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Abstract

We present a set-oriented graph-based framework for continuous-time optimal transport over non-
linear dynamical systems. Our approach allows us to recover provably optimal control laws for steering
a given initial distribution in phase space to a final distribution in prescribed finite time for the case
of nonlinear control-affine systems. The action of the controlled vector fields is approximated by a
continuous-time flow on a graph obtained by discretizing the phase space. The edge weights of this
graph are obtained by computing infinitesimal generators of the Perron-Frobenius operator of the con-
trol vector fields. The problem is reduced to a modified Monge-Kantorovich optimal transport on this
graph, motivated by the Brenier-Benamou fluid dynamics formulation. The well-posedness of the optimal
transport problem on graph is related to controllability of the underlying dynamical system. The result-
ing convex problem is solved via state-of-the-art solvers to global optimality. Using our computational
framework, we study optimal transport in dynamical systems arising in chaotic fluid dynamics and non-
holonomic vehicle dynamics. The solutions to the optimal transport problem elucidate the role played by
invariant manifolds, lobe-dynamics and almost-invariant sets in efficient transport of distributions. Our
work connects set-oriented operator-theoretic methods in dynamical systems with optimal mass trans-
portation theory, and also opens up new directions in design of efficient feedback control strategies for
nonlinear multi-agent and swarm systems operating in nonlinear ambient flow fields.

1 Introduction

Understanding, computing and controlling phase space transport is of utmost importance in the study of
nonlinear dynamical systems. For computation of phase space transport in dynamical systems, the available
techniques can be divided into roughly three classes: geometric, topological and statistical (or operator
theoretic) methods.

The geometric methods, originating in Poincaré’s [1] work in celestial mechanics, aim at extracting
structures in phase space that organize transport. In recent years, the focus in this field has been on
extracting the Lagrangian coherent structures in autonomous and non-autonomous systems, which are often
the stable and unstable manifolds [2] of fixed points or periodic orbits, or their time-dependent analogues
[3, 4]. Related techniques based on lobe-dynamics [2] allow for quantifying transport between different weakly
mixing regions in the phase space. Application to low-dimensional systems arising in fluid kinematics [5, 6],
celestial mechanics [7, 8], and plasma physics [9] have been developed over the years. Once these Lagrangian
structures have been identified, intelligent control strategies can be formulated to obtain efficient phase space
transport between the desired regions in the phase space; see Refs. [10, 7, 11, 12, 13, 14] for some recent
work in this area. Furthermore, methods for computing impulsive perturbations to differential equations for
purpose of optimal enhancement of mixing in phase space have also been developed recently [15, 16].
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The topological methods, based on the idea of ‘topological forcing’ [17], provide rigorous bounds and
sharp estimates of certain transport related quantities. For example, such methods have been applied in the
the study of passive scalar mixing in laminar fluid flows [18, 19]. Some topological optimal control problems
have also been studied [20].

Operator-theoretic statistical techniques [21] are based on lifting the evolution from the state space to the
space of measures, in case of the Perron-Frobenius (or transfer) operator, and to the space of observables, in
case of the Koopman operator. In both cases, the resulting (uncontrolled) dynamical system is linear, albeit
in infinite dimensions. The linearity allows for immediate application of techniques from linear algebra, and
the toolbox of linear dynamical systems. Numerical methods based on operator theory have been developed,
and applied to several problems of contemporary interest [22, 23, 24, 25, 26]. Recent work has also shown
that combining the statistical methods with geometric [27, 28, 29], or topological methods [30, 31] can give
further qualitative and quantitative information about phase space transport.

The set-oriented numerical methods for computing transfer operators [23, 25] are especially promising.
Using efficient phase space discretization techniques, these methods enable discovery of ‘coherent sets’ in
autonomous [32] and non-autonomous [33] dynamical systems. Furthermore, the setting of set-oriented
methods is especially well-suited for development of rigorous methods for controlling phase space transport
in various settings. For example, optimal control algorithms using set-oriented methods have been developed
[34, 35, 36].

In this paper, we are interested in the problem of continuous-time ‘optimal transport’ [37] of phase space
measure under controlled nonlinear dynamics. This problem involves optimally steering an initial measure
on a phase space X, to a final measure in given finite time. Specifically, we consider nonlinear control-affine
systems of the form,

ẋ(t) = g0(x(t), t) +

n∑
i=1

ui(t)gi(x(t)). (1)

The aim of the problem is to compute controls u such that the cost of transporting a measure µt0 to µtf
over the time-horizon [t0, tf ] is minimized. This cost is given by the integral over phase-space and time,

C =

∫
X

∫ tf

t0

|u(x, t)|2dt dµ(x). (2)

This problem arises naturally in the realm of nonlinear control systems, and is especially relevant in sys-
tems which exhibit sensitivity to initial conditions. In most applications, there is uncertainty associated with
initial and final states. Hence, the initial and final states can only be specified as probability distributions.
In this case, the measures involved are probability measures, and hence, the optimal transport cost C is the
expectation of control cost over all possible initial and final states.

Another motivation for studying this problem comes from the field of multi-agent systems or swarm
control. The problem of path planning and control of a swarm of homogenous agents in an ambient nonlinear
flow field can be formulated as optimal transport problem under nonlinear dynamics. For instance, the control
of magnetic particles in blood stream [38, 39, 40], robotic bees in air [41, 42], and swarms of autonomous
underwater vehicles (AUVs) in the ocean [43] can all be studied in this setting. Here, one represents the
distribution of swarms in phase space by measures.

Related work was pursued in Refs. [44, 45, 46], where an optimal control framework for asymptotic
feedback stabilization of arbitrary initial measure to an attractor is presented. This framework is based
on computing a (control) ‘Lyapunov measure’, which is a measure-theoretic analogue of control Lyapunov
function. Also relevant is the work in the area of occupation measures, see Ref. [47]. In Ref. [48], the problem
of computing optimal local perturbations for enhancing mixing is addressed using statistical methods. A
set-oriented transfer operator approach is used to propagate the dynamics, and perturbations are modeled
via a stochastic kernel. The resulting convex optimization problem is then solved for perturbations that lead
to minimum difference in L2 norm from the desired density at each time step. In Ref. [49], infinitesimal
generators are employed to solve the same problem in the continuous-time setting.
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The field of optimal mass transportation [37] is concerned with optimal mapping of measures in different
settings, and has deep connections with phase space transport in dynamical systems [50, 51, 52]. Hence, it
forms a natural setting in which to study the problem of interest. The problem of optimal transport in linear
dynamical systems has been studied recently [53, 54, 55], resulting in several theoretical and computational
advances. In previous related work of the authors [56], a computational method to obtain optimal discrete-
time perturbations which result in desired measure transport under nonlinear dynamics in finite time was
presented. The discrete-time perturbations were obtained by solving a Monge-Kantorovich optimal transport
problem on graphs in pseudo-time. The perturbations were modeled as instantaneous, and full controllability
was assumed.

In the current work, we develop a set-oriented graph-based framework for continuous-time optimal trans-
port over nonlinear dynamical systems of the form given in Eq. (1). Since set-oriented methods have been
very successful in the study of complex dynamical systems, it is desirable that the optimal transport be
computed in such a setting. The action of the controlled vector fields is approximated by a continuous-time
flow on a graph obtained by discretizing the phase space. The edge weights of this graph are obtained by
computing the infinitesimal generator of the Perron-Frobenius operator of the control vector fields. The
problem is reduced to a modified Monge-Kantorovich optimal transport on this graph. The well-posedness
of the optimal transport problem on graph is related to controllability of the underlying dynamical system.
Application of this method to systems related to chaotic fluid dynamics and non-holonomic vehicle dynamics
elucidates further the role that invariant manifolds, lobe-dynamics and almost-invariants sets play in efficient
transport.

