
Making SOA Work in a Healthcare Company 
 

Jay Blanton 
Health Net, Inc. 

12033 Foundation Place 
Rancho Cordova, CA 95670 

1-916-935-1223 
jay.blanton@healthnet.com 

 
 

Steve Leski 
Health Net, Inc. 

21271 Burbank Blvd 
Woodland Hills, CA 91367 

1-818-676-6531 
steve.leski@healthnet.com 

 
 

Brian Nicks 
Health Net, Inc. 

21271 Burbank Blvd 
Woodland Hills, CA 91367 

1-818-676-6463 
brian.nicks@healthnet.com 

 
 

Traian Tirzaman 
Health Net, Inc. 

21271 Burbank Blvd 
Woodland Hills, CA 91367 

1-818-676-5739 
traian.tirzaman@healthnet.com 

Abstract 
Making SOA work in a large and diverse healthcare company is not 
just about bridging the gap between business and IT. It is also about 
bridging the gap between the technologies of yesterday, today and 
tomorrow.  As Health Net has grown by acquiring other entities, we 
have acquired a landscape of diverse assets written with many 
languages, hosted on many platforms. These range from Java on 
WebLogic to .Net to RPG on iSeries to CICS on zSeries to COBOL 
on OpenVMS. Integrating these systems goes beyond simple 
business services. Successful integration ultimately requires 
elevating IT teams to the vision of a SOA enterprise as defined by 
an enterprise reference architecture. Educating our IT project teams 
in the fundamentals of SOA design and development has involved 
special approaches and a commitment to mentoring and continuous 
education in the enterprise. This discussion covers some of the 
challenges, successes, and lessons learned that we have encountered 
in bringing SOA to Health Net. 

Categories and Subject Descriptors 
D.2.0 [Software Engineering]: General – standards. 
D.2.4 [Software Engineering]: Software/Program Verification – 
programming by contract. 
D.2.11 [Software Engineering]: Software/Architectures – data 
abstraction, patterns. 
D.2.12 [Software Engineering]: Interoperability – interface 
definition languages. 
D.2.13 [Software Engineering]: Reusable Software Interoperability 
– domain engineering, reusable libraries, reuse models. 
K.6.1 [Management of Computing and Information Systems]: 
Project and People Management – training. 
K.6.3 [Management of Computing and Information Systems]: 
Software Management – software process, software selection. 

General Terms: Management, Documentation, Performance, 
Design, Standardization. 

Keywords: SOA, Services, Healthcare, Health Net, ESB, gSOAP. 

1. Introduction 
Over the years, Health Net has grown by acquiring other companies, 
each with its own technology stack, each different than the other. In 

some cases, this posed no problem, as some companies could be 
operated as separate divisions without the need for in-depth systems 
integration. For those companies that could not be operated at arm’s 
length, we had three choices: 

• Import the data into Health Net core systems and dispose 
of the acquired company’s systems. This was only 
possible where we had comparable core systems already 
deployed. 

• Replatform the systems on Health Net core technologies. 
This ensured easy maintenance and enhancement of the 
system, but was prohibitively expensive. 

• Integrate the systems, overcoming differences between 
the technologies, and trying to create a target hybrid 
platform that would provide a seamless user experience. 
Then, over time and as part of ongoing project work, 
merge the systems onto a single strategic technology base. 

As this third integrate-and-merge approach has offered us the most 
value for cost, it has become a key strategy. Over the years, our EAI 
efforts grew. We finally reached a point several years ago where we 
were at a crossroads. We had invested over time in a variety of 
internally developed and proprietary vendor EAI solutions, and 
were performing mostly point to point integrations between 
solutions running on VMS, iSeries, zSeries, Java and .NET. The 
lack of interoperability of these EAI solutions, and their long-term 
strategic value were a concern. Should we continue with what we 
had or migrate to standards-based EAI technologies? 

2. Early Steps 
The industry was abuzz with stories about SOA, how it was a new 
integration approach based on well-defined, independent, 
interoperable and reusable services. SOA offered us a standards-
based integration approach that we felt might address our need for a 
strategic approach to EAI, but we had concerns. Was SOA 
something new or just a re-skin of existing industry approaches? 
Why would SOA succeed where other EAI approaches failed or 
produced less-than-adequate results? 

As we learned more, we found more to like about SOA.  

