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Abstract Sharing personal activities on social networks is very popular nowa-
days, where the activities include updating status, uploading dining photos,
sharing video clips, etc. Finding travel interests hidden in these vast social ac-
tivities is an interesting but challenging problem. In this work, we attempt to
discover travel interests based on the spatial and temporal information of geo-
tagged photos. Obviously the visit sequence of a traveler can be approximately
captured by her shared photos based on the timestamps and geo-locations. To
extract underlying travel topics from abundant visit sequences, we study a
novel mixture model to estimate the visiting probability of regions of attrac-
tions (ROAs). Such travel topics can be used in different applications, such
as advertisements, promotion strategies, and city planning. To enhance the
estimation result, we propose a mutual reinforcement framework to improve
the quality of ROAs. Finally, we thoroughly evaluate and demonstrate our
findings by the photo sharing activities collected from FlickrTM.

Keywords Web Images · Travel Analysis · Regions of Attraction · Mixture
Models

1 Introduction

With the popularity of GPS embedded devices, huge amount of geo-tagged
data is produced in recent years and makes it possible to mine out travel re-
lated knowledge. This area has seen a significant increase in attention over
the past decade, where the mining problems include pointing the next visit-
ing location [6,26], planning a tour route [26,39], and suggesting interesting
landmarks [24,28,34,36,44]. All these work aim to recommend or suggest trip
knowledge for individuals, thus need to know users’ personal information, such
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as their profiles [6,24], historical locations [6,26,34,36,44], current location [26,
39,44], or their preferences [28]. However, such personal information may not
be available due to privacy concerns [5,11] or cold-start issues (e.g., newly reg-
istered users). In this work, instead of giving trip recommendations for each
individual user, we study how to summarize popular travel topics for a city by
analyzing historical geo-tagged data of travelers. We argue that such knowl-
edge is important for travel agencies to plan their topic-oriented tours, such as
culture-oriented tours, shopping-oriented tours, or kids-oriented tours. In fact,
the results are also important for the tourism department of a government to
learn its main travel topics, thus well deploy its facilities in order to promote
its tourism industry.

Typically there are two common approaches to summarize the main travel
topics of a city: (1) expert-based, or (2) data-based. In the first approach,
tourism experts are invited to subjectively classify the landmarks of the city
into several categories. However, this method is not suitable to tour recom-
mendations since a travel is not only decided by landmark categories but also
other constraints (e.g., spatial and temporal). Thus we tackle this problem
with the second approach (i.e., data-based) in this work. To our understand-
ing, geo-tagged data can reveal the ‘footprints’ and ‘behaviors’ of travelers,
thus can well extract the travel topics of a city.

Fig. 1 Tour trajectories in NYC



Travel Topic Analysis: A Mutually Reinforcing Method for Geo-tagged Photos 3

We illustrate our idea by the following example. Suppose that we collect
a set of geo-tagged photos from three travelers ua, ub,and uc at NYC. Fig-
ure 1 plots their tour sequences based on the taken time and geo-location of
the photos, where a camera icon represents a set of photos taken in a region
of attraction and an arc represents a transit from one region to another re-
gion. For instance, traveler ua’s tour starts at Wall Street and subsequently
passes through Statue of Liberty, Roman Catholic Church, and Empire

State Building. Finally, ua ends her trip at Apple Store. From the high
co-occurrence of the visited regions (four common regions), travelers ua and
ub should have some common travel interests. On the other hand, the travel
interests of uc should be different from the others since she only visits museums
in her trip.

In practice, the geo-tagged data can be extracted from traveler activities
in several ways, such as metro card records [30], mobile phone signals [2],
etc. However, most of them are not public available due to privacy concerns.
Fortunately, there are an increasing number of people sharing their geo-tagged
data over public social network services, such as FlickrTM, PicasaTM, and
PhotobucketTM, which enables to analyze the user behaviors using their geo-
tagged data.

Intuitively, the trip (i.e., regions of attraction (ROAs)) of a traveler is often
driven by her interests. If a group of travelers visits similar ROAs, we simply
conclude that they have common interests (i.e., a travel topic). For example,
a group of travelers may prefer to visit natural landscapes such as forests,
parks, mountains and rivers, while another group of travelers may prefer to
take photos at famous landmarks such as Times Square and United Nations.