The rest of the paper is organized as follows. In Section 2, we give briefly review the theory of optimal mass
transport, and a continuous time approach to solving the canonical optimal transport problem. Previous
work on optimal transport problem with cost coming from control with linear and nonlinear dynamics is
discussed next. An overview of set-oriented approach in dynamical systems via transfer operators and
infinitesimal generators is given in Section 3. We also discuss the concept of advection on graphs, and graph-
based formulation of the canonical optimal transport problem. In Section 4, we develop our framework of
set-oriented graph-based optimal transport which generalizes this canonical formulation to nonlinear systems
with control-affine structure. In Section 5, we present the application of our method to optimal transport
in three problems: Grushin plane, time-periodic double-gyre system, and the unicycle model. Finally, in
Section 6, we provide conclusions and discuss some avenues of future research.

2 Review of Optimal Transport in Dynamical Systems

2.1 Monge-Kantorovich problem

The Monge-Kantorovich optimal transport (OT) problem [37] is concerned with mapping of an initial measure
µ0 on a space X to a final measure µ1 on a space Y . In the original formulation, it involves solving for a
measurable transport map T : X → Y , which pushes forward µ0 to µ1 in an optimal manner. The cost of
transport per unit mass is prescribed by a function c(x, T (x)). Hence, the optimization problem is

min
T

∫
c(x, T (x))dµ0(x) (3)

s.t. T#µ0 = µ1

The pushforward constraint in this problem makes the optimization problem highly nonlinear and non-
convex. The existence and uniqueness of optimal solutions for various settings has been major topic of
research. In a ‘relaxed’ version of this problem, due to Kantorovich, the optimization problem is to obtain
an optimal joint distribution π(X × Y ) on the product space X × Y , where the marginal of π on X is µ0

and on Y is µ1. We denote by
∏

(µ0, µ1) the set of all measures on product space with the marginals µ0 and
µ1 on X and Y respectively. Hence, the relaxed problem is

min
π(X×Y )∈

∏
(µ0,µ1)

∫
c(x, y)dπ(x, y) (4)
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For the case of quadratic costs, i.e., c(x, y) = ‖x− y‖2, the support of the optimal distribution π(X ×Y )
is the graph of the optimal map T obtained from the solution of problem 3. The optimal cost obtained as
solution of this problem is called the 2−Wasserstein distance, and we denote it by W2(µ0, µ1).

2.2 Benamou-Brenier fluid dynamics approach

A major conceptual and computational breakthrough in the optimal transport theory was the development
of fluid dynamical interpretation of OT problem by Brenier-Benamou [57]. This work provides the first
connection of OT with dynamical systems, and evolution equations in general. The OT problem described
in the previous section is concerned with only the initial and final measures. The optimal map T is known to
be of the form T (x) = ∇ψ(x) for some convex function ψ(x). Then, the pushforward constraint can written
as,

det(D2ψ(x))µ1(∇ψ(x)) = µ0(x) (5)

Numerically solving the optimization problem with nonlinear constraint given in Eq. (5) is difficult. The
fluid dynamical approach, first developed in Ref. [57], provides a more tractable way to the solution of this
problem. In this approach, the optimization problem is formulated in terms of an advection field u(x, t),
and initial and final densities (ρ0(x), ρ1(x)) of a passive scalar. The core idea is to obtain the optimal map
T as a result of advection over a ‘time’ period (t0, tf ) by an optimal advection field u(x, t). It can be shown
that the optimization problem given by Eq. (3) (with X = Y = Rn) with quadratic cost is equivalent to the
following problem:

W2(µ0, µ1) = min
u(x,t),ρ(x,t)

tf

∫
Rn

∫ tf

t0

ρ(x, t)|u(x, t)|2dtdx (6)

s.t.
∂ρ(x, t)

∂t
+∇.(ρ(x, t)u(x, t)) = 0 (7)

ρ(x, t0) = ρ0(x), ρ(x, tf ) = ρ1(x)

This aim of this problem can be understood as minimizing the time integral of the total kinetic energy
of the ‘fluid’ being advected with velocity field u(x, t), subjected to initial and final densities of the passive
scalar. The motion of a passive scalar is governed by the ordinary differential equation

ẋ(t) = u(x, t). (8)

Furthermore, the optimal advection field is a potential flow, i.e., u(x, t) = ∇φ(x, t) for some potential field
φ(x, t). The Euler-Lagrange equations for this optimization problem can be written as

∂φ

∂t
+
|∇φ|2

2
= 0, (9)

which are pressure-less version of Euler equations.

By a change of variables from (ρ, u) to (ρ,m
∆
= ρu), the optimization problem in Eq.(17) can be put into

a form where its convexity can be proved easily. The transformed optimization problem is

min
ρ(x,t)≥0,m(x,t)

tf

∫
Rn

∫ tf

t0

|m(x, t)|2

ρ(x, t)
dtdx (10)

s.t.
∂ρ(x, t)

∂t
+∇.(m(x, t)) = 0

ρ(x, t0) = ρ0(x), ρ(x, tf ) = ρ1(x)
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In the above equations, the constraints are now linear in the problem variables (ρ,m). The term inside

the integral in the cost function, |m(x,t)|2
ρ(x,t) , is of the ‘quadratic-over-linear’ form, and can be shown to be

convex. Hence, by a transforming the transport problem into continuous time, and by using a change of
variables, the non-convex problem in Eq. (3) has been converted into a convex problem in Eq. (10).

2.3 Optimal transport over dynamical systems

Next, we discuss the generalization of the optimal transport problem on continuous spaces to general non-
linear controlled dynamical systems, following Ref. [58, 54]. Consider the following system,

ẋ(t) = f(x(t), u(t)). (11)

The problem of optimal transport for this system can posed as finding optimal control which steers an
initial scalar density to a final density, where the scalar transport occurs due to combination of an ambient
flow field f(x(t), 0), and control u(t). This problem can be posed by replacing the cost function c with a
Lagrangian representing the optimal control cost i.e.,

c(x1, x2) = inf
U

∫ tf

t0

L(t, x(t), u(t))dt, (12)

x(t0) = x1, x(t1) = x2 (13)

under the constraint given by evolution Eq. (11), and where U is some set of allowable controls.
While the existence and regularity of the corresponding optimal transport problem has been studied

extensively in recent literature [58, 50, 59], computation of transport maps for general nonlinear systems is
a difficult problem. In case when the underlying optimal control problem can be solved analytically, the
corresponding transport problem can also be tackled.

For the special case of linear dynamical systems with quadratic cost, mirroring the optimal control case,
further analytical development and computational simplification has been made [53, 54]. As described in
[54], consider the following setup:

c(x1, x2) = inf
U

∫ 1

0

1

2
‖u‖2dt, (14)

ẋ(t) = A(t)x(t) +B(t)u(t), (15)

x(0) = x1, x(1) = x2. (16)

The generalization of Benamou-Brenier approach to the corresponding optimal transport problem can
be seen to be the following:

min
u(x,t),ρ(x,t)

tf

∫
Rn

∫ tf

t0

ρ(x, t)|u(x, t)|2dtdx, (17)

s.t.
∂ρ(x, t)

∂t
+∇.((A(t)x(t) +B(t)u(x, t))ρ(x, t)) = 0,

ρ(x, t0) = ρ0(x), ρ(x, tf ) = ρ1(x).

The linearity of the dynamics allows for simplification of this formulation in the following two ways:

• First, the point-to-point optimal control cost for the system in Eq. (14-16), and the corresponding
trajectory, can be explicitly written down in terms of its controllability Gramian. Given the state
transition matrix Φ, the least energy needed to move the system state from x to y in unit time is

min

∫ 1

0

1

2
‖u(t)‖2dt =

1

2
(y − Φ10x)′M−1

10 (y − Φ10x), (18)

where M10 =
∫ 1

0
Φ(1, t)B(t)B(t)′Φ(1, t)′dt is the controllability Gramian.
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• Second, since the dynamics are linear, one can find a linear transformation C in which the problem
can be reduced to the original Monge-Kantorovich form. This transformation is the linear map :

C : (x, y)→ (x̂, ŷ) =

[
M
− 1

2
10 Φ10x

M
− 1

2
10 y

]
(19)

The initial point x is first mapped to its final location under the natural (i.e. u = 0) dynamics given
by ẋ(t) = A(t)x(t), using the state transition matrix Φ10. This is followed by multiplication of the

resulting state x̃ , Φ10x, and y by M
− 1

2
10 .

