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Abstract

In a previous work, the authors introduced the clasgrajphs with bounded induced distance
of order k (BID (k) for short), to model non-reliable interconnection networks. A network modeled
as a graph in BIk) can be characterized as follows: if some nodes have failed, as long as two
nodes remain connected, the distance between these nodes in the faulty graph iskatmessthe
distance in the non-faulty graph. The smallestich thaiG € BID (k) is calledstretch numbeof G.
We show an odd characteristic of the stretch numbers: every rational number greater or equal 2 is a
stretch number, but only discrete values are admissible for smaller stretch numbers. Moreover, we
give a new characterization of classes BIB-1/i), i > 1, based on forbidden induced subgraphs. By
using this charactezation, we provide a polynomial time regnition algorithm foigraphs belonging
to these classes, while the general recognition problem is Co-NP-complete.
0 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The main function of a network is to provide connectivity between the sites. In many
cases itis crucial that connectivity is preserved even in the case of (multiple) faults in sites.
Even if the connectivity between nodes is preserved, distances usually increase in case of
faults because shortest paths could be no longer available.

In this work, that concerns bounded distances, our goal is to investigate about networks
in which distances between sites remamallin the case of multiple faulty sites. As the
underlying model, we use unweighted graphs, and measure a distance between two nodes
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by the number of arcs of a shortest patmoecting them. We model a network in which
node faults have occurred by the subnetwork induced by the non-faulty components. Using
this model, in[7] we have introduced the class BID of graphs with bounded induced
distanceof orderk. A network modeled as a graph in Bl can be characterized as
follows: if some nodes have failed, as long as two nodes remain connected, the distance
between these nodes in the faulty graph is at nidghes the distance in the non-faulty
graph.

Some characterization, complexity, and structural results abouB e given inf7].
In particular, the concept adtretch numbehas been introduced: the stretch numier)
of a given graplG is the smallest rational numbkisuch thaiG belongs to BIOk). Given
the relevance of graphs in B(B) in the area of communication networks, our purpose is
to provide characterization, algorithmic, and existence results about graphs having small
stretch number.

Results: We first investigate graphs having stretch number at most 2. In this context we
show that: (i) there is no grapfi with stretch numbes(G) such that 2- 1/i < s(G) <
2—1/@i + 1), for each integel > 1 (this fact was conjectured ii7]); (ii) there exists a
graphG such that(G) =2 —1/i, for each integer > 1. These results give a partial solu-
tion to the following more general problem: Given a rational nunibhés k anadmissible
stretch numberi.e., is there a grapty such thats(G) = k? We complete the solution to
this problem by showing that every rational numkes 2 is an admissible stretch number
(note that an irrational number cannot be a stretch number). Finally, we give a character-
ization result in term of forbidden subgraphs for the class®IB 1/i), for each integer

i > 1. This result has been obtained by extending the technique ugéldimshow a sim-

ilar characterization for the class B{By2). In turn, this new result allows us to design a
polynomial time algorithm to solve thecognition problem for the class B(R— 1/i),

for eachi > 1 (if k is not fixed, this problem is Co-NP-complete for the class &)J7]).
Unfortunately, the running time of this algorithm is exponential {imore precisely, it is
bounded by @:%2)). We conclude the paper by showing that such an algorithmic ap-
proach cannot be used for class B, for each integek > 2.

Related works: In literature there are several papers devoted to fault-tolerant network
design, mainly starting from a given desired topology and introducing fault-tolerance to it
(e.g., se€¢4,16,20). The approach used in this paper if followed by other works.

In [15], authors give characterizations for graphs in whichdelayoccurs in the case
that asinglenode fails. These graphs are callgglf-repairing In [9], authors introduce
and characterize new classes of graphs that, even when a multiple nundolgreshave
failed, guarantee constant stretch factbisetween nodes which remain connected. In a
first step, they do not limit the number of edge faults at all, allowinguioliimited edge
faults. Secondly, they examine the case where the number of edge faodisridedby
a valuet. The corresponding graphs are calledelf-spanners an¢k, ¢)-self-spanners,
respectively. In both cases, the names are motivated by strong relationships to the con-
cept of k-spanners[22]. Related works are also thosencerning distance-hereditary
graphd19]. In fact, the class of distance-hereditary graphs is the clas¢lBlBnd graphs
with bounded induced distance can be also viewed as a their parametric extension (in fact,
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BID (k) graphs are mentioned in the sunj@y ask-distance-hereditary graphs). Distance-
hereditary graphs have been investigated to design interconnection network topologies
[6,12,14] and several papers have been devoted to them (e.q1,8¢811,13,17,21,23]

The remainder of this paper is organized d®fes. Notations and basic concepts used
in this work are given irSection 2 In Section 3we recall definitions and results frofv].
Section 4shows the new characterization results, an&éction 5we answer the ques-
tion about admissible stretch numbersSection 6we give the complexity result for the
recognition problem for the class B{R— 1/i), for every integeii > 1, by showing a
polynomial time recognition algorithm, and 8ection Ave give some final remarks.

2. Notation

In this work we consider finite, simple, loop-less, undirected and unweighted graphs
G = (V, E) with node setV and edge sek. We use standard terminologies fr¢2)18],
some of which are briefly reviewed here.

A subgraphof G is a graph having all its nodes and edge&inGiven a subsef of V,
theinduced subgraphs) of G is the maximal subgraph @f with node sefS. |G| denotes
the cardinality ofV. If x is a node ofG, by N¢ (x) we denote theeighborsof x in G, that
is, the set of nodes i that are adjacent to. We write N (x) when no ambiguity occurs.
G — S is the subgraph of; induced byV \ S.

A sequence of pairwise distinct nodes, . .., x,) is apathin G if (x;, x;+1) € E for
0<i < n, and is aninduced pathf ({xo, ..., x,}) hasn edges. Two nodes andy are
connectedn G if exist a path(x, ..., y) subgraph of5. A graph isconnectedf every pair
of nodes is connected.

A cyclein G is a path(xo, ..., x,—1) where alsdxo, x,—1) € E. We denote byC, the
class of cycles witlu nodes; sometimes, when no ambiguity occurs, we(s® denote
a specific instance of a cycle withnodes. Two nodes; andx; areconsecutivén C, if
j=(@G+1)modn ori =(j+ 1) modn. A chordof a cycle is an edge joining two non-
consecutive nodes in the cycld, denotes &ole, i.e., a cycleC,, n > 5, without chords.
Thechord distanceof a cycleC,, is denoted byd(C,), and it is defined as the minimum
number of consecutive nodes(h such that every chord @f,, is incident to some of such
nodes (se€ig. 1). We assumed(H,,) = 0.

