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Abstract

In a previous work, the authors introduced the class ofgraphs with bounded induced distan
of order k (BID(k) for short), to model non-reliable interconnection networks. A network mod
as a graph in BID(k) can be characterized as follows: if some nodes have failed, as long a
nodes remain connected, the distance between these nodes in the faulty graph is at mostk times the
distance in the non-faulty graph. The smallestk such thatG ∈ BID(k) is calledstretch numberof G.
We show an odd characteristic of the stretch numbers: every rational number greater or equ
stretch number, but only discrete values are admissible for smaller stretch numbers. Moreo
give a new characterization of classes BID(2−1/i), i � 1, based on forbidden induced subgraphs.
using this characterization, we provide a polynomial time recognition algorithm forgraphs belonging
to these classes, while the general recognition problem is Co-NP-complete.
 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The main function of a network is to provide connectivity between the sites. In m
cases it is crucial that connectivity is preserved even in the case of (multiple) faults in
Even if the connectivity between nodes is preserved, distances usually increase in
faults because shortest paths could be no longer available.

In this work, that concerns bounded distances, our goal is to investigate about ne
in which distances between sites remainsmall in the case of multiple faulty sites. As th
underlying model, we use unweighted graphs, and measure a distance between tw
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by the number of arcs of a shortest path connecting them. We model a network in which
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in fact,
node faults have occurred by the subnetwork induced by the non-faulty components
this model, in[7] we have introduced the class BID(k) of graphs with bounded induce
distanceof order k. A network modeled as a graph in BID(k) can be characterized a
follows: if some nodes have failed, as long as two nodes remain connected, the d
between these nodes in the faulty graph is at mostk times the distance in the non-faul
graph.

Some characterization, complexity, and structural results about BID(k) are given in[7].
In particular, the concept ofstretch numberhas been introduced: the stretch numbers(G)

of a given graphG is the smallest rational numberk such thatG belongs to BID(k). Given
the relevance of graphs in BID(k) in the area of communication networks, our purpos
to provide characterization, algorithmic, and existence results about graphs having
stretch number.

Results: We first investigate graphs having stretch number at most 2. In this conte
show that: (i) there is no graphG with stretch numbers(G) such that 2− 1/i < s(G) <

2 − 1/(i + 1), for each integeri � 1 (this fact was conjectured in[7]); (ii) there exists a
graphG such thats(G) = 2− 1/i, for each integeri � 1. These results give a partial sol
tion to the following more general problem: Given a rational numberk, is k anadmissible
stretch number, i.e., is there a graphG such thats(G) = k? We complete the solution t
this problem by showing that every rational numberk � 2 is an admissible stretch numb
(note that an irrational number cannot be a stretch number). Finally, we give a cha
ization result in term of forbidden subgraphs for the class BID(2 − 1/i), for each intege
i > 1. This result has been obtained by extending the technique used in[7] to show a sim-
ilar characterization for the class BID(3/2). In turn, this new result allows us to design
polynomial time algorithm to solve the recognition problem for the class BID(2 − 1/i),
for eachi � 1 (if k is not fixed, this problem is Co-NP-complete for the class BID(k) [7]).
Unfortunately, the running time of this algorithm is exponential ini (more precisely, it is
bounded by O(n3i+2)). We conclude the paper by showing that such an algorithmic
proach cannot be used for class BID(k), for each integerk � 2.

Related works: In literature there are several papers devoted to fault-tolerant net
design, mainly starting from a given desired topology and introducing fault-toleranc
(e.g., see[4,16,20]). The approach used in this paper if followed by other works.

In [15], authors give characterizations for graphs in whichno delayoccurs in the cas
that asinglenode fails. These graphs are calledself-repairing. In [9], authors introduce
and characterize new classes of graphs that, even when a multiple number ofedgeshave
failed, guarantee constant stretch factorsk between nodes which remain connected. I
first step, they do not limit the number of edge faults at all, allowing forunlimitededge
faults. Secondly, they examine the case where the number of edge faults isboundedby
a value�. The corresponding graphs are calledk-self-spanners and(k, �)-self-spanners
respectively. In both cases, the names are motivated by strong relationships to th
cept of k-spanners[22]. Related works are also those concerning distance-heredita
graphs[19]. In fact, the class of distance-hereditary graphs is the class BID(1), and graphs
with bounded induced distance can be also viewed as a their parametric extension (
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BID(k) graphs are mentioned in the survey[2] ask-distance-hereditary graphs). Distance-
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hereditary graphs have been investigated to design interconnection network top
[6,12,14], and several papers have been devoted to them (e.g., see[1,3,5,11,13,17,21,23]).

The remainder of this paper is organized as follows. Notations and basic concepts us
in this work are given inSection 2. In Section 3we recall definitions and results from[7].
Section 4shows the new characterization results, and inSection 5we answer the ques
tion about admissible stretch numbers. InSection 6we give the complexity result for th
recognition problem for the class BID(2 − 1/i), for every integeri � 1, by showing a
polynomial time recognition algorithm, and inSection 7we give some final remarks.

2. Notation

In this work we consider finite, simple, loop-less, undirected and unweighted g
G = (V ,E) with node setV and edge setE. We use standard terminologies from[2,18],
some of which are briefly reviewed here.

A subgraphof G is a graph having all its nodes and edges inG. Given a subsetS of V ,
theinduced subgraph〈S〉 of G is the maximal subgraph ofG with node setS. |G| denotes
the cardinality ofV . If x is a node ofG, byNG(x) we denote theneighborsof x in G, that
is, the set of nodes inG that are adjacent tox. We writeN(x) when no ambiguity occurs
G − S is the subgraph ofG induced byV \ S.

A sequence of pairwise distinct nodes(x0, . . . , xn) is apath in G if (xi, xi+1) ∈ E for
0 � i < n, and is aninduced pathif 〈{x0, . . . , xn}〉 hasn edges. Two nodesx andy are
connectedin G if exist a path(x, . . . , y) subgraph ofG. A graph isconnectedif every pair
of nodes is connected.

A cyclein G is a path(x0, . . . , xn−1) where also(x0, xn−1) ∈ E. We denote byCn the
class of cycles withn nodes; sometimes, when no ambiguity occurs, we useCn to denote
a specific instance of a cycle withn nodes. Two nodesxi andxj areconsecutivein Cn if
j = (i + 1) modn or i = (j + 1) modn. A chordof a cycle is an edge joining two non
consecutive nodes in the cycle.Hn denotes ahole, i.e., a cycleCn, n � 5, without chords
Thechord distanceof a cycleCn is denoted bycd(Cn), and it is defined as the minimu
number of consecutive nodes inCn such that every chord ofCn is incident to some of suc
nodes (seeFig. 1). We assumecd(Hn) = 0.

The length of a shortest path between two nodesx andy in a graphG is calleddistance
and is denoted bydG(x, y). Moreover, the length of a longest induced path between the
denoted byDG(x,y). We use the symbolspG(x, y) andPG(x, y) to denote a shortest and
longest induced path betweenx andy, respectively. Sometimes, when no ambiguity occurs
we usepG(x, y) andPG(x, y) to denote the sets of nodes belonging to the correspon
paths.IG(x, y) denotes the set containing all the nodes (exceptx andy) that belong to a
shortest path fromx to y.