As a result of above properties, the optimal transport problem for linear quadratic case can been trans-
formed into two coupled but well understood problems. The first problem involves computing point-to-point
optimal control cost in the linear-quadratic setting, and the second problem involves solving the classical
Monge-Kantorovich problem in the transformed coordinates, where the transformation is linear in original
state variables, and captures the dynamics of the system. These simplifications even enable analytical solu-
tions to the optimal transport problem, for case of Gaussian initial and final measures [54]. We note that the
optimal transport problem given by Eq. (17) can also be interpreted as the problem of optimally steering a
dynamical system from a probabilistic initial state to a probabilistic final state. Note that the dynamics of
the system are still taken to be deterministic; however see Ref. [55] for connections with stochastic dynamical
systems.

3 Set-oriented Methods and Optimal Transport on Graphs

In contrast to the linear-quadratic case considered in the previous section, an explicit linear change of
variables in phase space to convert the optimal transport problem to the Monge-Kantorovich form is not
available for general nonlinear dynamical systems Eq. (11), or even for systems of the form given in Eq.
(1). Hence, we lift our dynamical system into the space of measures and work with transfer operators and
their generators. These objects are approximated via set-oriented methods. The corresponding advection
equations can be formulated on a graph obtained by the set-oriented discretization method. We discuss
these objects next.

3.1 Transfer Operator and Infinitesimal Generator

Consider the flow-map φt0+T
t0 : X → X on a d-dimensional phase space X. This map may be obtained as a

time-T map of the flow of a possibly time-dependent dynamical system,

ẋ = f(x, t). (20)

The corresponding Perron-Frobenius transfer operator [21] P t0+T
t0 is a linear operator which pushes for-

ward measures in phase space according to the dynamics of the trajectories under φt0+T
t0 . Let B(X) denote

σ−algebra of Borel sets in X. Then, for any measure µ,

P t0+T
t0 µ(A) = µ((φt0+T

t0 )−1(A)) ∀A ∈ B(X). (21)

The transfer operator lifts the evolution of the dynamical systems from phase space X to the space of
measures M(X). Numerical approximation of P , denoted by P̂ , may be viewed as a transition matrix
of an N -state Markov chain [25]. For computation, we partition the phase space volume of interest into
N d−dimensional connected, positive volume subsets, B1, B2, . . . , BN with piecewise smooth boundaries
∂Bi. Usually, these subsets are hyperrectangles. The matrix P̂ = {p̂ij} is numerically computed via the
Ulam-Galerkin method [60, 25], as follows

p̂ij =
m̄
(

(φt0+T
t0 )−1(Bi) ∩Bj

)
m̄(Bj)

, (22)
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where m̄ is the Lebesgue measure. The action of the transfer operator over a finite time T can also be
defined naturally on densities in the case of Lebesgue absolutely continuous measures. However, we are more
interested in capturing the continuous-time behavior of the dynamical system in Eq. (20) in the space of
densities. The continuity equation for system in Eq. (20), is given by

dµ

dt
= −∇ · (f(x, t)µ). (23)

For the numerical approach used in this paper we briefly consider the Eq. (23), in a operator theoretic
framework, as an abstract ordinary differential equation in the space of measures, formally. Eq. (23) can be
expressed as

µ̇(t) = A(t)µ ; µ(s) = µs ∈M(X), (24)

where A(t) : D(A(t) →M(X)), D(A(t)) ⊂M(X) and the solution, µ(t), of Eq. (24) can be expressed
using a two-parameter semigroup of operators (U(t, s)s,t∈R,t≥s as µ(t) = U(t, s)µs. The divergence operation
is to be understood in the sense of duality of M(X) with C(X) (assuming X is compact). Here C(X) refers
to the space of continuous functions on X. The Perron-Frobenius operator is related to this two-parameter
semigroup of operators as U(T, t0) = P t0+T

t0 for given parameters t0 and T . In general, guaranteeing the
existence of a strongly continuous two-parameter semigroup based on the time-dependent generator A(t) is
quite involved. See for example Refs. [61, 62]. In contrast, the theory is more well-developed for the case
when A(t) ≡ A, (the vector field f(x) is time independent). In this case, the solution, µ(t), can be expressed
by a one-parameter semigroup of bounded operators, (T (t))t≥0, as µ(t) = T (t − s)µs. Here, the generator
A and T (t) are related by the formula

Aµ = lim
h→0+

T (h)µ− µ
h

for each µ ∈ D(A). (25)

As in the case of the Perron-Frobenius operator, one can also consider the semigroup and it’s generator on
a space of densities (or equivalently on a space of measures absolutely continuous with respect to a reference
measure with additional regularity restrictions).

Bi Bj
nij

f

Figure 1: Computation of infinitesimal generator F . The entry Fij is proportional to flux across Bi ∩ Bj from Bi to Bj ,
due to vector field f .

Ulam’s method for approximating Perron-Frobenius operators using Markov matrices extends to numer-
ical approximations of semigroups corresponding to the continuity equation. Analogously, one approximates
the generator of the semigroup using transition rate matrices, which generate approximating semigroups on
a finite state space. We recall this method as shown in [63]. The operator A(t) is approximated by defining
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elements of time-varying transition rate matrix {Aij(t)}, which are computed as follows,

Aij(t) =


1

m̄(Bj)

∫
B̄i∩B̄j

max{f(x, t) · nij , 0} i 6= j,

−
∑
k 6=i

m̄(B̄k)

m̄(B̄i)
Aik(t) otherwise,

(26)

where nij is the unit normal vector pointing out of Bi into Bj if B̄i ∩ B̄j is a (d− 1) dimensional face, and
zero vector otherwise. See Fig. 1. Note that in [63], the authors also considered the perturbed version of

the operator, ∇ · (f(x, t)·) : −∇ · (f(x, t)·) + ε2

2 ∆. This was mainly to exploit the spectral properties of the
perturbed operator and the corresponding semigroup. However, in this work the perturbed operator does
not offer any visible advantages. Hence, we work with approximations of the operator, −∇· (f(x, t)·), alone.
Nevertheless, we note that the discretization will introduce some numerical diffusion.

3.2 Monge-Kantorovich Transport on graphs

Now consider a directed graph G = (V,E) on X, where the set of vertices V represent the subsets Bi, and
the set of directed edges E are obtained from the topology of X. For each pair of neighboring vertices, two
edges are constructed, one in each direction.

A continuous-time advection on such a graph can be described [64, 65] as,

d

dt
µ(t, v) =

∑
e=(w→v)

U(t, e)µ(t, w)−
∑

e=(v→w)

U(t, e)µ(t, v), (27)

where U(t, e) is the flow on the edge e. Here we use the notation e = (v → w) to represent the edge e
directed from a vertex v to w. The notion of optimal transport has been extended to such a continuous-time
discrete-space setting recently [66, 67]. Following [67], one can formulate a quadratic cost optimal transport
problem on G as follows. First, define an advective inner product between two flows U1, U2 as

〈U1, U2〉µ =
∑

e=(v→w)

(
µ(v)

µ(w)
.
µ(v) + µ(w)

2

)
U1(e)U2(e). (28)

Then the corresponding optimal transport distance between a set of measures (µ0, µ1) supported on V
can be written as

W̃N (µ0, µ1) = min
U(t,e)≥0,µ(t,v)≥0

∫ 1

0

‖U(t, .)‖µ(t,.)dt, (29)

such that Eq (27) holds, and

µ(0, v) = µ0(v), µ(1, v) = µ1(v) ∀v ∈ V.

Here ‖U(t, .)‖µ(t,.) ,
√
〈U,U〉

µ
. This approach is motivated by the previously discussed Benamou-Brenier

approach for optimal transport on continuous spaces, and results in the following advection based convex
optimization problem.