Suppose r1, r2, ..., rN are the ROAs of a city, a travel topic
−→
θ can be

viewed a vector of probability, (p(r1|
−→
θ ), p(r2|

−→
θ ), ..., p(rN |

−→
θ )), where p(ri|

−→
θ )

indicates the conditional probability to visit an ROA ri under topic
−→
θ . Our

first mission in this work is to extract a set of travel topics based on the
information of geo-tagged data. We add a note that our problem is different
from trajectory mining work [1,13,18,20,27] where their analysis are mainly
based on the visiting order of ROAs. However, travelers who share similar
travel interests may have completely different routes to visit the same set of
ROAs so that the trajectory based solutions are not applicable to our problem.

Obviously the quality of a travel topic
−→
θ is highly related to the quality of

ROAs (i.e., R = {r1, ..., rN}). However, the shape and size of ROAs cannot be
defined easily. For instance, the region of Apple Store may only be a small
area while the Wall Street is a large region since travelers often visit the
entire district instead of any single area of it. To define a good quality set
of ROAs, a straightforward solution is to select R from the landmarks of a
city. However, this approach may omit some travel topics. As an example,
travelers may visit some regions out of landmarks. Another approach to define
R is to cluster the data [21,22,35,40] based on their geographical locations
and data density using standard clustering approaches. Given the clustering
result as an input, our second mission in this work is to further enhance the
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identification of ROAs using a mutual reinforcement framework. This idea has
the same intuition of [43,44] where ROAs and travel trajectories are mutually
reinforced.

We summarize our main contributions in this manuscript as follows.

– We transform the travel topic discovery problem into a multinomial mix-
ture probability model such that the travel topics can be estimated by
Expectation-Maximization. To the best of our knowledge, we are the first
work to adopt this model for travel interest analysis.

– We propose a mutual reinforcement framework that iteratively refines the
travel topics and regions of attraction. Our experiments demonstrate that
the reinforcement process improves the overall identification quality.

The rest of the paper is organized as follows. We provide the formal defini-
tions and adopt a probabilistic mixture model to estimate the travel topics in
Section 2. The solution of travel topics extraction is discussed thoroughly in
Section 3. In Section 4, we experimentally evaluate our methods using real data
collected from FlickrTM. Section 5 discusses related work. Finally, Section 6
concludes the paper.

2 Preliminaries

In this section, we formally define the fundamental elements of our travel topic
discovery problem, such as tour trajectory, region of attraction, and travel
topic. Furthermore, we discuss how the discovery problem can be viewed as
an optimization problem such that the best travel topics can be estimated by
Expectation-Maximization algorithm (EM).
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t3,2
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r1
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Fig. 2 Travel trajectories, regions of attraction, travel topics, and background topics

We first define an ROA and a tour trajectory as follows, where these two
concepts are thoroughly used in our solution.
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Definition 1 (Region of attraction, ROA) A region of attraction, r, is
the convex polygon of a set of geo-tagged photos.

Definition 2 (Tour trajectory) A trajectory, ti = {ti,1, ..., ti,n} ∈ T, is
a bag of geo-locations of photos taken by the same user with corresponding
taken-time, where ti,j donates the j-th geo-location in ti.

Given a geo-tagged photo dataset, a tour trajectory ti (see Def. 2) can be
extracted from the photos taken by a traveler. According to the taken time of
the photos, we can construct a tour trajectory ti = {ti,1, ..., ti,n} where ti,j indi-
cates the geo-location of the j-th taken photo in ti. Typically, a tour trajectory
ti = {ti,1, ..., ti,n} should be decomposed into {ti,1, ..., ti,j} and {ti,j+1, ..., ti,n}
if the time interval between ti,j and ti,j+1 is too long (48 hours) since they are
not likely in the same tour.

