
Chapter 2

The Special Theory of Relativity

Read Chapter 2 of the hand-written notes

2.1 ∗Classical Relativity

Consider an observer, named O, who measures the position of an object in his coordinate
system as ~x = (x, y, z), at time t. A second observer, named O′, is in an inertial frame (no
forces acting on the observer), but moving at linear velocity ~u with respect to O. This second
observer measures the position of the object in his coordinate system to be ~x′ = (x′, y′, z′),
at time t′. Now, we impose some constraints on our two observers to simplify the discussion.
(It’s not necessary to impose these constraints, it just makes the discussion much simpler.)

1. Both O and O′ measure time in the same way, with a clock of identical design and
function. Thus, any time interval between two events measured by O to be ∆t is
identical to the time interval ∆t′ observed by O′ for the same two events. In other
words, the time difference between two events measured by both is the same. That is,
∆t = ∆t′.

2. At t = 0 and t′ = 0, the coordinate systems of the two observers are perfectly aligned,
with ~x = ~x′, or equivalently, (x, y, z) = (x′, y′, z′) at t = 0 and t′ = 0. That is, the axes
are all perfectly aligned, and the coordinate systems coincident.

3. Both O and O′ measure distance (displacements) in the same way, with an instrument
of identical design and function.

4. Both O and O′ measure mass in the same way, with an instrument of identical design
and function. The mass of the object seen by O and O′ are identical.

Consequences:

1
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1. Observer O sees observer O′ moving with velocity ~u, while observer O′ sees observer
O moving with velocity −~u.

2. Simultaneous events seen by observer O at time t are also seen by observer O′ as
simultaneous.

3. A displacement between two simultaneous events measured by O to be ∆~x is identical
to the displacement ∆~x′ observed by O′ for the same two simultaneous events. This is
illustrated in Figure 2.1.
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Figure 2.1: Galilean transformation of a displacement.

4. The coordinates of an event in one coordinate system may be related to the other by
means of the Galilean Transformation:

~x′(t) = ~x(t) − ~ut
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5. If ~x(t) represents the trajectory of a particle observed by observer O, then it is easily
shown that the velocities are connected by:

~v′(t) = ~v(t) − ~u ,

since ~u is a vector that is constant in time. This shows that Newton’s First Law of
Motion holds in both frames. If ~v(t) is constant in time, then so is ~v′(t), and the motion
(velocity) of the object persists in both frames unless acted on by another force.

6. The accelerations observed by the two observers, is easily shown to be constant,

~a′(t) = ~a(t) .

Since ~F = ma, the force on the object measured by both observers is the same, and
Newton’s Second Law of Motion applies equally in both frames.

If there are equal and opposing forces on the object in one frame, they are measured
to be the same in the moving frame. Newton’s Third Law of Motion is preserved.

Hence, the Classical Laws of Physics are the same in both frames.

2.2 ∗The Michelson-Morley Experiment

Oddly enough, the speed of light is not measured anymore, it has been assigned, via definition
in 1983, that of an exact constant:

c = 299 792 458 m/s .

You would only be wrong by about 0.1% if you said it was 3×108 m/s, and this approximation
is often used in quick numerical calculations.

It is truly remarkable how slow the speed of light is! It takes light about 1/7th of a second
to circumnavigate the earth at the equator, and goes about a foot in a nanosecond.

So, if light really has a finite speed, and Galilean transformations are true, we should be able
to measure how fast we are moving relative to it. That was the purpose of the Michelson-
Morley experiment, the most famous failed experiment in physics1.

Their experiment showed conclusively, that the speed of light is constant, no matter what
direction the earth was moving. Albert Einstein’s leap of imagination was to say that it is
a fundamental property of light.