If x andy are two nodes ofG such thatdG(x, y) � 2, then{x, y} is acycle-pairif there
are two induced pathspG(x, y) andPG(x, y) such thatpG(x, y) ∩ PG(x, y) = {x, y}. In
other words, if{x, y} is a cycle-pair, then the setpG(x, y) ∪ PG(x, y) induces a cycle
in G. In Fig. 1 there is no cycle-pair that induces the whole graphG, but, for example
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Fig. 1. The chord distance of thisC6 graph is 2 because nodesd ande are consecutive and every chord is incide
to one of them. Moreover, there is no other set with less then 3 nodes with the same properties.

Fig. 2. The split compositionG1 ∗ G2 of G1 andG2 with respect tom1 andm2.

{c, f } is a cycle-pair for the cycle〈{a, b, c, e, f }〉 induced bypG(c,f ) = (c, e, f ) and
PG(c,f ) = (c, b, a, f ).

Let G1, G2 be graphs having node setsV1 ∪ {m1}, V2 ∪ {m2} and edge setsE1, E2,
respectively, where{V1,V2} is a partition ofV andm1,m2 /∈ V . Thesplit composition[10]
of G1 andG2 with respect tom1 andm2 is the graphG = G1 ∗ G2 having node setV and
edge setE = E′

1 ∪E′
2 ∪{(x, y) | x ∈ N(m1), y ∈ N(m2)}, whereE′

i = {(x, y) ∈ Ei | x, y ∈
Vi} for i = 1,2 (seeFig. 2).

3. Basic definitions and results

In this section we recall from[7] some definitions and results useful in the remainde
the paper.

Definition 3.1 [7]. Let k be a real number. A graphG = (V ,E) is a bounded induced
distance graph of orderk if for each connected induced subgraphG′ of G:

dG′(x, y) � k · dG(x, y), for eachx, y ∈ G′.

The class of all the bounded induced distance graphs of orderk is denoted by BID(k).

Note that the definition holds for both connected and disconnected graphs. The follo
ing facts hold:
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– A graphG is distance-hereditary if and only ifG ∈ BID(1);
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– BID(k1) ⊆ BID(k2), for eachk1 � k2;
– Every class BID(k) is hereditary, i.e., ifG ∈ BID(k), thenG′ ∈ BID(k) for every in-

duced subgraphG′ of G.

Definition 3.2 [7]. Let G be a graph, and{x, y} be a pair of connected nodes inG. Then:

(1) thestretch numbersG(x, y) of the pair{x, y} is given bysG(x, y) = DG(x,y)
dG(x,y)

;
(2) thestretch numbers(G) of G is the maximum stretch number over all possible p

of connected nodes, that is,s(G) = max{x,y} sG(x, y);
(3) S(G) is the set of all the pairs of nodes inducing the stretch number ofG, that is,

S(G) = {{x, y} | sG(x, y) = s(G)}.

The stretch number of a graph determines the minimum class which a given grG

belongs to since the shortest path between any pair of nodes in any induced subgra
induced path in the original graph. In fact,s(G) = min{t : G ∈ BID(t)}. As a consequence
G ∈ BID(k) if and only if s(G) � k.

Lemma 3.3 [7]. LetG ∈ BID(k), ands(G) > 1. Then, there exists a cycle-pair{x, y} that
belongs toS(G).

In Fig. 1, the represented graphG belongs to BID(3/2), moreover both{a, c} and{c, f }
are cycle-pairs inS(G).

Theorem 3.4 [7]. Let G be a graph andk � 1 a real number. Then,G ∈ BID(k) if and
only if cd(Cn) > 	 n

k+1
 − 2 for each cycleCn, n > 2k + 2, of G.

To find the class with minimum order which a graph belongs to,Lemma 3.3andTheo-
rem 3.4assure that it is enough to study only chord distances of induced subgraphs fo
cycles.

Theorem 3.5. LetG be a graph such thats(G) < 2. Then,G does not contain a cycleCn,
with n � 6 and cd(Cn) � 1, as induced subgraph.

Proof. Let Cn = (u1, u2, . . . , un) be a cycle withn � 6 andcd(Cn) � 1. Assumingu2

be the only node incident to chords ofCn (if any), the stretch number ofCn is given by
sCn(u1, u3). SincePCn(u1, u3) = (u1, un,un−1, . . . , u3) and pCn(u1, u3) = (u1, u2, u3),
then

s(Cn) = sCn(u1, u3) = n − 2

2
� 2.

Since s(G) < 2 and since BID(k) is hereditary, thenG cannot containCn as induced
subgraph. �



388 S. Cicerone, G. Di Stefano / Journal of Discrete Algorithms 2 (2004) 383–405

4. New characterization results

e
nduced

e
n

es.

h

Graphs in BID(1) have been extensively studied and different characterizations hav
been provided. In particular, one of these characterizations is based on forbidden i
subgraphs[1], and in[7] this result has been extended to the class BID(3/2). In this section
we further extend this characterization to the class BID(2− 1/i), for every integeri � 2.

Lemma 4.1. Let G be a graph with1 < s(G) < 2, and let{x, y} ∈ S(G) be a cycle-pair.
If C is the cycle induced bypG(x, y) ∪ PG(x, y), then every internal node ofpG(x, y) is
incident to a chord ofC.

Proof. Assume that pathsPG(x, y) andpG(x, y) are equal to(x,u1, u2, . . . , up, y) and
(x, v1, v2, . . . , vq, y), respectively. By definition of induced path, sinces(G) > 1 and
{x, y} ∈ S(G), thenq � 1. Since(x,u1, u2, . . . , up, y) and (x, v1, v2, . . . , vq, y) are in-
duced paths ofG, every chord(w1,w2) of C fulfills w1 ∈ {v1, v2, . . . , vq} and w2 ∈
{u1, u2, . . . , up} or vice versa. Moreover,{x, y} ∈ S(G) ands(G) > 1 imply thatv1 andvq

are incident to chords ofC. In fact, if v1 (vq , respectively) would not be incident to som
chord thensG(v1, y) > sG(x, y) (sG(x, vq) > sG(x, y), respectively), a contradiction. I
the following we show that, for each 2� i � q − 1, vi is incident to a chord ofC.

By contradiction, let us suppose that there exists a sequence of nodes

vk, vk+1, . . . , vk+t , vk+t+1

such that the following conditions hold:

– k � 1,
– t � 1,
– k + t + 1 � q ,
– vk andvk+t+1 are incident to chords ofC,
– everyvi , k + 1� i � k + t , is not incident to chords ofC.

Now, letvl be a node such thatl � k + t + 2, l is minimum, andvl is incident to chords
of C. Notice that, ifvl does not exist thenvk+t+1 = vq .

We analyze two major cases, according whethervl exists or not, and some sub-cas
For each case we show a contradiction.

Let us now suppose thatvl exists. Let us consider the chord(vk, uh1) such thath1 =
max{h | (vk, uh) is a chord ofC}, and the chord(vl, uh2) such thath2 = min{h | (vl, uh) is
a chord ofC}.

According to the values ofh1 andh2, we have three different sub-cases.

(1) h1 = h2.
In this case there is a shortcut fromvk to vl throughuh1. This implies that the pat
(x, v1, v2, . . . , vk, uh1, vl, vl+1, . . . , vq , y) has a length less thanq +1. This contradicts
dG(x, y) = q + 1.

