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Blind source separation (BSS) techniques are widely used to extract signals of interest from a mixture with other signals, such as
extracting fetal electrocardiogram (ECG) signals from noninvasive recordings on the maternal abdomen. These BSS techniques,
however, typically lack possibilities to incorporate any prior knowledge on the mixing of the source signals. Particularly for fetal
ECG signals, knowledge on the mixing is available based on the origin and propagation properties of these signals. In this paper, a
novel source separationmethod is developed that combines the strengths and accuracy of BSS techniques with the robustness of an
underlying physiological model of the fetal ECG.Themethod is developed within a probabilistic framework and yields an iterative
convergence of the separation matrix towards a maximum a posteriori estimation, where in each iteration the latest estimate of the
separation matrix is corrected towards a tradeoff between the BSS technique and the physiological model.Themethod is evaluated
by comparing its performance with that of FastICA on both simulated and real multichannel fetal ECG recordings, demonstrating
that the developed method outperforms FastICA in extracting the fetal ECG source signals.

1. Introduction

Current fetalmonitoringmainly relies on the cardiotocogram
(CTG); the simultaneous registration of fetal heart rate; and
uterine activity. Unfortunately, inmany cases the information
provided by the CTG is insufficient. In these cases, obste-
tricians have to rely on other sources of information or on
their intuition and experience to make the optimal treatment
plan. A valuable complementary source of information is
provided by the fetal electrocardiogram (ECG) [1]. In clinical
practice, the fetal ECG is measured during labor using an
invasive electrode. The use of this electrode requires the fetal
membranes to be ruptured and the cervix to be sufficiently
dilated. An alternative method to obtain the fetal ECGmakes
use of electrodes placed on the abdomen of the mother [2].

Although these abdominal recordings are a promising
candidate for use in fetal monitoring, their widespread use
is impeded by the quality of the fetal ECG signals which
is typically poor. Specifically, each signal recorded from the
maternal abdomen consists of a mixture of signals, including
the fetal ECG, maternal ECG, activity of abdominal muscles
and uterus, and interferences from external sources. Several

methods to extract the fetal ECG from such mixtures have
been proposed in the literature [2–5]. Prominent among these
methods are the so-called source separation methods such
as independent component analysis (ICA) [2, 6]. Despite the
successful application of these source separation methods for
fetal ECG extraction, their use in clinical practice is limited
to virtually none.The key reason for this is the relatively poor
robustness in case of significant artifacts and noise [7]. In
other words, in case the noninvasive fetal ECG recordings
have relatively good quality, the source separation methods
perform satisfactory and in case of poor signal quality, their
performance breaks down.

One of the reasons for poor robustness with respect to
signal quality lies in the fact that ICA assumes no a priori
knowledge on the origin of the recorded signal mixtures.
Hence, ICA-based methods are referred to as blind source
separation (BSS) techniques. In case of noninvasive fetal ECG
recordings, however, some knowledge on the source sig-
nals mixing is available. Exploitation of such knowledge can
improve the robustness of the source separation, as demon-
strated for audio signals by Knuth [8].



2 Computational and Mathematical Methods in Medicine

In this paper, we follow the approach by Knuth and
develop a probabilistic framework to derive a generic source
separation technique. This technique allows for inclusion
of a priori knowledge on the mixing of the source signals.
In case no a prior knowledge is included, this technique
reduces to an ICA technique. To include prior knowledge in
the source separation, we present a physiology-based proba-
bilistic model that describes how fetal ECG signals mix to
the noninvasive abdominal recordings. Our method, con-
sequently, yields a probabilistic, physiology-based source
separation technique for fetal ECG extraction.

In Section 2, our method is presented and the method-
ology for implementation and evaluation is discussed. In
Section 3, the performance of our method is illustrated and
evaluated by comparing it with the performance of a widely
used ICA approach. In Section 4, we draw our conclusions.

2. Materials and Methods

2.1. Probabilistic Description of Source Separation Problem.
When we assume a fetal ECG recording of 𝑁 signals x(𝑡),
each comprising an unknown mixture of 𝑀 source signals
s(𝑡), the goal of any source separation method is to unmix
the recorded signals into the source signals:

x (𝑡) = A (𝑡) s (𝑡) , (1)

where A(𝑡) is a [𝑁 × 𝑀] matrix, referred to as the mixing
matrix. In the case of fetal ECG recordings, the time-
dependent behavior of A originates from changes in the
volume conductor between fetal heart and abdominal elec-
trodes, for example, due to movement of either mother or
fetus.