1That failed experiment got Albert Michelson a Nobel Prize in 1907.
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∗How the Michelson-Morley Experiment Works

Referring to the figure (it’s missing!), let’s imagine that the speed of the earth through the
ether is u, directed from right to left, along the length AC. A pulse of radiation leaves S, the
source, and travels upstream against the ether, and is split into two pulses by a “half-mirror”
at A. One of the pulses goes along the length AC, gets reflected by a mirror at C, back again
to the “half-mirror” at A and up to the detection apparatus, that is labelled by D. The half
of the pulse that gets split off at A, goes along the length AB, gets reflected by the mirror
at B, back again to the “half-mirror” at A and up to the detection apparatus at D.

The first pulse, once it leaves the splitter, takes total time

t|| =
2AC

c

1

1 − u2/c2
+

AD

c

1
√

1 − u2/c2
, (2.1)

to complete the journey. Here c is the speed of light (assuming the ether is at rest!).

Since we expect that u ≪ c, we can do a series expansion of (2.1) in u2/c2 and find that, to
lowest surviving order in u2/c2, that

t|| ≈
2AC

c
(1 + u2/c2) +

AD

c
(1 +

u2/c2

2
) , (2.2)

which is an excellent approximation, when u is very small compared to c.

Using the same method, the second pulse takes time,

t⊥ =
2AB

c

1
√

1 − u2/c2
+

AD

c

1
√

1 − u2/c2
, (2.3)

which, in the u ≪ c approximation is

t⊥ ≈
2AB

c
(1 +

u2/c2

2
) +

AD

c
(1 +

u2/c2

2
) . (2.4)

The difference between them is

∆t0 = t|| − t⊥ = 2
AC − AB

c
+

AC

c

2u2

c2
−

AB

c

u2

c2
. (2.5)

That difference eliminates the contribution from AD. If AC were exactly equal to AB, then
the experiment would give a direct measurement of the speed of the earth through the ether.
But that is impossible to do, because the difference would have to be immeasurably small.
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So, they flipped the apparatus by π/2, so that S and D were in the same place, but B and
C changed positions. This results in a time difference of,

∆tπ/2 = t|| − t⊥ = 2
AC − AB

c
+

AC

c

u2

c2
−

AB

c

2u2

c2
, (2.6)

and the difference between these two, is

∆t = ∆t0 − ∆tπ/2 =
AC + AB

2c

u2

c2
, (2.7)

thus ridding the experiment of the differences in distances between the half-mirror and the
mirrors, and yielding a direct measure of the speed of the earth through the ether.

As the story unfolded, u was measured to be zero, no matter where the earth was in its
yearly revolution around the sun, and the only conclusion that made sense was that light
could propagate through a vacuum. That begged the question, “If there is no ether, then
what can we say about the speed of light in different inertial frames?” That’s exactly what
Einstein had something to say about ...

2.3 ∗Einstein’s Postulates

Einstein formulated his Special Theory of Relativity on two postulates, one of them a gen-
uinely new idea:

1. The principle of relativity: The laws of physics are the same in all inertial reference
frames.

2. Constant speed of light: The speed of light has the same value in all inertial reference
frames.

The consequences of this idea are remarkable. All three of the constraints we applied to
Galilean transformations: time, length and mass equivalence, must be undone. We will
investigate these in the next section.

2.4 ∗The Lorentz Transformation

The Lorentz transformation relating two observers, O and O′, where O′ is moving along the
positive x-axis with respect to O at speed u is:
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x′ =
x − ut

√

1 − u2/c2

y′ = y

z′ = z

t′ =
t − (u/c2)x
√

1 − u2/c2
. (2.8)

I’d like to introduce a more compact notation. Factors like u/c and
√

1 − u2/c2 occur so
frequently that the following convenient shorthand notation is often used:

βu = u/c

γu =
1

√

1 − β2
. (2.9)

Frequently, when there is only one velocity in the discussion, the subscript u is dropped. β
is the ratio of the velocity in question to the speed of light, while γ is related (as we shall
see shortly) to the energy and momentum of a particle with mass.