As introduced in Section 1, the set of regions of attraction (ROAs) (see
Def. 1) visited by a traveler is driven by her travel interests. Figure 2 illustrates
4 different tour trajectories where these trajectories may reveal their travel
interests. For example, the travel interests of t4 are unlikely similar to t1 and
t2 as they visit different set of ROAs, {r3, r4} vs {r1, r2, r4}.

Given the trajectories and ROAs, our mission is to summarize a group of
travel topics that reveal the travel interests of travelers. In this work, a travel
topic is represented by the probability of visiting each ROA. We formally define

a travel topic
−→
θ as follows.

Definition 3 (Travel topic,
−→
θ ) A travel topic

−→
θ represents the prob-

ability distribution over ROAs denoted as (p(r1|
−→
θ ), p(r2|

−→
θ ), ..., p(rN |

−→
θ )),

where p(ri|
−→
θ ) is the probability of visiting ROA ri under topic

−→
θ , subject to∑|R|

i=1 p(ri|
−→
θ )=1.

For the ease of discussion, we define a mapping function R(ti,j) that in-
dicates the corresponding ROA containing the j-th location of tour ti, e.g.,

R(t2,3) = r1 in Figure 2. Accordingly, we can replace p(r|
−→
θ ) by p(R(ti,j)|

−→
θ )

if r = R(ti,j). Inspired by the topic discovery problems [4,16,19,42], given a

topic
−→
θ , the probability of independently selecting each ROA in a tour ti can

be defined as follows.

p(ti|
−→
θ ) =

|ti|∏
j=1

p(R(ti,j)|
−→
θ ) (1)

Given a mixture of K travel topics
−→
θ 1:K = {

−→
θ 1, ...,

−→
θ K} and the corre-

sponding mixture coefficients −→π ti = {πti,1, ..., πti,K} of a tour ti, the proba-

bility of ti given the mixture of travel topics
−→
θ 1:K can be defined as

p(ti|
−→
θ 1:K) =

|ti|∏
j=1

K∑
k=1

πti,k · p(R(ti,j)|
−→
θ k) (2)
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where
∑K
k=1 πti,k = 1 and ∀1≤k≤K πti,k ≥ 0.

To estimate the mixture of K travel topics
−→
θ 1:K for a tour trajectory set T,

we can apply Expectation-Maximization algorithms (EM) [12,16] to find the

maximum likelihood estimation of the variables (i.e.,
−→
θ 1:K and −→π t1 , ...,−→π t|T|).

To further enhance the estimation quality of EM, we should remove back-

ground topic
−→
β from the estimation process. In this work, a background is an

ROA that is visited by abundant travelers (i.e., overly popular), e.g., Statue
of Liberty in NYC. Such popular ROAs likely appear in every travel top-
ics such that they are not helpful to distinguish travel topics. A background

topic
−→
β gives the popularity degree of each ROA which is formally defined as

follows.

Definition 4 (Background Topic,
−→
β ) The probability of visiting an ROA

rc under the background
−→
β is described as:

p(rc|
−→
β ) =

|T|∑
i=1

c(ti, rc)

|T|∑
i=1

|R|∑
j=1

c(ti, rj)

(3)

where c(ti, rj) = 1 if and only if tour ti passes ROA rj ; otherwise, c(ti, rj) = 0.

In the example of Figure 2, ROA r4 has the highest background probabil-

ity, where p(r4|
−→
β ) = 4

11 , as all four tours pass r4. To leverage the effect of

the background topic
−→
β in the identification process, we replace p(ti|

−→
θ 1:K)

in equation 2 with a linear combination of p(ti|
−→
θ 1:K) and the background

probability of the ROAs:

p(ti|
−→
θ 1:K ;

−→
β , b) =

|ti|∏
j=1

((1− b)
K∑
k=1

πti,k · p(R(ti,j)|
−→
θ k) + b · p(R(ti,j)|

−→
β )) (4)

where b is a tunable mixture coefficient for leveraging the effect of background

topic
−→
β in this work. An ROA can be generated from a travel topic or the

background topic when we involve
−→
β into the model. According to the proba-

bility in
−→
β , it is more likely to generate these ROAs from

−→
β instead of other

travel topics which can significantly avoid hottest ROAs dominate all travel
topics.