• SOA had reached a point of technological maturity. There 
was an explosion of specifications being ratified by 
industry Standards Committees and vendors were 
aggressively supporting the emerging standards. 

 
Permission to make digital or hard copies of all or part of this work for personal or 
classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 
on the first page. To copy otherwise, or republish, to post on servers or to redistribute 
to lists, requires prior specific permission and/or a fee. 
OOPSLA 2009,   October 25-29, 2009, Orlando, Florida, USA. 
Copyright © 2009 ACM  978-1-60558-768-4/09/10…$10.00. 

589



• SOA offered a new paradigm for viewing our many 
systems that could be understood by both our business 
and IT teams. It offered new empowerment to our 
business teams by centralizing on a common vocabulary 
defining a service as a technology-agnostic embodiment 
of part of our business: a realization of a business 
requirement and a physical implementation of a solution 
to that requirement. We felt that this common vocabulary 
might help increase alignment between our business and 
IT teams. 

• SOA offered reusability and interoperability at the 
enterprise level, across our many different technologies 
and business lines. We were encouraged by the SOA 
potential to wrap, expose and reuse our existing 
capabilities in a standard way across the enterprise. 

• Orchestration of services would allow business agility, 
and faster time to market. 

We felt that what we had learned had enough merit to warrant 
investing in a SOA platform for Health Net, and adopting SOA as a 
strategic company initiative. 

At the time, research from leading technology analyst organizations 
indicated that the Enterprise Service Bus (ESB) was the leading 
entry point for implementing SOA. An ESB would provide a 
communication infrastructure, management of enterprise messages 
(validation, enhancement, transformation and routing), service 
orchestration, process management and security. It offered the 
advantages of SOA standards support, a relatively low cost and easy 
configuration.   

Implementation of an ESB became the main focal point of our first 
SOA implementation. We first researched and identified the leading 
vendors in the ESB space. We took into account our existing vendor 
partners and leveraged those relationships where possible. We 
ultimately arrived at a finalist list of three top-tier ESB vendors and 
invited them to do a proof-of-concept   implementation with us.  We 
established requirements for the proof-of-concept that would allow 
us to prove out standard ESB capabilities as well as differentiating 
capabilities we felt would address specific challenges we had within 
our enterprise. We wanted to demonstrate not only connectivity 
between some of our disparate heterogeneous platforms but also 
service orchestration, one of our key requirements. We provided 
each vendor with detailed specifications for each platform, our 
connectivity requirements and the scorecard that we would use as a 
success criteria. We then conducted the proofs of concept, ranking 
each vendor product using the scorecards. Finally, at the end of the 
proofs of concept, we employed the services of an independent 
consulting company to review our scope, approach and findings.  
Some of the recommendations based on their analysis were: 

• Our finalist list of ESB vendors was adequate. Our 
primary focus on connectivity was appropriate, given our 
heterogeneous systems environment. 

• The timely selection of an ESB was crucial.  Delaying the 
decision would be riskier than choosing any of the three 
top vendor products. Further proofs of concept would 
most likely not change the final outcome. 

• The first implementation would likely take some time, 
and we would have a steep learning curve getting into 

SOA, so early action should be preferred over further, 
deeper analysis. 

• Picking an ESB product was only the beginning of 
realizing SOA. Creating a SOA Center of Excellence to 
define the SOA roadmap and SOA best practices for the 
organization would be crucial. 

• Rather than take a “build it and they will come” approach 
to developing SOA services, we should start using the 
ESB with our existing healthcare projects, identifying and 
building enterprise services in support of those projects.  

Taking these recommendations into account, we bought our ESB 
finalist, a clear winner, and got underway. 

3. Building the SOA Foundation 
It was clear that the ESB implementation would be just a part of our 
SOA plan and that going forward, we needed an overall foundation 
to support SOA in the enterprise.    

3.1 The Role of the Chief Technology Office 
From the outset, we understood the need for a centralized enterprise 
approach to managing our SOA effort. We created a SOA team in 
the Chief Technology Office to help manage the effort, to help 
address the mountain of questions and issues that we knew would 
arise throughout the effort, and to act as a center of excellence for 
SOA. This enterprise-level support was important, as no project 
team would have the time, funding or breadth of experience to 
address all the pieces of a successful SOA program. This SOA team 
was charged with: 

• Rollout of the enterprise service bus, along with an initial 
set of core enterprise services. 