The following property, a consequence of (2.8) is often employed to simplify expressions:

γ2 − β2γ2 = 1 . (2.10)

With this shorthand, the Lorentz transformation may be written:

x′ = γ(x − βct)

y′ = y

z′ = z

ct′ = γ(ct − βx) . (2.11)

∗Lorentz Transformation of Position and Time with Arbitrary Velocity

O′(x′, y′, z′, t′) → O(x, y, z, t), where the relative motion of O′ with respect to O is along the
positive ~u-axis with speed u and direction n̂u:

ct′ = γu(ct − ~βu · ~x)

~x′ = ~x − γu
~βuct + (γu − 1)(n̂u · ~x)n̂u . (2.12)
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∗Length Contraction

With the Lorentz transformation, we are now in a position to obtain the formulae for length
contraction and time dilation more simply.

Suppose that O measures a space and temporal displacement with coordinates at (x1, t1)
and (x2, t2). In O′’s frame, these coordinates correspond to (x′

1, t
′
1) and (x′

2, t
′
2). Thus,

∆x′ = x′
2 − x′

1 and ∆x = x2 − x1 are related by (2.11) and found to be:

∆x′ = γ(∆x − u∆t) , (2.13)

where ∆t = t2 − t1. Now, both O and O′ make simultaneous measurements of the length of
an object aligned along the direction of motion. O′ measures the “proper” length, since the
object is at rest in his frame. (By definition, the “proper” length is the length of an object
as measured in its rest frame. It is always measured to be shorter if in motion relative to
the frame in which the measurement is made.) However, O measures a different length L,
given from (2.13) as:

L0 = γL, or L = L0/γ . (2.14)

Thus, O measures the object as being “shorter”.

∗Length Contraction with Arbitrary Velocity

~L = ~L0 − (γu − 1)n̂u(n̂u · ~L0)/γu

n̂u · ~L = (n̂u · ~L0)/γu

n̂u × ~L = n̂u × ~L0 (2.15)

∗Time Dilation

Now, consider the same situation in terms of time. According to (2.13),

c∆t′ = γ(c∆t − β∆x) . (2.16)

From (2.13),

∆x′ = γ(∆x − βc∆t) , (2.17)

or,
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From (2.13),

∆x =
∆x′

γ
+ βc∆t . (2.18)

(2.18) → (2.16) ⇒

c∆t′ = γ(c∆t − β[∆x′/γ + βc∆t]) . (2.19)

Observer O′’s clock is stationary, so that ∆x′ = 0 and he measures the “proper” time ∆t0.
(By definition, the “proper” time is the time as measured in the rest frame of the clock
taking the measurement. If the clock is in motion, a stationary observer, comparing a time
interval with an identical clock in his time frame, observes the moving clock to run slower.)
After a little rearrangement, we obtain:

∆t0 = ∆t/γ, or ∆t = γ∆t0 . (2.20)

That it, a moving clock is always observed to run at a slower rate than that measured in a
frame where the clock is stationary.

∗Velocity Transformation

Just as distance and time differences vary according to the frame of reference, so do the
velocities, as measured by two observers in different frames. We’ll start with (2.11), and
differentiate both sides with respect to t′.

dx′

dt′
= γu

(

dx

dt′
− u

dt

dt′

)

dy′

dt′
=

dy

dt′

dz′

dt′
=

dz

dt′

c = γu(c
dt

dt′
− βu

dx

dt′
) . (2.21)

Extracting 3 common factors results in:

v′
x = γu

(

dt

dt′

)

(vx − u)
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v′
y =

(

dt

dt′

)

vy

v′
z =

(

dt

dt′

)

vz

dt

dt′
=

1

γu(1 − βuvx/c)
. (2.22)

Using the last of the above equations to replace for dt/dt′ in the previous 3, we obtain:

v′
x =

vx − u

1 − βuvx/c

v′
y =

vy

γu(1 − βuvx/c)

v′
z =

vz

γu(1 − βuvx/c)
. (2.23)

∗Lorentz Transformation of Velocity with Arbitrary Direction

~v′ related to ~v, where the relative motion of the inertial frame measuring ~v′ with respect to
the inertial frame measuring ~v, is along the positive ~u-axis with speed u:

~v′ =
~v − ~uγu + (γu − 1)(~u · ~v)~u/u2

γu(1 − ~u · ~v/c2)
(2.24)