The length of a shortest path between two nodagady in a graphG is calleddistance
and is denoted by (x, y). Moreover, the length of a longest induced path between them is
denoted byD¢ (x, y). We use the symbolsg (x, y) and P (x, y) to denote a shortestand a
longestinduced path betweemandy, respectively. Sometimesh&n no ambiguity occurs,
we usepg (x, y) and P (x, y) to denote the sets of nodes belonging to the corresponding
paths.lg(x, y) denotes the set containing all the nodes (exeegnd y) that belong to a
shortest path from to y.

If x andy are two nodes of; such thati (x, y) > 2, then{x, y} is acycle-pairif there
are two induced pathgg (x, y) and P (x, y) such thatpg (x, y) N Pg(x, y) = {x, y}. In
other words, if{x, y} is a cycle-pair, then the seis(x, y) U Pg(x, y) induces a cycle
in G. In Fig. 1there is no cycle-pair that induces the whole graphbut, for example,
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a b

e d

Fig. 1. The chord distance of thi% graph is 2 because nodésnde are consecutive and every chord is incident
to one of them. Moreover, there is no other séhvess then 3 nodes with the same properties.

b b
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G4 Go G1 * Go

a

Fig. 2. The split compositioi; 1 * G of G, andG, with respect torny andmy.

{c, f} is a cycle-pair for the cyclé{a, b, c, e, f}) induced bypg(c, f) = (c,e, f) and
Pg(c, f)=(c,b.a, f).

Let G1, G2 be graphs having node seg U {m1}, Vo U {m>} and edge set&;, E>,
respectively, whergVy, V»} is a partition ofV andm1, m2 ¢ V. Thesplit compositiorj10]
of G1 andG2 with respect ton1 andms is the graphG = G1 * G2 having node seY and
edge sef = EJUE,U{(x,y) |x € N(m1),y € N(mz)},whereE! = {(x,y) € E; | x,y €
Vi) fori =1, 2 (seeFig. 2).

3. Basic definitions and results

In this section we recall frorfv] some definitions and results useful in the remainder of
the paper.

Definition 3.1 [7]. Let & be a real number. A grapG& = (V, E) is abounded induced
distance graph of ordet if for each connected induced subgraghof G:

dg(x,y) <k-dg(x,y), foreachr,yeG'.
The class of all the bounded induced distance graphs of éridetenoted by BIDk).

Note that the definition holds for both coeeted and disconnected graphs. The follow-
ing facts hold:
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— A graphG is distance-hereditary if and only @ € BID (1);

— BID(k1) € BID (k2), for eachky < ko;

— Every class BIk) is hereditary, i.e., iiG € BID(k), thenG’ € BID (k) for every in-
duced subgrapti’ of G.

Definition 3.2[7]. Let G be a graph, anflx, y} be a pair of connected nodes@h Then:

(1) thestretch numbesg (x, y) of the pair{x, y} is given bys (x, y) = 5622,

(2) thestretch numbes(G) of G is the maximum stretch number over aifpossible pairs
of connected nodes, that iS,G) = maXy,,} s¢ (x, ¥);

(3) S(G) is the set of all the pairs of nodes inducing the stretch numbér,ahat is,
S(G) ={{x,y}Isc(x,y) =s(G)}.

The stretch number of a graph determines the minimum class which a given@raph
belongs to since the shortest path between any pair of nodes in any induced subgraph is an
induced path in the original graph. In factG) = min{z: G € BID(¢)}. As a consequence,

G € BID (k) ifand only if s(G) < k.

Lemma 3.3[7]. LetG € BID(k), ands(G) > 1. Then, there exists a cycle-pdi, y} that
belongs taS(G).

In Fig. 1, the represented gragghbelongs to BID3/2), moreover botha, ¢} and{c, f}
are cycle-pairs it (G).

Theorem 3.4 [7]. Let G be a graph andc > 1 a real number. Then¢; € BID (k) if and
only if cd(C,,) > [ﬁl] — 2for each cycleC,, n > 2k + 2, of G.

To find the class with minimum order which a graph belong&&mma 3.3andTheo-
rem 3.4assure that it is enough to study only chord distances of induced subgraphs forming
cycles.

Theorem 3.5. Let G be a graph such that(G) < 2. Then,G does not contain a cyclg,,
withn > 6 and cdC,) < 1, as induced subgraph.

Proof. Let C,, = (u1,u2,...,u,) be a cycle withn > 6 andcd(C,) < 1. Assumingu
be the only node incident to chords 6f, (if any), the stretch number af, is given by
sc, (u1,uz). Since Pc, (u1, uz) = (U1, Up, Up—1,...,u3) and pc, (u1, uz) = (u1, uz, us),
then

n
s(Cp) =s¢, (U1, u3) = - > 2.

Sinces(G) < 2 and since BIDk) is hereditary, therG cannot containC, as induced
subgraph. O
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4. New characterization results

Graphs in BIOY1) have been extensively studied aniffetent characterizations have
been provided. In particular, one of these characterizations is based on forbidden induced
subgraphgl], and in[7] this result has been extended to the class(BJR). In this section
we further extend this chacterization to the class BIR — 1/i), for every integef > 2.

Lemma 4.1. Let G be a graph withl < s(G) < 2, and let{x, y} € S(G) be a cycle-pair.
If C is the cycle induced byg (x, y) U Pg(x, y), then every internal node ¢f; (x, y) is
incident to a chord of.

Proof. Assume that path®s (x, y) and pg(x, y) are equal tax, ua, uz,...,up,y) and
(x,v1,v2,...,04,y), respectively. By defition of induced path, since(G) > 1 and
{x,y} € S(G), theng > 1. Since(x, u,uz,...,up,y) and(x, vy, v2,...,vq,y) are in-
duced paths ofG, every chord(wi, wp) of C fulfills wy € {v1,v2,..., v} andwz €
{u1,u2, ..., up} orvice versa. Moreovefy, y} € S(G) ands(G) > 1 imply thatvy andv,
are incident to chords af'. In fact, if v1 (v, respectively) would not be incident to some
chord thensg (v1, y) > sg(x,y) (sG(x,vy) > sg(x,y), respectively), a contradiction. In
the following we show that, for eachi < ¢ — 1, v; is incident to a chord of’.

By contradiction, let us suppose ttihere exists a sequence of nodes

Uk, vk-‘rla sy vk-‘rl" vk+t+1

such that the following conditions hold:

—k>1,

-t>1,

- k+t+1<gq,

— v andvg4,+1 are incident to chords af,

everyv;, k +1<i <k +1t,is notincident to chords af.

Now, letv; be a node such that> k + ¢ + 2,1 is minimum, andy; is incident to chords
of C. Notice that, ifv; does not exist thety ;11 = vy.

We analyze two major cases, according whethesxists or not, and some sub-cases.
For each case we show a contradiction.

Let us now suppose thaf exists. Let us consider the cho(d, u,) such thati; =
maxh | (vk, up) is a chord ofC}, and the chordvy, uj,) such thatio = min{a | (v, up) is
a chord ofC}.