Using Bayes’ rule, the probability that the sourcemodel of
(1) is correct can be written as [9]

𝑝 (A, s | x) =
𝑝 (x | A, s) 𝑝 (A, s)

𝑝 (x)
, (2)

where we have omitted the time-dependency for reasons of
clarity.

The expression in the denominator of (2) is referred to
as the evidence and can be regarded as a normalization term,
independent of the variables of interest (i.e., A or s). Hence,
(2) can be simplified to

𝑝 (A, s | x) ∝ 𝑝 (x | A, s) 𝑝 (A, s) . (3)

The expression on the left-hand side of (3) is referred to as
the posterior. The first term on the right-hand side of (3) is
referred to as the likelihood. The second term is referred to as
the prior.

As mentioned previously, the goal of the source separa-
tion method is to obtain the source signals s. Considering
the source model in (1) with x known, inference of A also
determines s. Since A is typically a smaller matrix than s, it
is often computationally more efficient to estimate A rather
than s. Hence, the problem of estimating the source signals
s can be translated to the problem of estimating the mixing
matrixA. In this context, the source signals s can be regarded

as a nuisance parameter and omitted from the posterior by
marginalization:

𝑝 (A | x) ∝ 𝑝 (A) ∫ 𝑝 (x | A, s) 𝑝 (s) ds. (4)

Here, A and s are assumed to be statistically independent,
based on the assumption that the properties of signal propa-
gation (i.e., themixingmatrixA) do not depend on the source
signals and their magnitudes (i.e., the source matrix s).

In the context of this probabilistic description, the chal-
lenge of source separation methods is to infer A by maxi-
mizing the posterior probability distribution 𝑝(A | x) with
respect to A. Inference on A, subsequently, provides an esti-
mate for the source signals s(𝑡).

2.2. MaximumAPosteriori Solution: Informed Source Separa-
tion. Until here, we have followed the descriptions of Knuth
[8] and Bell and Sejnowski [10]. As Knuth shows in [8],
prior knowledge—in terms of the probability distribution
𝑝(A)—can be included in the probabilistic model of (4)
to yield a Maximum A Posteriori (MAP) solution of the
source separation problem. Because of the inclusion of prior
knowledge, this method is referred to as an informed source
separation (ISS) method (as opposed to the BSS methods
that do not allow for inclusion of prior knowledge). For fetal
ECG estimation, this prior knowledge entails a mathematical
description of the dipole nature of the ECG and of the prop-
agation properties of the abdominal volume conductor [11].

2.2.1. Mixing Model for Fetal ECG. When recorded relatively
far away from the heart, the electrical activity of the heart can
be approximated by an electrical dipole ⃗𝜌(𝑡) that changes in
orientation and amplitude during the course of a cardiac cycle
[12]. For a bipolar ECG recording between electrode 𝑖 and a
reference electrodeR, the electrical potential 𝑉

𝑖
(𝑡) recorded

at the skin is accordingly given by

𝑉
𝑖 (𝑡) =

1

4𝜋𝜖

{

{

{

⃗𝑟
𝑖
− ⃗𝑟
𝑓


⃗𝑟
𝑖
− ⃗𝑟
𝑓



3
−

⃗𝑟R − ⃗𝑟𝑓


⃗𝑟R − ⃗𝑟𝑓



3

}

}

}

⋅ ⃗𝜌 (𝑡) , (5)

where 𝜖 describes the conductive properties of the medium
between heart and electrode, which in this study are assumed
to be the same for all recorded signals (i.e., the conductive
properties are uniform), ⃗𝑟

𝑖
describes the position of electrode

𝑖, ⃗𝑟R describes the position of the reference electrode, and ⃗𝑟
𝑓

describes the position of the fetal heart.
The electrical dipole ⃗𝜌(𝑡) is also known as the vectorcar-

diogram (VCG) and represents 3 orthogonal ECG sources
that, when combined together, can describe any recorded
ECG signal. In the context of source separation, ⃗𝜌 acts as the
source matrix s in (1). Since the electrical potentials from the
skin surface V correspond to x, the mixing matrix for fetal
ECG can be described as