∗Lorentz Transformation of Dilation Factor

γv′ = γuγv(1 − ~u · ~v/c2) (2.25)

∗Lorentz Transformation of Velocity and Dilation Factor

~v′γv′ = γv(~v − ~uγu + (γu − 1)(~u · ~v)~u/u2) (2.26)

Relativistic Energy and Momentum

The relativistic energy and momentum of an object with mass m and velocity ~v:

E = mc2γv

~p = mγv~v

(mc2)2 = E2 − (c~p)2 (2.27)
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∗Lorentz Transformation Energy and Momentum

The Lorentz transformation energy and momentum of an object with mass m and velocity
~v to an inertial frame that is moving along the positive x-axis with speed u:

E ′ = γu(E − upx)

~p′x = γu(px − uE/c2)

~p′y = py

~p′z = pz (2.28)

∗Lorentz Transformation Energy and Momentum with Arbitrary Direction

The Lorentz transformation energy and momentum of an object with mass m and velocity
~v to an inertial frame that is moving along the positive ~u-axis with speed u:

E ′ = γu(E − ~u · ~p)

~p′ = ~p − ~uγuE/c2 + (γu − 1)(~u · ~p)~u/u2

(mc2)2 = E ′2 − (c~p′)2 (2.29)

∗The Relativistic Doppler Effect

The relativistic Doppler effect, measured along the relative velocity vector between two
objects, is given by:

ν

ν0

=

√

1 ± β

1 ∓ β
, (2.30)

where ν0 is the frequency of the light source in the rest frame of the source. The top signs in
the numerator and denominator of (2.30) signify that the source and observer are approaching
each other, while the bottom signs signify that the source and observer are receding from
each other. (Here, β is the relative speed of the source as seen by the observer.)

If the relative line of motion is different from the direction of observation, one can show that:

ν

ν0

= γ(1 − n̂ · ~β) , (2.31)

where ~β = ~u/c, and n̂ is a unit vector along the line from the observer to the source.
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2.5 Relativistic Dynamics

In this section we concern ourselves, primarily, with two-body scattering of relativistic par-
ticles, including photons. We start with some review of kinematic variables.

Symbol = Expression Interpretation
v speed of a particle with mass
c speed of light, speed of massless particles
β, or βv v/c speed (in units of c) of a particle with mass 0 ≤ β < 1
γ or γv (1 − β2)−1/2 “energy factor”, “dilation factor”, “contraction factor”

γ is often used as a symbol to represent a photon
mc2 rest mass energy of a particle with mass

E mc2γ total energy of a particle with mass (rest + kinetic energy)
Eγ total (or kinetic) energy of a photon (or massless particle)
K mc2(γ − 1) kinetic energy of a particle with mass

~p mc~βγ, m~vγ momentum of a particle with mass
~pγ Eγ/c magnitude of momentum of a photon, or particle without mass
(mc2)2 E2 − (pc)2 fundamental relation linking m, E, and |~p|2

1 γ2(1 − β2) useful property of γ and β

Table 2.1: Relativistic kinematic variables

Non-relativistic limit

When performing relativistic calculations, one technique for verifying your result is to deter-
mine the non-relativistic limit. Generally, this is done by making a Taylor expansion in β,
(See Chapter ??.) and keep leading order expressions that express the non-relativistic limit.
Factors of β should be replaces by cv, and the final result should resemble:

lim
β→0

(Relativistic expression) = (Non − relativistic expression) + O(1/cn) , (2.32)

where n ≥ 1. Finally the non-relativistic limit is obtained by setting the O(1/cn) expressions
to zero. Note that some expressions are intrinsically relativistic and not reducible to non-
relativistic limits. For example, rest mass energy, and photon kinematic variables are some
that we have encountered to far.

For example, the kinetic energy of a particle of mass m, in the limit that β → 0 is:

lim
β→0

K = lim
β→0

mc2(γ − 1) =
1

2
mv2 + O(1/c2) , (2.33)
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while its momentum is

lim
β→0

mc~βγ = m~v + O(1/c2) , (2.34)

Relativistic Collision Kinematics

We now repeat the discussion of Section ?? but include the effect of relativistic speeds.