According to the values df1 andhz, we have three different sub-cases.

(1) h1=ho.
In this case there is a shortcut from to v; throughu;,. This implies that the path
(x,v1, V2, ..., Uk, Upy, VI, V41, - - -, Vg, ¥) has alength less thamt- 1. This contradicts
dg(x,y)=q+ 1.

(2) h1 < ho.
In this case the cycle induced by the nodgsviy1, ..., v, thy, Uny—1, ..., Up, IS @
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cycle with at least 6 nodes and chord distance at most 1. Sif@€g < 2, this is a
contradiction olLemma 3.5

(3) h1> ho.
Let us consider the chordy, ”h’z) such that

5=max{h | (v, up) is achord ofC andhy < h'y < h1}.

Notice that neither chor¢uy, uh/z) or (v, up,) can exist, otherwiség (x, y) < ¢ + 1.
Then, the cycle induced by the nodes

Uk,Uk.l,_]_,...,U[,thz,lzth12+l,...,lzthl

is a cycle with at least 6 nodes and chord distance at most 1. Si6ge< 2, thisis a
contradiction ol,emma 3.5

Let us suppose thai does not exist. It follows that,;;11 = v,. Moreoveru,, =u,
otherwise the cycle induced by the nodgsuvi41, ..., vg, ¥, Up, tp—1,...,up, IS acycle
with at least 6 nodes and chord distance at most 1 (a contradictiberoma 3.9. In
this case the pathx, v1, vo, ..., vk, up, y) has a length less than+ 1. This contradicts
dg(x,y)=¢q + 1, and concludes the proof.0

Theorem 4.2. Given a graphG and an integet > 2, thenG € BID(2 — 1/i) if and only
if the following graphs are not induced subgraphsaf

(1) H,, foreachn > 6;

(2) cyclesCg with cd(Ce) = 1;

(3) cyclesC7 with cd(C7) =1,

(4) cyclesCg with cd(Cg) = 1;

(5) cyclesCzj12 with cd(C3z;42) =1i.

Proof. (=) HolesH,, n > 6, have stretch number at least 2. Cycles with 6, 7, or 8 nodes
and chord distance 1 have stretch number equal t¢2,d&nd 3, respectively. L&lz; 12 =

(vo, v1, ..., v3;+1) be a cycle with chord distance equalitdf vy, ..., v; are consecutive
nodes incident to all the chords 6%§;.2, then

2i+1 1

i+1 7 i+l

becauseDg (vo, vi+1) is at least the length of the path; 1, vi12, ..., v3i+1, vo). Since

the considered cycles have stretch number greater that/2, then they are forbidden
induced subgraphs for every graph belonging to @B 1/i).

(<) Given an arbitrary integer > 2, we prove that every grapti ¢ BID(2 — 1/i)
contains one of the forbidden subgraphs or a proper induced subgfapicth thatG’ ¢
BID(2 — 1/i). In the latter case, we can recursively applyitothe following proof.

Let us assume&s ¢ BID(2 — 1/i). This impliesS(G) > 3/2, and, byLemma 3.3
there exists a cycle-pajr, y} € S(G). Assume thatPg(x, y) and pg(x, y) are (x, uz,
up,...,up,y) and(x, vy, v2, ..., v, y), respectively, such thgi+ g + 2=n andC, =

56 (vo, viy1) 2
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(Pg(x,y)U pg(x,y)). By constructioncd(C,) = ¢, and, byTheorem 3.4we can state
thatn > 6 and 0< cd(C,) < [524] — 2.

If ¢ = 0 then we obtain the hole,, n > 6. If ¢ = [575] — 2 andn =6,7,8,3i + 2,
then, for each value of, we obtain the following forbidden subgraplig with cd(Ce) =
1; C7 with cd(C7) = 1; Cg with cd(Cg) =2 if i = 2 (case 5) and witled(Cg) =1 if i > 2
(case 4)C3zi4+2 With cd(C3z;42) =1i.

Now, we show that itz > 9, n # 3i + 2, andq fulfills 1 < ¢ < [4%;] — 2, thenC,
contains one of the given forbidden subgraphs or an induced sub@fagich thatG’ ¢
BID(2 - 1/i).

By Lemma 4.1 every nodey, 1< k < ¢, must be incident to a chord @f,, otherwise
C, has a stretch number greater or equal to 2 and hence it is a forbidden subgtapksof
a consequence, we can denote-pshe largest indey’ such thaw; andu ; are connected
by a chord ofC,, i.e.,r; = max{j’ | (v;,u ;) is a chord ofC,}. Informally, ; gives the
rightmostchord connecting; to some node ofg (x, y).

Notice that, ifr1 > 3, then, byLemma 3.5 the subgraph of’,, induced byvy, x, u1,
..., ur, is forbidden, since it is a cycle with at least 6 nodes and chord distance at most 1.
Hence, in the remainder of this proof we assume that 3.

Let us now analyze two distinguished cases@qr according whether the chord dis-
tanceg of C,, either (i) fulfills 1< g < [5251 — 2, or (ii) is equal tof 321 — 2.

(1) ConsiderC, with n > 9 and chord distancg such that i ¢ < rgi.‘fl] - 2.

If C,» denotes the subgraph induced by the nodes,oéxcepty, u1, ..., u,—1, then
C,s is a cycle withn’ > n — 3 nodes and chord distance at mg@st 1. To prove thatC,, is

forbidden, it is sufficient to show thdti?;] — 2> ¢ — 1:

M i-n i-n—3i
22| ——|—-2>q-1,

3i—1—‘ [ 3i-1 1 1
[i-n—3i

— -2 -2,

31 W ~ 4
[i-n—3i

—+2(-2

3i—1 W -4
_i-n+3i—2—‘

— | —2>9¢.

3i—1
The last inequality holds becausie-32 > 0 for each integer > 1, and[3§fl1 —2>q.
(2) ConsiderC, with n > 9 and chord distancg such thayy = [3§'j‘1] - 2.

In this casey is given whenever a fixed value faris chosen. In general, sinee> 9, it
follows thatg > 2.
Let us analyze again the cyal®, . Recalling that’ > n — 3 andcd(C,/) < g — 1, then

i-n i-n—3i
22— |—-2>2¢qg-1
[31’—1—‘ [31'—11 1

is equivalent to

i-n—1
—2>q.
’731'—1—‘ 4
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In the following we show that, for eveny such that 9< n < 6i, either this relation holds
or n is equal to 3+ 2. This means that the cyclg, is forbidden for each cycl€,,,
9<n<6i. . .
Since[ 5741 — 2 = ¢ holds by hypothesis, we have to study wHt—%ﬂ_‘—f] > [5771-
This relation does not hold if and only if there exists an integesuch that’éf—_‘l1 <m <

3§f1v thatis(3i —Lm <i-n < (3i—1)m+1. Them = 3m — ’"l—‘l and, as consequenee,
can be equalté-i + 1 only, for each integet > 0. Hence: = 3m — ”’T‘l =3-i+1)—¢,
¢ > 0. For¢ = 0 we obtainn = 3 (but we are considering > 9), for ¢ = 1 and¢ = 2 the
value ofn is 3i + 2 andn = 6i + 1, respectively. The cycle withi 3- 2 nodes is one of the
forbidden cycles in the statement of the theorem. As a conclusion, the@yc@ows that
C, contains a forbidden induced subgraph whea®< 6i.