𝐴
𝑖𝑗
=
1

𝑐

{

{

{

𝑟
𝑖𝑗
− 𝑟
𝑓𝑗


⃗𝑟i − ⃗𝑟𝑓


3
−

𝑟R𝑗 − 𝑟𝑓𝑗


⃗𝑟R − ⃗𝑟𝑓



3

}

}

}

, (6)

where 𝑐 = 4𝜋𝜖.
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We can rewrite (6) to

𝐴
𝑖𝑗
=

𝑟
𝑖𝑗
− 𝑟R𝑗

𝑐

⃗𝑟
𝑖
− ⃗𝑟
𝑓



3
−

𝑟R𝑗 − 𝑟𝑓𝑗

𝑐

{

{

{


⃗𝑟
𝑖
− ⃗𝑟
𝑓



3

−

⃗𝑟R − ⃗𝑟𝑓



3


⃗𝑟
𝑖
− ⃗𝑟
𝑓



3
⃗𝑟R − ⃗𝑟𝑓



3

}

}

}

.

(7)

In this expression, the first term on the right-hand side
involves a (scaled) version of the difference in position
between the abdominal electrodes 𝑖 andR. When we would
assume that the distance between the fetal heart and the var-
ious electrodes is approximately the same, or at least that the
difference between these heart-electrode distances is much
smaller than the heart-electrode distance itself, the term
between braces on the right-hand side of (7) tends to zero
and, accordingly, we can simplify (7) to

𝐴
𝑖𝑗
=

𝑟
𝑖𝑗
− 𝑟R𝑗

𝑐

⃗𝑟
𝑖
− ⃗𝑟
𝑓



3
+ 𝜂
𝑖𝑗
. (8)

Here, 𝜂
𝑖𝑗
is a noise term that expresses our model inaccura-

cies, such as the assumption to ignore the second term on the
right-hand side of (7). Based on the central limit theorem,
𝜂
𝑖𝑗
is taken to be a Gaussian noise term, with variance 𝜎2

𝑖𝑗
and

mean 𝜇
𝑖𝑗
. Based on our geometric assumptions leading to (8),

we assume 𝜇
𝑖𝑗
to be zero.

Finally, to facilitate an analytical solution to the source
separation problem, we ignore the dependence of the scaling
𝛼
𝑖
= 1/𝑐| ⃗𝑟

𝑖
− ⃗𝑟
𝑓
|
3 on ⃗𝑟

𝑖
:

𝐴
𝑖𝑗
= 𝛼
𝑖
(𝑟
𝑖𝑗
− 𝑟R𝑗) + 𝜂𝑖𝑗. (9)

2.2.2. Prior Probability Distribution. We can express our
belief in the mixing model of (9) in terms of the prior pro-
bability distribution:

𝑝 (A | 𝜎) = ∫𝑝 (A, �⃗� | 𝜎) 𝑝 (�⃗� | 𝜎) d�⃗�. (10)

Here, we have assumed the variance 𝜎2
𝑖𝑗
to be known. We will

address the estimation of 𝜎2
𝑖𝑗
in Section 2.3.2.

When, for reasons of mathematical simplification, we
assume the elements of the mixing matrix to be mutually
independent, we can write 𝑝(A, �⃗� | 𝜎) as

𝑝 (A, �⃗� | 𝜎) ≈ ∏
𝑖𝑗

𝑝 (𝐴
𝑖𝑗
, 𝛼
𝑖
| 𝜎
𝑖𝑗
) , (11)

with, compare (9),

𝑝 (𝐴
𝑖𝑗
, 𝛼
𝑖
| 𝜎
𝑖𝑗
)

=
1

√2𝜋𝜎
2

𝑖𝑗

exp{− 1
2𝜎
2

𝑖𝑗

[𝐴
𝑖𝑗
− 𝛼
𝑖
(𝑟
𝑖𝑗
− 𝑟R𝑗)]

2

} .

(12)

This assumption of mutual independence of the elements of
A is weak and can potentially reduce the performance of
the source separation. More specifically, information on the

mixing of ECG signals for one electrode provides information
on the mixing for another electrode, since the electrode
positions are known.

