chemical reactions are called the

McConnell equations (30). If the system is in chemical equilibrium, then

[Aj](t) = [Aj]. The index j in [141] and [142] refer to the same spin in

different chemical environments, not to different nuclear spins (cf. §1.2).

The above equations can be generalized to the case of higher-order

chemical reactions by defining the pseudo-first order rate constants:

    
kij =

ξij (t)

[ Ai ](t)
[143]

in which     ξij (t)  is the rate law for conversion of the ith species containing

the nuclear spin of interest into the jth species containing the nuclear spin

of interest. The effect of the chemical reactions is to shift the spin of

interest between molecular environments. For example, consider the

elementary reaction

    
A1  + B

k−1
← 

k1  →  A2 + C [144]
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in which a spin in species A 1 is transferred to species A 2 as a result of the

chemical reaction. The chemical kinetic rate laws for this system can be

written in matrix form as

    

d
dt

[ A1](t)
[ A2 ](t)









 =

−k1[B](t) k−1[C](t)
k1[B](t) −k−1[C](t)











[ A1](t)
[ A2 ](t)









 [145]

which has the same form as [138] in which the elements of K  are defined

using [139] and [143]. Importantly, the rate expressions for [B ](t) and [C ](t)

are not included in [145] because the spin of interest is not contained in

either species.

In the absence of applied rf fields, the equation governing the

evolution of longitudinal magnetization becomes

      

dM jz (t)

dt
= −R1 j M jz (t) − M j0 (t){ } + K jkMkz (t)

k=1

N
∑ [146]

Defining

        

Mz (t) =
M1z (t)

M

MNz (t)

















[147]

yields the compact expression,

      
dMz (t)

dt
= (−R + K) Mz (t) − M0 (t){ } + KM0 (t) [148]

in which the elements of R  are given by Rij = δij R1 j (for simplicity, the

possibility of simultaneous dipolar cross-relaxation and chemical exchange

is not considered). If the system is in chemical equilibrium, K M 0(t) = K M 0

= 0 and
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d∆Mz (t)

dt
= (−R + K)∆Mz (t) [149]

The equation of motion for the transverse magnetization can be written in

the rotating frame as

      
dM+ (t)

dt
= (iΩΩ − R + K)M+ (t) [150]

in which the elements of Ω  are given by Ω ij = δij Ω j, and the elements of R

are given by Rij = δij R2j.

Equations [149] and [150] have the same functional form as [22] and

can be solved by the same methods [23]. For example, the rate matrix for

longitudinal relaxation in a system undergoing two-site exchange is given

by,

      
R − K =

ρ1 + k1 −k−1
−k1 ρ2 + k−1











[151]

with eigenvalues

    
λ± = 1

2 ρ1 + ρ2 + k1 + k−1( ) ± ρ1 − ρ2 + k1 − k−1( )2 + 4k1k−1[ ]1 2





 [152]

The time course of the magnetization is given by

    

∆M1(t)
∆M2 (t)









 =

a11(t) a12 (t)
a21(t) a22 (t)











∆M1(0)
∆M2 (0)











[153]

in which
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a11(t) = 1
2 1− ρ1 − ρ2 + k1 − k−1

λ+ − λ−( )






exp(− λ−t) + 1+ ρ1 − ρ2 + k1 − k−1

λ+ − λ−( )






exp(− λ+t)













a22 (t) = 1
2 1+ ρ1 − ρ2 + k1 − k−1

λ+ − λ−( )






exp(− λ−t) + 1− ρ1 − ρ2 + k1 − k−1

λ+ − λ−( )






exp(− λ+t)













a12 (t) = k−1
λ+ − λ−( ) exp(− λ−t) − exp(− λ+t)[ ]

a21(t) = k1
λ+ − λ−( ) exp(− λ−t) − exp(− λ+t)[ ]

[154]

To obtain some insight in to the form of these equations, assume that ρ1 =

ρ2 = ρ, and that exchange is symmetrical with k1 = k–1 = k . Under these

conditions, the time-dependence of the longitudinal magnetization is given

by,

    

a11(t) = a22 (t) = 1
2 1+ exp −2kt( )[ ]exp −ρt( )

a12 (t) = a21(t) = 1
2 1− exp −2kt( )[ ]exp −ρt( )

[155]

The homology between [30] and [155] illustrates the fundamental

similarity between the effects of cross-relaxation and chemical exchange

on longitudinal magnetization. Indeed, similar experimental techniques are

utilized to study both phenomena (such as NOESY and ROESY experiments,

§7).

The rate matrix for transverse relaxation in a system undergoing

two-site exchange is given by,

      
−iΩ + R − K =

−iΩ1 + ρ1 + k1 −k−1
−k1 −iΩ2 + ρ2 + k−1











[156]



7 6

with eigenvalues

    

λ± = 1
2 −iΩ1 − iΩ2 + ρ1 + ρ2 + k1 + k−1( )




± −iΩ1 + iΩ2 + ρ1 − ρ2 + k1 − k−1( )2 + 4k1k−1[ ]1 2 

 [157]

The time course of the magnetization is given by

    

M1
+ (t)

M2
+ (t)













=
a11(t) a12 (t)
a21(t) a22 (t)











M1
+ (0)

M2
+ (0)













[158]

in which

    

a11(t) = 1
2 1− − iΩ1 + iΩ2 + ρ1 − ρ2 + k1 − k−1

λ+ − λ−( )






exp(− λ−t)







+ 1+ − iΩ1 + iΩ2 + ρ1 − ρ2 + k1 − k−1
λ+ − λ−( )







exp(− λ+t)







a22 (t) = 1
2 1+ − iΩ1 + iΩ2 + ρ1 − ρ2 + k1 − k−1

λ+ − λ−( )






exp(− λ−t)







+ 1− − iΩ1 + iΩ2 + ρ1 − ρ2 + k1 − k−1
λ+ − λ−( )







exp(− λ+t)







a12 (t) = k−1
λ+ − λ−( ) exp(− λ−t) − exp(− λ+t)[ ]

a21(t) = k1
λ+ − λ−( ) exp(− λ−t) − exp(− λ+t)[ ]

[159]

To obtain some insight in to the form of these equations, assume that Ω 1 =

- Ω 2 = Ω  (i.e. the reference frequency in the rotating frame is midway

between the frequencies of the two sites), that ρ1 = ρ2 = ρ , and that
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exchange is symmetrical with k1 = k–1 = k . Under these conditions, the

time-dependence of the transverse magnetization is given by

    

a11(t) = 1
2 1+ iΩ

∆




 exp − ρ + k − ∆( )t{ }


+ 1− iΩ

∆




 exp − ρ + k + ∆( )t{ }



a22 (t) = 1
2 1− iΩ

∆




 exp − ρ + k − ∆( )t{ }


+ 1+ iΩ

∆




 exp − ρ + k + ∆( )t{ }



a12 (t) = a21(t) = k
2∆

exp − ρ + k − ∆( )t{ } − exp − ρ + k + ∆( )t{ }[ ]

[160]

in which ∆  = (k2 - Ω2)1/2. In the slow exchange limit, Ω  >> k and

    

a11(t) = exp − ρ + k − iΩ( )t{ }
a22 (t) = exp − ρ + k + iΩ( )t{ }
a12 (t) = a21(t) = 0

[161]

Two resonances are observed at Ω 1 = Ω  and Ω 2 = -Ω  with linewidths equal

to (ρ + k)/π. In the fast exchange limit, Ω  << k and,

    

a11(t) = a22 (t) = 1
2 1+ exp −2kt( )[ ]exp −ρt( )

a12 (t) = a21(t) = 1
2 1− exp −2kt( )[ ]exp −ρt( )

[162]

In this case, [162] are purely real. Consequently, a single resonance line is

observed at a shift of (Ω 1+Ω 2)/2 = 0. The observed signal is equal to

    

M1
+ (t) + M2

+ (t) = a11(t)M1
+ (0) + a12 (t)M2

+ (0) + a22 (t)M2
+ (0) + a21(t)M1

+ (0)

= a11(t) + a12 (t) + a22 (t) + a21(t)[ ]M+ (0) / 2

= M+ (0) exp −ρt( )

[163]
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and has a linewidth equal to ρ/π. Equations [161] and [163] confirm the

qualitative conclusions about the slow and fast exchange regimes stated

above.