(2) h1 < h2.
In this case the cycle induced by the nodesvk, vk+1, . . . , vl , uh2, uh2−1, . . . , uh1 is a
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cycle with at least 6 nodes and chord distance at most 1. Sinces(G) < 2, this is a

des

n

contradiction ofLemma 3.5.
(3) h1 > h2.

Let us consider the chord(vl, uh′
2
) such that

h′
2 = max

{
h | (vl , uh) is a chord ofC andh2 � h′

2 < h1
}
.

Notice that neither chord(vk, uh′
2
) or (vl, uh1) can exist, otherwisedG(x, y) < q + 1.

Then, the cycle induced by the nodes

vk, vk+1, . . . , vl, uh′
2
, uh′

2+1, . . . , uh1

is a cycle with at least 6 nodes and chord distance at most 1. Sinces(G) < 2, this is a
contradiction ofLemma 3.5.

Let us suppose thatvl does not exist. It follows thatvk+t+1 = vq . Moreover,uh1 = up

otherwise the cycle induced by the nodesvk, vk+1, . . . , vq , y,up,up−1, . . . , uh1 is a cycle
with at least 6 nodes and chord distance at most 1 (a contradiction ofLemma 3.5). In
this case the path(x, v1, v2, . . . , vk, up, y) has a length less thanq + 1. This contradicts
dG(x, y) = q + 1, and concludes the proof.�
Theorem 4.2. Given a graphG and an integeri � 2, thenG ∈ BID(2 − 1/i) if and only
if the following graphs are not induced subgraphs ofG:

(1) Hn, for eachn � 6;
(2) cyclesC6 with cd(C6) = 1;
(3) cyclesC7 with cd(C7) = 1;
(4) cyclesC8 with cd(C8) = 1;
(5) cyclesC3i+2 with cd(C3i+2) = i.

Proof. (⇒) HolesHn, n � 6, have stretch number at least 2. Cycles with 6, 7, or 8 no
and chord distance 1 have stretch number equal to 2, 5/2, and 3, respectively. LetC3i+2 =
(v0, v1, . . . , v3i+1) be a cycle with chord distance equal toi. If v1, . . . , vi are consecutive
nodes incident to all the chords ofC3i+2, then

sG(v0, vi+1) � 2i + 1

i + 1
= 2− 1

i + 1
,

becauseDG(v0, vi+1) is at least the length of the path(vi+1, vi+2, . . . , v3i+1, v0). Since
the considered cycles have stretch number greater than 2− 1/i, then they are forbidde
induced subgraphs for every graph belonging to BID(2− 1/i).

(⇐) Given an arbitrary integeri � 2, we prove that every graphG /∈ BID(2 − 1/i)

contains one of the forbidden subgraphs or a proper induced subgraphG′ such thatG′ /∈
BID(2− 1/i). In the latter case, we can recursively apply toG′ the following proof.

Let us assumeG /∈ BID(2 − 1/i). This impliesS(G) > 3/2, and, byLemma 3.3,
there exists a cycle-pair{x, y} ∈ S(G). Assume thatPG(x, y) andpG(x, y) are (x,u1,

u2, . . . , up, y) and(x, v1, v2, . . . , vq, y), respectively, such thatp + q + 2 = n andCn =
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〈PG(x, y) ∪ pG(x, y)〉. By construction,cd(Cn) = q , and, byTheorem 3.4, we can state

f

ost 1.

s-
thatn � 6 and 0� cd(Cn) � 	 i·n
3i−1
 − 2.

If q = 0 then we obtain the holesHn, n � 6. If q = 	 i·n
3i−1
 − 2 andn = 6,7,8,3i + 2,

then, for each value ofn, we obtain the following forbidden subgraphs:C6 with cd(C6) =
1; C7 with cd(C7) = 1; C8 with cd(C8) = 2 if i = 2 (case 5) and withcd(C8) = 1 if i > 2
(case 4);C3i+2 with cd(C3i+2) = i.

Now, we show that ifn � 9, n 
= 3i + 2, andq fulfills 1 � q � 	 i·n
3i−1
 − 2, thenCn

contains one of the given forbidden subgraphs or an induced subgraphG′ such thatG′ /∈
BID(2− 1/i).

By Lemma 4.1, every nodevk , 1� k � q , must be incident to a chord ofCn, otherwise
Cn has a stretch number greater or equal to 2 and hence it is a forbidden subgraph oG. As
a consequence, we can denote byrj the largest indexj ′ such thatvj anduj ′ are connected
by a chord ofCn, i.e., rj = max{j ′ | (vj , uj ′) is a chord ofCn}. Informally, rj gives the
rightmostchord connectingvj to some node ofPG(x, y).

Notice that, ifr1 > 3, then, byLemma 3.5, the subgraph ofCn induced byv1, x,u1,

. . . , ur1 is forbidden, since it is a cycle with at least 6 nodes and chord distance at m
Hence, in the remainder of this proof we assume thatr1 � 3.

Let us now analyze two distinguished cases forCn, according whether the chord di
tanceq of Cn either (i) fulfills 1� q < 	 i·n

3i−1
 − 2, or (ii) is equal to	 i·n
3i−1
 − 2.

(1) ConsiderCn with n � 9 and chord distanceq such that 1� q < 	 i·n
3i−1
 − 2.

If Cn′ denotes the subgraph induced by the nodes ofCn exceptx,u1, . . . , ur1−1, then
Cn′ is a cycle withn′ � n − 3 nodes and chord distance at mostq − 1. To prove thatCn′ is
forbidden, it is sufficient to show that	 i·n′

3i−1
 − 2� q − 1:⌈
i · n′

3i − 1

⌉
− 2 �

⌈
i · n − 3i

3i − 1

⌉
− 2 � q − 1,⌈

i · n − 3i

3i − 1

⌉
− 2 > q − 2,⌈

i · n − 3i

3i − 1
+ 2

⌉
− 2> q,⌈

i · n + 3i − 2

3i − 1

⌉
− 2> q.

The last inequality holds because 3i − 2 � 0 for each integeri � 1, and	 i·n
3i−1
 − 2 > q .

(2) ConsiderCn with n � 9 and chord distanceq such thatq = 	 i·n
3i−1
 − 2.

In this caseq is given whenever a fixed value forn is chosen. In general, sincen � 9, it
follows thatq � 2.

Let us analyze again the cycleCn′ . Recalling thatn′ � n − 3 andcd(Cn′) � q − 1, then⌈
i · n′

3i − 1

⌉
− 2 �

⌈
i · n − 3i

3i − 1

⌉
− 2 � q − 1

is equivalent to⌈
i · n − 1

3i − 1

⌉
− 2 � q.
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In the following we show that, for everyn such that 9� n � 6i, either this relation holds

e

s
e

is
e fol-

is an
or n is equal to 3i + 2. This means that the cycleCn′ is forbidden for each cycleCn,
9 � n � 6i.

Since	 i·n
3i−1
 − 2 = q holds by hypothesis, we have to study when	 i·n−1

3i−1 
 � 	 i·n
3i−1
.

This relation does not hold if and only if there exists an integerm such thati·n−1
3i−1 � m <

i·n
3i−1, that is(3i−1)m < i ·n � (3i−1)m+1. Thenn = 3m− m−1

i
, and, as consequence,m

can be equal to� · i +1 only, for each integer� � 0. Hencen = 3m− m−1
i

= 3(� · i +1)−�,
� � 0. For� = 0 we obtainn = 3 (but we are consideringn � 9), for � = 1 and� = 2 the
value ofn is 3i + 2 andn = 6i + 1, respectively. The cycle with 3i + 2 nodes is one of th
forbidden cycles in the statement of the theorem. As a conclusion, the cycleCn′ shows that
Cn contains a forbidden induced subgraph when 9� n � 6i.