Consider the collision of two moving particles with masses m1 and m2, producing particles
ma and mb following the collision. We conserve total energy and momentum, to obtain the
following equations:

CoE⇒

m1c
2γ1 + m2c

2γ2 = mac
2γa + mbc

2γb , (2.35)

We note that Q is the zero-speed limit of (2.35) and is included automatically in the subse-
quent analysis.

Co ~M ⇒

m1c ~β1γ1 + m2c ~β2γ2 = mac ~βaγa + mbc~βbγb . (2.36)

Solution Strategies

How we manipulate (2.35) and (2.36) depends on what information we know, and what
information we wish to extract. We shall discuss the most common situation now, and leave
some of the special cases to the examples and problems.

The most common situation involves the scattering of a known projectile from a known
target, where initial masses and velocities are known, to a set of final particles whose masses
are known, but only the lighter product particle leaves the collision area. (For example, a
proton scattering from a stationary nucleus, with a transformed nucleus and a neutron in the
final state.) Since the heavier product particle stays in the collision area, it is unobserved,
hence its velocity is not measurable, and we strive to eliminate it. We proceed as follows.

Reorganize (2.35) and (2.36) as follows, to put the kinematics of the “b” particle on the right
hand side (RHS) of the equations:

From the CoE equation:

m1c
2γ1 + m2c

2γ2 − mac
2γa = mbc

2γb , (2.37)

and the Co ~M equation:

m1c ~β1γ1 + m2c ~β2γ2 − mac ~βaγa = mbc~βbγb . (2.38)
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Dividing the square of (2.37) by c4 and subtracting the square of (2.38) divided by c2 gives
us:

(2.37)2/c4 - (2.38)2/c2 ⇒

(m1γ1 + m2γ2 − maγa)
2 − (m1

~β1γ1 + m2
~β2γ2 − ma

~βaγa)
2 = m2

bγ
2
b (1 − β2

b ) . (2.39)

The motivation for this arithmetical manipulation is now evident: no factors of c appear,
and most importantly, we may exploit the βγ relation, γ2(1 − β2) to great effect. Doing so
results in:

m2
1+m2

2−m2
a−m2

b +2m1m2γ1γ2(1− ~β1 · ~β2) = 2m1maγ1γa(1− ~β1 · ~βa)+2m2maγ2γa(1− ~β2 · ~βa) .
(2.40)

We see that we have isolated the only unknown quantity, ~βa, and by inference γa on the RHS
of (2.40). We may further reduce this equation by noting that the mass term on the LHS
may be rewritten as follows:

m2
1 + m2

2 − m2
a − m2

b = (m1 + m2 − ma − mb)(m1 + m2 + ma + mb) = (∆M)M , (2.41)

where M = Mi + Mf = m1 + m2 − ma − mb is the sum of the masses of the initial and
final particles, while ∆M = Mi − Mf = m1 + m2 − ma − mb is the difference of the sum
of the initial masses and the sum of the final masses of the particles participating in the
reaction. We also note that ∆Mc2 is the reaction Q-value discussed previously. Note how it
appears naturally in the analysis, while it has to be “tacked on” in an ad hoc fashion in the
non-relativistic analysis.

So, finally we write:

(∆M)M +2m1m2γ1γ2(1− ~β1 · ~β2) = 2m1maγ1γa(1− ~β1 · ~βa)+2m2maγ2γa(1− ~β2 · ~βa). (2.42)

Having derived a relativistic result, we should check that it gives the correct non-relativistic
limit. To do this, we note that we can rewrite

(2.39) as:
~P 2 − 2mb(K + Q) = (Q + K)2/c2 , (2.43)

where

~P ≡ m1c ~β1γ1 + m2c ~β2γ2 − mac ~βaγa ,

and
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K ≡ m1c
2(γ1 − 1) + m2c

2(γ2 − 1) − mac
2(γa − 1) .