For two site exchange, lineshapes expected for various exchange

rates can be calculated by Fourier transformation of [159] or [160]. Figure

9 shows calculated spectra in several exchange regimes. Figure 9a shows

the case of slow exchange. As expected from [161], two resonance lines are

observed. As the exchange rate increases, the resonance lines broaden as

shown in Figure 9b. When the exchange rate is of the order of the chemical

shift separation between the two sites, the lines become very broad and

begin to coalesce (Figure 9c). This is known as the intermediate exchange

regime or coalescence . Intermediate exchange processes can cause peaks to

disappear in spectra because the broadening becomes so great that the

resonance line becomes indistinguishable from the baseline noise.

Increasing the exchange rate for the system above the coalescence point

drives the system into fast exchange (Figure 9d,e). As expected from [163]

a single resonance is observed at the average resonance frequency for the

two sites and the linewidths become narrower.

5.2 Qualitative effects of chemical exchange in scalar coupled

s y s t e m s

Multiplet structure due to scalar couplings is affected by chemical

exchange. Detailed theoretical treatment using the density matrix

formalism is beyond the subject matter of this text (31 ); instead, the

present discussion will present qualitatively the most important effects.
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Formally, scalar relaxation (§4.5) and chemical exchange in scalar coupled

systems are homologous. Two different cases must be considered:

intermolecular (homologous to scalar relaxation of the second kind) and

intramolecular exchange (homologous to scalar relaxation of the first kind).

200 0 -200
ν (Hz)

a

b

c

d

e

×10

Figure 9. Chemical exchange for a two-site system. Shown are
the Fourier transformations of FIDs calculated by using [160].
The calculations used Ω  = 80 Hz and ρ = 10 s-1. Calculations were
performed for values of the exchange rate, k , equal to (a) 10 s-1 ,
(b) 100 s-1, (c) 450 s-1, (d) 1000 s-1 and (e) 5000 s-1. The spectrum
for (c) has been expanded vertically by a factor of 10 for clarity.

Intermolecular chemical exchange in scalar coupled systems is

encountered frequently in biological NMR applications. For example,

exchange between labile amide protons and solvent protons perturbs the
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NH to Hα  scalar coupling interaction. In an IS spin system, the I spin

resonance is a doublet, with the lines separated by JIS. One line of the

doublet is associated with the S  spin in the α  state, and the other line is

associated with the S  spin in the β  state. Suppose that a given I spin is

coupled to an S  spin in the α  state. If the S  spin exchanges with another S

spin originating from the solvent (intermolecular exchange), then after the

exchange the I spin has equal probability of being coupled to an S  spin in

the α  and β states because the incoming spin has a 50% chance of either

being in its α  state or in its β state. Similar considerations hold for an I spin

initially coupled to an S  spin in the β state. Consequently, the I spin sees

the S  spin state constantly changing due to exchange and thus the

frequency of the I spin resonance constantly changes between the

frequencies of the two lines of the doublet. This phenomenon constitutes a

two-site exchange process and exhibits properties of slow, intermediate

and fast exchange. If the exchange is fast compared to the difference in

frequency between the two lines (i.e. compared to the scalar coupling

constant), a single line is observed at the mean frequency (the Larmor

frequency of the I spin). Since homonuclear scalar couplings constants tend

to be small, relatively slow exchange processes, that would minimally

perturb the chemical shifts of the exchanging spins, can result in collapse

of multiplet structure. Indeed, the broadening of multiplets and the

disappearance of multiplet structure are the first clues to the existence of

exchange phenomena in NMR spectra.

Intramolecular exchange constitutes a slightly different situation.

Consider a system in which spin I is scalar coupled to spin S , but due to the

presence of multiple conformers, spin S  can be in n  environments, S1, S2, ...
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Sn, with different scalar coupling constants. For simplicity, the chemical

shift of the I spin is assumed to be identical in all conformers. If the

conformers interconvert on a time scale long compared to the scalar

coupling constants, the I spin multiplet is a superposition of n  doublets

arising from the IS1, IS1, ..., ISn scalar coupling interactions. On the other

hand, if the conformers interconvert at a rate much larger than the scalar

coupling constants, the I spin resonance is a doublet with an effective

scalar coupling constant that is a population weighted average of the n

scalar coupling constants. An example of this effect arises for the scalar

coupling between Hα  and Hβ protons in amino acids. If the conformations of

the Hβ protons are fixed relative to the Hα  proton, then the Hα  multiplet is

split by two coupling constants, one from each of the Hβ protons to the Hα

proton (e.g. 12 Hz and 3 Hz for a trans, gauche conformation). On the other

hand, if the Hβ protons exchange between trans, gauche+ and gauche–

rotomeric sites due to free-rotation about the Cα -Cβ bond, then the Hα

multiplet is split by a single average coupling constant ( with a value (12 +

3 + 3)/3 = 6 Hz) due to the Hβ protons.

6 Some practical aspects of NMR spin relaxation

6.1 Linewidth

The phenomenological linewidth is defined as the full-width-at-half-

height of the resonance lineshape and is a primary factor affecting both

resolution and signal-to-noise ratio of NMR spectra. For a Lorentzian

lineshape, the homogeneous linewidth is given by ∆νFWHH  = R2/π in Hertz

(or ∆ωFWHH  = 2R2 in rad/s) and the inhomogeneous linewidth is ∆νFWHH  =

R2*/π in which R2* = R 2 + R inhom  and R inhom  represents the broadening of
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the resonance signal due to inhomogeneity of the magnetic field. In

modern NMR spectrometers Rinhom/π is on the order of 1 Hertz. Values of

R2 (and hence homogenous linewidths) are approximately proportional to

the overall rotational correlation time of the protein and thus depend on

molecular mass and shape of the molecule.

The correlation time for Brownian rotational diffusion can be

measured experimentally by using time-resolved fluorescence

spectroscopy, light scattering and NMR spin relaxation spectroscopy, or

calculated by using a variety of hydrodynamic theories (that unfortunately

require detailed information on the shape of the molecule) (32 ). In the

absence of more accurate information, the simplest theoretical approach

for approximately spherical globular proteins calculates the isotropic

rotational correlation time from Stokes Law:

    
τc =

4πηwrH
3

3kBT
[164]

in which η w  is the viscosity of the solvent, rH  is the effective

hydrodynamic radius of the protein, kB  is Boltzmann’s constant and T  is

the temperature. The hydrodynamic radius can be very roughly estimated

from the molecular mass of the protein by assuming that the specific

volume of the protein is   V  = 0.73 cm3/g and that a hydration layer of rw  =

1.6 to 3.2 Å (corresponding to one-half to one hydration shell) surrounds

the protein (33 ) :

    rH = 3VMr / (4πNA )[ ]1/3
+ rw [165]

For the protein ubiquitin (M r =8565 Da), [164] and [165] yield rH  = 16.5 Å,

and τ c = 3.8 ns at 300 K, compared with a value of 4.1 ns determined from
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NMR spectroscopy . Rotational correlation times in D2O solution are

approximately 25% greater than in H2O solution because of the larger

viscosity of D2O.