• Mentoring teams in estimation, design, development and 
testing of SOA solutions, and providing “Brown Bag” 
sessions for the IT department on SOA topics. 

• Documenting best-practices, procedures and FAQ’s into 
“cookbooks” and instructional videos that described how 
to expose and consume web services on the primary 
company technology platforms, and how to proxy them 
with the Enterprise Service Bus. 

• Acting as a sort of “high-tech help-desk” to troubleshoot 
issues teams would have with the new SOA 
infrastructure. 

Initially, this SOA team was barraged by requests for help and 
instruction, and they were stretched very thin. As common questions 
and help requests found their way into cookbooks and instructional 
videos, and as development teams began ramping up on SOA, the 
work became more manageable. 

Today, our SOA team continues to fulfill these roles, and sees 
between 3 and 10 SOA support requests per day from different parts 
of the IT organization.  

3.2 Designing the Reference Architecture 
We felt that a SOA reference architecture, tailored to our 
environment and approach, would be key to a cohesive and 
organized approach to designing services. We created a 
comprehensive reference architecture platform that covered: 

590



• Architectural principles, including data, security and 
service principles, as well as those principles that would 
be common to all of our service oriented architecture. 

• A SOA reference architecture tailored to Health Net, 
including logical, implementation and deployment views. 

• Data, integration and security architectures in support of 
SOA. 

• A set of design guidelines, including recommended 
approaches not only for common services, but for 
presentation services, high availability services, 
transaction management, messaging and stateful versus 
stateless design. 

This comprehensive set of principles, architecture and guidelines 
provided us with an overall picture, a radar-view we could use to 
see where future services would fit. 

3.3 SOA Governance 
SOA Governance is defined differently by different organizations, 
and we knew that we couldn’t be ambiguous in our approach. 
Likewise, we knew we couldn’t be heavy-handed, creating such a 
mountain of regulation and structure around SOA that no team in 
our company would attempt it. What we started with was comprised 
of: 

• An enterprise SOA standards committee to create, debate, 
vote on and ratify SOA standards for the enterprise. We 
invited members of each project team to become 
members in the committee, so that resulting standards 
would serve the enterprise. In addition to adopting and 
ratifying external standards such as industry WS 
standards, the committee created internal company 
standards to fill the void where industry standards left off. 

• Roles and processes for conducting architectural oversight 
over SOA project design, in order to make sure that these 
designs followed our reference architecture. 

• Implementation of a service registry to catalogue and 
describe the enterprise services that we would build and 
expose through our ESB. 

• A mentoring process for coaching teams in the use of 
SOA best practices. 

We have reviewed, revised and adapted this process over time. It is 
designed to be a living process, growing as necessary to 
accommodate the needs of the enterprise.  

4. Finding a First Application 
Finding candidates for a first application for SOA within Health Net 
was not difficult. We had many legacy platforms with functionality 
we were eager to expose as web services and choreograph into 
business processes.  

Rather than choose arbitrarily, though, we felt that the first 
application should be: 

• Simple to implement. 

• Provide solid ROI. 

• Involve several project development teams. 

• Be minimally invasive to business functionality. 

• Act as a vehicle for the deployment of an enterprise 
service bus.  

All of these criteria were important to us. A complex application 
involving a great deal of business interaction would take the focus 
away from the deployment of the SOA infrastructure, and we 
needed the focus to be on the infrastructure, so we could concentrate 
on getting it right and tuning it and creating the process around it for 
the many business services to follow. Without an ROI, we wouldn’t 
be able to justify or fund the project. We knew that by involving 
several project teams, we could effectively jump-start the SOA 
training process in the organization. The increased participation 
would increase organizational buy-in, too, and help drive adoption.   

Our perfect first candidate for SOA turned out to be the replacement 
of our legacy proprietary enterprise messaging platform. It was 
aging, and the manufacturer no longer supported it. We faced either 
replatforming its services on the latest proprietary vendor messaging 
product, or replatforming them as web services on our Enterprise 
Service Bus. The support fees for the proprietary platform were 
high, so we had a compelling business case. Several teams were 
involved in building, enhancing, maintaining and using these 
proprietary services, and they were keenly interested in a future path 
that was sustainable for the business logic contained in these 
services. This gave us enthusiastic partners with which to embark on 
our first SOA journey. 