For clarity, we use an example to explain how Equation 4 reduces the effect
of over-popular landmarks. Suppose ra is an over-popular landmark (e.g., 10%
photos were taken in ra), ra is likely ranked as the most important ROA
in every travel topic when these topics are estimated by Equation 2. When

taking the background topic
−→
β into consideration (cf. Equation 4), ra is likely

generated from the background topic
−→
β (given) instead of other travel topics

−→
θ 1:K (estimated). In other words, ra is included into a travel topic

−→
θ only
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if ra is strongly related to
−→
θ , i.e., a certain number of similar trajectories

(> 10%) passes ra.

Finding the estimation of the variables (i.e.,
−→
θ 1:K and −→π t1 , ...,−→π t|T|) in

Equation (4) can be viewed as the following optimization problem as follows.

argmax
−→
θ 1:K ,

−→π t1 ,...,
−→π t|T|

∏
ti∈T

p(ti|
−→
θ 1:K ;

−→
β , b) (5)

Discussion. Similar to other topic discovery problems [4,16,19,42], the op-
timization (Equation (5)) can be solved by the EM algorithms. However, dis-
covering travel topics is more challenging since the set of ROAs R and the
number of travel topics K are enormously varying from city to city. As dis-

cussed above, the quality of travel topics
−→
θ 1:K is sensitive to the size and

shape of ROAs. Suppose that there are 100 ROAs in R but 4 of them are very
large which almost cover the entire map. The discovery result should be poor

with such a skew data distribution. Although R and
−→
θ 1:K can be defined by

clustering [40,44] and incremental topic discovery [3,19] respectively, there is
no prior work to study how to optimize the quality of these two techniques in
a unified framework. In this work, we propose a novel solution, named Mutual

Reinforcing Travel Topic Discovery (MRTD), that iteratively refines
−→
θ 1:K and

R until their identification quality is converged.

3 Mutually Reinforcing Travel Topic Discovery

3.1 Incremental Travel Topic Construction

In this section, we discuss how to construct travel topics incrementally based
on a set of pre-defined ROAs R. The motivation of this incremental process is
providing an automatic way to decide a suitable number of topics for different
cities. When constructing a new travel topic, we should consider 2 conditions,
(1) if the new travel topic is a common interest shared by a group of travelers
(i.e., level of confidence) and (2) if the new travel topic is different from the
other travel topics in the result (i.e., level of duplication). Based on these
concerns, we propose a 3-steps framework to construct the travel topics.

Constructing a travel topic. Given a trajectory ti, we can construct a new

travel topic
−→
θ ti based on a set of similar trajectories, where the set of similar

trajectories can be formed by the following equation.

Ttisim = {tj |tj ∈ T, sim(ti, tj) > λsim} (6)

where λsim is the similarity threshold and sim is defined as:

sim(ti, tj) =

∑
r∈R

pass(ti, tj , r)

min (|ti|, |tj |)
(7)
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where pass(ti, tj , r) return 1 if both ti and tj pass through r, and 0 other-
wise, e.g., pass(t1, t2, r1)=1 in the example of Figure 2. While the numerator
can be viewed as the common interest of two trajectories, the denominator
is a normalization factor. According to our experimental study, the defini-
tion of Ttisim may be too strict in practice as the length of the trajectories
is largely varying. This turns out that very few trajectories can fulfill the
threshold due to the length variance. Thereby, we revise the definition of Ttisim
such that it considers not only the trajectory in its entirety but also its sub-
sequences of length larger than 4. If there are more than one subsequences
fulfilling the threshold, we only pick the longest subsequence into Ttisim. For
instance, given ti = {r4, r5, r6, r7, r8, r9} and λsim = 0.5, the subsequences
of tj(= {r1, r2, r3, r4, r5, r6}) of length larger than 4 are {r1, r2, r3, r4, r5, r6},
{r1, r2, r3, r4, r5}, and {r2, r3, r4, r5, r6}. We only pick {r1, r2, r3, r4, r5, r6} into
Ttisim since it is the longest one.