Given theoretical or experimental estimates of τ c, the theoretical

equations presented in §4 and §6 can be used to calculate approximate

values of resonance linewidths. The resulting curves are shown in Figure

10. The principle uncertainties in the calculation are due to the following

factors: (i) anisotropic rotational diffusion of non-spherical molecules, (ii)

differential contributions from internal motions (particularly in loops or

for side chains), (iii) cross-correlation effects, (iv) 1H dipolar interactions

with all nearby protons (which depends on detailed structures of the

proteins), and (v) incomplete knowledge of fundamental parameters (such

as chemical shift anisotropies). In light of these uncertainties, the results

presented in the Figure should be regarded as approximate guidelines. For

example, 1H (in an unlabeled sample), 13Cα  and 15N linewidths in ubiquitin

are ~6-9 Hz, ~7 Hz, and ~3 Hz. These values are consistent with values of 5

Hz, 6 Hz and 2 Hz from Figure 10. Observed linewidths significantly larger

than expected based on the molecular mass of the protein imply that

aggregation is increasing the apparent rotational correlation time or that

chemical exchange effects (§5) contribute significantly to the

inhomogeneous linewidth.

6.2 Relaxation during HMQC and HSQC experiments

Two-dimensional HMQC and HSQC experiments are integral

components of all heteronuclear multidimensional NMR experiments. The

effective F1 linewidths of resonance signals in HMQC and HSQC spectra
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depend upon the transverse relaxation rates of the coherences present

during the chemical shift evolution period plus the contributions from

inhomogeneous broadening (35, 36). Therefore, the linewidth in the F1

dimension of a HMQC spectrum is determined by the relaxation rate of the

heteronuclear MQ coherence,     2IxSy , the F1 linewidth of a HSQC spectrum is

determined by the relaxation rate of the heteronuclear SQ coherence under

conditions of free precession during t1,  and the F1 linewidth of a

decoupled HSQC spectrum is determined by the relaxation rate of in-phase

SQ coherence in the absence of IS scalar coupling. The F1 linewidth of a

constant-time HSQC spectrum is determined only by inhomogenous

broadening. Pulse sequences for these heteronuclear correlation

experiments are illustrated in Figure 11. In the following, the appropriate

relaxation rate constants for the heteronuclear SQ and MQ operators are

calculated using methods outlined in §4.
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Figure 10. Resonance linewidths. Protein resonance
linewidths are shown as a function of rotational
correlation time. (a) Linewidths for (——) 1 H spins, (····)
1H spins covalently bonded to 13C, (– – –) 1H spins
covalently bonded to 15N nuclei. (b) Heteronuclear
linewidths for (——) proton-decoupled 13C, (– – –) proton-
coupled 1 3 C, (· – · – ·) proton-decoupled 1 5 N and (····)
proton-coupled 15N spins. Calculations included dipolar
relaxation of all spins, and CSA relaxation of 15N spins. For
1H - 1H dipolar interactions, 

    
rij

−6
j∑  = 0.027 Å-6 (34).
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Figure 11. Pulse sequences for
the 1 H-detected heteronuclear
correlation experiments. In all
pulse sequence figures, thin bars
represent 90° pulses and thick
bars represent 180° pulses. The
phase of each pulse is indicated
above the bar. (a) The HMQC
experiment, in which the phase
cycling is φ1  = x, -x; φ2  = 8(x ) ,
8( -x ); φ3  = 2(x ), 2(y ), 2(-x ), 2(-y ) ;
and receiver = 2(x, -x, -x, x), 2(-
x, x, x, -x). (b) The HSQC
experiment, in which the phase
cycling is φ1  = x, -x; φ2  = 2(x ) ,
2 ( -x ); φ3  = 4(y ), 4(-y ); and
receiver  =  2(x, -x, -x, x). This
phase cycle can be further
extended by the inclusion of
independent cycling of the
90°(1H) pulses on either side of
the t1  period as in the decoupled-
HSQC experiment. (c) The
decoupled-HSQC experiment, in
which the phase cycling is
φ1  = 2(x ), 2(-x ); φ2  = 8(x ), 8(-x ) ;
φ3  = y, -y; φ4  = 4(x ), 4(-x ); and
receiver  = x, -x, -x, x, 2( -x, x, x,
-x), x, -x, -x, x. (d) The constant-
time HSQC experiment, in which
the phase cycling is φ1  = x , -x;
φ2  = 8(x ), 8(-x ); φ3  = 2(x ), 2(y ) ,
2 ( -x ), 2(-y ); φ4  = 16(y ), 16(-y ) ;
and receiver = 2(x, -x, -x, x), 2(-
x, x, x, -x). If desired, this 32 step
phase cycle can be reduced to 8
steps by eliminating the cycling
of φ2  and using only the first 4
steps of the phase cycle of φ3 ; an
additional reduction by a factor
of two can be obtained by
eliminating cycling of φ4 . In
each case the optimal value for 2τ
is 1/(2JIS). Decoupling during t2
can be achieved by using either
GARP-1 or WALTZ-16 decoupling
sequences. Decoupling during
the t1  evolution period of scheme
c is achieved using WALTZ-16 or
DIPSI-2 sequences.
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The average transverse relaxation rates of the S  spin SQ coherence

(during coherent decoupling), S  spin SQ coherence (during free-precession),

heteronuclear MQ coherence (during free-precession), and I spin SQ

coherence (during free-precession) are given by,

    

R2S = R2
IS (S) + R2

CSA (S)

= dIS
24

4 J (0) + J (ω I − ωS ) + 3J (ωS ) + 3J (ω I ) + 6J (ω I + ωS ){ }

+ dCSA
6

4 J (0) + 3J (ωS ){ }

[166]

    

R2S = 1
2 R2

IS (2 IzS+ ) + R2
IS (S) + R1

IK ( I )[ ] + R2
CSA (S)

= dIS
24

4 J (0) + J (ω I − ωS ) + 3J (ωS ) + 3J (ω I ) + 6J (ω I + ωS ){ }

+ dCSA
6

4 J (0) + 3J (ωS ){ } + 1
24

dIk J (0) + 3J (ω I ) + 6J (2ω I ){ }
k
∑

[167]

    

R2MQ = 1
2 R2

IS (ZQ) + R2
IS ( DQ)[ ] + R2

IK ( I ) + R2
CSA (S)

= dIS
24

J (ω I − ωS ) + 3J (ω I ) + 3J (ωS ) + 6J (ω I + ωS ){ }

+ dCSA
6

4 J (0) + 3J (ωS ){ } + 1
24

dIk
k
∑ 5J (0) + 9J (ω I ) + 6J (2ω I ){ }

,

[168]

    

R2I = 1
2 R2

IS (2 I+Sz ) + R2
IS ( I )[ ] + R2

IK ( I )

= dIS
24

4 J (0) + J (ω I − ωS ) + 3J (ωS ) + 3J (ω I ) + 6J (ω I + ωS ){ }

+ 1
24

dIk 5J (0) + 9J (ω I ) + 6J (2ω I ){ }
k
∑

[169]

respectively, in which the individual relaxation rate constants are obtained

from Tables 5 and 8, J(ω) is given by [92], and the summations, Σ , include
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all the homonuclear k    I spins. Equations [166] - [169] are subject to the

following assumptions: (i) the S  spin relaxes by dipole-dipole interactions

with the directly attached I spin and through chemical shift anisotropy, (ii)

the I spins relax through dipole-dipole interactions with the S  spins and

with k  additional remote protons, (iii) evolution of the scalar coupling

interaction during free-precession averages the relaxation rates of in-

phase and anti-phase operators as described in §4.2 (indicated by

overbars), (iv) coherent decoupling suppresses averaging by the scalar

coupling interaction, and (v) ωI  ωK . The terms containing dIS arise from

heteronuclear dipolar coupling between the scalar coupled I and S  spins,

terms containing dCSA  arise from chemical shift anisotropy of the S  spin,

and the terms containing dIk reflect the homonuclear dipolar coupling

between I spins (§4.1 and §4.4). In 13C or 13C/15N labeled samples, the S

spin (either 13C or 15N) has additional dipolar interactions with nearby,

predominantly directly bonded, 13C spins, designated as R  spins. These

interactions are smaller than the dipolar IS  interaction by a factor of,

    

dRS
dIS

=
γ R

2 rIS
6

γ I
2rRS

6 [170]

 and are neglected in the following discussion.