It remains to be considered the case when 6i + 1. In this casey = [%1 -2
implies ¢ > 2i, and hence we can compute. If r; > 2i + 1 then the cycle in-
duced byv;, v;i—1,...,v1, x,u1, ..., u, is forbidden. In fact, pathé, uq, us, ..., u,;) and

(x,v1,v2, ..., v, u,) give the following lower bound teg (x, u,,;):
( )> i 2i +1 1 1
SG (X, up) = - Z - =2—- >Z—
G " i+1 i+1 i+1 i

Hence,r; < 2i. The cycleC,, subgraph induced by the nodes@f except the nodes
Vi—1y ..., V1, X, U1, ..., Ur—1, IS & Cycle withn” > n — 3i + 1 nodes and chord distance

at mostg — i. To prove thaiC, is forbidden, let us show thgti?71 — 2> g —i. The
inequality

M i-n" 25 i-(n—3i+1)
3i—-1 - 3 -1

is equivalent to

W—Z}q—i

_i-n_

3i—-1

—-22q.

The last relation holds by hypothesis, and this concludes the proof.

5. Admissible stretch numbers

In [7], it was conjectured that, for each integel 1, there exists no grap&i such
that 2— 1/i <s(G) <2 —1/( + 1). In this section we show that such a conjecture is
true. Moreover, we extend the result by showing that it is possible to answer to the fol-
lowing more general quesin: Given a rational number> 1, is there a graplt; such
thats(G) =¢? In other words, we can state when a given positive rational number is an
admissiblestretch number.

Definition 5.1. A positive rational number is calledadmissible stretch numbéfrthere
exists a graplt; such that(G) =+.
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In the remainder of this section we first show that the conjecture recalled above is true,
and then we show that each positive rational bengreater or equal than 2 is an admissible
stretch number.

Lemma5.2. If p andg are two positive integers such that

1
2——<£<2—1 s
i q i+1

for some integei > 1, theng > i.

Proof. By contradiction, let us assume thak i, and let us consider the casgs=i and
q<i.

If ¢g=ithenp/q >2—1/i impliesp > 2i — 1, that isp > 2i. Sincei > 1 then
p/q = 2, and this contradicts the relatigng <2 -1/ + 1) < 2.

If ¢ <i then both the relations > 2¢g — ¢q/i andp < 2g — g /(i + 1) hold. But these
relations imply that 2 — 1 < p < 2¢, contradicting the hypothesis thais an integer. O

Theorem 5.3. If ¢ is a rational number such that

1
2——<t<2———,
i i+1

for some integer > 1, thenr is not an admissible stretch number.
Proof. We have to show that there exists no gr@pbkuch that

1 1
2——<s5(G)<2———,
i i+1
for each integer > 1.
By contradiction, let us assume that there exist an integet and a graplé&: such that

1 1
2 ; <s(G)<?2 1

By Lemma 3.3there exists a cycle-pajr, y} € S(G). If we assume thaPg (x, y) and
pa(x,y) correspond tdx, us, uz, ..., up—1,y) and(x, vy, va, ..., v4—1, y), respectively,
thenpg(x, y) U Pg(x, y) induces a cycl€, ands(G) = p/q. By Lemma 5.2the relation
g > i holds; then, the node; exists in the pattpg(x, y). By Lemma 4.1 the nodev;

is incident to a chord of’, and hence, like iMheorem 4.2we can define the integer

1<r <q—1,suchthat

r=ri=maxj| (v;,u;)is achord ofC}.

Now, denote byC;, the cycle induced by the nodes v;_1,...,v1, x,u1,u2,...,u,, and
by Cr the cycle induced by the nodes v;41,...,v4—1,y, up—1,Up—2,...,u,. In Other
words, the chorduv;, u,) dividesC into theleft cycle C;,, and theright cycle Cg.

First of all, let us compute the stretch number of the cyCle Since pg(x,y) =
(x,v1,2,...,v4-1,y) thenpc, (v, y) = (v;, viy1, ..., v4—1, y). Moreover, since the path
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Vi, U, Urg1, ..., up—1,y) isinducedinC, thenDcy (vi, y) = p —r + 1. Then

—-r+1
$(Cr) > s, (01 ) 2 s
SinceCy is an induced subgraph of then

p-r+l_»p
q—1 q
This inequality is equivalent to

r—1
Lap Qi)
q 14
From the relations
1 -1
2—-< L < : ;
1 q 1
we obtain that > 2i, thatisr > 2i + 1.
Let us now compute the stretch number of the cy¢lewhenr > 2i + 1. In this case,
pcp (X, up) = (x,v1,v2, ..., Vi, uy) ANA Pey (X, up) = (X, u1, uz, ..., uy). Then

r > 2i+1 S0 1 .
i+17 i+1 i+1

The obtained relation implies thatC.) > s(G). This is a contradiction sinc€, is an
induced subgraph af. O

s(Cr) =z sc, (x,uy) =

In order to show that each rational numbejuel or greater than 2 is an admissible
stretch number, let us consider the graptu1, no, ..., n,;) obtained by composingholes
Hy,, Hy,, ..., Hy, by split composition, where; > 5 for 1<i <t. In detail, the holes
correspond to the following chord-less cycles (as an exampldsige8, wherer = 5):

ly oo ly oo ly oo g ls oo
T1 T2 T3 T4 T5
] ! 1 !
m m2 m3 m4
Zo ms m3 my ms T6
1 T2 T3 T4 Ts
by oeees lo oo Iy omon g e ls .o
1 T2 T3 T4 Ts5
Zo T
ES1 Z2 T3 Ta Ts

Fig. 3. The graphG (n1, np, n3, ng, ns) obtained by the split composition of 5 holes. Title hole has:; > 5
nodes. Dotted lines between nodgandr;, 1 <i < 5, represent induced paths.
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o Hy, = (l1,x0,x1,m},r1,...);
o Hy, =(lj,mi,x;,m},ri,...), foreach suchthat k< i <,
° Hntz(ltaml‘vxl‘vxl‘-‘rlartv-”)-

These holes are composed by means of the split composition as follows:

G(ni,n2,...,ng) = Hy, % Hy, % -+ % Hy,,

where the marked nodes betwely) andH,, aremg andm;41, 1<i <t, respectively.