Given Ttisim, according to Equation (4) and (5), we can construct a travel
topic based on Ttisim using the following equation:

−→
θ = argmax

−→
θ

p(Ttisim|
−→
θ ) = argmax

−→
θ

∏
ti∈T

ti
sim

p(ti|
−→
θ )

= argmax
−→
θ

∏
ti∈T

ti
sim

|ti|∏
i=1

((1− b)p(R(ti,j)|
−→
θ ) + bp(R(ti,j)|

−→
β ))

(8)

Note that Equation (8) is slightly different from Equation (4). The coefficients

π is removed since there is only one travel topic (
−→
θ instead of

−→
θ 1:K) under

consideration.

Incremental construction. So far we only discuss how to form independent
travel topics by Equation 8. Note that a travel topic is worth to construct only
when it is original to the existing travel topics. Figure 3 illustrates a toy ex-
ample when adding a new topic. Suppose that there are five tour trajectories

in the dataset and two travel topics
−→
θ 1 and

−→
θ 2 have been constructed by tra-

jectories {t5} and {t1, t2}, respectively. Their corresponding distributions are

plotted in Figure 3(b). The first travel topic
−→
θ 1 indicates that some travelers

are likely to visit ROAs r3 and r4 and the second travel topic
−→
θ 2 prefers to

visit r1 and r2. Suppose that we are trying to construct a new travel topic−→
θ new (by Equation (8)) using trajectory t3 and the set of similar trajecto-

ries Tt3sim = {t3, t4} 1. According to the distribution in Figure 3(b),
−→
θ new is

original since it indicates a set of travelers treats r5 as the most popular ROA

which is different from
−→
θ 1 and

−→
θ 2.

1 It should be noted that all trajectories (including t1,t2, and t5) are taken into consider-
ation. This is intuitive to the real world scenario, where a traveler may have multiple travel
interests so that her tour can be partitioned into several travel topics.
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Fig. 3 Example of originality checking

To assess the originality of a new travel topic, we introduce a function (first

introduced in [19]), ori(ti,
−→
θ new,

−→
θ 1, ...,

−→
θ K), that calculates the probability

divergence of generating one tour ti by including or excluding the new travel

topic
−→
θ new. Formally, the originality function is defined as:

ori(ti|
−→
θ new,

−→
θ 1, ...,

−→
θ E) = log

p(ti|
−→
θ new,

−→
θ 1, ...,

−→
θ E)

p(ti|
−→
θ 1, ...,

−→
θ E)

(9)

where
−→
θ 1, ...,

−→
θ E are the existing travel topics. The value returned by function

ori(· · · ) can be viewed as the gain of generating tour ti by introducing
−→
θ new

in the travel topics. It is high only when p(ti|
−→
θ new,

−→
θ 1, ...,

−→
θ E) � p(ti|

−→
θ 1,

...,
−→
θ E). In this work, a travel topic is constructed only when the originality

of every trajectory in Ttisim fulfills a threshold, λori.

Smoothing. In the above discussions, we have introduced how to discover
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Fig. 4 Example of Smoothing

travel topics with an incremental mixture probability framework, where the
quality of the travel topics highly depends on the photo points of tour trajecto-
ries. In practice, those points (photos) are sparse comparing with the footprint
of travelers. In other words, they probably visit some areas that are close to
their photo locations. In order to take these areas into consideration, we per-
form a smoothing technique which propagates the probability of a region to
its nearby regions.

Figure 4 demonstrates an example to smooth a travel topic over 3 ROAs.

In the original travel topic
−→
θ , travelers visit only r1; however, it may over-

look surrounding areas (e.g., r2 and r3). After smoothing, it propagates some
probability to surrounding ROAs, r2 and r3. Note that r1 propagates more
probability to r2 than to r3 since r2 is closer to r1 than r3.