In the limit of slow overall tumbling, which typically applies for

proteins, ωIτc >> ωSτc >> 1, and J(0) >> J(ωS) >> J(ωI)  J(ωI ± ωS). The

relaxation rates are approximated by

    
R2S = τc

15
dIS + 4dCSA[ ] [171]

    
R2S = τc

15
dIS + 4dCSA + 1

4
dIk

k
∑













[172]
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R2MQ = τc

3
4
5

dCSA + 1
4

dIk
k
∑













[173]

    
R2I = τc

3
dIS
5

+ 1
4

dIk
k
∑













[174]

For backbone amide moieties in proteins, dCSA /dIS = 0.055 (assuming

∆σ = -160 ppm for 15N and B0 = 11.74 T),     dIS dIk∑ ≈ 0.3. Therefore,     R2I  >

R2MQ       R2S   R 2S , and linewidths are narrower in the F 1 dimension of a

1H-15N HSQC spectrum than of a HMQC spectrum. Decoupling of the I and S

spins during t1 eliminates broadening due to longitudinal relaxation of Iz,

and consequently results in even narrower linewidths in decoupled 1H-15N

HSQC spectra. For 1H-13C methine moieties, dCSA/dIS = 0.002 (assuming ∆σ

= 25 ppm for 13C and B0 = 11.74 T) and     dIS dIk∑ ≈ 1. 4 . Therefore,     R2I  >

R2MQ       R2S  R2S, and linewidth differences in 1H-13C HSQC and 1H-13C

HMQC spectra are not as pronounced.

The different relaxation properties of the HMQC and HSQC

experiments are emphasized in Figure 12, which shows the t1

interferograms through a selected amide proton resonance of 1H-15N HSQC

spectra of ubiquitin, and the corresponding Fourier transforms. The

observed linewidths in Figures 12a-c are consistent with values of 4.9 Hz,

3.0 Hz, and 2.0 Hz calculated from [173], [172], and [171] by using τc = 4.1

ns. The dispersive contribution associated with the homonuclear scalar

coupling is clearly visible in the HMQC spectrum (Figure 12a). As expected,

the interferogram for the constant-time HSQC experiment (Figure 12d)

exhibits very little decay, and the linewidth in the transformed spectrum

is dominated by the apodization applied during processing.
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2.0 Hz

2.9 Hz

5.9 Hz
a

b

c

d

100 200 300
t1 (ms)

0.9 Hz

Figure 12. The t1  interferograms, and their resulting
Fourier transforms, taken through the amide proton
resonance of Ile36 in the 1 H - 1 5 N heteronuclear correlation
spectra of ubiquitin. The F 1  linewidth at half-height is
indicated beside each peak. Linewidths were measured by
curve fitting the decay of the t1  interferograms. For (d) the
indicated linewidth represents inhomogenous broadening.

7 Nuclear Overhauser effect

By far the most important manifestation of the prediction [112] that

dipolar coupled spins do not relax independently is the nuclear Overhauser

effect (NOE). The Solomon equations [19] are extremely useful for

explication of NOE experiments. The NOE is characterized by the cross

relaxation rate constant,   σ IS
NOE, defined by [109], or the steady-state N O E

enhancement , η IS, which will be defined below. These two quantities

naturally arise in transient or steady-state NOE experiments, respectively.

The NOE is without doubt one of the most important effects in NMR

spectroscopy; more detailed discussions can be found in monographs

devoted to the subject (37, 38) .

The principal use of the NOE in biological NMR spectroscopy is the

determination of distances between pairs of protons (39). The NOE
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enhancements of interest arise from slowly tumbling biological

macromolecules in the spin diffusion limit. For such molecules, relatively

large transient homonuclear proton NOE (or ROE) enhancements build up

quickly and are detected most effectively by transient NOE and NOESY (or

transient ROE and ROESY) methods.

7.1 Steady state and transient NOE experiments

The steady state NOE experiment will be illustrated by using a two

spin system as an example. If the S  spin is irradiated by a weak rf field (so

as not to perturb the I spin) for a lengthy period of time t >> 1/ρS , 1/ρI,

then the populations across the S  spin transitions are equalized and the I

spin magnetization evolves to a steady-state value, 
  

Iz
ss . In this situation,

the S  spins are said to be saturated. Setting     d∆Iz t( ) dt = 0  and <Sz >(t) = 0 in

[19] and solving for 
    

Iz
ss Iz

0  yields:

    

d < Iz
ss >

dt
= −ρI < Iz

ss > − < Iz
0 >( ) + σ IS

NOE < Sz
0 > = 0

< Iz
ss > < Iz

0 > = 1+ σ IS
NOE < Sz

0 > ρI < Iz
0 >( )

< Iz
ss > < Iz

0 > = 1+
σ IS

NOEγ S

ρIγ I
= 1+ ηIS

[175]

in which

  
ηIS ≡

σ IS
NOEγ S

ρIγ I
[176]

As shown, the value of the longitudinal magnetization (or population

difference) for the I spin is altered by saturating (equalizing the

population difference) the S  spin. If η IS is positive, then the population

differences across the I spin transitions are increased by reducing the
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population differences across the S  spin transitions. Since the equilibrium

population differences are inversely proportional to temperature, this

result appears to indicate that heating the S  spins (reducing the population

difference) has the effect of cooling the I spins (increasing the population

difference). This conclusion would appear to violate the Second Law of

Thermodynamics; however, if coupling between the spin system and the

lattice is properly taken into account, then no inconsistency with

thermodynamics exists.

The value of the NOE enhancement, η IS, can be measured using the

steady-state NOE difference experiment. In this experiment, two spectra

are recorded. In the first spectrum, the S  spin is saturated for a period of

time sufficient to establish the NOE enhancement of the I spin, a 90° pulse

is applied to the system, and the FID recorded. The intensity of the I spin

resonance in the spectrum is proportional to <I z
ss>. In the second

experiment, the S  spin is not saturated. Instead a 90° pulse is applied to

the system at equilibrium and the FID is recorded. The intensity of the I

spin resonance in this spectrum is proportional to <Iz
0>. The value of η IS can

then be calculated from [176]. In practice, the steady-state NOE difference

experiment is performed somewhat differently than described in order to

maximize the accuracy of the results; such complications are not relevant

to the present discussion (38) .

Measurements of   σ IS
NOE can be made by use of the one-dimensional

transient NOE experiment, discussed in §1.2 or the two-dimensional NOESY

experiment  (§7.2). These laboratory frame relaxation transient NOE

experiments have rotating frame analogs: the transient ROE experiment
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and the two dimensional ROESY experiment (§7.3) in which the rotating

frame cross relaxation rate constant,   σ IS
ROE , is given by [134].

Using the isotropic rotor spectral density function [92], the cross-

relaxation rate constants for a homonuclear spin system (γI = γS  = γ) are

given by

  

σ IS
NOE = h2µ0

2γ 4τc

10π2rIS
6 −1 + 6

1 + 4ω0
2τc

2









σ IS
ROE = h2µ0

2γ 4τc

10π2rIS
6 2 + 3

1 + ω0
2τc

2









[177]

and the NOE enhancement is given by

    
ηIS = −1+ 6

1+ 4ω0
2τc

2












1+ 3

1+ ω0
2τc

2 + 6

1+ 4ω0
2τc

2












[178]

The cross relaxation rate constants are proportional to the inverse sixth

power of the distance between the two dipolar interacting spins but η I S

does not depend upon the distance rIS between the two spins. Thus, a

measurement of η IS can indicate that two spins are close enough in space

to experience dipolar cross-relaxation, but a quantitative estimate of the

distance separating the spins cannot be obtained. To estimate the distance

between two nuclei,   σ IS
NOE or   σ IS

ROE  must be measured directly (or η I S

measured in one experiment and ρI in a second experiment).