For the other conditional probability distribution in (10),
we know that �⃗� represents the scaling of ECG signals per
electrode.This scaling depends on tissue propagation proper-
ties and the distance between fetal heart and electrode. The
scaling must be positive and an upper and lower limit 𝑎

1
and

𝑎
2
, respectively, can be defined based on the possible dis-

tances between heart and electrodes as well as on studies on
tissue propagation properties [13]. Taking the probability dis-
tribution for �⃗� to be uniformly distributed between these
limits and, analogously to considerations above, assuming the
elements of �⃗� to be mutually independent, 𝑝(𝛼

𝑖
| 𝜎
𝑖𝑗
) can be

written as

𝑝 (𝛼
𝑖
| 𝜎
𝑖𝑗
) =
{

{

{

1

𝑎
2
− 𝑎
1

for 𝑎
1
≤ 𝛼
𝑖
≤ 𝑎
2

0 otherwise.
(13)

Combining (10)–(13) and solving the integral in (10) give

𝑝 (A | 𝜎) = ∏
𝑖𝑗

∫

𝑎
2

𝑎
1

1

√2𝜋𝜎
2

𝑖𝑗
(𝑎
2
− 𝑎
1
)

× exp{− 1
2𝜎
2

𝑖𝑗

[𝐴
𝑖𝑗
− 𝛼
𝑖
(𝑟
𝑖𝑗
− 𝑟R𝑗)]

2

} d𝛼
𝑖

= ∏

𝑖𝑗

erf [𝑓
𝑖𝑗
(𝑎
1
)] − erf [𝑓

𝑖𝑗
(𝑎
2
)]

2 (𝑎
2
− 𝑎
1
) (𝑟
𝑖𝑗
− 𝑟R𝑗)

,

(14)

where

erf (𝑧) = 2
√𝜋
∫

𝑧

0

exp (−𝑡2) d𝑡,

𝑓
𝑖𝑗
(𝑎
𝑘
) =

𝐴
𝑖𝑗
− 𝑎
𝑘
(𝑟
𝑖𝑗
− 𝑟R𝑗)

√2𝜎
𝑖𝑗

.

(15)

2.2.3. DealingwithMultiple Sources. Asmentioned in Section
1, noninvasive fetal ECG recordings consist of a mixture
of source signals of which the three orthogonal fetal ECG
components S comprise only three source signals. We can
estimate the other sources using a standard implementation
of ICA. Specifically, we can assume no prior knowledge for
these sources and include this lack of knowledge in our
probability distribution for A:

𝑝 (𝐴
𝑖𝑗
| 𝜎
𝑖𝑗
) =

{{{

{{{

{

erf [𝑓
𝑖𝑗
(𝑎
1
)] − erf [𝑓

𝑖𝑗
(𝑎
2
)]

2 (𝑎
2
− 𝑎
1
) (𝑟
𝑖𝑗
− 𝑟R𝑗)

for 𝑖 ≤ 3

constant else.
(16)

2.2.4. Towards a Solution. When we consider the posterior
probability distribution of (4), we should realize that infer-
ence on the mixing matrix A entails maximization of the
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posterior probability with respect to A. Moreover, due to
the fact that the logarithm is a monotonically increasing
function, maximization of 𝑝(A | x) yields the same optimal
value for A as would maximization of log𝑝(A | x).

As a first step to solve the inference problem, we follow
Bell and Sejnowski [10] and assume the source signals s to be
mutually independent. Furthermore, we express our belief in
(1) by assigning a delta function to the likelihood 𝑝(x | A, s).
Combining these assumptions with the posterior probability
in (4) gives

𝑝 (A | x) ∝ 𝑝 (A) ∫
𝑁

∏

𝑖

𝛿(𝑥
𝑖
−

𝑀

∑

𝑘

𝐴
𝑖𝑘
𝑠
𝑘
)

𝑀

∏

𝑗

𝑝
𝑗
(𝑠
𝑗
) ds,

(17)

which can be solved to

𝑝 (A | x) ∝
𝑝 (A)
detA
∏

𝑚

𝑝
𝑚
(∑

𝑘

𝑊
𝑚𝑘
𝑥
𝑘
) , (18)

with W being the inverse of A, referred to as the unmixing
matrix.

Taking logarithms on either side gives

log𝑝 (A | x) = log𝑝 (A) + logdetW

+∑

𝑚

log𝑝
𝑚
(∑

𝑘

𝑊
𝑚𝑘
𝑥
𝑘
) + 𝐶.