In this work, we use an 2D Gaussian smoothing technique. We assume lat-
itude and longitude are independent, with the same variance (i.e., the covari-
ance of latitude and longitude is zero). In particular, the smoothing function

for a travel topic
−→
θ s is given as follows.

p(ri|
−→
θ s) ∝

|R|∑
j=1

1

2πσ2
e−

DE(ri,rj)

2σ2 p(rj |
−→
θ ) (10)

where DE(ri, rj) is the minimum Euclidean distance of ri and rj and it is
defined as

DE(ri, rj) = min{DE(tm,n, tm′,n′)|∀tm,n,tm′,n′R(tm,n) = ri ∧ R(tm′,n′) = rj}
(11)

Construction algorithm. Algorithm 1 gives the pseudo code of the incre-
mental construction framework. For each trajectory ti, we first find a set of

similar trajectories Ttisim with Equation (6) and construct the travel topic
−→
θ ti

with Equation (8). To improve the quality of
−→
θ ti , it is then refined by the
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smoothing technique. After constructing all independent travel topics, we pick

a travel topic of ti, whose originality value p(ti|
−→
θ ti) is the largest, into the

result set for avoiding cold start. Subsequently, we evaluate each travel topic

by their originality. A travel topic
−→
θ ti is included in the result set

−→
θ 1:K only

if its originality of
−→
θ ti is larger than a given threshold λori (line 9). The

construction is terminated when there is no more original travel topic in T.

Algorithm 1 Incremental travel topic construction
Input: Tour trajectory set T and a set of ROAs R
Output: A set of travel topics

−→
θ 1:K

Algorithm constructTopics(T,R)

1: for ti ∈ T do . construct independent
−→
θ i

2: form similar trajectories Tti
sim by Equation (6)

3: construct
−→
θ ti of Tti

sim by Equation (8)

4: smooth
−→
θ ti by Equation (10)

5:
−→
θ 1:K := {

−→
θ ti}; K := 1; . Pick ti who has the largest p(ti|

−→
θ ti )

6: sort T by ori(ti,
−→
θ ti ,
−→
θ 1, ...,

−→
θ K) by Equation (9)

7: for ti ∈ T do . descending order to ori(ti,
−→
θ ti ,
−→
θ 1, ...,

−→
θ K)

8: for all tj ∈ Tti
sim do

9: if ori(tj ,
−→
θ ti ,
−→
θ 1, ...,

−→
θ K) < λori then . originality checking

10: break
11: if the loop is not broken then

12:
−→
θ 1:K :=

−→
θ 1:K ∪ {

−→
θ ti}; K := K + 1; .

−→
θ ti is a result

13: goto line 6

14: return
−→
θ 1:K

3.2 Regions of attraction refinement

Instead of manually defined ROAs, we recommend to identify ROAs by clus-
tering techniques [40,44,45] as the clustering result should better reflect the
footprint of travelers. However, these clustering techniques only take into ac-
count of distance and density information in their processing. In this work we
introduce a refinement approach which polishes ROAs by additionally consid-
ering other closeness metrics.

Intuitively, two neighbor ROAs should be merged if they attract similar
set of tourists. The similarity can be assessed by the divergence closeness of
their travel topic associations. By pairing up with other closeness measures, we
propose a novel refinement framework to polish ROAs for travel topic analysis.
To the best of our knowledge, we are the first work to identify ROAs based on
the result from a mixture model (i.e., travel topics). In the following, we first
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introduce three closeness measures of ROAs and then introduce our refinement
algorithm.

Travel topic distribution closeness. A travel topic is described as the prob-
ability distribution over different ROAs (as shown in Figure 3(b)). By using
Bayes’ formula, we have:

p(
−→
θ j |ri) =

p(ri|
−→
θ j)p(

−→
θ j)

K∑
k=1

p(ri,
−→
θ k)

=
πjp(ri|

−→
θ j)

K∑
k=1

πkp(ri|
−→
θ k)

(12)

where π1:k are the weights of travel topics in the mixture model which can be

derived from Equation (5) when
−→
θ 1:K is given.