In the extreme narrowing limit (ω0τc <<1), [177] and [178] reduce to

  

σ IS
NOE = σ IS

ROE = h2µ0
2γ 4τc

2π2rIS
6

ηIS = 1
2

[179]
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and in the spin-diffusion limit (ω0τc >>1),

  

σ IS
NOE = − h2µ0

2γ 4τc

10π2rIS
6

σ IS
ROE = h2µ0

2γ 4τc

5π2rIS
6

ηIS = −1

[180]

In the slow tumbling regime , the laboratory and rotating frame cross

relaxation rate constants are related by

σROE = -2σNOE [181]

This relationship has been used to compensate approximately for cross-

relaxation effects in NMR spectra (40, 41). The values of   σ IS
NOE and η IS are

zero if ωτc = 1.12, whereas,   σ IS
ROE  > 0 for all τc.

7.2 NOESY

 The pulse sequence for the NOESY (Nuclear Overhauser Effect

Spectroscopy) experiment is shown in Figure 13. Initially, a 90°-t1-90°

period frequency labels the spins and returns the magnetization to the z-

axis. Magnetization transfer occurs via dipolar coupling for a period τm

before observable transverse magnetization is created by the final 90°

pulse. The final pulse can be replaced by a Hahn-echo sequence with a

concomitant improvement in the flatness of the baseline. A coherence level

diagram for this pulse sequence is presented in Figure 13.
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Figure 13. Pulse sequence and
coherence level diagram for
the NOESY experiment. A
Hahn-echo sequence is
included prior to detection. The
basic phase cycle is four steps
(φ1 = x, -x, -x, x; φ2 = x, x, -x, -x;
and receiver = x , -x , x , -x ) .
Alternatively, both pulses can
be phase cycled in synchrony
to select ∆p =0. EXORCYCLE
phase cycling is used for the
Hahn echo and CYCLOPS is
applied to all pulses.
Bodenhausen and coworkers
have discussed phase cycles for
NOESY experiments (42) .

For a two spin system, initial I1z magnetization evolves through the

the 90°x-t1- 9 0 °x pulse sequence element as:

    

I1z

π
2( )x

−t1− π
2( )x → − I1z cos(Ω1t1) cos(πJ12t1) − 2 I1xI2y cos(Ω1t1) sin(πJ12t1)

+ I1x sin(Ω1t1) cos(πJ12t1) − 2 I1zI2y sin(Ω1t1) sin(πJ12t1)
 

[182]

in which 
    

π
2( )x

 represent non-selective rf pulses with x-phase applied to the

I spins, the chemical shift of the  spin I1 is Ω 1, and the scalar coupling

constant between the I1 and I2 spins is J12 (assumed to represent a three-

bond scalar interaction). . Parallel evolution beginning with I2z

magnetization is exhibited by exchanging I1 and I2 labels.

Evolution of the I1z term in [182] during τ m  is governed by the

Solomon equations in which the initial condition is -I1zcos(Ω1t1)cos(πJ12t1)

and the equilibrium magnetization,     I1z
0 , is rejected by phase cycling for

axial peak suppression. If K -1 spins (Ik for k  = 2, ... K ) are close in space to

spin I1 (this notation allows for the possibility that the scalar coupled spin,
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I2, is dipolar coupled to I1 as well), then the resulting evolution during τ m

is:

    
− I1z cos(ΩIt1) cos(πJt1) τm → − Ikza1k τm( ) cos(Ω1t1) cos(πJ12t1)

k=1

K

∑ [183]

in which a1k(τm ) = [exp(-R τm )]1k is the (1, k)th element of the matrix

exponential and R  is the matrix of rate constants ρ i and σ ij (§1.2). After the

final 90° pulse and Hahn echo, the density operator terms that result from

the longitudinal magnetization are given by

    
Ikya1k τm( ) cos(Ω1t1) cos(πJ12t1)

k=1

K

∑ [184]

The final spectrum contains I1 diagonal peaks (the k  = 1 term in [184]) and

I1→ Ik NOE cross-peaks for k  > 1. All of the peaks are in-phase with respect

to homonuclear scalar coupling in F1 and F2, and also can be phased to

absorption in both dimensions.

The longitudinal magnetization that will give rise to the NOE cross-

peaks has coherence level p  = 0) during τ m , and the phase cycle rejects

other coherence levels during this period, including the single quantum

terms I1x and 2I1xI2z in [182]. The second term of [182] is a mixture of

    
ZQy

12  (p  = 0) and 
    
DQy

12 (p  = 2) coherences. The double-quantum operator is

suppressed by the phase cycling; however, the zero-quantum term

survives. During τ m  the zero quantum term will precess according to the

difference in chemical shift of I1 and I2. The following terms will be

generated by the final 90° pulse and Hahn echo:
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− ZQy
12 cos(Ω1t1) sin(πJ12t1)

τm −(π /2)x −∆1−π y −∆2 →

+ 1
2

2 I1xI2x − 2 I1zI2z[ ]cos(Ω1t1) sin(πJ12t1) sin (Ω1 − Ω2 )τm[ ]

− 1
2

2 I1zI2x − 2 I1xI2z[ ]cos(Ω1t1) sin(πJ12t1) cos (Ω1 − Ω2 )τm[ ]

[185]

The last line of [185] contains observable terms and therefore must be

considered in an analysis of the NOESY spectrum. Such artifacts arise via a

zero-quantum pathway and are referred to as zero-quantum  peaks. These

peaks are in anti-phase in both dimensions, and are also in dispersion

when the normal NOE peaks [184] are phased to absorption.

The NOE and zero-quantum peaks between two coupled spins appear

at identical chemical shifts in F1 and F2. Although the net integrated

intensity of the dispersive zero-quantum component is zero, accurately

integrating the contributions from the dispersive tails of this component

may not be possible, and errors in the measurement of the NOE cross-peak

volume result; in addition, the anti-phase dispersive tails can interfere

with the integration of other cross-peaks in crowded regions of the

spectrum. The magnitude of the zero quantum component varies as

cos[(Ω 1-Ω 2)τm ] which depends on the chemical shifts of the spins involved

and the mixing time. In addition, because the zero-quantum terms have

transverse components during τ m , relaxation is faster than for longitudinal

magnetization, and the zero-quantum component is reduced in intensity

relative to the true NOE peak when a long mixing time is employed.

The theoretical time dependence of the NOE cross-peaks in the NOESY

experiment (§1.2) suggests that the mixing time should be on the order of

1/R1 to maximize the intensities of NOE cross peaks. A long mixing time
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also has the advantage that zero-quantum artifacts will be of low intensity.