W̃N (µ0, µ1) = min
J(t,e)≥0,µ(t,v)≥0

∫ 1

0

∑
e=(v→w)

J(t, e)2

2

(
1

µ(t, v)
+

1

µ(t, w)

)
dt, (30)

µ(0, v) = µ0(v), µ(1, v) = µ1(v) ∀v ∈ V, (31)

d

dt
µ(t, .) = DTJ(t, .), (32)

where J(t, e) , µ(t, v)U(t, e) for e = (v → w), and D ∈ R|E|×|V | is the linear flow operator computing
µ(w) − µ(v) for each e = (v → w) ∈ E. The change of variables from U to J is analogous to the change
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of variables in Brenier-Benamou formulations, as discussed in Section 2.2. The convergence of W̃N to W2,
the 2-Wasserstein distance on a continuous phase space (a d-torus), as N →∞ is studied in Ref. [66]. The
convergence analysis is performed by constructing discrete measures over cubes, and discrete vector fields
by integration of flow over boundaries (called ‘momentum vector fields’). This process is analogous to the
above mentioned construction of discrete measures on V , and representation of flow by edge-based variable
J . While the aim of that paper is to show convergence of a different distance (denoted WN ) to W2, the
distance W̃N is used an intermediate measure. It is shown that for absolutely continuous measures, ∃δ > 0
s.t. for any N > 0, ε > 0,

1

c
√
d
WN (µ0, µ1) ≤W2(µ0, µ1) ≤ W̃N (µ0, µ1) ≤ (1 + z(δ,N))(WN (µ0, µ1) + ε), (33)

where z(δ,N) = o( δ
2

N ). Here we have abused notation by using (µ0, µ1) for measures in both continuous and

discrete spaces. The constant c is independent of discretization. The convergence of W̃N follows by a simple
sandwiching argument. We drop the subscript N in the rest of the paper.

4 Problem Setup and Computational Approach

Let M ⊂ Rd be an open bounded connected subset of an Euclidean space with piecewise smooth boundary.
For a collection of analytic time-invariant vector fields {gi}ni=1 and possibly time-varying vector field g0 on
M , consider the control affine system of the form

ẋ(t) = g0(x(t), t) +

n∑
i=1

u(t)gi(x(t))

x(0) = x0 (34)

Then given the densities ρ0 and ρ1 on M , the corresponding optimal transport problem of interest is the
following

min
u(x,t),ρ(x,t)

∫
Rn

∫ tf

t0

ρ(x, t)|ui(x, t)|2dtdx, (35)

s.t.
∂ρ(x, t)

∂t
+∇ · (ρ(x, t)g0(x, t)) +

n∑
i=1

∇ · (ρ(x, t)ui(x, t)gi(x)) = 0 x ∈M, (36)

~n · (f(x, t)ρ(x, t) +

n∑
i

ui(x, t)gi(x)ρ(x, t)) = 0 a.e. x ∈ ∂M,

ρ(x, 0) = ρ0(x), ρ(x, 1) = ρ1(x).

We adopt a (semi-)discretize and optimize approach to numerically solve the problem. We approximate
the optimal transport problem using a sequence of optimal transport problems on graphs. A key tool is to
approximate the (time-varying) generator of the semigroup corresponding to the Eq. (36) using generator
approximations on a finite state space as described in [63] and briefly discussed in Section 3.1. Hence,
we approximate solutions of optimal transport problems on an Euclidean space using solutions of optimal
transport problems on graphs. Towards this end, we partition M into m d-dimensional connected, positive
volume subsets Pm = {B1, B2..., Bm}. Additionally, we assume that the boundaries ∂Bi are piecewise
smooth. Then we can consider the optimal transport problem on a graph G = (V, E) where the the cardinality
of V is m and the connectivity of the graph is determined by the topology of M and the partition Pm. More
specifically, V = {1, 2.....m} and an element e = (v → w) ∈ E for v, w ∈ G and v 6= w if B̄v ∩ B̄w has non-zero
d − 1-dimensional measure. The graph G is strongly connected, i.e., for any two vertices, v0, vT ∈ V there
exists a directed path of n vertices, (v1, v2....vn) in V, such that (vi → vi+1) ∈ E for each i ∈ {1, 2....n− 1}.
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Moreover, this graph is also symmetric, that is, e = (v → w) ∈ E implies ē defined by ē = (w → v) is also in
E .

In order to apply the approximation procedure highlighted in [63] we express the continuity Eq. (36), as
a bilinear control system,

ẏ(t) = A0(t)y +

n∑
i=1

Ai(ûi(t)y(t)) (37)

where A0(t) = ∇ · (g0(x, t) · ) for each t ∈ [0, 1], ûi(t) = ui(·, t), y(t) = ρ(·, t), Ai = ∇ · (gi(x) · ). Note
that the right hand side of a bilinear system is traditionally expressed in the form A(t)+u(t)Bρ(t) in control
theory literature [68]. The form in Eq. (37) is equivalent for systems on finite-dimensional state spaces, but
not for general infinite dimensional bilinear systems if û(t) is not a scalar for each t ∈ [t0, tf ]. For example,
in the continuity equation, one can see that u(x, t)∇ · (ρ(x, t)) 6= ∇ · (u(x, t)ρ(x, t)) in general. Hence, the
form Eq. (37) is more appropriate for expressing the system in Eq. (36).

In section 3, it was discussed how generators of semigroups corresponding to the continuity equation can
be used to define a approximating semigroup on a graph generated by appropriately constructed transition
rate matrices. This method can be generalized to the controlled continuity equation, Eq. (36). A natural
extension is to consider approximations of the control operators Ai using corresponding transition rate
matrices, and analogously construct a controlled Markov chain on the space V. However, we note that
typically for a controlled Markov chain, the control parameters are constrained to be non-negative. Hence, a
direct approximation of Ai using transition rate matrices and constraining ûi(t) to be positive would negate
the possibility that one can flow both backward and forward along the control vector fields, which is critical
for controllability of the system. Hence, to account for this in the approximation procedure, we define a
bilinear control system equivalent to the one in Eq. (37), but with positivity constraints on the control:

ẏ(t) = A0(t)y +
∑

s∈{+,−}

n∑
i=1

Asi (ûsi (t)y(t)) ; ûsi (t) ≥ 0 (38)

where A+
i = −A−i = Ai for each i ∈ {1, 2....N}. As in Section 3, for each of the operators A0, Asi , we

construct the control operators on the graph, G, which are denoted by A0 : [0, T ]×E → R+ and Asi : E → R+.
A0 is the edge-based version of the generator constructed from the vector field g0(x, t) using the formula in
Eq. (26) . For Asi , the corresponding transition rates are defined as.

A+
i (e) = A+

i (v → w) =
1

m(Bw)

∫
B̄v∩B̄w

max{gi(x) · nvw, 0)dmd−1(x) (39)

A−i (e) = A−i (v → w) =
1

m(Bw)

∫
B̄v∩B̄w

max{−gi(x) · nvw, 0)dmd−1(x) (40)

where nvw is the unit normal vector pointing out of Bv into Bw at x.
Let P(V) be the space of probability densities on the finite state space, V. Then using the above parameter

definitions, we consider the following flows on the graph, G

d

dt
µ(t, v) =

∑
e=(w→v)

A0(t, e)µ(t, w)−
∑

e=(v→w)

A0(t, e)µ(t, v)

+
∑

s∈{+,−}

n∑
i=1

∑
e=(w→v)

Asi (e)U
s
i (t, e)µ(t, w)−

∑
s∈{+,−}

n∑
i=1

∑
e=(v→w)

Asi (e)U
s
i (t, e)µ(t, v), (41)

where µ(t, ·) ∈ P(V) for each t ∈ [0, T ], and Usi (t, ·) are the edge-dependent non-negative ‘control’ parameters
that scale the transition rates, Asi (e). These controlled flows define a time-inhomogeneous continuous-time
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Markov chains on the finite state space, V. The evolution of the corresponding stochastic process X(t) ∈ V
over an edge, e = (w → v) ∈ E , is defined by the conditional probabilities:

P(X(t+ h) = v|X(t) = w) = A0(e) +
∑

s∈{+,−}

n∑
i=1

∑
e=(w→v)

Asi (e)U
s
i (t, e) + o(h) (42)

This leads us to the approximating optimal transport problem on a graph, motivated by the formulation
in Section 3.2:

W̃ (µ0, µ1) = min
Us

i (t,e)≥0,µ(t,v)≥0

∑
s∈{+,−}

n∑
i=1

∫ 1

0

‖Usi (t, .)‖µ(t,.)dt (43)

such that Eq. (41) holds, and

µ(0, v) = µ0(v), µ(1, v) = µ1(v) ∀v ∈ V

The convex formulation of the above problem is then given by

W̃ (µ0, µ1) = min
Js
i (t,e)≥0,µ(t,v)≥0

∑
s∈{+,−}

n∑
i=1

∫ 1

0

∑
e=(v→w)

Jsi (t, e)2

2

(
1

µ(t, v)
+

1

µ(t, w)

)
dt (44)

µ(0, v) = µ0(v), µ(1, v) = µ1(v) ∀v ∈ V

d

dt
µ(t, .) =

∑
e=(w→v)

A0(t, e)µ(t, w)−
∑

e=(v→w)

A0(t, e)µ(t, v) +
∑

s∈{+,−}

n∑
i=1

(Ds
i )

ᵀJsi (t, .), (45)

where Jsi (t, e) , µ(t, v)Usi (t, e) for e = (v → w), i = {1, 2...N}, and Ds
i ∈ R|Esi |×|V | is the linear flow

operator computing µ(w)− µ(v) for each e = (v → w) ∈ Esi .

Remark 4.1. We note that the controlled advection equation Eq. (41), and the corresponding convex optimal
transport problem in Eq. (44) can be simplified if control vector fields are uni-directional across all boundaries
∂Bi. This can often be achieved by choosing the grid carefully, and making the subvolumes Bi small enough.
If this condition holds, then we immediately see from Eqs. (39-40) that for each edge e = (v → w), only one
of A+

i (e) and A−i (e) is non-zero. Denote the non-zero matrix by Ai(e). It also follows that Ai(e) = Ai(ē),
where ē : w → v. Then the simplified version of Eq. (41) is

d

dt
µ(t, v) =

∑
e=(w→v)

A0(t, e)µ(t, w)−
∑

e=(v→w)

A0(t, e)µ(t, v)

+

n∑
i=1

∑
e=(w→v)

Ai(e)Ui(t, e)µ(t, w)−
n∑
i=1

∑
e=(v→w)

Ai(e)Ui(t, e)µ(t, v). (46)

This results in the following convex optimal transport problem,

W̃ (µ0, µ1) = min
Ji(t,e)≥0,µ(t,v)≥0

n∑
i=1

∫ 1

0

∑
e=(v→w)

Ji(t, e)
2

2

(
1

µ(t, v)
+

1

µ(t, w)

)
dt, (47)

µ(0, v) = µ0(v), µ(1, v) = µ1(v), ∀v ∈ V

d

dt
µ(t, .) =

∑
e=(w→v)

A0(t, e)µ(t, w)−
∑

e=(v→w)

A0(t, e)µ(t, v) +

n∑
i=1

(Di)
ᵀJi(t, .). (48)
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Remark 4.2. We note that the Eq. (27) discussed in Section 3.2 can be seen as the special case of Eq.
(46) with g0 ≡ 0 and gi = î (the ith unit vector). Hence, our formulation generalizes optimal transport on
graphs from a single-integrator system to general nonlinear control-affine systems. While a rigorous proof
of convergence of W̃ as defined in Eq. (43) or Eq. (47) to W2 is not provided here, the connection to Eq.
(27) provides a heuristic argument in this direction. As discussed in Section 3.2, Ref. [66] provides such
a convergence proof for an advection equation on graphs. The advection is modeled using anti-symmetric
discrete ‘momentum vector fields’ V on the edges, and the optimal transport problem minimizes a discrete
action. For the driftless case, Eq. (46) satisifies those conditions due to the way the transition matrices Ai(e)
(which give edge-weights) are defined, and our definition of W̃ agrees with the one given in Ref. [66]. We
also note in general when A0 6= 0, the solution of the optimization problem W̃ does not necessarily define a
metric on P(V) due to the asymmetry that is possibly induced by the drift vector fields.

4.1 Controllability of Graphs Flows

In this section, we establish that the controlled Markov chain approximations Eq. (41) preserve the con-
trollability properties of the system in Eq. (34). This will ensure the well-posedness of the graph optimal
transport problem, Eq. (43). Without loss of generality, we consider the case when t0 = 0 & tf = 1. First,
we recall a few standard notions from geometric control theory [69].

Definition 4.3. Given x0 ∈ M we define R(x0, t) to be the set of all x ∈ M for which there exists an
admissible control u = (u1, u2....un) such that there exists a trajectory of system in Eq. (34) with x(0) = x0,
x(t) = x. The reachable set from x0 at time T is defined to be

RT (x0) = ∪0≤t≤TR(x0, t) (49)

Definition 4.4. We say the system in Eq. (34) is small-time locally controllable from x0 if x0 is an
interior point of RT (x0) for any T > 0.

Definition 4.5. Let f = (f1, ...fd) and g = (g1, ...gd) be two smooth vector fields on . Then the Lie bracket
[f, g] is defined to the vector field with components

[f, g]i =

n∑
j=1

(
f j

gi

∂xj
− gj ∂f

i

∂xj

)
(50)

Definition 4.6. For a collection of vector fields {gi}, Lie{gi} refers to the smallest Lie sub-algebra of set of
smooth vector fields on M that contains {gi}. Liex{gi} refers to the span of all vector fields in Lie{gi} at
x ∈M

Using these definitions we have the following result

Theorem 4.7. Suppose one of the following statements is true:

1. g0 ≡ 0 and Liex

{
gi : i ∈ {1, 2....n}

}
= TxM at each x ∈ int(M).

2. span

{
gi(x) : i ∈ {1, 2....n}

}
= TxM at each x ∈ int(M).

Then the graph Gc associated with the system in Eq. (41) is strongly connected and Gc = G.

Proof. Let v, w ∈ {1, 2....N} be such that v 6= w and B̄v∩ B̄w has non-zero (d−1)− dimensional (Hausdorff)
measure. Consider points x0 ∈ int(Bv) and x1 ∈ int(Bw). Due to connectedness of M there exists a
continuous path γ : [0, 1] → M such that γ(0) = x0, γ(1) = x1 and γ(t) ∈ Bv ∪ Bw ∀t ∈ [0, 1]. From
the Lie bracket condition of the vector fields, it follows that the system is small-time locally controllable
at every x ∈ int(M). Hence, we can approximate the path γ using a trajectory of the control system ,
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using a sequence of piecewise-constant control inputs. Particularly, for each ε > 0 there exists k ∈ N large
enough, a time sequence t1, t2......tk satisfying

∑k
i=1 ti = 1, constant control inputs u1, u2, .....uk ∈ R and an

approximating path, f : [0, 1]→M defined as

f(

j∑
i=1

ti + τ) = et1u
1h1 ◦ ......etcu

jhi ◦ eτu
j+1hj+1x0 for each j ∈ {0, 1, ...m} and τ ∈ [0, tj+1], (51)

when you say x = f(s)x0, it should probably say x = f(s)...double check such that ‖γ(s) − f(s)‖22 ≤ ε

for all s ∈ [0, 1]. Here, the case j = 0 means f(τ) = eτu
1hi1x0 for all τ ∈ [0, t1]. Let s ∈ (0, 1) be such

that f(s) ∈ ∂Bi and there exists c > 0 small enough such that f(s − δ) ∈ Bv and f(s + δ) ∈ Bw for all
δ ∈ (0, c). Then, clearly nvw · gr(x) 6= 0 for x = f(s) and some r ∈ {1, 2....n} assuming γ and ε are chosen
appropriately (i.e. avoiding crossings of γ and f over corners of Bv and Bw). From continuity of the vector
field gr, there exists a small enough neighborhood, Nx of x such that nvw · gr(y) 6= 0 for all y ∈ Nx. Hence,
this implies Ar(e) 6= 0 for e = v → w. Due to continuity of the vector field gr at x, it also follows that
Ar(e) = Ar(ē). Hence, the connectivity of the graph Gc follows. Case 2 just follows from the assumption

that span

{
gi(x) : i ∈ {1, 2....n}

}
= TxM at each x ∈ int(M).