We learned some interesting things along the way. Services on our 
legacy messaging platform were designed to spawn many 
simultaneous parallel message calls in order to complete a single 
transaction. This made for a very chatty message bus. There wasn’t 
a clean way to duplicate this paradigm on the ESB, so teams were 
forced to either write wrappers for this parallel activity or create 
other workarounds.  

Eventually, our ESB vendor released a version of the ESB that 
captured this parallel-call process in a new pattern implementation 
that offered us an avenue for easy replatforming of services that 
used this pattern. 

With the help of the participating project teams and centralized 
management and direction by the Chief Technology Office, Health 
Net achieved its goal of deploying an enterprise service bus, moving 
off of its legacy messaging platform and creating a compelling and 
useful SOA infrastructure for future use by the company. 

5. Case Study: SOA on OPENVMS 
With a solid SOA infrastructure in place, it was now time to SOA-
enable one of our core legacy systems. A fair portion of our 
business ran on HP OpenVMS clusters, but there wasn’t a lot of 
commercial or open source software available, and this made the 
role of an OpenVMS architect challenging.  

Most of our application portfolio is made up of custom-written 
COBOL, C and VAX BASIC programs. In order to take advantage 
of what we already had, we embarked on finding a software 
package that could leverage those assets into our SOA plans. When 
we began proofing SOA on OpenVMS, few technologies were 
available to integrate legacy software into a SOA. There was an 
extraordinarily expensive commercial product, and a free web 
services toolkit, called WSIT, from the hardware vendor. We 
decided to test WSIT. 

591



5.1 First Attempt using WSIT 
The Web Services Integration Toolkit (WSIT) is a freeware, OEM 
vendor supported SOAP development suite for OpenVMS. It is 
Java-based, and includes compilers and middleware to bridge Java 
to several legacy 3GLs including COBOL. Using Java, you can then 
build services into the desired application container. It had one 
shortcoming: it supported only the production of web services, not 
the consumption of web services. We piloted a proof of concept 
effort to get our first heartbeat out of an actual web service on the 
OpenVMS platform, and ultimately got an experimental service up 
and running. There was a lot of interest and support from HP in 
particular since we were one of their first customers to use WSIT.  

After successfully implementing a proof of concept service, it was 
time to apply what we learned to building and deploying a service 
into production, for use in our business. For this, we employed a 
thin-thread approach; meaning that we chose only one simple 
business function to implement. This way, we would minimize 
complexity as we built the application through all the architectural 
layers, from presentation to persistence. Keeping the scope small 
virtually guaranteed success and would give us a quick win to build 
on. We used WSIT to build the artifacts and soon finished the 
application. It was deployed to production without a hitch, and has 
been working reliably in production for over a year now. 

Unfortunately as we explored adding more services to the inventory, 
we discovered that WSIT wasn’t performing very well. It was slow 
to execute, and we couldn’t run many parallel instances without 
incurring high memory overhead. This hadn’t impacted our business 
customers so far, since our service saw only low-volume activity. 
However, when we began load testing other service candidates, it 
became apparent that we needed to resolve this problem before we 
could move any further.  

We did extensive troubleshooting with the vendor. We tried a 
multitude of application and system tuning approaches, and also 
tried seeing if an upgrade in operating system would help. None of 
these approaches worked. We were planning an eventual migration 
to faster hardware, but weren’t sure that this would solve the 
performance problems we were seeing, so we started looking for 
another solution.  

5.2 Second Attempt using gSOAP 
During an onsite training class for WSIT we attended, a question 
was posed as to how a service could be consumed from COBOL, 
since WSIT doesn’t support this. As luck would have it, the 
instructor had been working on an OpenVMS port of gSOAP, an 
open-source community solution that could be used to both produce 
and consume SOAP services.  

gSOAP was the ideal fit. It didn’t require any special middleware, 
as services could run on Apache server. The generated artifacts were 
native executables, written in COBOL, so there was no need for a 
JRE. We tested it, and found that performance was significantly 
better than the WSIT solution, by approximately an order of 
magnitude. So we decided to take our chances with this open-source 
port.  