However, long mixing times will also allow multiple magnetization

transfers, or spin diffusion, to contribute substantially to the cross-peak

intensity. The origins and consequences of spin diffusion are illustrated for

a three-spin system with the following relaxation rate matrix:

    

R =
ρ1 σ12 0

σ12 ρ2 σ23
0 σ23 ρ3

















[186]

By construction, spins I1 and I3 are too far apart to have an appreciable

dipolar coupling (σ13 = 0); thus direct magnetization transfer between I1

and I3 is not possible. The time dependence of the I1 magnetization is

given to third-order in time by,

      

I1z τm( ) = exp −Rτm( )[ ]
k=1

3

∑
1k

Ikz 0( )

≈ E1k − R1kτm + 1
2 R1k

2 τm
2 − 1

6 R1k
3 τm

3[ ]
k=1

3

∑ Ikz 0( )

= I1z 0( ) 1− ρ1τm + 1
2 ρ1

2 + σ12
2( )τm

2 − 1
6 ρ1

3 + 2ρ1σ12
2 + ρ2σ12

2( )τm
3{ }

  + I2z 0( ) −σ12τm + 1
2 ρ1 + ρ2( )σ12τm

2{
− 1

6 ρ1
2 + σ12

2( )σ12 + ρ1 + ρ2( )ρ2σ12 + σ12σ23
2[ ]τm

3 }
  + I3z 0( ) 1

2 σ12σ23τm
2 − 1

6 ρ1 + ρ2 + ρ3( )σ12σ23τm
3{ }

[187]

Each of the terms in [187] can be assigned a physical interpretation;

however only three terms will be discussed in detail. The first order term

-σ12τm< I2z>(0) represents direct transfer of magnetization from spin I2 to

spin I1 and gives rise to a cross peak in the NOESY spectrum. In the initial

rate regime, only this term contributes to the cross peak intensity and the
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cross peak intensity is proportional to the cross-relaxation rate constant,

σ12. The second order term     1 2( )σ12σ23τm
2 I3z 0( )  exemplifies spin

diffusion. This term gives rise to a cross peak between spins I1 and I3 by

an indirect two step transfer from I3 →  I2 →  I1. In the quadratic time

regime, the intensity of the spin-diffusion cross peak depends on the

product of the individual cross-relaxation rate constants. Finally, the third

order term     ρ2σ12
2 τm

3 I1z 0( )  represents a back transfer pathway I1 →  I2 →

I1. The back transfer has the effect of reducing the intensity of the cross

peak that would otherwise result from cross-relaxation between I1 and I2.

Spin diffusion is illustrated graphically for a three spin system in Figure

14. Even for a two spin system, outside of the initial rate regime, NOE

cross-peak intensities are not proportional to the cross-relaxation rate

constants. The assumed linearity between the NOE cross peak intensities

and cross-relaxation rate constants sometimes is called “the isolated two-

spin approximation”; as the present discussion shows, this phrase is a

misnomer.
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Figure 14.
Amplitudes of the
NOESY cross peaks
are shown as a
function of mixing
time for a three
spin system. (– –)
I1→ I2, (–  - – )
I2→ I3, (- - -) I1→ I3.
Calculations were
performed using ρ1
= 10 s-1, ρ2 = 10 s-1,
ρ5 = 5 s-1, σ12 = -5 s-

1, σ13 = 0 s-1, σ23 =
-1.5 s-1. For
comparison, (—)
I1→ I2 with σ23 = 0
s-1, and (–  - - – )
I2→ I3 with σ12 = 0
s-1 are also shown.

As a consequence of spin diffusion, cross-peaks between pairs of

protons that are far apart will gain intensity from magnetization that has

been transferred via intervening spins whilst cross-peak between pairs of

protons that are close together will be decreased by the loss of

magnetization to other nearby protons. Failure to adequately account for

spin-diffusion results in the derivation of inaccurate distance constraints

between pairs of protons; overly tight constraints derived from NOE cross

peaks dominated by spin diffusion leads to overly constrained and

incorrect protein structures. Spin-diffusion effects may be minimized by

using a short mixing time, but in these experiments all cross-peak

intensities will be low, and zero-quantum artifacts will be emphasized. A

compromise with mixing times of 50-150 ms provides reasonable cross-

peak intensities that are not overly influenced by spin-diffusion or zero-

quantum contributions. Dipolar relaxation is more efficient in systems with
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long rotational correlation times, hence a shorter mixing time is required to

limit spin-diffusion in large proteins.

NOESY spectra provide a powerful means of elucidating

conformational details of molecules in solution. The requirement that two

protons be separated by less than 5 Å (or so) in order to give rise to an

NOE immediately allows a loose restraint to be placed on their separation.

Furthermore, the size of the NOE depends inversely on the distance, hence

the restraint can be shorter than 5 Å if the NOE is intense. In order to

calculate the structure of a protein, many such restraints must be

identified in an unambiguous fashion. In most applications, NOE cross-

peaks simply are placed into one of several size categories associated with

an upper bound for the proton separation. More accurate calibration is

difficult because of the complex relationship between NOE build-up, local

correlation time and the distribution of neighboring protons. Analysis of

NOESY spectra with different mixing times (called a build-up or τm -series)

allows the initial slope of the NOE build up to be estimated and facilitates

calibration. A variety of methods have been proposed to improve the

quality of cross-peak volume extraction from NOESY spectra (43-46) .

Besides cross-relaxation, chemical exchange can also lead to cross-

peaks in NOESY spectra. In cases of slow exchange (on the chemical shift

time scale) between two species (§5.1), a cross-peak is observed at the

frequencies of a particular nucleus in the two different sites if the

exchange rate between the species is not slow compared to τm . For

proteins, the chemical exchange peaks have the same sign as NOE cross-

peaks (the same sign as the diagonal peaks, formally negative), hence

discrimination of the two can be difficult. Very complicated spectra can
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result due to peaks arising from combinations of exchange and cross-

relaxation; in effect, these are spin-diffusion peaks involving two transfer

steps.

7.3 ROESY

Rotating frame Overhauser effect spectroscopy (ROESY) was first

developed by Bothner-By and co-workers and was initially known by the

acronym CAMELSPIN (cross-relaxation appropriate for mini-molecules

emulated by locked spins) (27). As both names suggest, the experiment

monitors cross-relaxation between spins that are spin-locked by the

application of rf pulses (27, 47). ROESY has the advantage that the rotating

frame Overhauser effect (ROE) cross-relaxation rate constant is positive for

all rotational correlation times: the maximum size of the ROE varies from

0.38 for ω0τc <<1 to 0.68 for ω0τc >> 1. Therefore ROESY cross-peaks are

observable even if ω0τ c  1; in contrast, cross-peaks vanish in laboratory

frame NOESY experiments if ω0τc  1. ROESY is very useful in studies of

peptides in which laboratory frame NOEs are weak, but the experiment

also has merits appropriate for the study of proteins. ROESY and NOESY

experiments are very similar; consequently, comparisons to NOESY will be

made throughout this discussion. A more detailed discussion of relaxation

in the rotating frame is given in §4.3.
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Figure 15. Pulse sequences and
coherence level diagram for
the ROESY experiments. In (a)
the basic phase cycle is: φ1 = x ,
-x ; and receiver = x , -x. The
spin-lock phase θ  = y . In (b)
the basic phase cycle is: φ1 = x ,
-x; φ2 = x ; and receiver = x , -x.
The spin-lock phase θ = x . The
full phase cycle is completed
by performing CYCLOPS on all
pulses and the receiver.

The original version of the ROESY experiment simply consisted of a

90° - t1 - τ m  - t2, sequence in which the spin-locking field during τ m  was

provided by continuous low power irradiation (2-4 kHz), as illustrated in

Figure 15a. For a scalar coupled two spin system, the evolution up to the

mixing period is given by:

 

    

I1z
(π /2)x −t1 → − I1y cos(Ω1t1) cos(πJ12t1) + 2 I1xI2z cos(Ω1t1) sin(πJ12t1)

+ I1x sin(Ω1t1) cos(πJ12t1) + 2 I1yI2z sin(Ω1t1) sin(πJ12t1)
[188]

During the subsequent spin locking period, any operators orthogonal to the

rf field in a tilted rotating frame are dephased by rf inhomogeneity. The x-

axes of the rotating and tilted reference frames are coincident; thus, all

terms containing x-operators are dephased. The transformation of z- and

y-operators into the tilted frame is performed using [82]:
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I1y ⇒ ′I1z sin θ1 + ′I1y cos θ1

2 I1yI2z ⇒ 2 ′I1z sin θ1 + ′I1y cos θ1( ) ′I2z cos θ2 − ′I2y sin θ2( )
= 2 ′I1z ′I2z sin θ1 cos θ2 − 2 ′I1z ′I2y sin θ1 sin θ2