Remark 4.8. The above result can also be seen to, equivalently, follow from the Orbit theorem [70][Theorem
5.1]. Gc 6= G would imply the existence of a lower dimensional immersed-submanifold, K, of M such that

Liex

{
gi : i ∈ {1, 2....n}

}
⊆ TxK for all x in a neighborhood of a point in the boundary of one of the elements

in Pm.

Remark 4.9. The main obstruction in extending the above result for underactuated systems (span
{
gi(x) :

i ∈ {1, 2....n}
}
6= TxM for some x ∈ M) with drift, i.e. g0 6≡ 0, is that usual tests for small-time local

controllability of control systems with drift [71] require the initial condition to be an equilibrium point.
Hence, starting at a non-equilibrium initial condition one might need to make large excursions (in our case,
possibly outside the domain M) in order to return to the initial condition. Take for example, the simplest
control-affine system with drift, the double integrator: ẍ = u. Hence, given an initial and target density, the
optimal transport problem on a bounded domain might not admit a solution for a system with drift if M is
not taken to be large enough.

We note the following result to ensure well-posedness of problem given in Eq. (43).

Theorem 4.10. Consider µ0, µ1 ∈ P(V). Assume the graph Gc is connected and G0(t, e) = 0 for every e ∈ E
and all t ∈ [0, 1]. Then there exist Ui(t, ·) ≥ 0 such that the solution of Eq. (41), µ(t, ·) satisfies µ(0, ·) = µ0

and µ(1, ·) = µ1.

The above theorem leads to the following result:

Theorem 4.11. Consider µ0, µ1 ∈ P(V). Assume the graph Gc is connected and G0 ⊆ Gc. Then there exist
Ui(t, ·) ≥ 0 such that Eq. (41) satisfies µ(0, ·) = µ0 and µ(1, ·) = µ1.

Proof. The graph Gc is connected. Since G0 ⊆ G, we can choose Ũsi (t, ·) such that the right hand side in Eq.
(41) is equal to 0 for all t ∈ [0, 1]. Then, from the previous theorem, it follows that there exists a control
Usi (t, ·), of the form Usi (t, ·) = Ûsi (t, ·) + Ũsi (t, ·) such that Eq. (41) satisfies µ(0, ·) = µ0 and µ(1, ·) = µ1.

Here, the parameter Ũi(t, ·) negates the effect of the drift field A0 and Ûsi (t, ·) ensures the density µ0 is
transported to µ1 as in Thm 4.10.
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4.2 Construction of Approximate Feedback Control Laws

Given the solution the optimal transport problem on the graph, we need to reconstruct the corresponding
approximate feedback control laws {ui(x, t)}. The feedback control laws for the control system in Eq. (34)
are given by

ui(x, t) =

∑
w∈N+

i (v) U
+
i (v → w, t)

|N+
i (v)|

−
∑
w∈N−

i (v) U
−
i (v → w, t)

|N−i (v)|
∀x ∈ Bv (52)

Here, N s
i (v) refers to the the neighboring nodes of v in the graph Gsi for each s ∈ {+,−} and i ∈ {1, 2....n}.

4.3 Numerical Implementation

Following Refs. [72, 67], we use the staggered discretization scheme for pseudo-time discretization. We define

µj(v) , µ(tj , v), (53)

Jsi,j(e) , Jsi (tj , e), (54)

where tj = (j/k)tf , j ∈ [0, 1, 2, . . . , k] is the time discretization into k intervals. We take t0 = 0. Here Jsi,j(e)
represents the s ∈ {+,−} flow due to gi(x) over edge e = (v → w), from vertex v at time tj−1 to vertex w
at time tj .

Hence, the optimization problem given in Eqs. (44) can discretized as,

W̃ (µ0, µ1) = min
Js
i,j ,µj

∑
s∈{+,−}

n∑
i=1

k∑
j=1

|E|∑
e=1

e=(v→w)

(Jsi,j(e))
2(

1

µj−1(v)
+

1

µj(w)
), (55)

subject to the following constraints:

µj − µj−1

∆t
=

∑
e=(w→v)

A0(tj , e)µ(tj , w)−
∑

e=(v→w)

A0(tj , e)µ(tj , v) +
∑

s∈{+,−}

n∑
i=1

(Ds
i )

ᵀJ i,js , (56)

µ0 = µt0 , µn = µtf . (57)

Here ∆t =
tf
k . The cost function given by Eq. (55) is again of the form ‘quadratic over linear’, and the

advection (Eq. (56)) imposes linear constraints. Hence the discretized problem is convex, and can be solved
using many off-the-shelf convex solvers. The optimization problem is solved via CVX [73] modeling platform,
an open-source software for converting convex optimization problems into usable format for various solvers.
We use the SCS [74] solver, a first-order solver for large size convex optimization problems. This solver uses
the Alternating Direction Method of Multipliers (ADMM) [75] to enable quick solution of very large convex
optimization problems, with moderate accuracy.

The variables to be solved for in the optimization problem Eqs. (55-57) are vertex based quantities µj ,
and edge based quantities Jsi,j . The size of the optimization problem can be quantified in terms of number
of time-discretization steps k, number of vertices |V | = N , and the number of edges |E|. The graph Gc is
always sparse, since a typical vertex is at most connected to 2(n+1)d neighbors, and N � n,N � d. Hence,
the variables in the optimization problem scale as O(k(N + |E|)) = O(n · d · k ·N).

5 Examples

5.1 Optimal Transport in the Grushin Plane

We first apply our framework to a non-holonomic control-affine system in which certain optimal transport
solutions can be found analytically. We consider transport of measure in the Grushin plane, which is a
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subriemannian space, with base space R2. In Ref. [58], the structure of optimal controls in this problem was
analyzed. Using this structure, optimal transport to a delta measure at (0, 0) was computed. The system is
described by

ẋ1 = u1, (58a)

ẋ2 = u2x1. (58b)

The optimal control cost c(x, y) between initial and final states, x = (x1, x2)′, y = (y1, y2)′, is taken to be

square of the subriemannian distance d(x, y) = infCy
x

∫ 1

0

√
u2

1 + u2
2dt. Hence, the optimal control solutions

are also geodesics in the subriemannian space. The solutions of optimal control problem are integral curves
of the Hamiltonian H given by

H(x1, x2, p1, p2) =
1

2
(p2

1 + x2
1p

2
2). (59)

Here p1, p2 are the co-state variables. Note that since H is independent of x2, H can be reduced to a
Hamiltonian in (x1, p1), and the integral curves of H can be obtained using quadratures. The geodesics
reaching (0, α) at t = 1 are of the form

x1(t) =
a

b
sin(b(1− t)), (60)

x2(t) =
a2

4b2
(2b(1− t)− sin(2b(1− t))) + α. (61)

A geodesic between a specified initial point (x̄1, x̄2), and (0, α) can be obtained by inverting the Eqs.
(60-61) at t = 0 to solve for (a, b). For t ≤ π

b , these geodesics are also global minimizers of the optimal control
problem. Figure 2(a) shows some geodesics to the origin. Now consider the optimal transport problem with
c(x, y) = d2 from an initial measure µ0 to final measure µ1 = δ(0,0). Clearly, the optimal map T is x→ (0, 0),
and the displacement interpolation is given by the geodesics between each x ∈ supp(µ0) and (0, 0). Figure
2(b) shows the displacement interpolation of T for a particular case.