5.3 Refining the Solution 
Once we settled on gSOAP, we then needed to integrate the tools 
and middleware into our existing development environment. For the 
most part, this was easy since gSOAP allowed web services to be 

built using the same 3GL languages we were already using. Our 
process for promoting applications from development to production 
only needed minor tweaks. The Apache server was easily 
configured and middleware was already in place. 

Our greatest challenge on this platform was getting our existing 
developers up to speed quickly with web service development. 
gSOAP is C/C++ centric. Most of our platform developers were 
COBOL programmers, and they did not have experience with OO, 
XML, WSDL, SOAP and service design. But they knew the 
business and existing solutions logic very well, and we wanted to 
take advantage of that. 

The OpenVMS calling standard allows for interoperability between 
all programming languages. So the code generated by gSOAP can 
interact with stubs and skeletons written in COBOL. To make things 
easier for our developers, we created an application framework that 
reduces exposure to the unfamiliar C-language constructs. Our 
framework consists of tools to simplify construction and debugging 
of services. It also contains type maps and definitions to specify the 
XML schema data types in a way that both the generated C and 
COBOL user code can consume. The most important feature is a set 
of conversion methods to take the C data types serialized from 
gSOAP and convert those to COBOL equivalents. COBOL has 
some unique data types that C does not have, such as “USAGE 
DISPLAY TRAILING”, and it doesn’t handle null terminated 
strings.  

The framework also had to impose some standards on the service 
contract design due to limitations in COBOL. C is case sensitive, 
but COBOL is not. When creating a web service, gSOAP generates 
code in C or C++ that calls a user-written function to perform a 
service operation. OpenVMS COBOL has a limitation that requires 
function names to be in uppercase. As a result, the service operation 
name also has to be specified in uppercase, in order for it to execute. 
Also, COBOL passes parameters by reference only. So the XML 
schema data types have to map to pointers to the equivalent C data 
types before they can be passed to a service operation. 

5.4 Supporting OpenVMS Developers 
In addition to the cookbooks we wrote for the OpenVMS platform, 
we also created a small set of sample services to illustrate concepts 
described in the cookbook. This gave developers a way to get 
started quickly by doing a quick cut, paste and modify. 

Since our audience for these instructional materials was comprised 
of COBOL programmers, we had to assume that they had little or no 
exposure to SOA concepts. We found the core concept of XML 
particularly important to teach, as most of our developers on this 
platform were unfamiliar with it.  

gSOAP only supports contract-first development, a significant plus 
as this is the preferred approach. But in the beginning, we found that 
several teams were designing service contracts that were nothing 
more than a mirror of the legacy interfaces they were supposed to 
abstract. This was due in large part to the learning curve required to 
effectively create enterprise-level SOA designs. It was easy for 
programmers to view SOA as just another point-to-point 
communications technology. Thinking in terms of the big picture, in 
terms of enterprise reuse and interoperability, was a new concept, 
requiring education, support and oversight. 

592



Over time, equipped with the gSOAP solution and enterprise 
mentoring and support, we saw our OpenVMS team members grow 
proficient with SOA, and this opened new potential for our 
company to leverage the substantial business functionality we had 
running on that platform. 

5.5 Next Steps 
As we still have a lone WSIT-based service in production, we plan 
to displace it with an equivalent, albeit speedier, gSOAP service in 
the near future. This replacement will have no impact on the 
service’s clients whatsoever, as the Enterprise Service Bus provides 
a valuable layer of indirection for the back-end business services. In 
this hassle-free service swap, we will see the fulfillment of another 
part of the promise of a well-designed service oriented architecture. 

6. SOA Challenges 
6.1 Teaching SOA to the Enterprise 
Learning how to teach SOA to an IT department with a wide array 
of heterogeneous skills and experience was a real challenge. The job 
was easiest with our Java teams. Most of our Java programmers had 
been doing web development for some time, and it was easy for 
them to understand the relationship between a Java method and a 
WSDL operation or between a Java Object and a schema 
complexType. They were already versed in basics such as XML, so 
there was little knowledge gap to bridge. 

It was much harder to teach our RPG or COBOL programmers SOA 
concepts because the sheer number of new and unfamiliar terms, 
concepts and tools made the learning curve very steep for them. We 
found that the fundamental key to bridging the knowledge gap lay 
in aligning vocabularies between their world and SOA. With a 
common understanding of terms and taxonomies, we would have a 
common language to act as a vehicle for all of the concepts they 
needed to learn.  