(19)

Here, 𝐶 is a constant, independent of A.
For clarity, we introduce the estimated sources ŝ as

ŝ = Wx. Furthermore, instead of maximizing the posterior
probability distribution with respect to A, we maximize it
with respect to the separation matrixW [8]. Accordingly,

𝜕

𝜕𝑊
𝑖𝑗

log𝑝 (A | x) = 𝜕
𝜕𝑊
𝑖𝑗

log𝑝 (A)

+ 𝐴
𝑗𝑖
+ 𝑥
𝑗
(
(𝜕/𝜕𝑠
𝑖
) 𝑝i (𝑠𝑖)

𝑝
𝑖
(𝑠
𝑖
)
) ,

(20)

or in terms of the derivative with respect to the matrixW:

𝜕

𝜕W
log𝑝 (A | x) = −A𝑇MA𝑇 + A𝑇 + (

(𝜕/𝜕𝑠
𝑖
) 𝑝
𝑖
(𝑠
𝑖
)

𝑝
𝑖
(𝑠
𝑖
)
) x𝑇,

(21)

where

𝑀
𝑖𝑗
=
𝜕

𝜕𝑊
𝑖𝑗

log𝑝 (A)

=

{{{

{{{

{

√
2

𝜋𝜎
2

𝑖𝑗

exp [𝑓2
𝑖𝑗
(𝑎
1
)] − exp [𝑓2

𝑖𝑗
(𝑎
2
)]

erf [𝑓
𝑖𝑗
(𝑎
1
)] − erf [𝑓

𝑖𝑗
(𝑎
2
)]

for 𝑖 ≤ 3

0 else.
(22)

The optimal unmixing matrix W can be inferred by
implementing a gradient search algorithm. Moreover, by

postmultiplying (21) by W𝑇W, the expression can be made
invariant to changes in the definition of the coordinate system
that defines the various ⃗𝑟 [14]:

ΔW = −A𝑇MW +W + (
(𝜕/𝜕𝑠
𝑖
) 𝑝
𝑖
(𝑠
𝑖
)

𝑝
𝑖
(𝑠
𝑖
)
) ŝ𝑇W, (23)

where ΔW is the update term for the gradient search
algorithm:

W
𝑖+1
=W
𝑖
+ 𝜆ΔW, (24)

with 𝜆 as the learning rate.

2.3. Implementation Challenges

2.3.1. Numerical Accuracy of Error Function. When imple-
menting the proposed source separation method, singulari-
ties can arise due to a finite numerical accuracy in estimating
the error functions in the denominator of (22). Specifically,
we implemented the source separation in MATLAB (The
MathWorks Inc.), which can no longer distinguish between
error functions when the arguments have exceeded the value
of 6 (or are smaller than −6):

erf (𝑧
1
) − erf (𝑧

2
) = 0, if 𝑧

1
≥ 6 ∧ 𝑧

2
≥ 6. (25)

To avoid such singularities, we can approximate the error
function by [15]

erf (𝑧) = 𝑧
|𝑧|

[

[

1 −
1

(∑
4

𝑖=0
𝑏
𝑖|𝑧|
𝑖
)
4

]

]

, (26)

with 𝑏
0
= 1, 𝑏

1
≈ 0.28, 𝑏

2
≈ 0.23, 𝑏

3
≈ 9.8 ⋅ 10

−4, and 𝑏
4
≈

7.8 ⋅ 10
−2.

Implementation of this approximation in MATLAB
resolves the issue with finite numerical accuracy of the error
function, no longer yielding zero difference when both 𝑧

1
and

𝑧
2
exceed 6 but are not identical.

2.3.2. Estimating Model Inaccuracies. In Section 2.2.2, we
have assumed the variance 𝜎 to be known. When analyzing
(23), the termA𝑇MW acts as a physiological component.The
other terms together entail a typical BSS solution. In other
words,A𝑇MW is a physiology-based correction to the source
separation. According to (22), the degree of correction is con-
trolled by𝜎. Large values for𝜎 indicate little confidence in the
prior, physiology-based model and cause the method to act
more or less as a BSS approach. Large confidence in the prior
model, represented by small values for 𝜎, results in a larger
contribution of the prior model to the source separation.