In the following, we denote by (V;, respectively) the set containing all the nodes of
the holeH,, (H,,, respectively) buko, x1, andm (m., x;, andx; 1, respectively); we
denote byV; the set containing all the nodes of the halg butm;, x;, andm], 1 <i <t.
Finally, we denote byX the set{xg, x1, ..., x/+1}.

Lemma 5.4. Given the graptG = G (n1, na, ..., n;), the following facts hold

(1) s6 (0. xr41) = (Xj_gni — 3t + 1)/t + 1;

(2)if j —i > 2, then pg(x;,x;) U Pg(x;,x;) induces a subgraph isomorphic to
Gmit1,niy2,...,nj-1);

(3) there exists a paifu, v} € S(G) such that: € X, v € X, anddg (u, v) > 2;

(4) if n; > max(n; | 1<i <t —1} thensg (xo, x;41) > 56 (x0, X/);

(5) if n; = n for some fixed integer and for eachl < i < ¢, thens(G) = sg (xg, x;+1) =
(nt —=3r+1)/(t + 1),

(6) let k, 1 < k < ¢, be an integer such that; = n, for eachk <i <t and for a fixed
integern. Then, one of the following relationships halds
(@) sg (xo,x;) = sG(x0, xj4+1), foreachk < j <t
(b) sG(xo0,x;) <sg(xo,xj41), foreachk < j <t.

Proof. We prove each fact separately.

(1) Here pg(xo,x;+1) and Pg(xo, x;+1) coincide with (xg, x1, x2, ..., x;, x;+1) and
(x0,l1,...,r1, 00, ooy o iz Ly oo i i, oo T2, Ly oo Ty Xp41),  TESPEC-
tively. In particular, Pg (xo, x;+1) coincides with the induced path obtained fram
by removingx1, x2, . .., x;. Notice thatdg (xo, x;+1) = ¢ + 1, while Pg (xg, x;+1) con-
tains one edge connecting to I1; n; — 4 edges froni; to r;, 1 <i < t; one edge
connecting; to /41, 1<i < t; and, finally, one edge connectingto x;+1. Hence,
the length ofPg (xo, x;1+1) is 1+ Y (i = + (¢ =D +1=>"_1n; — 3 + 1.

(2) This fact simply follows from the proof of the first one and from the observation
that, by definition of plit composition and of induced paths, neithef (x;, x;) nor
Pg (x;, xj) may contain nodes off,, U H,, U---U H,, U Hyp, UHy; ,U---UHpy,.

(3) First notice that, since(G) > 3/2 (becausé& contains a holéd,, n > 5, as induced
subgraph) and sinog; (u, v) = 1 whendg (u, v) = 1, then every pair of nodes #(G)
has distance ii; at least 2. Now, lefu, v} € S(G) andv ¢ X.

Because of the symmetry @f, without loss of generality we can assume that
Viulxi},ve Vi, andi < j.
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If j =ithenpg(u,v)U Pg(u, v) induces an holé! isomorphic toH,, ; it follows that

dg(u,v) = 2 and that every pair of nodes at distance XHirgives the same stretch

number ofu andv. Then,{x;_1, x;+1} € S(G).

If j >i+ 1, then we prove that a nodec X exists such thaig (u, v) < sg(u, x) (in

particularx € {x;, x;4+1}). Since{u, v} € S(G), then{u, x} € S(G).

If v=1;, thenu # {x;_1,r;j_1} (otherwisedg (1, v) = 1), andDg (1, v) = Dg (u, x ),

becauser; ¢ Pg(u, v) otherwisePg (u, v) is not an induced path. Sineg; (u, v) =

dg(u, xj), thensg (u, v) = sg (u, x;).

If v#1;, then either{) /; € pg(u,v) andr; € Pg(u,v) or (ii) r; € pg(u,v) and

lj € Pg(u,v).

(i) In this casepg(u,v) = (u,...,lj,...,v). Sincedg(u,l;) = dg(u,x;), then
dg(u,v) 2 dg(u,xj41). On the other handPg(u, v) corresponds to the path
U, ...,w,x;,2,7j,...,v), wherew € {x;_1,r;_1} and z € {xj41,1j41}. Let
p=@,...,wlj...,v,...,rj,x;11) be a path which coincides witRg (u, v)
from u to w. By construction oiG, this path is induced. Thebg (u, v) < |p| <
D¢ (u, xj+1). As consequence,

D¢ (u, v) - DG (u, xj11)
dg(u,v) ~ dgu,xj+1)

(i) In this case pg(u,v) = (u,...,xj,2,rj,...,v), wherez € {x;;1,/j41}. As
consequencedc (1, v) = dg(u,z) = dg(u,x;11). By construction ofG, p =
(PG (u,v) U pG(v, xj11)) is a path andD¢ (u, v) < |p| < D (u, xj+1). Hence,
sg(u,v) <sg(u, xj41). Thisimplies{u, x;11} € S(G).

Now, if u € X we are done. Otherwise, because of the symmetxy,ofie can apply

the same technique used above to find a ndde X such that{x’, v} € S(G), and

hence{x’, x} € S(G).

(4) By the first two facts, it follows that

i -3 —-1)+1
; .

sG(u,v) = =56, xj1+1).

5G (x0, x1) =
Then,

t
an; —3t+1
56 (X0, X141) = Z,,11—

t+1
Vi -3¢-D+1 n -3
N t+1 t+1
sG(x0,x;)  ng—3

=56 (x0, X;) —

r+1 t+1°
In order to prove thaig (xo, x;+1) > sG (x0, x;) it is sufficient to show that
_s¢(xo.x;)  n—3

0
r+1 f+1

that is

sG (x0, x¢) <n; — 3.
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The latter inequality is equivalent to

Z;bu—BO—D+1<
t

nt—3,

and, in turn, toZﬁ;}ni +4 <t -ny,. It holds since, by hypothesis; > 5, 1<i <.

(5) This fact is an immediate consequence of the previous Facts 1 and 4.

(6) Denotingp’ = D¢ (x0, xr+1), then, by Fact 1s5(x0, xg11) = p'/(k + 1). Assum-
ing j =k+h, h >0, sincen; =n for eachi > k, then D¢ (xo, x;) is equal to
D¢ (x0, xk+1) + (n — 3)h. This implies that the inequalitys (xo, x;) > sG (x0, Xj+1)
can be rewritten as:

P+ —23)h . pP+m—-3)(h+1
j+1 j+2
and can be further simplified to the following inequality:

p/
—— >n-—3. 5.1
k+1” " ®-1)
Since inequality(5.1) does not depend op, according whether it is true or not then
one of two relationships of the statement holds.

This concludes the proof.O

Notice that the stretch number of nodesandx; 1 in G(n1,no, ..., n,) does not de-
pend on how many nodes are in each hole; getels only on the total number of nodes in
G(n1,n2,...,n;) and on the numberof used holes.