−1 −0.5 0 0.5 1−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x1

x 2

(a)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x1

x 2

t=0

t=0.50

t=0.25

t=0.75
t=1

(b)

Figure 2: (a) Some minimizing geodesics to the origin in the Grushin plane. (b) Analytically computed optimal transport
solution between a measure whose support is the disk Ω = {(x, y)|x2 + (y − .8)2 < .152}, and measure at the box containing
the origin.

We apply the our computational framework algorithm developed in Section 4 to compute optimal trans-
port for a similar case as described above. We divide the X = [−1, 1] × [−1, 1] into m = 1002 boxes, and
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form the corresponding graph G. The resulting solution is shown in Figure 3(a)-(e). The convergence of
optimal transport cost W̃ with k and m is shown in Fig 3(f). It can be seen that the computed solution
closely follows the analytical solution shown in Fig. 2.

(a) t=0 (b) t=0.25

(c) t=0.5 (d) t=0.75

(e) t=0.95

20 30 40 50 60 70 80 90 1004

4.5

5

5.5

k

W̃

m=2500

m=5625

m=10000

(f)

Figure 3: (a)-(e) The optimal transport solution in the Grushin plane using graph based algorithm between a measure whose
support is the disk Ω = {(x, y)|x2 + (y − .8)2 < .152}, and delta measure at the origin. The parameters are m = 104, k = 75.
(f) Convergence of optimal transport cost with number of time discretization steps k and grid size m.

Next, we perform particle simulations with controls extracted from the optimal transport computation.
We take p = 4 particles per box, and use Eq. (52) to get state-dependent control commands for each
particle. The results are shown in Figure 4. About 95% of the particles get transported according the optimal
transport solution shown in Fig 3, while the rest are dispersed. Note that the control laws obtained from
optimal transport solution does not automatically guarantee feedback stabilization of individual particles.
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(a) t=0 (b) t=0.1

(c) t=0.25 (d) t=0.5

(e) t=0.75 (f) t=0.95

Figure 4: Particle trajectories with control computed from the optimal transport solution in the Grushin plane. Each box
contained in the support of uniform initial measure µ0 is initially populated with 4 particles.

5.2 Optimal Transport in time-periodic Double-Gyre system

Now we consider a measure transport problem for the time-periodic double-gyre system [76]. This chaotic
dynamical system has been analyzed using several computational tools related to transport and mixing
[77, 78, 28, 29, 48].

The controlled equations we consider as follows,

ẋ = −πA sin(πf(x, t)) cos(πy) + u1, (62a)

ẏ = πA cos(πf(x, t)) sin(πy)
df(x, t)

dx
+ u2, (62b)

where f(x, t) = β sin(ωt)x2 + (1 − 2β sin(ωt))x is the time-periodic forcing in the system. The phase
space is X = [0 2] × [0 1]. We first describe the dynamics of the uncontrolled (u1 = u2 = 0) system. For
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the trivial case of β = 0 (i.e. no time-dependent forcing), the phase space is divided into two invariant sets,
i.e., the left and right halves of the rectangular phase space (‘gyres’), by a heteroclinic connection between
fixed points x1 = (1, 1) and x2 = (0, 1). For non-zero β, the Poincare map F of the system, obtained by
integrating the dynamics over one time period τ of f , describes an autonomous discrete-time system. The
heteroclinic connection is broken in this case, and results in a heteroclinic tangle. This heteroclinic tangle
leads to transport between left and right sides via lobe-dynamics.

We choose parameters A = 0.25, β = 0.25, ω = 2π, such that the time-period of the flow is τ = 1. To get
insight into the phase space transport due to heteroclinic tangles, the theory of lobe dynamics [76] is useful.
Lobe dynamics techniques allows one to quantify the transport between sets separated by invariant manifolds,
and their transversal intersections. In figure 5, the unstable manifold of x1 ≈ (0.919, 1), Ux1

, and the stable
manifold of x2 ≈ (1.081, 0), Sx2

are shown in green and white respectively. The lobe labeled ’A’, its pre-image
F−1(A) and image F (A) are also shown. Consider the segment L = Ux1(x1 → F (P1)) ∪ Sx2(F (P1) → x2).
Then L divides phase space X into two regions. The points that get mapped from left to right region in one
iteration of F are precisely those in set A. Hence, the amount of mass transport from left to right side of L is
m̄(A). While our algorithm for optimal transport can be applied between any arbitrary pair of measures, it

Figure 5: Invariant manifolds and lobe-dynamics in the double-gyre system.

is instructive to choose a pair of measures which are somehow ‘distinguished’ for the given dynamical system.
Selecting a pair of invariant measures is an obvious choice, however the chaotic double-gyre system does not
seem to possess any invariant measures except the uniform measure. However, there do exist almost-invariant
sets (and associated measures with support on those sets). A set S is called almost-invariant [28] if

m̄(F−1(S) ∩ S)

m̄(S)
≈ 1.

Invariant and almost-invariant sets in this system can be identified by the sign structure of the second
eigenvector of the reversibilized transfer operator

R =
P + P̃

2
,

where P is the transfer operator corresponding to F and P̃ is the transfer operator for the reverse-time
dynamics. In Figure 5, two almost-invariant sets, A1 and A2 are also shown. We choose our initial and final
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measures to be uniform measures supported on A1 and A2, respectively. Both measures are normalized to
sum to unity. We solve the the optimal transport problem for m = 60 × 30 for different time horizons tf ,
with k = 40. Our simulations are repeated with finer grid-sizes m = 100× 50 to verify that our results are
nearly independent of m.

In Fig. 6, we show the optimal transport sequence for tf = τ = 1. In other words, the transport is
constrained to be completed in one time-period of the uncontrolled flow. Due to the short time-horizon, all
of the mass is pushed across the invariant manifolds separating the the two gyres. In Fig. 7, the optimal
transport sequence for the more interesting case with tf = 10 is shown. The transport process in this case
is completely different than the tf = 1 case. We observe that the transport occurs in a ‘quantized’ manner,
i.e. packets of mass are transported, one at a time, via lobe-dynamics from left gyre to the right gyre.
The number of such packets exactly equal the number of time-periods in the time-horizon of the transport
problem, i.e. n = 10 in this case. Hence, while the global transport is being done by the natural dynamics
via lobes, the role of control is to gather the mass in pre-images of the those lobes. For instance, in Figs
7((b)-(e)), the transport of one such packet via the sequence F−1(A) → A → F (A) → F 2(A) is shown.
The mechanism is essentially the same for other time-horizons that we analyzed, tf = 2, 5, 8, 12.5 & 15. The
increasing use of ‘natural’ chaotic lobe-dynamics of the uncontrolled system during optimal transport should
reflect in the optimal transport cost. This cost, W̃ , decreases rapidly as the time-horizon tf is increased, as
shown in Fig. 8. Hence, the optimal transport discovers the efficient paths in this chaotic system, where
‘going with the flow’ is the best option.
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(a) t = 0 (b) t = 0.25

(c) t = 0.5 (d) t = 0.75

(e) t = 1

Figure 6: Optimal transport in the periodic double gyre system (Eqs.(62a-62b)) between measures shown in (a) and (e) for
tf = 1. The parameters are m = 1800, k = 40.
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(a) t = 0 (b) t = 2

(c) t = 3 (d) t = 4

(e) t = 5 (f) t = 8.5

(g) t = 9 (h) t = 10

Figure 7: Optimal transport in the periodic double gyre system between measures shown in (a) and (h) for tf = 10. The
optimal transport solution shows a quantization phenomenon. Ten ‘packets’ are transported via lobe-dynamics from the left
side to the right side of the domain. (b)-(e) The transport of third packet to right side via the sequence F−1(A) → A →
F (A)→ F 2(A).(f)-(g) The last packet gets transported to the right side. Animation available at: https://www.youtube.com/

watch?v=Pu7sCkpm4RY
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0 5 10 150

0.5

1

1.5

tf

W̃

Figure 8: The cost of optimal transport between two measures supported on two AIS for the double-gyre system, as a function
of time-horizon of the problem.
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5.3 Optimal Transport for unicycle model

Finally, we consider optimal transport in a three-dimensional non-holonomic system, called the ‘unicycle’
model. This system is a toy model for vehicle kinematics, and is used extensively in vehicle path planning
and control [79, 80]. The states are cartesian coordinates (x, y) ∈ R2, and orientation θ ∈ S1 of the unicycle.
The system equations are given by,

ẋ = u2 cos θ, (63a)

ẏ = u2 sin θ, (63b)

θ̇ = u1, (63c)

where u1 is the steering speed, and u2 is the translation speed. The optimal control problem has been
studied for various cost functions, and endpoint conditions [81, 82, 83]. The techniques from geometric
mechanics, specifically Lie-Poisson reduction [69], have been successfully used to reduce the optimal control
problem to a three-dimensional non-canonical Hamiltonian system. For this three-dimensional system, two
conserved quantities can be found, and hence, the optimal controls (u1(t), u2(t)) can be solved explicitly in
terms of Jacobi elliptic functions.