(2.43) is fully relativistic. Obtaining the non-relativistic form is tantamount to replacing ~P
and K with their non-relativistic counterparts (given below (??) and setting the 1/c2 on the
RHS of (2.43) to zero. This agrees with the non-relativistic form given in (??), and we have
verified the non-relativistic limit of our relativistic expression. It is not absolutely foolproof,
however, verifying non-relativistic limits is a very important verification tool.

2D relativistic elastic collision, equal masses

Problem: Find the opening angle of the resultant particles, when a relativistic particle of mass
m, collides with an equal mass, at rest. Show explicitly the transition to the well-known non-
relativistic limit?

Solution:

1. Set up the CoE and Co ~M equations assuming “2” is at rest:

mc2γ0 + mc2 = mc2γ1 + mc2γ2 (2.44)

mc~β0γ0 = mc~β1γ1 + mc~β2γ2 (2.45)

2. We require the angle between the resultant trajectories. The cosine of this angle is
obtained by ~β1 · ~β2. To isolate this: (2.44)2/(mc2)2 - (2.45)2/(mc)2 ⇒

γ1γ2
~β1 · ~β2 = γ1γ2 − γ0 .

If we let α represent the opening angle of the outgoing particles, we may manipulate
the above (Show this!) equation to be:

cos θ =

√

K1K2

(K1 + 2mc2)(K2 + 2mc2)
, (2.46)

explicitly showing the dependence on the outgoing kinetic energies.

This relationshop is plotted in Figure 2.2 for a logarithmic spacing of K1/K0 between
0.01 and 1000.

Taking c → ∞ yields the expected result, that the opening angle is π/2, in a non-
relativistic analysis. This is tantamount to saying that Ka << mc2 and Kb << mc2.
However, (2.46) contains even more information. It says that if either outgoing particle
is non-relativistic, that is, K1 << mc2 or K2 << mc2, the opening angle tends to π/2.
Finally, if either outgoing particle is at rest, the opening angle is π/2, exactly as in
the non-relativistic case, and also true for the relativistic case. It is a consequence
of the conservation of energy and momentum in both non-relativistic and relativistic
formalisms.
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Figure 2.2: cos θ vs. K1/K0

Interpretation: In the case that both outgoing particles are relativistic, (2.46) demonstrates
that the opening angle is less than π/2. Since K1 = K0−K2, it also follows that there must be
a particular sharing of the initial kinetic energy, K0, with that of the outgoing particles, that
minimizes the opening angle. Since (2.46) is symmetric under the interchange 1 ↔ 2, the
sharing of kinetic energy can not be asymmetric. Therefore the only symmetric way of sharing
the energy is to give each outgoing particle half. You can prove this mathematically2, but
making the argument this way is more fun. Therefore at the midpoint, K1 = K + 2 = K0/2,
and the minimum opening angle can be shown to be given by:

2The mathematician within me is prone to say that a mathematical proof is always more general and
powerful than a physical one. Historically, though, it is well known that physicists, even theoretical ones,
are better socially-adjusted than mathematicians. Then again, mathematicians ... (I digress). Here’s the
proof. Consider a function, f(x), that is symmetric about the origin. (Any different point of symmetry
may be used, but it can be translated back to the origin.) It follows that the function’s first derivative is
antisymmetric, and must pass through the origin. Hence, the origin is the location of an extremum of f(x).
Q.E.D.
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cos αmin =
K0

K0 + 4mc2
. (2.47)

This relationshop is plotted in Figure 2.3 for a logarithmic spacing of K1/K0 between 0.01
and 1000.
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Figure 2.3: cos θmin vs. K1/K0

We note from (2.47) that the expected non-relativistic limit is obtained again. However,
as the incoming kinetic energy is extended upwards into the relativistic range, the energy
is increasingly carried into the forward direction. This is the principle upon which particle
ray-guns operate. It is also responsible for spectacular accidents when charged high energy
particle beams are mistakenly steered into beam pipes and magnets.