Corollary 5.5. For each integet > 1, 2 — 1/i is an admissible stretch number.

Proof. Every distance-hereditary graph has stretch number equal to 2.1f from Fact 5
of Lemma 5.4it follows that the graplG = G (n1, n2, ..., n;_1) such thak ; =5 for each
1< j<i—1,hasstretch equalto21/i. O

Theorem 5.6. If ¢ is a rational number such that> 2, thenr is an admissible stretch
number.

Proof. Let us suppose that= p/q for two positive integerg andg without common di-
visors greater than 1. if = 1 (i.e., the only case in whichis an integer) thelr = Hp, 2,
and ifg =2 thenG = H, . In the remainder of the proof we show thagif> 3 then the
requested grapty is equal toG (n1, no, ..., ng_1), for suitable integersy, no, ..., ny_1.
We now determine such integers, that is, the size of eachiiglel <i < g — 1, we use
to composes.

Letb =3+ LZ%}J andr = (p — 1) mod (g — 1). The sizes of the hole#,,, H,,.
..., Hy,_, are defined according to the following strategyholes contairb + 1 nodes,
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while the remainingy — 1 — r containb nodes. By Fact 1 diemma 5.4t follows that

Y in-3q-D+1 p

sG(x0, xg) = =—.

q q

Notice that this result does not depend on which holes cohtairb + 1 nodes. In partic-
ular, if r = 0 then, by Fact 5 ofemma 5.4the proof is concluded. So, in the remainder of
the proof we assume> 1. According to Fact 3 dfemma 5.4to prove thatS(G) = p/q it
is sufficient to show thads (x;, x;) < p/q, 0<i < j < g — 1. Since this property depends
on which holes contaih or b + 1 nodes, to conclude the proof we have to fix the size of
each hole,,,, 1<k <g—1.

For sake of convenience, assume that each hole &vithl nodes is arbitrarily num-
bered from 1 tor. To fix the size of each hole, we introduce an injective function
pos:{1,2,....,r} - {1,2,...,q — 1} having the following meaningt;, 1<k <g — 1,
containsb + 1 nodes if and only ifpogx) = k for somex, 1 < x < r. Informally, this
function gives thepositionof the holes having + 1 nodes in the sequence of the- 1
holes formingG.

The functionposwe will use is based on the following observation. Let us consider a
graphG’ = G(m1, ma, ..., mg), wheres of the ¢ holes contairb + 1 nodes, while each of
the remaining — s holes containg nodes. From Fact 1 afemma 5.4 we get

(sb+1)+(—5)b)—30+1 bl+s—30+1
e+1 o e+1 '

If we now assume fixed, we can use the latter equality to compute the minimum value
for ¢ such thatsg (xg, xer1) < g. By imposing:

sGr(x0, Xe+1) =

bl+s—-3t+1 p

< =, 5.2
t+1 q (-2)
we deduce the following inequality:

- [(b=3g—p]<p—qs+1D). (5.3)

Notice that the multiplicative factor
D=b-3)q—-p
of £ in inequality(5.3) cannot be equal to zero. In fach, — 3)g — p =0 impliesL’q’—jJ =
g, and this equality holds only jf /¢ is integer, a contradiction for the running hypothesis.
To proceed further with this observation, we have to study whémnpositive and negative.
For each case, we will provide a different functioos
CaseD > 0: From inequality(5.3)we get
gp—q@+b'
(b—-3)q—p
Since we have already observed thatxo, x,) = p/q, then inequality5.4) holds when
¢ =g —1ands =r. In this case, it becomes equal to

_1<p—qU+D.
b—3)q—p

(5.4)

(5.5)
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Now, fix the size of each hole accand to any injective functiorpos:{1,2,...,r} —
{1,2,...,q —1}. According to Fact 3 oEemma 5.4 we prove that the theorem holds by
showing thatg (x;, x;) < p/q,0<i,j<g—1andj —i > 2.

By Fact 2 ofLemma 5.4 pg (xi, xj) U Pg(x;, x;) induces a subgrap&’ isomorphic
to G(nj41,ni42,...,nj—1). G’ is made up oft’ = j — i — 1 holes, and, without loss of
generality, we can assume thabf such holes contaih + 1 nodes. Notice that <g —1
ands’ <r. Itis easy to see thdEq. (5.4)holds also wherd = ¢’ ands = s’. In fact, the
right side ofEq. (5.4)depends only on the number of holes havéng 1 nodes, while the
left side depends on all the holes. This implies that if we replacel by ¢’ andr by s’
in the left and right side of inequalit{b.5), respectively, then the value on the left side of
inequality(5.5) decreases, while the value on the right side increases. Of course, the new
relation we get is still valid, and this proves that(x;, x;) < p/q. Itis worth to note that
the casdéD > 0 occurs whenever can be expressed as= kq + k', for two integers and
k" such thatk > ¢ and 0< k' < q.

CaseD < 0: In the analysis of this case, it is important to show that2. To prove this
property, it is convenient to expresss a function ofp, ¢, andb as follows:

r=(p—-—1mod(g —1)
-1
=(p-1- L—” J(q—l)
qg—1
=p-D-0-3@-D.
Hence, > 2 can be rewritten ag — 1) — (b — 3)(¢ — 1) > 2. This relation is equivalent
top—(b—3)q+ (b—3)>3.SinceD <0, thenp — (b — 3)q > 0, and hence —
(b — 3)q > 1; moreoverp — 3 is equal toLf]’T_iJ, andp/q > 2 impliesLé’T‘iJ > 2. Hence,
p—(b—3)qg+ (b—23) >3 holds.
SinceD < 0, fromEg. (5.3)we get
¢s Pmal+ D
(b—=3)q—p
This equation induces the functiposas follows:

(5.6)

i rP—q(x+1D
Do) = X, if |—(b—3)q—p—| <X,
[2=4&+Dy - otherwise
b=3)g-p "

Before completing the proof, we have to show thasis a well-defined injective function
from{1,2,...,r}to{1,2,...,q —1}. To this aim, we prove the following three properties:

(1) pogl) =1:
To prove thapog1) = 1, it is sufficient to show thab—41tY <1 thatis(h — 1)g —
2p < 0. This inequality is true since it follows from the hypotheges- 3)g — p <0
andp > 2q.

(2) posr) =¢q —1: D) _
To show thapogr) =g — 1, we show thafh_gw =qg —1,thatis

p—qr+1=(@q-D[(b-3q—p] (5.7)
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To prove that this equality is true, it is sufficient to plug the expressienp — 1) —
(b —3)(g — 1) into the left side oEq. (5.7)

p—qr+D=p—q[(p—-D—b-3)(g—-1+1]
=p—q(p—D+qb-3)(q-1)—¢q
=p—rqg+qb—-3)(g—1
=-plg—D+q(b—-3)(@q—-1
=(q - D[ —39q - p].
(3) posx + 1) > pogx), foreach I< x <r — 1:
According to definition ofpos to prove this property it is sufficient to show that
P—qx+2) p—qx+1
b=3q—p B-3g—p "
that is

1 > 1.