It remains to be considered the case whenn � 6i + 1. In this caseq = 	 i·n
3i−1
 − 2

implies q � 2i, and hence we can computeri . If ri � 2i + 1 then the cycle in-
duced byvi, vi−1, . . . , v1, x,u1, . . . , uri is forbidden. In fact, paths(x,u1, u2, . . . , uri ) and
(x, v1, v2, . . . , vi , uri ) give the following lower bound tosG(x,uri ):

sG(x,uri ) � ri

i + 1
� 2i + 1

i + 1
= 2− 1

i + 1
> 2− 1

i
.

Hence,ri � 2i. The cycleCn′′ , subgraph induced by the nodes ofCn except the node
vi−1, . . . , v1, x,u1, . . . , uri−1, is a cycle withn′′ � n − 3i + 1 nodes and chord distanc
at mostq − i. To prove thatCn′′ is forbidden, let us show that	 i·n′′

3i−1
 − 2 � q − i. The
inequality⌈

i · n′′

3i − 1

⌉
− 2 �

⌈
i · (n − 3i + 1)

3i − 1

⌉
− 2 � q − i

is equivalent to⌈
i · n

3i − 1

⌉
− 2 � q.

The last relation holds by hypothesis, and this concludes the proof.�

5. Admissible stretch numbers

In [7], it was conjectured that, for each integeri � 1, there exists no graphG such
that 2− 1/i < s(G) < 2 − 1/(i + 1). In this section we show that such a conjecture
true. Moreover, we extend the result by showing that it is possible to answer to th
lowing more general question: Given a rational numbert � 1, is there a graphG such
that s(G) = t? In other words, we can state when a given positive rational number
admissiblestretch number.

Definition 5.1. A positive rational numbert is calledadmissible stretch numberif there
exists a graphG such thats(G) = t .
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In the remainder of this section we first show that the conjecture recalled above is true,
ble

h

and then we show that each positive rational number greater or equal than 2 is an admissi
stretch number.

Lemma 5.2. If p andq are two positive integers such that

2− 1

i
<

p

q
< 2− 1

i + 1
,

for some integeri � 1, thenq > i.

Proof. By contradiction, let us assume thatq � i, and let us consider the casesq = i and
q < i.

If q = i then p/q > 2 − 1/i implies p > 2i − 1, that isp � 2i. Sincei � 1 then
p/q � 2, and this contradicts the relationp/q < 2− 1/(i + 1) < 2.

If q < i then both the relationsp > 2q − q/i andp < 2q − q/(i + 1) hold. But these
relations imply that 2q −1< p < 2q , contradicting the hypothesis thatp is an integer. �
Theorem 5.3. If t is a rational number such that

2− 1

i
< t < 2− 1

i + 1
,

for some integeri � 1, thent is not an admissible stretch number.

Proof. We have to show that there exists no graphG such that

2− 1

i
< s(G) < 2− 1

i + 1
,

for each integeri � 1.
By contradiction, let us assume that there exist an integeri � 1 and a graphG such that

2− 1

i
< s(G) < 2− 1

i + 1
.

By Lemma 3.3there exists a cycle-pair{x, y} ∈ S(G). If we assume thatPG(x, y) and
pG(x, y) correspond to(x,u1, u2, . . . , up−1, y) and(x, v1, v2, . . . , vq−1, y), respectively,
thenpG(x, y) ∪PG(x, y) induces a cycleC, ands(G) = p/q . By Lemma 5.2, the relation
q > i holds; then, the nodevi exists in the pathpG(x, y). By Lemma 4.1, the nodevi

is incident to a chord ofC, and hence, like inTheorem 4.2, we can define the integerr,
1 � r � q − 1, such that

r = ri = max
{
j | (vi , uj ) is a chord ofC

}
.

Now, denote byCL the cycle induced by the nodesvi, vi−1, . . . , v1, x,u1, u2, . . . , ur , and
by CR the cycle induced by the nodesvi, vi+1, . . . , vq−1, y,up−1, up−2, . . . , ur . In other
words, the chord(vi , ur ) dividesC into theleft cycleCL, and theright cycleCR .

First of all, let us compute the stretch number of the cycleCR . SincepG(x, y) =
(x, v1, v2, . . . , vq−1, y) thenpCR(vi , y) = (vi, vi+1, . . . , vq−1, y). Moreover, since the pat
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(vi , ur, ur+1, . . . , up−1, y) is induced inC, thenDCR(vi , y) � p − r + 1. Then

,

le
s(CR) � sCR(vi , y) � p − r + 1

q − i
.

SinceCR is an induced subgraph ofG then

p − r + 1

q − i
� p

q
.

This inequality is equivalent to

p

q
� r − 1

i
.

From the relations

2− 1

i
<

p

q
� r − 1

i

we obtain thatr > 2i, that isr � 2i + 1.
Let us now compute the stretch number of the cycleCL whenr � 2i + 1. In this case

pCL(x,ur) = (x, v1, v2, . . . , vi, ur ) andPCL(x,ur) = (x,u1, u2, . . . , ur ). Then

s(CL) � sCL(x,ur) = r

i + 1
� 2i + 1

i + 1
� 2− 1

i + 1
.

The obtained relation implies thats(CL) > s(G). This is a contradiction sinceCL is an
induced subgraph ofG. �

In order to show that each rational number equal or greater than 2 is an admissib
stretch number, let us consider the graphG(n1, n2, . . . , nt ) obtained by composingt holes
Hn1,Hn2, . . . , Hnt by split composition, whereni � 5 for 1� i � t . In detail, the holes
correspond to the following chord-less cycles (as an example, seeFig. 3, wheret = 5):

Fig. 3. The graphG(n1, n2, n3, n4, n5) obtained by the split composition of 5 holes. Theith hole hasni � 5
nodes. Dotted lines between nodesli andri , 1� i � 5, represent induced paths.
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• Hn1 = (l1, x0, x1,m
′ , r1, . . .);

of

to

tion
1• Hni = (li,mi, xi,m
′
i , ri, . . .), for eachi such that 1< i < t ;

• Hnt = (lt ,mt , xt , xt+1, rt , . . .).

These holes are composed by means of the split composition as follows:

G(n1, n2, . . . , nt ) = Hn1 ∗ Hn2 ∗ · · · ∗ Hnt ,

where the marked nodes betweenHni andHni+1 arem′
i andmi+1, 1� i < t , respectively.

In the following, we denote byV1 (Vt , respectively) the set containing all the nodes
the holeHn1 (Hnt , respectively) butx0, x1, andm′

1 (mt , xt , andxt+1, respectively); we
denote byVi the set containing all the nodes of the holeHni butmi , xi , andm′

i , 1< i < t .
Finally, we denote byX the set{x0, x1, . . . , xt+1}.