Zero-Momentum Frame

We can also perform ant calculation in the zero-momentum frame. in these set of notes,
we don’t exploit the zero-momentum frame extensively, since the laboratory frame makes
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more sense for nuclear engineering and radiological applications (fixed targets, β- and γ-
decay). High-energy physics exploit the zero-momentum frame extensively, since particle-
antiparticle colliders operate in the zero-momentum frame. We shall exploit it, however, for
two important illustrations:

1. Particle/antiparticle creation with mass

Consider a collision of two photons, going in exact opposite directions, each with energy E0.
E0 is arranged so that after the collision, a particle and antiparticle, each with mass m, is
at rest. Thus, by CoE, E0 = 2mc2.

Now consider that a different observer, moving along the direction of one of the photons,
observes the event. In his frame of motion, the pair of particles is moving in the direction
opposite to him. In his frame of motion, his expressions for CoE and Co ~M are:

2mc2γ = E+ + E− (2.48)

2mcβγ = (E+ + E−)/c , (2.49)

where β is the observer’s velocity with respect to the zero-momentum frame, E+ is the
higher energy photon he observes, with E− is the lesser energy photon in his frame. By
manipulating the equations in the now familiar way, we may relate the energy of the photon
in the moving frame, relative to the rest frame. The result is:

E± = E0

√

1 ± β

1 ∓ β
, (2.50)

where we consistently use only the upper or lower signs in the expressions involving ± or ∓.

Thus, we have derived the Doppler effect stated in (2.30), whereby motion toward a photon
increases its energy, and motion away decreases its energy.

2. Particle/antiparticle decay into photons

Here we consider a particle with mass m, β0, γ0 on a collision course with its antiparticle,
moving in the exact opposite direction. They annihilate, producing two photons, each with
energy E0, moving in exact opposite directions, along the original direction of motion. An
observer, moving with parameters β and γ, along the original direction of motion, observes
the same annihilation, and his CoE and Co ~M equations take the forms:

mc2γ+ + mc2γ− = E+ + E− (2.51)

mcγ+ + mcγ− = (E+ + E−)/c . (2.52)
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Here, the “+” refers to the more energetic particle and photon in the frame of the observer.
The arithmetic is a little more involved than in the previous example, but, after some work,
we can conclude that:

γ± = γ0γ(1 ± ββ0) , (2.53)

which expresses a “Doppler shift”, but for particles with mass.

Applying (2.53), imagine that the observer is travelling at exactly β0, putting one of the
charged particles in the rest frame. The higher energy electron will have a “γ-shift” of
approximately 2γ2

0 . For example, the Stanford Linear Accelerator produces electrons and
electrons with energies of about 50 GeV, a γ-shift of about 105. The collision of these
particles in the zero-momentum frame, is equivalent to a fixed target γ-shift of 2× 105. It is
no wonder that particle-antiparticle colliders are such an important research tool.

Sticky collisions/exploding masses

Finally, we end this section with a discussion on inelastic collisions.

In the last chapter, we inferred the Q-value of a sticky collision. Let’s reformulate the
problem in a relativistic framework. Imagine that a particle of mass m0, with speed v0,
strikes an identical particle at rest, and they fuse. You can not balance the CoE and Co ~M
equations if the masses are allowed to remain unchanged. One finds, in this case that the
fused mass is

m = 2m0

√

1 + γ0

2
.

The increase in mass is due to the increase in internal energy of the mass m.

Similarly, if a mass m explodes into two equal masses, m0, you may show that

m = 2mγ0 .

In other words, internal energy is converted into kinetic energy of the resultant particles.

2.6 Questions

Answer these questions (on paper or in your head). If you can’t find a good answer, re-read
the relevant sections of Chapter 2. If you still can’t find a good answer, ask a colleague, a
TA, or a Prof.

Some of these questions may appear on assignments or exams.
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2.7 Problems

If you find some of these problems interesting, attempt them on paper. If you can’t find a
good answer, re-read the relevant sections of Chapter 2. If you still can’t find a good answer,
try working it out with a colleague, ask a TA, or a Prof.

Some of these problems may appear on assignments or exams.