For fetal ECG recordings, inaccuracies in the prior model
arise from noise in the ECG signals or from erroneous
assumptions with respect to the uniform propagation prop-
erties of the volume conductor or with respect to the sphere-
like shape of the pregnant abdomen with the fetal heart in
the center. These model inaccuracies can be tested by using
the prior model to estimate ⃗𝜌(𝑡) and, subsequently, inverting
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the model to estimate the ECG signals from the estimated
⃗𝜌(𝑡):

⃗𝜌 (𝑡) = A†V (𝑡) ,

V̂ (𝑡) = A ⃗𝜌 (𝑡) .
(27)

Here, A† indicates the pseudoinverse of A, and A is provided
by the prior model of (9).

The difference signal 𝜖(𝑡) between the recorded and esti-
mated ECG signals yields an indication for the model accu-
racy. Specifically, the variance of 𝜖 can be used as a measure
for 𝜎 [16]:

𝜎
2

𝑖𝑗
= var [V

𝑖 (𝑡) − V̂𝑖 (𝑡)] . (28)

This expression implicitly assumes that 𝜎
𝑖𝑗
is independent

of 𝑗 (i.e., 𝜎
𝑖𝑗
= 𝜎
𝑖
).

To account for changes in the circumstances during the
fetal ECG recording, for example, when the mother is having
uterine contractions, the variance is determined within a
sliding window of 2 seconds.

2.4. Evaluation of Source Separation. The developed prob-
abilistic source separation method is evaluated by assessing
its performance in extracting fetal ECG source signals from
noninvasive recordings. The performance is evaluated by
comparing it with that of a widely used ICAmethod: FastICA
[17]. The performance of the source separation techniques
is assessed both quantitatively and qualitatively. Quantitative
assessment is achieved using simulated recordings and qual-
itative assessment is done via actual abdominal recordings.

2.4.1. Data

Simulated Fetal ECG Recordings. For simulating fetal ECG
recordings, we use three orthogonal ECG signals recorded
from an adult. These ECG signals are linearly combined, via
a randomly determined mixing matrix, into 𝑁 ECG signals.
To mimic the low quality of fetal ECG signals, these𝑁 ECG
signals are corrupted by muscular interferences and noise,
obtained via a𝑁-channel recording of bipolar measurements
on a subject’s arm. These measurements contain muscle
activity and noise but due to their bipolar nature and position
contain virtually no ECG contribution. Finally, also artificial
powerline interference is added. An example of a simulated
fetal ECG recording is shown in Figure 1.

To evaluate the developed source separation method for
various degrees of signal quality, the signal to noise ratio
(SNR) is varied between −10 and +30 dB. For each SNR, the
evaluation is repeated 20 times to suppress the influence of
the randomly determined mixing matrix. That is, in each
repetition the mixing matrix is determined by picking its
coefficients from a Gaussian distribution with unit variance.

Real Noninvasive Fetal ECG Recordings.Thenoninvasive fetal
ECG recordings are performed at the Máxima Medical Cen-
ter, Veldhoven, The Netherlands, using a NEMO data acqui-
sition system (NEMOHealthcare BV,TheNetherlands), after
having obtained written informed consent from the mother.

0 0.5 1 1.5 2
Time (s)

Figure 1: Example of a simulated 6-channel fetal ECG recording.

0 1 2 3 4
Time (s)

Figure 2: Example of real 8-channel fetal ECG recording. In this
recording, the maternal ECG has already been removed using
an adaptive template subtraction method [5] and high-frequency
components of muscular activity have been suppressed by bandpass
filtering between 1 and 70Hz.

At the time of recording, the mother was 28 weeks pregnant.
Eight abdominal signals are acquired simultaneously with
a 1 kHz sampling rate and are preprocessed to suppress
powerline interference, muscle activity, and maternal ECG
according to [5]. An example of the abdominal recording after
preprocessing is depicted in Figure 2. It should be noted here
that the preprocessing, by far, does not yield a good-quality
fetal ECG and, hence, the need for additional processing,
for example, by source separation. It should be noted as
well that many others have applied (blind) source separation
techniques without prior removal of the maternal ECG [2, 6].
In that case, the source separation technique, besides fetal
ECG, also attempts to estimate thematernal ECG. As a result,
fewer sources remain to estimate other interferences as well
(i.e., the number of sources that can be extracted is restricted
to the number of recorded signals:𝑀 ≤ 𝑁) yielding the fetal
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(b)

0 0.5 1 1.5 2
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(c)

Figure 3: Results of source separation by the developed ISS method and FastICA for SNR of 6 dB. Each panel represents one of the three
orthogonal ECG sources. In each panel, the top line represents the ECG source used in the simulation, the center line represents the
corresponding source extracted by the ISS method, and the bottom line represents the corresponding source extracted by FastICA. The
simulated fetal ECG recording used in the source extraction was depicted in Figure 1.