Lemma 5.4. Given the graphG = G(n1, n2, . . . , nt ), the following facts hold:

(1) sG(x0, xt+1) = (
∑t

i=1 ni − 3t + 1)/(t + 1);
(2) if j − i � 2, then pG(xi, xj ) ∪ PG(xi, xj ) induces a subgraph isomorphic

G(ni+1, ni+2, . . . , nj−1);
(3) there exists a pair{u,v} ∈ S(G) such thatu ∈ X, v ∈ X, anddG(u, v) � 2;
(4) if nt � max{ni | 1 � i � t − 1} thensG(x0, xt+1) > sG(x0, xt );
(5) if ni = n for some fixed integern and for each1 � i � t , thens(G) = sG(x0, xt+1) =

(nt − 3t + 1)/(t + 1);
(6) let k, 1 � k < t , be an integer such thatni = n, for eachk < i � t and for a fixed

integern. Then, one of the following relationships holds:
(a) sG(x0, xj ) � sG(x0, xj+1), for eachk � j < t ;
(b) sG(x0, xj ) < sG(x0, xj+1), for eachk � j < t .

Proof. We prove each fact separately.

(1) Here pG(x0, xt+1) and PG(x0, xt+1) coincide with (x0, x1, x2, . . . , xt , xt+1) and
(x0, l1, . . . , r1, l2, . . . , r2, . . . , ri−1, li , . . . , ri , li+1, . . . , rt−1, lt , . . . , rt , xt+1), respec-
tively. In particular,PG(x0, xt+1) coincides with the induced path obtained fromG
by removingx1, x2, . . . , xt . Notice thatdG(x0, xt+1) = t + 1, whilePG(x0, xt+1) con-
tains one edge connectingx0 to l1; ni − 4 edges fromli to ri , 1 � i � t ; one edge
connectingri to li+1, 1� i < t ; and, finally, one edge connectingrt to xt+1. Hence,
the length ofPG(x0, xt+1) is 1+ ∑t

i=1(ni − 4) + (t − 1) + 1 = ∑t
i=1 ni − 3t + 1.

(2) This fact simply follows from the proof of the first one and from the observa
that, by definition of split composition and of induced paths, neitherpG(xi, xj ) nor
PG(xi, xj ) may contain nodes ofHn1 ∪ Hn2 ∪ · · · ∪ Hni ∪ Hnj ∪ Hnj+2 ∪ · · · ∪ Hnt .

(3) First notice that, sinces(G) � 3/2 (becauseG contains a holeHn, n � 5, as induced
subgraph) and sincesG(u, v) = 1 whendG(u, v) = 1, then every pair of nodes inS(G)

has distance inG at least 2. Now, let{u,v} ∈ S(G) andv /∈ X.
Because of the symmetry ofG, without loss of generality we can assume thatu ∈
Vi ∪ {xi}, v ∈ Vj , andi � j .
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If j = i thenpG(u, v)∪PG(u, v) induces an holeH isomorphic toHni ; it follows that
h

h

dG(u, v) = 2 and that every pair of nodes at distance 2 inH gives the same stretc
number ofu andv. Then,{xi−1, xi+1} ∈ S(G).
If j � i + 1, then we prove that a nodex ∈ X exists such thatsG(u, v) � sG(u, x) (in
particularx ∈ {xj , xj+1}). Since{u,v} ∈ S(G), then{u,x} ∈ S(G).
If v = lj , thenu 
= {xj−1, rj−1} (otherwisedG(u, v) = 1), andDG(u,v) = DG(u,xj ),
becausexj /∈ PG(u, v) otherwisePG(u, v) is not an induced path. SincedG(u, v) =
dG(u, xj ), thensG(u, v) = sG(u, xj ).
If v 
= lj , then either (i) lj ∈ pG(u, v) and rj ∈ PG(u, v) or (ii) rj ∈ pG(u, v) and
lj ∈ PG(u, v).
(i) In this casepG(u, v) = (u, . . . , lj , . . . , v). Since dG(u, lj ) = dG(u, xj ), then

dG(u, v) � dG(u, xj+1). On the other hand,PG(u, v) corresponds to the pat
(u, . . . ,w,xj , z, rj , . . . , v), where w ∈ {xj−1, rj−1} and z ∈ {xj+1, lj+1}. Let
p = (u, . . . ,w, lj , . . . , v, . . . , rj , xj+1) be a path which coincides withPG(u, v)

from u to w. By construction ofG, this path is induced. ThenDG(u,v) � |p| �
DG(u,xj+1). As consequence,

sG(u, v) = DG(u,v)

dG(u, v)
� DG(u,xj+1)

dG(u, xj+1)
= sG(u, xj+1).

(ii) In this case pG(u, v) = (u, . . . , xj , z, rj , . . . , v), where z ∈ {xj+1, lj+1}. As
consequence,dG(u, v) � dG(u, z) = dG(u, xj+1). By construction ofG, p =
〈PG(u, v) ∪ pG(v, xj+1)〉 is a path andDG(u,v) � |p| � DG(u,xj+1). Hence,
sG(u, v) � sG(u, xj+1). This implies{u,xj+1} ∈ S(G).

Now, if u ∈ X we are done. Otherwise, because of the symmetry ofG, we can apply
the same technique used above to find a nodex ′ ∈ X such that{x ′, v} ∈ S(G), and
hence{x ′, x} ∈ S(G).

(4) By the first two facts, it follows that

sG(x0, xt ) =
∑t−1

i=1 ni − 3(t − 1) + 1

t
.

Then,

sG(x0, xt+1) =
∑t

i=1 ni − 3t + 1

t + 1

=
∑t−1

i=1 ni − 3(t − 1) + 1

t + 1
+ nt − 3

t + 1

= sG(x0, xt ) − sG(x0, xt)

t + 1
+ nt − 3

t + 1
.

In order to prove thatsG(x0, xt+1) > sG(x0, xt) it is sufficient to show that

− sG(x0, xt)

t + 1
+ nt − 3

t + 1
> 0

that is

sG(x0, xt ) < nt − 3.
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The latter inequality is equivalent to

n

in

h

∑t−1
i=1 ni − 3(t − 1) + 1

t
< nt − 3,

and, in turn, to
∑t−1

i=1 ni + 4 < t · nt . It holds since, by hypothesis,ni � 5, 1� i � t .
(5) This fact is an immediate consequence of the previous Facts 1 and 4.
(6) Denotingp′ = DG(x0, xk+1), then, by Fact 1,sG(x0, xk+1) = p′/(k + 1). Assum-

ing j = k + h, h � 0, sinceni = n for each i > k, then DG(x0, xj ) is equal to
DG(x0, xk+1) + (n − 3)h. This implies that the inequalitysG(x0, xj ) � sG(x0, xj+1)

can be rewritten as:

p′ + (n − 3)h

j + 1
� p′ + (n − 3)(h + 1)

j + 2

and can be further simplified to the following inequality:

(5.1)
p′

k + 1
� n − 3.

Since inequality(5.1) does not depend onj , according whether it is true or not the
one of two relationships of the statement holds.

This concludes the proof.�
Notice that the stretch number of nodesx0 andxt+1 in G(n1, n2, . . . , nt ) does not de-

pend on how many nodes are in each hole; it depends only on the total number of nodes
G(n1, n2, . . . , nt ) and on the numbert of used holes.

Corollary 5.5. For each integeri � 1, 2− 1/i is an admissible stretch number.

Proof. Every distance-hereditary graph has stretch number equal to 1. Ifi > 1, from Fact 5
of Lemma 5.4, it follows that the graphG = G(n1, n2, . . . , ni−1) such thatnj = 5 for each
1 � j � i − 1, has stretch equal to 2− 1/i. �
Theorem 5.6. If t is a rational number such thatt � 2, then t is an admissible stretc
number.