(b—=3q—p
By using the hypothesi® — 3)¢ — p < 0 and the equalitp — 3 = L{]’—jj, we can
modify the last inequality to the equivalent equation:

s < V—_lj +1 (5.8)

Furthermore, sincgj—} < L;’T_%J +1, to show that inequalitfs.8)is true it is sufficient

to shown thatg < Z%i. The last inequality corresponds o> ¢, and it follows from

the hypothesip > 2q.

Since the functiorposhas been defined according to the observation based on inequal-
ity (5.2), then the following two properties holds:

P1: Foreach, 1<i <g¢g—1,suchthak; =b+ 1, thensg(xo, xi+1) < p/q.

Po: If n; = b thensg (xo, xi4+1) > p/q, whereG = G(ni,nz,....n})andn; =b+1(i.e.,
G is composed by using the first- 1 holes ofG and one hole with size, = b + 1
instead ofr; = b). Hence, ifsg (xo, xi+1) = p'/q’ thensg (xo, xi11) = (p'+ 1) /q’ >
r/q.

In other words, the first property says that the stretch numbeg ahd every node; 1
such thatx; 11 belongs to a hole with + 1 nodes is at mogi/q . The second property says
that we cannot replace a hole witmodes by a hole witth + 1 nodes, otherwise the first
property is no longer fulfilled.

Once we fixed the size of each hole by means of the fungt@saccording to Fact 3
of Lemma 5.4 we conclude the proof by showing that(x;, x;) < p/q,0<i, j<g—1
and;j — i > 2. We distinguish two different cases:



400 S. Cicerone, G. Di Stefano / Journal of Discrete Algorithms 2 (2004) 383-405

Casei = 0: By Fact 2 ofLemma 5.4 pg(xo,x;) U Pg(xo,x;) induces a subgraph
isomorphictoG (ny, na, ...,n;j—1). We analyze two sub-cases._1 =b+1andn;_1 =b.

If n;_1 =041, thensg(xo, x;) < p/q follows from propertyP; above.

If nj_1 =0, then there exist two holef, , , Jj <, andH,,_,, j” > j, both having
b + 1 nodes, such that;, = b, for eachj’ < k < j” — 2. Such two holes having + 1
nodes exist because: (i)> 2, and (ii)nj—1 = b implies j < ¢ because,_1 =b + 1 by
definition of functionpos As in the case aboveg (xo, x;/) < p/q andsg (xo, xj7) < p/q
follow property P; above. Let us consider now the graph= G (m1, mo, . coMjr_1),
wherem; =ny, 1<k < j” —2,andm ;»_; = b. In other words, the first” — 2 holes used
to build G andG coincide, whereas the last hole@fcontains one node less than the last
hole of G. This implies thatDz (xo, x j») = D¢ (xo, xj») — 1, and henceg (xo, x;») < p/q.
Moreover, sincen, = b, j’' <k < j” — 1, we can apply Fact 6 dfemma 5.40 G. By this
fact, either

sg(x0. xjr) < sg(xo, xp) <sg(xo.xjn),  j —1l<k<j"—1

or

sg(x0, xj1) > sg(x0, xx) > sg(xo, xjn), j —1l<k<j"—1

holds. In both cases, we dedugg(xo, xx) < p/q, foreach;’ —1 <k < j” —1, and hence
sG(x0,xj) < p/q.

Casei > 0: By contradiction, let us suppose that there exist two integeasd j
such thatsg (x;, xj) = p'/q’ > p/q; moreover, let us assume that(x;, x;) = s(G).
By Fact 2 ofLemma 5.4 pg(x;i,x;) U Pg(x;, x;) induces a subgraph isomorphic to
G(nit1,ni42,...,nj-1). It follows that»n; = b, otherwise, by Fact 4 otemma 5.4
sG(xi—1,x;) > s(x;, xj), a contradiction fosg (x;, x;) = s(G).

Denotesg (xo, x;+1) = p”/q”. Sincen; = b, if G = G(ni,nz,....n;) andn; =b +1
(i.e., Gis composed by using the firsholes ofG, but the last one has sizet+ 1 instead
of b), by propertyP, we get the following inequality:

R B p//_,r_l p
SG(Xo,xz'+1) = T > 5

Now, from definition of graphG, we can express the stretch f (xo, x;) by using

! "
-1
56 (x0, xi+1) andsg (x;, x;). In fact,sg (xo, x;) = %. Then,

sG(x0,xj) =

/ 1 > / 1 =—+|-- / 1 .
q' +q"—-1 q' +q"—-1 q q q +q" -1

Sincep/q > 2, from the last expression we gef(xo, x;) > p/q, a contradiction for
the case = 0, where we shown thatxo, x;) < p/q,2<j<q— 1.
This concludes the proof.O

pPp -1 gd G -b-1 p <P 2) !

The results provided b@orollary 5.5 Theorems 5.2nd5.6 can be summarized in the
following two corollaries.
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Corollary 5.7. Lett be an admissible stretch number. Then, either2 orr =2—1/i for
some integei > 1.

Corollary 5.8. For every admissible stretch numbersplit composition can be used to
generate a graplt; with s(G) =1.

Notice that, even if stretch numbers are rational numbers, we can also use every ir-
rational number greater than 2 to define graph classes containing graphs with bounded
induced distance. For instance, we can define B0 and BID(r) # BID (k) for every
rational numbek. On the other hand, if we take an irrational number between 1 and 2 to
define a class, then there exists a rational number to define the same class. For example,
BID(+/3) =BID(5/3).

6. Recognition problem

The recognition problem for BI1) can be solved in linear timg.,17]. In [7], this
problem has been shown to be Co-NP-complete for the generic case (i.e.kvisent
fixed), and the following question has been posed: What is the largest constatt that
the recognition problem for BIt) can be solved in polynomial time?

In this section we show thdtheorem 4.2Zan be used to devise a polynomial algorithm
to solve the recognition problem for the class Bt for every constant < 2.

Lemma 6.1. There exists a polynomial time algorithm to test whether a given g@ph
contains, as induced subgraph, a cy€lgwithn > 6 and cdC,) < 1.

Proof. Itis easy to see that a cyctg, with n > 6 andcd(C,) < 1 exists inG if and only
if there are inG two nodesy andy such that all the following conditions hold:

(1) there exists a nodesuch thatpg (x, y) = (x, u, y);
(2) there exists an induced path (x, y) such that p; (x, y)| > 4;
(3) every chord (if any) in the cycl€, induced bypg (x, y) U pi; (x, y) is incident tou.