We could have approached the SOA education of our programmers 
with a “we lecture, you take notes” approach, but we had learned a 
lot about mentoring teams in technology subjects by then, and we 
had learned that education as a one-way street rarely works well. 
Our enterprise SOA mentors, who were mostly JEE and SOA 
experts, found that they needed to learn and become conversant with 
iSeries and OpenVMS concepts and terminology in order to teach 
SOA by analogy, in the language of their students. This interactive 
approach to teaching was crucial in early adoption and ramp-up of 
our development teams.  

Important too were the live demos we conducted during enterprise 
Brown Bag sessions, where we demonstrated web services on 
different platforms.  There was a real impact on development teams 
when they saw cross-platform message interchange, devoid of any 
platform binding. 

The one constant between all of our teams, regardless of 
technology, was their open enthusiasm for learning about SOA, and 
their eagerness to employ what they were learning in upcoming 
projects. This, combined with their experience and intellect, allowed 
them to learn and begin employing SOA rapidly.         

6.2 Design Challenges 
As services began to grow around the ESB, the enterprise began to 
seriously adopt SOA in their project designs. The low hanging fruit 
was comprised of proprietary services that wrapped point-to-point 

integrations, some based on end-of-life products. We migrated them 
from their point-to-point communication to web services hosted on 
the Enterprise Service Bus. As teams began to convert current point-
to-point applications into service-enabled endpoints, we went 
through many service design challenges. Our project teams tended 
to design services “code-first” rather than “contract-first”. Thomas 
Erl describes the service contracts produced by these code-first 
services as having high “implementation coupling” [1]. 

The result of this coupling is that even though we had simplified the 
integration of some of our more complex systems, we had created 
contracts that represented the underlying implementation details of 
the logic used within the source systems.  This caused service 
clients to develop their code against an implementation-based 
contract, which was impossible to orchestrate into meaningful 
business services.  For example, a CICS application might have a 
function called EMP77047 with fields IEX789, IEX777 and 
IED456. If a service contract was generated from the source code 
that represented the underlying program, the contract created would 
mean nothing to the enterprise – it would only hold meaning for the 
original author of that service contract. This antipattern was 
exacerbated by some of the web service code-to-service generation 
tools, which offered an exceptionally easy way to convert programs 
to web services, but preserved all function and variable naming in 
the process. As these tools would only perform code-first contract 
generation, teams’ hands were tied when it came to adopting 
contract-first best-practices. 

This is where the benefit of SOA design patterns and the Enterprise 
Service Bus came into play. The Enterprise Service Bus can proxy 
an underlying service that has a poor contract with an enterprise 
view of the operation and entity models defined within the WSDL 
of the underlying system. Thomas Erl refers to this as the “Legacy 
Wrapper” pattern [1]. Application of this pattern effectively 
remediated the coupling we were seeing in some of the services. 

6.3 Supporting SOA Development 
As our SOA infrastructure began to grow, there came a pressing 
need for tools, processes and standards to support the new enterprise 
development process. In the past, teams had often built code in local 
project-oriented silos, and promoted system enhancements into 
production with limited external dependencies. There were controls 
in place to make sure integration and regression testing took into 
account affected systems, and further controls in place to ensure that 
code met standards before it was allowed to run on production 
systems, but these controls were different for each platform, and it 
soon became clear that for these new enterprise-spanning services, 
we would need enterprise-spanning tools, processes and standards.  

One of the teams that contributed to the initial deployment of our 
ESB had a CVS server and a build server running Luntbuild, an 
open source continuous integration tool. These servers were used to 
store, stage and build new services into our pre-production and 
production environments, and at the outset, they worked very well 
for that purpose.  

As more and more teams started building services proxied through 
the bus, the need for support went through the roof. An 
administrator was required who could grant accounts, manage 
access, help teams set up build artifacts and monitor projects 
through to production. Much of this was performed by the team who 
owned the servers, and the overwhelming enterprise demand for 

593



service on these platforms quickly exceeded their ability to 
accommodate that demand.  

The servers too, were suffering. The Luntbuild server was so 
overtaxed that a full deploy of the company’s SOA infrastructure 
was taking it 12 hours to accomplish. Our production downtime 
windows were much shorter than this, so it took some real creativity 
to shoehorn deployments into each downtime window. 