Proof. Let us suppose thatt = p/q for two positive integersp andq without common di-
visors greater than 1. Ifq = 1 (i.e., the only case in whicht is an integer) thenG = H2p+2,
and if q = 2 thenG = Hp+2. In the remainder of the proof we show that ifq � 3 then the
requested graphG is equal toG(n1, n2, . . . , nq−1), for suitable integersn1, n2, . . . , nq−1.
We now determine such integers, that is, the size of each holeHni , 1� i � q − 1, we use
to composeG.

Let b = 3 + �p−1
q−1� and r = (p − 1) mod(q − 1). The sizes of the holesHn1,Hn2,

. . . ,Hnq−1 are defined according to the following strategy:r holes containb + 1 nodes,
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while the remainingq − 1− r containb nodes. By Fact 1 ofLemma 5.4it follows that

-
of

s
e of

-
tion

er a
f

alue

sis.
.

sG(x0, xq) =
∑q−1

i=1 ni − 3(q − 1) + 1

q
= p

q
.

Notice that this result does not depend on which holes containb or b + 1 nodes. In partic
ular, if r = 0 then, by Fact 5 ofLemma 5.4, the proof is concluded. So, in the remainder
the proof we assumer � 1. According to Fact 3 ofLemma 5.4, to prove thatS(G) = p/q it
is sufficient to show thatsG(xi, xj ) � p/q , 0� i < j � q − 1. Since this property depend
on which holes containb or b + 1 nodes, to conclude the proof we have to fix the siz
each holeHnk , 1� k � q − 1.

For sake of convenience, assume that each hole withb + 1 nodes is arbitrarily num
bered from 1 tor. To fix the size of each hole, we introduce an injective func
pos: {1,2, . . . , r} → {1,2, . . . , q − 1} having the following meaning:Hk, 1� k � q − 1,
containsb + 1 nodes if and only ifpos(x) = k for somex, 1 � x � r. Informally, this
function gives thepositionof the holes havingb + 1 nodes in the sequence of theq − 1
holes formingG.

The functionposwe will use is based on the following observation. Let us consid
graphG′ = G(m1,m2, . . . ,m�), wheres of the� holes containb + 1 nodes, while each o
the remaining� − s holes containsb nodes. From Fact 1 ofLemma 5.4, we get

sG′(x0, x�+1) = (s(b + 1) + (� − s)b) − 3� + 1

� + 1
= b� + s − 3� + 1

� + 1
.

If we now assumes fixed, we can use the latter equality to compute the minimum v
for � such thatsG′(x0, x�+1) � p

q
. By imposing:

(5.2)
b� + s − 3� + 1

� + 1
� p

q
,

we deduce the following inequality:

(5.3)� · [(b − 3)q − p
]
� p − q(s + 1).

Notice that the multiplicative factor

D = (b − 3)q − p

of � in inequality(5.3)cannot be equal to zero. In fact,(b − 3)q − p = 0 implies�p−1
q−1� =

p
q

, and this equality holds only ifp/q is integer, a contradiction for the running hypothe
To proceed further with this observation, we have to study whenD is positive and negative
For each case, we will provide a different functionpos.

CaseD > 0: From inequality(5.3)we get

(5.4)� � p − q(s + 1)

(b − 3)q − p
.

Since we have already observed thatsG(x0, xq) = p/q , then inequality(5.4) holds when
� = q − 1 ands = r. In this case, it becomes equal to

(5.5)q − 1� p − q(r + 1)

(b − 3)q − p
.
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Now, fix the size of each hole according to any injective functionpos: {1,2, . . . , r} →
by

f

of
e new
t

t

n
s:
{1,2, . . . , q − 1}. According to Fact 3 ofLemma 5.4, we prove that the theorem holds
showing thatsG(xi, xj ) � p/q , 0� i, j � q − 1 andj − i � 2.

By Fact 2 ofLemma 5.4, pG(xi, xj ) ∪ PG(xi, xj ) induces a subgraphG′ isomorphic
to G(ni+1, ni+2, . . . , nj−1). G′ is made up of�′ = j − i − 1 holes, and, without loss o
generality, we can assume thats′ of such holes containb + 1 nodes. Notice that�′ � q − 1
ands′ � r . It is easy to see thatEq. (5.4)holds also when� = �′ ands = s′. In fact, the
right side ofEq. (5.4)depends only on the number of holes havingb + 1 nodes, while the
left side depends on all the holes. This implies that if we replaceq − 1 by �′ andr by s′
in the left and right side of inequality(5.5), respectively, then the value on the left side
inequality(5.5)decreases, while the value on the right side increases. Of course, th
relation we get is still valid, and this proves thatsG(xi, xj ) � p/q . It is worth to note tha
the caseD > 0 occurs wheneverp can be expressed asp = kq + k′, for two integersk and
k′ such thatk � q and 0� k′ < q .

CaseD < 0: In the analysis of this case, it is important to show thatr � 2. To prove this
property, it is convenient to expressr as a function ofp, q , andb as follows:

r = (p − 1) mod(q − 1)

= (p − 1) −
⌊

p − 1

q − 1

⌋
(q − 1)

= (p − 1) − (b − 3)(q − 1).

Hence,r � 2 can be rewritten as(p − 1) − (b − 3)(q − 1) � 2. This relation is equivalen
to p − (b − 3)q + (b − 3) � 3. SinceD < 0, thenp − (b − 3)q > 0, and hencep −
(b − 3)q � 1; moreover,b − 3 is equal to�p−1

q−1�, andp/q � 2 implies�p−1
q−1� � 2. Hence,

p − (b − 3)q + (b − 3) � 3 holds.
SinceD < 0, fromEq. (5.3)we get

(5.6)� � p − q(s + 1)

(b − 3)q − p
.

This equation induces the functionposas follows:

pos(x) =



x, if 	p−q(x+1)
(b−3)q−p


 � x,

	p−q(x+1)
(b−3)q−p


, otherwise.

Before completing the proof, we have to show thatposis a well-defined injective functio
from {1,2, . . . , r} to {1,2, . . . , q −1}. To this aim, we prove the following three propertie

(1) pos(1) = 1:
To prove thatpos(1) = 1, it is sufficient to show thatp−q(1+1)

(b−3)q−p
� 1, that is(b − 1)q −

2p � 0. This inequality is true since it follows from the hypotheses(b − 3)q − p < 0
andp � 2q.

(2) pos(r) = q − 1:
To show thatpos(r) = q − 1, we show thatp−q(r+1)

(b−3)q−p
= q − 1, that is

(5.7)p − q(r + 1) = (q − 1)
[
(b − 3)q − p

]
.
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To prove that this equality is true, it is sufficient to plug the expressionr = (p − 1) −

qual-

s
st
(b − 3)(q − 1) into the left side ofEq. (5.7):

p − q(r + 1) = p − q
[
(p − 1) − (b − 3)(q − 1) + 1

]
= p − q(p − 1) + q(b − 3)(q − 1) − q

= p − pq + q(b − 3)(q − 1)

= −p(q − 1) + q(b − 3)(q − 1)

= (q − 1)
[
(b − 3)q − p

]
.