Recalling that/; (x, y) denotes the set containing all the nodes (exeephd y) that
belong to a shortest path fromto y, let M = I5(x, y). Moreover, ifdg_p(x,y) = 3,
let X = Ig_m(x,y) N N(x), andY = Ig_p(x, y) N N(y). If path pj; (x, y) exists, then it
must be one of the following paths:

P1: aninduced path from to y not containing neither nodes af nor nodes of’;

P>: an induced path from to y not containing nodes of, and containing one node &f
P3: aninduced path from to y containing one node ixX, and no node of;

P4: aninduced path from to y containing one node of and one node of .
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Fig. 4. P,, P>, P3 and P4 are the four kinds of induced paths fromto y that contribute to form a cycl€,,
n > 6, withcd(C,) < 1.

In Fig. 4these four paths correspond to the path thratglandy”’; the path through”
and one node iiy'; the path through one node ¥1andy”; and the path through, z, and
Y, respectively.

ProcedurerTest (Fig. 5 analyzes every pair of nod¢s, y} having distance 2 i,
and test whether an induced path of type 1 <i < 4, betweenc andy exists inG. It is
easy to see that Procedurest is correct. It remains to be shown that the procedure runs
in time polynomial in the size of the input gragh

All the pairs of nodes that are at distance 2Gncan be computed in @?) time at
step 1. Each one of steps 3, 9, and 10 can be computedrin @me, wherem is the
number of edges if7; each one of the steps 11, 14, and 18 can be compute@sin Bne.
Cycle at step 17 can be performed at me&times. Hence, the total time to perform the
Procedurdest is O(n*m) time. O

Theorem 6.2. For any fixed integer > 1, the recognition problem for the clag&iD (2 —
1/i) can be solved in polynomial time.

Proof. Fori =1 the problem can be solved in linear tifigl7]. By Theorem 4.2a brute-
force, rather naive algorithm for solving the recognition problem for the clasgBiD
1/i),i > 1,is: testifG contains, as induced subgraph, a cyGlewith n > 6 andcd(C,,) <
1, or a cycleCs; ;2 with chord distance equal to According to Proof oLemma 6.1 this
means that a grapti belongs to BI2 — 1/i) if and only if Procedurdest returns false
if applied toG, and does not exist a cyctes; ;2 in G such thatd(Cs;12) =1i.

To test the existence of a cyctés;2 in G such thatcd(Csz;42) =i we can check
whether any subset ofi 3+ 2 nodes ofG forms a cycle with chord distance equalito
This test can be implemented in polynomial time since the number of subsets of nodes
with 3i + 2 elements is bounded by +2, wheren is the number of nodes i. O

In what follows we show that the strategy used to prokieorem 6.Zannot be applied
to find polynomial solutions to theecognition problem for class BI®), for each integer
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procedure Test ;
—input: a connected grapt = (V, E).
—output: true if and only if there existg’,, n > 6, in G such thatcd(C,) < 1.

1. for each (x,y) € G such thatlg (x,y) =2

2. begin

3. computeM = Ig(x,y)

4. if x andy connected irtG — M

5. then begin

6. ifdg_p(x,y)>3

7. then return(true)  {there existsPy; X andY are empty}

8. else begin {both X andY are not empty}

9. computeX = Ig_p(x, y) N N(x)

10. computeY = Ig_p(x, y) N N(y)

11. if x, y are connected G — (M U X)

12. then return(true)  {there existsP; or P>}

13. else {both P; and P do not exist}

14. if x, y are connected iG — (M UY)

15. then return(true) {there existsPs}

16. else { P1, P>, and P3 do not exist}

17. for each pair (x,y") such that’ e X,y e Y, (x',y) ¢ E

18. if x/, y" are connected in the subgraph
G—(MUX\ X HUT\{HhH

19. then return(true) {there existsP4}

20. end

21. end

22. end

23. return(false)

Fig. 5. Testing the existence of a cydg, n > 6, with cd(C,,) < 1.

k > 2. In particular, we show that it is not possible to characterize(BIDy listing all its
forbidden induced subgraphs, asliheorem 4.2

Theorem 6.3. For each integerg > 2 andi > 2, there exists a minimal forbidden subgraph
for the clasBID (k), which is a cycle with chord distance equalito

Proof. Let k > 2 andi > 2 be two integers. We defin6 = G(n1,no,...,n;) where

n1=2k+2,n; =2k +2,andn; =k + 3 for each 2 j <i — 1. By definition of graph

G(n1,n2,...,n;), it easily follows thatG is a cycle with chord distance equal toWe

now prove thaG ¢ BID (k), while each proper induced subgraph®belongs to BIDk).
In what follows we use facts dfemma 5.4From Fact 1 it follows that

22k+2)+ (i —2)(k+3)—3i+1 k—1

k
i+1 +i+1

5G (x0, Xi4+1) =

and this implies that ¢ BID (k).

Let G’ (G”, respectively) be the induced subgraph @f isomorphic to G(n2,
ns,...,ni—1) (G(na, ..., n;), respectively). By Fact 5, each induced subgraplizohas
stretch number smaller or equal6G’), and by Fact 45(G”) > s(G’). Then,G” is the



404 S. Cicerone, G. Di Stefano / Journal of Discrete Algorithms 2 (2004) 383-405

proper induced subgraph 6f having the maximum stretch number, and

(2k+2)+(i—2)(k+3)—3(i—1)+1_k
; =k.

s(G") =56 (x1, Xi41) =

This proves that each proper induced subgrapfi bklongs to BIDk). O

7. Conclusions

In this paper we provide new results about graph classes that represent a parametric ex-
tension of the class of distance-hereditary graphs. In any graipdlonging to the generic
new class BIDk), the distance between every two connected nodes in every induced sub-
graph ofG is at most times their distance ;. The smallesk such thatG € BID (k) is
called stretch number af.

The main results of the paper can be summarized as follows. Any rational nérxier
is an admissible stretch number, that is, there exists a graph having stretch riu®@ber
prisingly, the only admissible stretch numbers smaller then Zate€2 — 1/i, for every
integeri > 1. In all cases, constructive proofs for the existence of a graph with an ad-
missible stretch number are given. For each class(BID1/i), a characterization based
on forbidden subgraphs is provided. Such a characterization eventually leads to a poly-
nomially time recognition algorithm for the class BID— 1/i), for every integet > 2.

The running time of the algorithm is bounded by&*2), when it is used for the class
BID(2—1/i).

Many problems are left open. First of all, notice that the algorithm provided in the paper
is only of theoretical value. Even for the class B&)2) (which is the closest one to the
distance-hereditary graphs) the running time is alreath?D As a consequence, finding
an efficient recognition algorithm for BI(3/2) is an interesting problem. A related natural
guestion would be whether the recognition of BED- 1/i) is fixed parameter tractable
(takingi as parameter).

Moreover, several algorithmic problems are solvable in polynomial time for distance-
hereditary graphgl1]. Can some of these results be extended to(BJPk > 1?
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