The downtime windows were themselves a problem. These 
windows were specified by the team that owned the deployment 
infrastructure, and while they met the needs of that team, they did 
not meet the needs of the enterprise. Negotiating windows for 
enterprise deployments that met the needs of all teams became a 
rigorous and diplomatic balancing act. 

We learned from this that enterprise repositories, continuous-
integration infrastructure and processes were needed for enterprise 
software assets. That seems straightforward in print, but it was a 
learning experience for a company that had grown around different 
business and technology silos. We learned too that our software 
build infrastructure needed to be designed and built for 
performance, so that as our enterprise-level assets grew in number, 
we could still meet system downtime SLA’s. 

6.4 Monitoring for Success 
As more of our business functionality began running through the 
ESB, we learned that it was important to make sure that teams 
understood the cross-cutting concerns the bus could help them with. 
Since development teams were so used to monolithic systems 
development where there was no separation of concern, it was easy 
for them to assume that the only way to achieve security, 
monitoring, SLA alerts and the like was to build this functionality 
directly into the business services. 

As teams ran into their first performance-related issues with SOA 
applications, and the need to perform Business Activity Monitoring 
and alert operational support teams of SLA violations became 
critical, we saw that much of the cross-cutting functionality in the 
bus was not being utilized. Thankfully, this didn’t require a lot of 
rework to address, but we learned important lessons from this 
experience: 

• The specification of service SLAs needs to occur during 
the requirements process, in accordance with business 
needs and the business process being modeled.  

• Teams needed better instruction in how to effectively 
instrument their applications using the ESB. 

• We needed a process to provide closer oversight during 
the design process, to ensure that SLA requirements were 
addressed, and during the completion of projects, as 
services were promoted into our production systems, to 
ensure that the appropriate SLA’s were applied and 
enforced in the ESB. 

6.5 Process in Support of SOA 
Our design documents were conceived largely around our legacy 
systems, so there was more focus on data, data interchange and data 
design than business process modeling and contract design. These 
design documents were reviewed and approved by the Chief 
Technology Office prior to the development and deployment of 
applications, so if the documents did not address service design, this 

could lead to situations where improperly modeled services might 
go all the way through to production. We addressed this by 
rewriting our design document templates, so that service design 
would be fully documented.  

The human element was important. We sought and secured more 
touch points within the process where the Chief Technology Office 
could become engaged in projects, to give architectural guidance, 
review service designs and correct problems early before they 
propagated into our production systems. As projects came out of the 
requirements phase, mentors in our CTO department would help 
direct teams in the design of services based on elements of the 
reference architecture, using the processes defined in our SOA 
cookbooks.  This helped to ensure that services that were being 
designed were being implemented for the enterprise, rather than as 
point-to-point services, and it helped teach the reference architecture 
to our project teams, giving them an enterprise view of our business 
and showing them where their efforts intersected our business. This 
elevation of world-view from a single technology or business area to 
the full breadth of enterprise-level activity was an epiphany for 
many, and it helped align teams, technology platforms, projects and 
individual developers with enterprise goals.  

It was important that these changes to our SDLC and our process for 
putting new services on our ESB not be ad-hoc. We wanted to 
capture and refine our processes so that we could bring the 
principles of continuous improvement to our SOA approach. This 
was an achievable goal. Organizationally, we had reached a 
maturity level where we could define, model, reengineer and 
ultimately improve our business processes. This allowed us to 
address our SDLC and work-processes from the abstract to the 
concrete. We used IBM Rational Method Composer at an enterprise 
level to define the processes by which we performed work at every 
level of our IT organization. This allowed us to define the exact 
processes for establishing services on the Enterprise Service Bus, 
identify all of the required artifacts that were to be produced, and 
then connect these SOA processes into the overall SDLC processes. 
By doing this, we had a process picture we could refine and improve 
over time. 

6.6 Challenges Varied by Platform 
The easiest part of our SOA initiative was defining and 
communicating our SOA vision for the enterprise. The hard part 
was making it actually physically happen.  

Many vendors claimed to participate in the SOA initiative and 
embrace SOA standards, but when it came to actually developing 
and deploying SOA artifacts, we saw many products fall flat. We 
had to learn to tell the sound products from the marketing as we 
navigated the SOA landscape. It became very evident along the way 
that there was no substitute for test-driving products using use cases 
pertinent to our business.  