(3) pos(x + 1) > pos(x), for each 1� x � r − 1:
According to definition ofpos, to prove this property it is sufficient to show that

p − q(x + 2)

(b − 3)q − p
− p − q(x + 1)

(b − 3)q − p
� 1,

that is

−q

(b − 3)q − p
� 1.

By using the hypothesis(b − 3)q − p < 0 and the equalityb − 3 = �p−1
q−1�, we can

modify the last inequality to the equivalent equation:

(5.8)
p

q
�

⌊
p − 1

q − 1

⌋
+ 1.

Furthermore, sincep−1
q−1 � �p−1

q−1�+1, to show that inequality(5.8)is true it is sufficient

to shown thatp
q

� p−1
q−1 . The last inequality corresponds top � q, and it follows from

the hypothesisp � 2q.

Since the functionposhas been defined according to the observation based on ine
ity (5.2), then the following two properties holds:

P1: For eachi, 1� i � q − 1, such thatni = b + 1, thensG(x0, xi+1) � p/q .
P2: If ni = b thensĜ(x0, xi+1) > p/q , whereĜ = G(n1, n2, . . . , n

′
i ) andn′

i = b + 1 (i.e.,
Ĝ is composed by using the firsti − 1 holes ofG and one hole with sizen′

i = b + 1
instead ofni = b). Hence, ifsG(x0, xi+1) = p′/q ′ thensĜ(x0, xi+1) = (p′ + 1)/q ′ >
p/q .

In other words, the first property says that the stretch number ofx0 and every nodexi+1
such thatxi+1 belongs to a hole withb+1 nodes is at mostp/q . The second property say
that we cannot replace a hole withb nodes by a hole withb + 1 nodes, otherwise the fir
property is no longer fulfilled.

Once we fixed the size of each hole by means of the functionpos, according to Fact 3
of Lemma 5.4, we conclude the proof by showing thatsG(xi, xj ) � p/q , 0� i, j � q − 1
andj − i � 2. We distinguish two different cases:
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Casei = 0: By Fact 2 ofLemma 5.4, pG(x0, xj ) ∪ PG(x0, xj ) induces a subgraph

ast

to

e

isomorphic toG(n1, n2, . . . , nj−1). We analyze two sub-cases:nj−1 = b+1 andnj−1 = b.
If nj−1 = b + 1, thensG(x0, xj ) � p/q follows from propertyP1 above.
If nj−1 = b, then there exist two holesHnj ′−1

, j ′ < j , andHnj ′′−1
, j ′′ > j , both having

b + 1 nodes, such thatnk = b, for eachj ′ � k � j ′′ − 2. Such two holes havingb + 1
nodes exist because: (i)r � 2, and (ii)nj−1 = b implies j < q becausenq−1 = b + 1 by
definition of functionpos. As in the case above,sG(x0, xj ′) � p/q andsG(x0, xj ′′) � p/q

follow propertyP1 above. Let us consider now the graph�G = G(m1,m2, . . . ,mj ′′−1),
wheremk = nk , 1� k � j ′′ − 2, andmj ′′−1 = b. In other words, the firstj ′′ − 2 holes used
to buildG and�G coincide, whereas the last hole of�G contains one node less than the l
hole ofG. This implies thatD�G(x0, xj ′′) = DG(x0, xj ′′)−1, and hences�G(x0, xj ′′) � p/q .
Moreover, sincemk = b, j ′ � k � j ′′ − 1, we can apply Fact 6 ofLemma 5.4to �G. By this
fact, either

s�G(x0, xj ′) � s�G(x0, xk) � s�G(x0, xj ′′), j ′ − 1< k � j ′′ − 1

or

s�G(x0, xj ′) > s�G(x0, xk) > s�G(x0, xj ′′), j ′ − 1 < k � j ′′ − 1

holds. In both cases, we deducesG(x0, xk) � p/q , for eachj ′ −1 < k � j ′′ −1, and hence
sG(x0, xj ) � p/q .

Case i > 0: By contradiction, let us suppose that there exist two integersi and j

such thatsG(xi, xj ) = p′/q ′ > p/q ; moreover, let us assume thatsG(xi, xj ) = s(G).
By Fact 2 of Lemma 5.4, pG(xi, xj ) ∪ PG(xi, xj ) induces a subgraph isomorphic
G(ni+1, ni+2, . . . , nj−1). It follows that ni = b, otherwise, by Fact 4 ofLemma 5.4,
sG(xi−1, xj ) > s(xi, xj ), a contradiction forsG(xi, xj ) = s(G).

DenotesG(x0, xi+1) = p′′/q ′′. Sinceni = b, if Ĝ = G(n1, n2, . . . , n
′
i ) andn′

i = b + 1
(i.e., Ĝ is composed by using the firsti holes ofG, but the last one has sizeb + 1 instead
of b), by propertyP2 we get the following inequality:

sĜ(x0, xi+1) = p′′ + 1

q ′′ >
p

q
.

Now, from definition of graphG, we can express the stretch ofsG(x0, xj ) by using

sG(x0, xi+1) andsG(xi, xj ). In fact,sG(x0, xj ) = p′+p′′−1
q ′+q ′′−1 . Then,

sG(x0, xj ) = p′ + p′′ − 1

q ′ + q ′′ − 1
>

p
q
q ′ + (

p
q
q ′′ − 1) − 1

q ′ + q ′′ − 1
= p

q
+

(
p

q
− 2

)
1

q ′ + q ′′ − 1
.

Sincep/q � 2, from the last expression we getsG(x0, xj ) > p/q , a contradiction for
the casei = 0, where we shown thats(x0, xj ) � p/q , 2� j � q − 1.

This concludes the proof.�
The results provided byCorollary 5.5, Theorems 5.3and5.6can be summarized in th

following two corollaries.
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Corollary 5.7. Let t be an admissible stretch number. Then, eithert � 2 or t = 2− 1/i for

to

ery ir-
unded

2 to
xample,

hm

h

some integeri � 1.

Corollary 5.8. For every admissible stretch numbert , split composition can be used
generate a graphG with s(G) = t .

Notice that, even if stretch numbers are rational numbers, we can also use ev
rational number greater than 2 to define graph classes containing graphs with bo
induced distance. For instance, we can define BID(π), and BID(π) 
= BID(k) for every
rational numberk. On the other hand, if we take an irrational number between 1 and
define a class, then there exists a rational number to define the same class. For e
BID(

√
3) = BID(5/3).

6. Recognition problem

The recognition problem for BID(1) can be solved in linear time[1,17]. In [7], this
problem has been shown to be Co-NP-complete for the generic case (i.e., whenk is not
fixed), and the following question has been posed: What is the largest constantk such that
the recognition problem for BID(k) can be solved in polynomial time?

In this section we show thatTheorem 4.2can be used to devise a polynomial algorit
to solve the recognition problem for the class BID(k), for every constantk < 2.

Lemma 6.1. There exists a polynomial time algorithm to test whether a given grapG

contains, as induced subgraph, a cycleCn with n � 6 and cd(Cn) � 1.

Proof. It is easy to see that a cycleCn with n � 6 andcd(Cn) � 1 exists inG if and only
if there are inG two nodesx andy such that all the following conditions hold:

(1) there exists a nodeu such thatpG(x, y) = (x,u, y);
(2) there exists an induced pathp′

G(x, y) such that|p′
G(x, y)| � 4;

(3) every chord (if any) in the cycleCn induced bypG(x, y) ∪ p′
G(x, y) is incident tou.