Accordingly, we can measure the closeness of two ROAs by computing the
divergence of their travel topic associations. In this work, the divergence is
calculated by JS-divergence (Jensen-Shannon divergence) [29]. For the sake of

presentation, we simply set αi,j = p(
−→
θ j |ri) and −→αi = {αi,1, . . . , αi,K} where

−→αi can be regarded as the association of ri to the entire topic set
−→
θ 1:K . The

JS-divergence of two associations, −→αi and −→αj , is defined as:

DJS(ri, rj) = DJS(−→αi||−→αj) =
1

2
DKL(−→αi||−→αm) +

1

2
DKL(−→αj ||−→αm) (13)

where DKL represents a KL-divergence (Kullback–Leibler divergence) [25] and
−→αm = 1

2 (−→αi +−→αj). For discrete variable, DKL(−→αi||−→αj) is defined as

DKL(−→αi||−→αj) =

K∑
k=1

αi,klog
αi,k
αj,k

(14)

According to Equation (14), an ROA is divergence close to another ROA
if they are co-visited by a large set of tour trajectories. For instance, in Fig-
ure 3(a), r1 and r2 are divergence close since their distribution over different

topics are resembling in
−→
θ 1 and

−→
θ 2. Obviously, r1 and r2 should be merged

into one ROA since they are adjacent in spatial and co-visited by many tour
trajectories.

Spatial closeness. In some cases, we should not merge two divergence close
ROAs since they are not close in spatial space. For instance, Empire State

Building and Statue of Liberty are co-visited by a large amount of travel-
ers but we should not merge them into one ROA because they are geographi-
cally apart.

In this work, we assess the spatial closeness of two ROAs using Voronoi
diagram and Euclidean distance. We call an ROA ri spatially close to another
ROA rj if and only if ri is a neighbor of rj in Voronoi diagram and their
minimum Euclidean distance (see Equation 11) is smaller than a threshold
λE . The set of ROAs fulfilling the above constraints with ri is denoted as
V (ri, λE). Figure 5 gives an example to explain the spatial closeness, where
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r3

λ E
 

λ
E  

Fig. 5 Spatial closeness

the Voronoi diagram is constructed based on the objects of each ROA. We
say that r3 is a Voronoi neighbor of r2 since there is at least one Voronoi cell
of r3 being a neighbor of r2. However, they are not spatially close since their
minimum distance DE(r2, r3) is larger than the threshold λE .

Sequence closeness. In some situations (e.g., two ROAs on the different
sides of river without a bridge nearby), we may merge two ROAs incor-
rectly based on only divergence and spatial closeness. Therefore we use se-
quence closeness to address such problems. We call r1 and r2 sequentially
close, DS(r1, r2) = true, if r1 and r2 are consecutively visited in at least
one of the trajectories. Formally, DS(ri, rj) = true if and only if ∃tm,n ∈ T,
R(tm,n) = ri ∧ R(tm,n+1) = rj .

Refinement algorithm. We use a depth first approach to polish ROAs based
on the closeness metrics. At the beginning of an iteration, we pick the most
popular ROA ri from R, where the popularity is based on the number of
tours passing it. Then, we assign ri into a candidate set C. For every ROA
rj ∈ R−C, we add rj into C if rj is close to some ROA ri ∈ C in terms of their
divergence, spatial, and sequence closeness. We terminate a running iteration
if there is no more rj fulfilling the closeness constraints. Finally, we construct
a new ROA by merging all ri ∈ C and remove the elements in C from R. We
iteratively execute the above procedures until R becomes empty. We list the
pseudocode for the regions refinement in Algorithm 2.

Figure 6 shows an example of the merging. In this example, the solid line
between two ROAs ri and rj indicates that ri and rj fulfill the spatial and
sequence constraints. The value on the lines represents the JS-divergence of
ri and rj . Suppose that λJS is set to 0.3 and r1 is the first selected ROA.
We add r2 and r4 into C since they are close to r1 in terms of all closeness
measures. Subsequently, r3 is added into C since r3 is close to r2. At the end
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Algorithm 2 Regions of Attraction Refinement

Input: Travel topics
−→
θ 1:K , ROAs R(i)

Output: Refined ROAs R(i+1)

Algorithm refineRegions(
−→
θ 1:K ,R(i))

1: for i := 1 to |R| do . travel topic associations
2: for j := 1 to K do

3: αi,j := πjp(ri|
−→
θ j)