+2 ′I1y ′I2z cos θ1 cos θ2 − 2 ′I1y ′I2y cos θ1 sin θ2

[189]

in which θ1 and θ2 are the tilt angles for spins I1 and I2. The only terms

that commute with the spin lock Hamiltonian are proportional to I ′1z and

2I ′1zI ′2z. If K -1 spins (Ik for k  = 2, ... K ) are close in space to spin I1, the

resulting evolution of the longitudinal magnetization is:

    

− ′I1z sin θ1 cos(Ω1t1) cos(πJ12t1) τm →

− ′Ikza1k τm( ) sin θ1 cos(Ω1t1) cos(πJ12t1)
k=1

K
∑

[190]

in which a1k(τm ) = [exp(-R τm )]1k is the (1, k)th element of the matrix

exponential and R  is the matrix of rotating frame relaxation rate constants

R kk(θi) and σ jk(θi, θj) (§4.3). Transforming back from the tilted frame to

the rotating frame yields the observable operators:

    
Ikya1k τm( ) sin θ1 sin θk cos(Ω1t1) cos(πJ12t1)

k=1

K
∑ [191]

The I1y  term represents a diagonal peak and the remaining K -1 terms

represent cross-peaks. Diagonal peaks and cross-peaks have in-phase

absorptive lineshapes in F1 and F2. In the usual methods of acquisition, the

cross-peaks are of opposite phase to the diagonal because ρ j and σ jk are

both positive (27) .

The two spin term 2I ′1zI ′2z does not cross-relax with other I1 or I2

spin operators during τ m ; however the amplitude of the operator is
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reduced by relaxation (with relaxation rate constant designated R zz) .

Transformation back into the rotating frame yields the observable

operators:

    

2 I1yI2z sin θ1 cos θ2 + 2 I1zI2y cos θ1 sin θ2( )
× sin θ1 cos θ2 sin Ω1t1( ) sin πJ12t1( ) exp − Rzzτm( )

[192]

The limitations of the simple ROESY experiment are now evident: (i)

amplitude of cross peaks are reduced by a factor of sinθ1sinθk, and (ii)

two-spin order generates cross-peaks with anti-phase lineshapes in both

dimensions that distort the in-phase multiplet patterns expected for ROESY

cross-peaks.

Griesinger and Ernst developed a simple and clever modification to

the ROESY pulse sequence that overcomes these limitations. In this

sequence (Figure 15b) evolution through the 90°x-t1- 9 0 °x block proceeds as

described in [182]. The y-operators are dephased by the x-phase spin lock

rf field. Transformation of the z- and x-operators into the tilted frame

yields:

    

− I1z cos Ω1t1( ) cos πJ12t1( ) + I1x sin Ω1t1( ) cos πJ12t1( ) ⇒

− − ′I1x sin θ1 + ′I1z cos θ1( ) cos Ω1t1( ) cos πJ12t1( )
+ ′I1x cos θ1 + ′I1z sin θ1( ) sin Ω1t1( ) cos πJ12t1( )

[193]

The only term that commutes with the spin lock Hamiltonian is

    

− ′I1z cos θ1 cos Ω1t1( ) − sin θ1 sin Ω1t1( )( ) cos πJ12t1( ) =

− ′I1z cos Ω1t1 + θ1( ) cos πJ12t1( )
[194]
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Cross-relaxation during τm  yields

    

− ′I1z cos Ω1t1 + θ1( ) cos πJ12t1( ) τm →

   − ′Ikza1k τm( ) cos Ω1t1 + θ1( ) cos πJ12t1( )
k=1

K
∑

[195]

Transforming back from the tilted frame to the rotating frame and

applying the last 90° pulse yields the observable operators:

    
Iky cos θk − Ikx sin θk( )a1k τm( ) cos Ω1t1 + θ1( ) cos πJ12t1( )

k=1

K
∑ [196]

The offset dependence of the ROESY cross-peaks appears in [196] as a

phase error of θ1 in t1 and θk in t2. Because θk is approximately linear for 0

≤  Ω k ≤  γB1, the resonance offset effects are compensated by phase

correction during processing. No two spin operators that commute with the

spin lock Hamiltonian are created; therefore, the cross-peak multiplet

structure is undistorted (minor contributions from evolution of zero-

quantum coherences in the tilted frame have been ignored).

Although the Griesinger and Ernst approach eliminates the offset

dependence that arises from the projection of the spin operators between

tilted and untilted frames, the magnitudes of cross-relaxation rate

constants in a ROESY experiment also depend upon resonance offset as

shown by [133]. As a result, relaxation for off-resonance spins will contain

a laboratory frame component (i.e. an NOE) as well as a rotating frame

component. Interestingly (and somewhat counter intuitively) for large

biomolecules, the apparent offset-dependent cross-relaxation rate between

two spins is actually most efficient for cross-peaks along the anti-diagonal

and least efficient for cross-peaks close to the diagonal away from the
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center of the spectrum (48). Any quantitative analysis of ROESY cross-peak

intensities must consider the offset dependence of the rate constants.

A practical problem encountered in the ROESY experiment is that the

spin-lock pulse is capable of inducing isotropic mixing (49). The TOCSY (or J

cross-peaks) are of the same sign as the diagonal; consequently, TOCSY

transfer within a scalar coupled system tends to cancel the cross-relaxation

components and render quantitation of the ROE (and hence the inter-

proton separation) difficult. More insidiously, cross-peaks that arise

through consecutive TOCSY and ROE magnetization transfers have the same

sign as the actual ROE peaks (50) and can be misinterpreted. Fortunately, a

long, weak pulse is not efficient at achieving a Hartman-Hahn match

between two protons unless they are close in chemical shift or

symmetrically disposed about the carrier position. Unambiguous ROE cross

peaks can be identified by recording two ROESY spectra with very

different rf carrier offsets (50). Development of pulse sequences that

eliminate TOCSY transfer and generate pure ROE cross peaks is an area of

active research (51) .

The ROESY experiment has several redeeming qualities for studies of

proteins. Foremost, as discussed above, the ROE is always positive and

cross-peaks can be observed in ROESY spectra even if the peaks cannot be

observed in NOESY spectra because ω0τc  1.

A further advantage of ROESY over NOESY is that spin-diffusion (or

three-spin effects) produces contributions to cross-peaks that are of

opposite sign to the direct ROE peaks. Conceptually, the rotating frame

cross-relaxation rate constant is positive, and magnetization transfer
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between two spins occurs with inversion of sign. Thus, a diagonal peak and

a cross-peak arising by a direct ROE between two spins have opposite

signs. Transfer of the cross-peak magnetization to a third spin involves

another change of sign. As a result, cross-peaks dominated by spin-

diffusion will be of the same sign as the diagonal. If a small three-spin

interaction contributes to a ROESY cross-peak, the measured intensity is

reduced and may be interpreted as a longer inter-proton separation.

Consequently the upper bound restraint applied in structure calculations

will not be overly restrictive. The influence of spin-diffusion in NOESY

spectra is particularly pronounced for NOEs involving geminal methylene

groups. Efficient spin-diffusion between the 1H β" and 1H β ' tends to equalize

the intensity of NOEs to other protons even if the distances to 1H β" and 1H β '

are not equal. Stereospecific assignment β-methylene protons plays an

important role in defining side-chain conformation, and depends heavily

on estimating the relative sizes of intra-residue and sequential distances to

1Hβ" and 1Hβ' (52, 53). The use of ROESY spectra for this process

significantly reduces the chance of incorrectly making such assignments.