Recalling thatIG(x, y) denotes the set containing all the nodes (exceptx andy) that
belong to a shortest path fromx to y, let M = IG(x, y). Moreover, ifdG−M(x, y) = 3,
let X = IG−M(x, y) ∩ N(x), andY = IG−M(x, y) ∩ N(y). If pathp′

G(x, y) exists, then it
must be one of the following paths:

P1: an induced path fromx to y not containing neither nodes ofX nor nodes ofY ;
P2: an induced path fromx to y not containing nodes ofX, and containing one node ofY ;
P3: an induced path fromx to y containing one node inX, and no node ofY ;
P4: an induced path fromx to y containing one node ofX and one node ofY .
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Fig. 4. P1,P2,P3 andP4 are the four kinds of induced paths fromx to y that contribute to form a cycleCn,
n � 6, with cd(Cn) � 1.

In Fig. 4 these four paths correspond to the path throughx ′′′ andy ′′′; the path throughx ′′
and one node inY ; the path through one node inX andy ′′; and the path throughx ′, z, and
y ′, respectively.

ProcedureTest (Fig. 5) analyzes every pair of nodes{x, y} having distance 2 inG,
and test whether an induced path of typePi , 1� i � 4, betweenx andy exists inG. It is
easy to see that ProcedureTest is correct. It remains to be shown that the procedure
in time polynomial in the size of the input graphG.

All the pairs of nodes that are at distance 2 inG can be computed in O(n2) time at
step 1. Each one of steps 3, 9, and 10 can be computed in O(m) time, wherem is the
number of edges inG; each one of the steps 11, 14, and 18 can be computed in O(m) time.
Cycle at step 17 can be performed at mostn2 times. Hence, the total time to perform t
ProcedureTest is O(n4m) time. �
Theorem 6.2. For any fixed integeri � 1, the recognition problem for the classBID(2 −
1/i) can be solved in polynomial time.

Proof. For i = 1 the problem can be solved in linear time[1,17]. By Theorem 4.2, a brute-
force, rather naive algorithm for solving the recognition problem for the class BID(2 −
1/i), i > 1, is: test ifG contains, as induced subgraph, a cycleCn with n � 6 andcd(Cn) �
1, or a cycleC3i+2 with chord distance equal toi. According to Proof ofLemma 6.1, this
means that a graphG belongs to BID(2− 1/i) if and only if ProcedureTest returns false
if applied toG, and does not exist a cycleC3i+2 in G such thatcd(C3i+2) = i.

To test the existence of a cycleC3i+2 in G such thatcd(C3i+2) = i we can check
whether any subset of 3i + 2 nodes ofG forms a cycle with chord distance equal toi.
This test can be implemented in polynomial time since the number of subsets of
with 3i + 2 elements is bounded byn3i+2, wheren is the number of nodes inG. �

In what follows we show that the strategy used to proveTheorem 6.2cannot be applied
to find polynomial solutions to the recognition problem for class BID(k), for each intege
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ph
procedure Test;
– input: a connected graphG = (V ,E).
– output: true if and only if there existsCn, n � 6, in G such thatcd(Cn) � 1.

1. for each (x, y) ∈ G such thatdG(x,y) = 2
2. begin
3. computeM = IG(x,y)

4. if x andy connected inG − M

5. then begin
6. if dG−M(x,y) > 3
7. then return(true) {there existsP1; X andY are empty}
8. else begin {both X andY are not empty}
9. computeX = IG−M(x,y) ∩ N(x)

10. computeY = IG−M(x,y) ∩ N(y)

11. if x,y are connected inG − (M ∪ X)

12. then return(true) {there existsP1 or P2}
13. else {both P1 andP2 do not exist}
14. if x,y are connected inG − (M ∪ Y)

15. then return(true) {there existsP3}
16. else { P1, P2, andP3 do not exist}
17. for each pair (x′, y′) such thatx′ ∈ X, y′ ∈ Y , (x′, y′) /∈ E

18. if x′, y′ are connected in the subgraph
G − (M ∪ (X \ {x′}) ∪ (Y \ {y′}))

19. then return(true) {there existsP4}
20. end
21. end
22. end
23. return(false)

Fig. 5. Testing the existence of a cycleCn, n � 6, with cd(Cn) � 1.

k � 2. In particular, we show that it is not possible to characterize BID(k) by listing all its
forbidden induced subgraphs, as inTheorem 4.2.

Theorem 6.3. For each integersk � 2 andi � 2, there exists a minimal forbidden subgra
for the classBID(k), which is a cycle with chord distance equal toi.

Proof. Let k � 2 and i � 2 be two integers. We defineG = G(n1, n2, . . . , ni) where
n1 = 2k + 2, ni = 2k + 2, andnj = k + 3 for each 2� j � i − 1. By definition of graph
G(n1, n2, . . . , ni), it easily follows thatG is a cycle with chord distance equal toi. We
now prove thatG /∈ BID(k), while each proper induced subgraph ofG belongs to BID(k).

In what follows we use facts ofLemma 5.4. From Fact 1 it follows that

sG(x0, xi+1) = 2(2k + 2) + (i − 2)(k + 3) − 3i + 1

i + 1
= k + k − 1

i + 1

and this implies thatG /∈ BID(k).
Let G′ (G′′, respectively) be the induced subgraph ofG isomorphic to G(n2,

n3, . . . , ni−1) (G(n2, . . . , ni), respectively). By Fact 5, each induced subgraph ofG′ has
stretch number smaller or equal tos(G′), and by Fact 4,s(G′′) � s(G′). Then,G′′ is the
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proper induced subgraph ofG having the maximum stretch number, and
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ntation
s(G′′) = sG(x1, xi+1) = (2k + 2) + (i − 2)(k + 3) − 3(i − 1) + 1

i
= k.

This proves that each proper induced subgraph ofG belongs to BID(k). �

7. Conclusions

In this paper we provide new results about graph classes that represent a param
tension of the class of distance-hereditary graphs. In any graphG belonging to the generi
new class BID(k), the distance between every two connected nodes in every induce
graph ofG is at mostk times their distance inG. The smallestk such thatG ∈ BID(k) is
called stretch number ofG.

The main results of the paper can be summarized as follows. Any rational numberk � 2
is an admissible stretch number, that is, there exists a graph having stretch numberk. Sur-
prisingly, the only admissible stretch numbers smaller then 2 arek = 2 − 1/i, for every
integeri � 1. In all cases, constructive proofs for the existence of a graph with a
missible stretch number are given. For each class BID(2 − 1/i), a characterization base
on forbidden subgraphs is provided. Such a characterization eventually leads to a
nomially time recognition algorithm for the class BID(2 − 1/i), for every integeri � 2.
The running time of the algorithm is bounded by O(n3i+2), when it is used for the clas
BID(2− 1/i).

Many problems are left open. First of all, notice that the algorithm provided in the p
is only of theoretical value. Even for the class BID(3/2) (which is the closest one to th
distance-hereditary graphs) the running time is already O(n8). As a consequence, findin
an efficient recognition algorithm for BID(3/2) is an interesting problem. A related natu
question would be whether the recognition of BID(2 − 1/i) is fixed parameter tractab
(takingi as parameter).

Moreover, several algorithmic problems are solvable in polynomial time for dista
hereditary graphs[11]. Can some of these results be extended to BID(k), k > 1?
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