To study the optimal transport problem for the unicycle model, take the control cost to be quadratic,

i.e. d(z1, z2) = infCz2
z1

∫ 1

0

√
u2

1 + u2
2dt. We compute optimal transport solutions for two scenarios. In the first

case, µ0 is chosen to be a measure supported on box containing (0, 0.5, 0), and µ1 is chosen to be uniform
measure supported on the union of boxes containing (1, 0, 0) and (1, 1, 0). In the second case, µ0 is chosen to
be a measure supported on box containing (0, 0.5, 0), and µ1 is chosen to be a uniform measure supported
on the union of boxes containing (1, 0, π2 ) and (1, 1, 3π

2 ). The initial and final measures for the two cases
are depicted in Fig 9. The optimal transport solution for the first case is shown in Fig. 10. Since the final
orientation is prescribed to be along the x−axis, this leads to a splitting of the measure half-way in the
transport, and steering of the two halves horizontally to their final positions. The optimal transport solution
for the second case is shown in Fig. 11. The solution in this case is qualitatively different from the first case.
The two halves split and then move vertically towards final positions.

(a) Case 1 (b) Case 2

Figure 9: Initial and final measures shown on (x, y) plane for two cases of optimal transport in the unicycle model. The
green arrows indicate the third coordinate θ. (a) µ0 is supported on (0, 0.5, 0), µ1 is supported on (1, 0, 0) and (1, 1, 0). (b) µ0
is supported on (0, 0.5, 0), µ1 is supported on (1, 0, π

2
) and (1, 1, 3π

2
).

6 Conclusions and Future Directions

We have developed a set-oriented graph-based framework for continuous-time optimal transport over non-
linear dynamical systems. We interpret the standard continuous-time optimal transport problem on graph
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as the graph-analogue of the optimal transport problem of single-integrator control system, and generalize
that framework for general nonlinear control-affine control systems. We use set-oriented methods, especially
the infinitesimal generator approach, to approximate transition rates in the generalized framework. The
well-posedness of this problem is related to the graph connectivity, and is proved to be a consequence of
controllability of the control system. Hence, our work connects set-oriented operator-theoretic methods in
dynamical systems with optimal mass transportation theory, and also opens up new directions in design
of efficient feedback control strategies for nonlinear multi-agent and swarm systems operating in nonlinear
ambient flow fields.

Application of our set-oriented framework to larger domains, longer time-horizons and/or higher dimen-
sional systems will require improvement in computational efficiency. Using efficient phase space discretization
techniques, such as those employed in GAIO [23], one can hope to improve the efficiency of the resulting
optimal transport algorithms, and apply the framework to higher dimensional dynamical systems. Graph
pruning algorithms can be employed to remove edges which are not likely to be used [84].

Solutions to the optimal transport problem in the double-gyre system elucidate the role played by invari-
ant manifolds, lobe-dynamics and almost-invariant sets in efficient transport of phase-space distributions.
While it is known that invariant manifolds and lobes act as low-energy ‘channels’ in the phase-space, our
results give new qualitative and quantitative information about their role in problems of transport of distri-
butions or swarms of agents. Application of this framework to more complicated arbitrary time-varying flows
should provide similar insights into the role of Lagrangian coherent structures and coherent sets. This can
lead to development of efficient swarm planning and control strategies for realistic applications in ocean and
air-borne systems. Moreover, using our framework, the relative importance of such objects can be studied
for different types of controls.

Furthermore, recent methods in obtaining Lagrangian coherent structures and coherent sets in finite-time
non-autonomous systems have used variational formulations of transport under nonlinear dynamics [4] or
dynamic versions of the Laplacian [85]. It would be fruitful to develop connections of these formulations
with optimal mass transportation theory, extending the connections already identified in the Hamiltonian
dynamics case [51]. For instance, one could define a controlled version of almost-invariant sets or coherent
sets, by defining a control dynamic Laplacian, analogous to the control infinitesimal-generators as developed
in the current work, or control Lyapunov measures developed in Ref. [44].

Connections with work in the closely related area of occupation measures [47] and Lyapunov measures
[44] also need to be explored, especially in context of obtaining feedback control laws from the control laws
obtained from optimal transport solutions. The feedback control laws constructed as solutions to the optimal
transport problem guide the measure along shortest paths corresponding to solutions of the corresponding
sub-Riemannian problem. Hence, it needs to be explored in what sense these laws can be used for feedback
stabilization of an individual control-affine system. Moreover, the numerical approach in the current paper
could also be adapted to construct time-independent feedback control laws for such systems.
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(a) t=0 (b) t=0.2

(c) t=0.5 (d) t=0.7

(e) t=0.8 (f) t=1

Figure 10: The optimal transport solution of unicycle model shown in the x− y plane for case 1. The grid size is m = 253,
and k = 20.
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(a) t=0 (b) t=0.2

(c) t=0.5 (d) t=0.7

(e) t=0.8 (f) t=1

Figure 11: The optimal transport solution of unicycle model shown in the x− y plane for case 2. The grid size is m = 253,
and k = 20.
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[52] L. Ambrosio, N. Gigli, G. Savaré, Gradient flows: in metric spaces and in the space of probability
measures, Springer Science & Business Media, 2008.

[53] A. Hindawi, J.-B. Pomet, L. Rifford, Mass transportation with LQ cost functions, Acta applicandae
mathematicae 113 (2) (2011) 215–229.

[54] Y. Chen, T. Georgiou, M. Pavon, Optimal transport over a linear dynamical system, arXiv preprint
arXiv:1502.01265.

[55] Y. Chen, T. T. Georgiou, M. Pavon, On the relation between optimal transport and schrödinger bridges:
A stochastic control viewpoint, Journal of Optimization Theory and Applications 169 (2) (2016) 671–
691.

[56] P. Grover, K. Elamvazhuthi, Optimal perturbations for nonlinear systems using graph-based optimal
transport, arXiv preprint arXiv:1611.06278.

[57] J.-D. Benamou, Y. Brenier, A computational fluid mechanics solution to the monge-kantorovich mass
transfer problem, Numerische Mathematik 84 (3) (2000) 375–393.

[58] A. Agrachev, P. Lee, Optimal transportation under nonholonomic constraints, Transactions of the
American Mathematical Society 361 (11) (2009) 6019–6047.

[59] L. Rifford, B. (centre), Sub-Riemannian geometry and optimal transport, Springer, 2014.

[60] S. M. Ulam, Problems in modern mathematics, Courier Corporation, 2004.

29



[61] K.-J. Engel, R. Nagel, One-parameter semigroups for linear evolution equations, Vol. 194, Springer
Science & Business Media, 1999.

[62] H. O. Fattorini, The cauchy problem, Vol. 13517, Cambridge University Press, 1984.

[63] G. Froyland, O. Junge, P. Koltai, Estimating long-term behavior of flows without trajectory integration:
The infinitesimal generator approach, SIAM Journal on Numerical Analysis 51 (1) (2013) 223–247.
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