Another important facet of the ROESY experiment is that chemical

exchange peaks are of the same sign as the diagonal, i.e. opposite in sign to

peaks arising from direct cross-relaxation. Thus, rotating frame

experiments are invaluable in the study of dynamic processes involving

slow exchange between two or more states. Protein-protein or peptide-

protein interactions are one area where discrimination of cross-relaxation

and chemical exchange is not possible from NOESY, but is apparent from

ROESY data. As with chemical exchange in TOCSY spectra (54), complex
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situations can arise where peaks result from both cross-relaxation and

exchange.

8 Investigations of protein dynamics by NMR spin relaxation

Dipolar nuclear magnetic spin relaxation of protonated heteronuclei,

such as 13C and 15N, is mediated by overall rotational tumbling of the

molecule and by internal motions of the X-H bond vector (55, 56) ;

consequently, measurement of 13C and 15N spin relaxation parameters,

primarily the spin-lattice and spin-spin relaxation rate constants and the

steady state {1H}-15N nuclear Overhauser effect (NOE), is powerful

technique for experimental investigation of dynamics in biological

macromolecules (21, 22) .

Methods for the determination of relaxation parameters for 15N and

13C spins in IS spin systems by proton-detected heteronuclear correlation

inversion-recovery, Carr-Purcell-Meiboom-Gill (CPMG), and steady-state

{1H}-X NOE experiments have been described (57-59), as have techniques

for measuring relaxation rate constants for antiphase coherence and two

spin order (60). Techniques have been developed that minimize systematic

contributions from cross-correlation between dipolar and chemical shift

anisotropy (CSA) relaxation mechanisms (61-63) and from evolution of

scalar coupling interactions during measurements of spin-spin relaxation

rate constants (62, 63). Additional complexities that arise in 13C AX2 and

A X 3 spins systems have been discussed elsewhere (25, 64-67) .

The pulse schemes used to measure R1, R2, and the {1H}-15N NOE, are

shown in Figure 16 (68). The R1 and R2 sensitivity enhanced pulse

sequences consist of an initial refocussed INEPT transfer, the relaxation
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period T , the t1 evolution period, and reverse polarization transfer scheme.

Proton-decoupling is performed using a composite pulse decoupling

sequence during the relaxation delay of the inversion recovery

experiments (Figure 16a) to suppress the time-dependent effects of

dipolar 15N-1H cross-relaxation and of cross correlation between dipolar

and CSA relaxation mechanisms. In order to suppress the time-dependent

effects of cross-correlation between dipolar and CSA relaxation

mechanisms in the CPMG experiments (Figure 16b), proton-decoupling is

performed using synchronous proton 180°  hard pulses during the

relaxation delay T . The spin-echo delay in CPMG experiments must be

short to minimize effects from evolution under the heteronuclear scalar

coupling Hamiltonian; δ = 0.5 ms is sufficient for this purpose. Inversion

recovery and CPMG decay curves are obtained by recording a series of 2D

heteronuclear correlation spectra in which the relaxation period T  is varied

parametrically. The steady state NOE pulse sequence consists of the t1

evolution period and the extended reverse polarization transfer scheme.

The NOE enhancements are measured by recording pairs of spectra with

and without saturation of protons during the recycle time between

transients (Figure 16c). Saturation of protons during the recovery delay is

performed using a composite pulse decoupling sequence. In all sequences,

the H2O resonance is suppressed by short spin lock purge pulses during the

INEPT transfer steps to minimize the effects of saturation transfer from

the solvent protons. These pulse sequences can be modified easily to utilize

pulsed field gradients and “water flip back” techniques (69) .

For the inversion recovery and CPMG experiments:

I(t) = I  - [I -I0]exp[-T /R1] [197]
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I(t) = I0 exp[-T /R2] + I [198]

respectively. In [197] and [198], I0 is the peak intensity for T  = 0 and I  is

the limiting peak intensity as T  →  . Peak intensities may decay to a non-

zero limiting value in CPMG experiments as a consequence of pulse

imperfections. For the NOE experiments, the NOE is calculated is given by:

NOE = 1 + η  = Isat/Iunsat [199]

in which Isat and Iunsat  are the peak intensities in spectra recorded with

and without saturation of protons during the recycle delay.
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Figure 16. Pulse schemes used to measure (a) 15N R 1, (b) 15N R 2 and (c) {1H}-15N
NOE. Similar sequence can be used to measure relaxation rates for the S spin of
heteronuclear IS spin systems. The phase cycling used for R 1  and R 2  experiments is
as follows: φ1 = (x, -x, x, -x); φ2 = 4(y), 4(-y); φ3 = (y, y, -y, -y) and receiver (x, -x, -x,
x). In the case of the {1H}-15N NOE experiments, the following phase cycles were
employed: φ1 = 2(x, -x x -x -x x -x x); φ2 =16(y) 16(-y); φ3 = 2(y, y, -y, -y), 2(-y, -y, y, y)
and receiver = (x, -x, -x, x, -x, x,x, -x, -x, x, x, -x, x, -x, -x, x). In all cases, each t1
experiment is recorded twice with the phase of the 15N 90°  pulse immediately after
t1  differing by 180° . Linear combinations of these two experiments are used to
obtain the sensitivity enhancement (3 4 ). The 180°  pulses without phase
designations are applied along the y -axis. The value of τ  is set to 1/(4JN H ). For (a),
and (b),the delay T  is parametrically varied in a series of 2D experiments; for (c),
pairs of spectra are acquired with and without proton saturation.

Three parameters, I0, I∞ , and R 1, must be optimized when fitting

[197] to experimental data. As has been discussed elsewhere, if the phase
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of the radiofrequency pulse applied to the 15N spins immediately prior to

the relaxation period, T , in Fig. 1a and the phase of the receiver are

inverted simultaneously on alternate acquisitions (extending the phase

cycle by a factor of two) the contribution of the steady-state 15N

magnetization to the observed signal is canceled. In principle, this

modification results in a single exponential time dependence of the

observed signal with only two optimizable parameters, I0 and R 1. In

practice, a three parameter fit using an equation of the form of [198] may

still be required to account for offsets and distortions of the baseline, and

extension of the phase cycle may be undesirable. Nonetheless, satisfactory

results can be obtained with either version of the inversion recovery

experiment.

Relaxation of an amide 15N nucleus spin at high field is dominated by

the dipolar interaction with the directly attached proton spin and by the

CSA mechanism. In addition, CPMG experiments are systematically affected

by chemical exchange during the spin-echo delay. The phenomenological

rates are thus

R1 = R2DD + R2CSA [200]

R2 = R2DD + R2CSA + Rex [201]

NOE = 1 + (σ/R1) (γH/γX) [202]

in which the dipolar and CSA relaxation rates are given in Tables 5 and 8.

Rex has been included in Eq. [201] to accommodate chemical exchange and

other pseudo-first-order processes that contribute to the decay of

transverse magnetization (70). For chemical exchange between two equally
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populated sites, R ex  depends on the first order rate constant for the

exchange process, kex; the chemical shift difference between the sites, ωex;

and the spin echo period, δ. For kex > ωex,

    Rex = kex − sinh−1 δkex sinh 2u( ) / u[ ] / (2δ ) [203]

in which 
    
u2 = δ 2 kex

2 − ωex
2( ). The chemical exchange contribution to R2 is

independent of δ if δkex >> 1 and is negligible if δkex <<1. Furthermore,

conformational exchange is undetectable by NMR spectroscopy if the

resonance frequency difference between conformers approaches zero.

Most commonly, the amplitudes and time scales of the intramolecular

motions of the protein are determined from the relaxation data by using

the model-free formalism pioneered by Lipari & Szabo (19, 20) and

extended by Clore and coworkers (71). Protocols for determination of

model free parameters from experimental data have been described

elsewhere (59, 67, 72). Alternatively, values of the spectral density

function can be determined directly via “spectral density mapping” if

additional relaxation parameters for longitudinal two-spin order and

antiphase coherence are measured (60, 73) .
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