ECG sources to be more likely a mixture of fetal ECG and
interferences.

2.4.2. Evaluation Criteria. In our simulations, the perfor-
mance of the source separation methods is quantified in
terms of the normalized mean squared error 𝑒 between the
original sources S and the estimated sources S̃:

𝑒 =

∑ (S̃ − S) (S̃ − S)
𝑇

∑ SS𝑇
. (29)

The performance in separating sources in actual fetal
ECG recordings is determined by assessing the ability of
a peak detection algorithm to determine the fetal heart
rate. The employed peak detection algorithm is based on a
continuous wavelet transform [18] and the source signal rep-
resenting the fetal ECG is selected based on visual inspection.
The ability to correctly detect fetal ECG peaks is quantified by
the sensitivity (Se):

Se = TP
TP + FN

, (30)

and positive predictive value (PPV):

PPV = TP
TP + FP

. (31)

Here, TP (true positive) is the number of correctly detected
peaks, FP (false positive) the number of detections that were
incorrectly labeled as ECG peaks, and FN (false negative)
the number of ECG peaks that were missed by the detection
algorithm. As a gold standard for assessing whether peaks are
detected correctly, visual annotation by a clinical expert, on
fetal ECG recordings in which the maternal ECG has been
suppressed, is used.

With fetal heart rate detected, further enhancement of the
fetal ECG can be achieved by (adaptively) averaging various
consecutive ECG complexes, for example, as described in
[16].

3. Results and Discussion

3.1. Results on Simulated Data. In Figure 3, an example of the
source extraction by both the developed ISSmethod and Fas-
tICA is shown. The sources are extracted from the simulated
fetal ECG recording that was depicted in Figure 1 and that has
a SNR of 6 dB. As mentioned earlier, three orthogonal ECG
sources were used to simulate the𝑁 = 6 channels of the fetal
ECG recording. For each of the orthogonal ECG sources, the
extracted source that matches the ECG best, in terms of least
squared error, is used for the evaluation.

In Figure 4, the performance of both source separation
methods as a function of the SNR of the simulated fetal ECG
recordings is depicted. This figure shows that the developed
ISS method outperforms FastICA for all SNR.

3.2. Results on Real Data. In Figure 5, the performance of the
source separation methods for real fetal ECG recordings is
depicted.The upper plot shows one of the recorded fetal ECG
signals and the center plot shows the best fetal ECG source
determined by ISS. The lower plot shows the best fetal ECG
source by FastICA. The best ECG source is hereby defined as
the source that yields the highest Se and PPV for ECG peak
detection. It has to be noted here that the annotation of the
recorded fetal ECG signal was based on visual analysis of all
recorded channels at the same time. ECG peaks that are not
distinctively discernible in the depicted ECG signal might
have been annotated based on a different channel.

In total, 1532 ECG peaks have been annotated by the clin-
ical expert in the 10-minute long abdominal recording. The
performance of the employed peak detection algorithm in
finding all these peaks in the ISS estimated fetal ECG source
signal is Se = 0.88 and PPV = 0.84. In the FastICA esti-
mated source signal, the performance of the peak detection
is Se = 0.72 and PPV = 0.78.

3.3. Discussion. As mentioned in Section 2.3.2, when con-
sidering the update rule for the developed ISS method in
(23), it shows that the last two terms on the right-hand
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Figure 4: Performance of both source separation methods as a
function of the SNR of the simulated recordings. Each depicted data
point is the mean over 20 simulations with random mixing matrix.
The standard deviations over these 20 simulations, although often
too small to see in the graph, are also plotted.

side correspond to the ICA method developed by Bell and
Sejnowski [10]. The first term on the right-hand side is a
correction to the ICA solution and is based on a priori
knowledge of the electrophysiology of the ECG. Any solution
to the source separation problem by ISS, hence, entails a
tradeoff between the ICA solution and the solution based on
the physiological model of Section 2.2.1. The ratio in which
each of these solutions contributes to the ISS solution strongly
depends on estimated model inaccuracies: 𝜎, compare (22).