Even though we were well versed in Java design and development 
as a company, and even though Java lends itself well to creating 
web services, the very simplicity of the process made it easy to 
implement antipatterns. In the common case, where we were 
exposing existing code as web services, a proper contract-first 
approach entailed refactoring code in support of the contract, adding 
substantial cost to the web service implementation. Developers 
found it easier to take tools like Java2WSDL, bundled with Apache 
Axis, and generate a web service directly from the Java code, 
without regard to how the object model should relate to the schema 

594



representation (such as whether a field is required or nillable). This 
code-first approach to web service development was an easy trap to 
fall into.  

While support for WS standards was excellent on the Java platform, 
support for these standards was spotty on our legacy platforms. This 
led to difficulty in implementing some standards across the 
enterprise. While implementing SAML security as part of the WS-
Security standard, we found that the libraries we were using to 
expose services on OpenVMS did not support SAML. On our 
iSeries systems, we had a different problem - they used RACF 
tokens instead of SAML tokens, driving the need for token 
mediation between platforms.  

Different, too, were the pre-production environments available for 
our various technology platforms. We had five well-defined 
environments with discrete IP addresses for our ESB and our Java 
artifacts: Development, QA, User Acceptance Testing, Staging and 
Production. These were the only platforms with as many discrete 
environments, however. Some of our systems had as few as three 
environments, and so it was difficult to coordinate environmental 
moves for distributed enterprise SOA projects, because there was 
not a one to one mapping between the promotion stage and the 
environments. What made this exceptionally difficult is that some 
legacy environments had only one web server servicing all pre-
production environments, which each resided in different directories 
on a single server. Each service in each environment needed its own 
WSDL, and the opportunities for error, particularly during 
automated service generation, were very high.  

7. Lessons Learned 
As no project is successful unless you learn something from it, we 
captured “lessons-learned” after our first SOA initiative to assess 
what went right, what went wrong, and what next steps made sense 
based on what we had learned.  

One of the big things we’d learned is that our reference architecture 
was a fine high-level model, capturing our long-term vision of the 
architecture as a whole, but there was little connective tissue defined 
to take that model down to the more physical and practical 
cookbook and service level. Our developers didn’t see why we or 
they should care about the WSDLs they generated, or why the 
schema structure should represent domain models. We had left them 

with a vision but without the information needed to translate that 
vision into action. Thankfully, the ongoing mentoring we were 
providing did communicate much of that information, but it was 
clear that we needed to extend our reference architecture down to 
the trenches in order to properly align our SOA development with 
our SOA vision.  

Moreover, by creating that lower-level model in support of the 
reference architecture, we could create service design standards that 
supported the reference architecture. This would assist the 
governance process by giving service architects the ability to guide 
teams in the correct design of services that supported the reference 
architecture. 

We learned, too, that it was unreasonable to expect the end state 
reference architecture to be represented in the first phase of the 
development on the bus. It made sense for us to adopt a proven SOA 
maturity model or create our own maturity model.  Like the 
Capability Maturity Model Integration, a SOA maturity model 
would help to establish a phased approach to the progression of 
SOA within our enterprise.  As our reference architecture defined 
our vision for a SOA enterprise, a SOA maturity model could help 
define how we would get there, and how we would know that we 
were successful at each phase of maturity. This roadmap of small 
achievable goals would help us better understand the goals of our 
SOA and the path to achieving those goals. 

Finally, we learned that SOA is a journey, not a destination. SOA 
cannot be achieved at one specific point in time. It is an evolution of 
development, design, and process.   Our reference architecture, 
governance model, development architecture, and other driving 
forces behind our SOA initiative were part of an iterative process of 
definition and clarity, involving the incorporation of lessons learned 
from the past to better shape future phases. By refining our craft 
based on what we were learning, we could streamline the 
application of best practices, simplify and reduce the cost of our 
development process, and begin to see the orchestration and reuse of 
business processes that are the hallmark of a successful enterprise 
SOA.  

8. Reference 
[1] Erl, T. 2009. SOA Design Patterns. 1st. Prentice Hall PTR, 

Upper Saddle River, NJ, 441. 
 

595



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2001
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