The abovementioned tradeoff between ICA and physiol-
ogy can also be regarded as a tradeoff between accuracy and
robustness. We have illustrated this by applying our method
to high-quality, yet realistic, (simulated) fetal ECG recordings
and to lower-quality, but commonlymore frequently encoun-
tered, (real) fetal ECG recordings. The statement of lower
quality for the real recordings is based on visual comparison
of Figures 1 and 2. The simulated recordings show that the
gained robustness (ISS can locate all three fetal ECG sources,
while FastICA could only estimate the two sources in Figures
3(b) and 3(c)) comes at the expense of a loss in accuracy;
the three sources by ISS contain more noise than the two
sources by FastICA. With regard to accuracy, as shown in
Figure 4, the lack of accuracy—in terms of more noise in
the estimated sources—by the ISS method is limited and is
outweighed by the increase in robustness, as evidenced by
the better performance of ISS for all SNR. With regard to
robustness, as shown in Figure 5, for lower-quality fetal ECG
recordings, the lack of robustness in BSS methods causes
FastICA to fail in estimating a proper fetal ECG source,
while the more robust ISS method can still estimate a fetal
ECG source. In terms of detecting the fetal heart rate in the
estimated sources, ISS outperforms FastICA by a sensitivity
increase of 0.16 and an increase in the positive predictive

0 1 2 3 4
Time (s)

Figure 5:The upper plot shows a recorded and annotated fetal ECG
signal.This depicted signal was preprocessed as described in Section
2.4.1 and was visually selected out of the𝑁 = 8 recorded signals as
the one with the best fetal ECG.The center plot shows the fetal ECG
source signals estimated with the developed ISS method. The lower
plot shows the fetal ECG source signal estimated with FastICA.The
triangles indicate detected fetal QRS complexes.

value of 0.06. As already indicated, when comparing the
sources extracted from the simulated data in Figure 3, it
shows that—although ISS can better reproduce the original
sources in terms of ECG shape—the ISS sources containmore
noise than the FastICA sources. The main reason for this is
that FastICA is not capable of estimating, in particular, the
first ECG source (Figure 3(a)). As a result, for the 6-channel
recording, FastICA has 4 sources remaining that represent
noise. The ISS method estimates all three ECG sources and
hence has only 3 sources remaining to represent the noise. By
increasing the number of recorded signals 𝑁 and therefore
the number of possible sources𝑀 that can be estimated, the
accuracy of the source separation can be improved. In addi-
tion, when the goal of the source separation method is to
compute fetal heart rates, the morphology of the extracted
sources is more important than the noise in these sources.
For example, Figure 3(a) shows that the ISSmethod can better
preserve this morphology than FastICA.

In this paper, the developed ISS method was applied
to extract fetal ECG sources from preprocessed abdominal
recordings. This preprocessing includes suppression of the
maternal ECG and in this paper we used a template-based
method to do this. As an alternative approach, others have
used BSS techniques to extract fetal ECG sources directly
from (unprocessed) abdominal recordings [2, 19]. The devel-
oped ISS method can also be applied directly on the unpro-
cessed recordings, but for this approach to perform up to its
potential a proper prior model of the maternal ECG has to be
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included next to the model for the fetal ECG. This extension
of our ISS method is subject for further studies.

4. Conclusions

In this paper, a source separation technique for fetal ECG
signals was developed that exploits prior knowledge on the
signal mixing.When critically examining the presented solu-
tion to the source separation problem, it shows that the
developed technique is similar to the Bell and Sejnowski [10]
ICA approach, but with a correction that pushes the separa-
tion matrix towards a physiological model of the fetal ECG.
The confidence in this physiological model determines the
degree of correction. Little confidence causes the method to
act as BSS techniquewith little to no pushing towards the phy-
siological model. More confidence, on the other hand, leads
to a technique that is more governed by the physiological
model.

With respect to FastICA, the developedmethod performs
better in retrieving the ECG sources in simulated and real
fetal ECG recordings. More extensive evaluation of the devel-
oped method is however required to conclusively state about
its performance, for example, in case of poorly determined
electrode positions.
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