4: Sum := Sum+ αi,j

5: for j := 1 to K do
6: αi,j := αi,j/Sum

7: while R(i) is not empty do . refinement
8: pick rj ∈ R(i) where rj has the best popularity in R(i)

9: C := ∅; Q := {rj}
10: while Q is not empty do
11: pop rk from Q
12: for all rl ∈ V (rk, λE) do . spatial close
13: if DJS(−→αk||−→αl) < λJS then . divergence close
14: if DS(rk, rl) = true then . sequence close
15: R(i) := R(i) \ {rl}; push rl into Q
16: C := C ∪ {rk}
17: Insert C into R(i+1)

18: return R(i+1)
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Fig. 6 An example of ROA refinement

of this iteration, we construct a refined ROA by merging r1, r2, r3, and r4. In
the next iteration, we construct another refined ROA by merging r5 and r6.

3.3 Mutual Reinforcement

As shown in Section 3.1 and 3.2, the travel topics are constructed based on
a set of ROAs while the ROA refinement is done by giving a set of travel
topics. It is obvious that we can manage these two processes into an iterative
framework. We first obtain a set of small ROAs, R(0), by a standard clustering
approach. Then, we perform Algorithm constructTopics to compute a set of

travel topics
−→
θ

(1)
1:K based on R(0). Subsequently, we can pass

−→
θ

(1)
1:K to Algo-
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(a) Initial R(0) (b) Intermediate R(i) (c) Final R(n)

Fig. 7 ROA refinement by mutual reinforcement in Bronx Zoo, NY

rithm refineRegions and it returns a set of refined ROAs R(1). We iteratively
execute this mechanism until only a little (less than 1% in this work) ROAs
are refined in this iteration. Figure 7 shows three different stages of ROAs
in Bronx Zoo, NY. The pseudocode of the complete framework is shown in
Algorithm 3.

Algorithm 3 Mutual reinforcement
Input: Tour trajectory set T
Output: Travel Topics

−→
θ 1:K , ROAs R

Algorithm mutualreinforcement(T)
1: compute R(0) by standard clustering on the data in T
2: i := 0
3: while true do
4: i := i+ 1

5:
−→
θ

(i)
1:K := constructTopics(T,R(i−1))

6: R(i) = refineRegions(
−→
θ

(i)
1:K ,R

(i−1))

7: if R(i) = R(i−1) then go to line 8

8: return
−→
θ

(i)
i:K and R(i)

4 Experiments

4.1 Datasets

We evaluate our solutions using eight photo datasets collected from Paris, New
York, Rome, London, Tokyo, Hong Kong, Berlin and Barcelona, respectively,
where the photos and their metadata are came from 2 sources (4 of the datasets
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Table 1 Statistic Information of Data

City Photos Tours Init. ROAs Source

Paris, France 1,511.531 15,540 4,995 Flickr API
New York City, US 1,067,964 3,416 5,458 Flickr API
Roma, Italy 343,917 1,981 2,407 Flickr API
London, UK 1,305,977 8,134 7,362 Flickr API
Tokyo, Japan 147,268 795 1,404 Yahoo! [37]
Hong Kong, China 251,403 1,216 4,710 Yahoo! [37]
Berlin, Germany 310,661 1982 3.847 Yahoo! [37]
Barcelona, Spain 310,904 1,328 2,404 Yahoo! [37]

are crawled from FlickrTMand 4 of them are provided by Yahoo! WebscopeTM

Program [37]. Table 1 shows the detail statistic of our datasets.
For the sake of identification quality, we keep a tour trajectory in the

datasets only if it contains 10 or more photos at different locations. We gen-
erate a set of initial ROAs R by applying mean-shift algorithm [7] on the raw
datasets. The ROAs who are visited by at least 2 users are used as the input
of Algorithm 3.

In this work, we empirically determined the parameter values by inves-
tigating the first few travel topics. As a note, the performances are not very
sensitive to the similarity ratio λsim (default 0.6), JS-divergence threshold λJS
(default 0.02), and Euclidean distance threshold λE (default 50m). The effec-
tiveness of the originality threshold λori (default 10) is thoroughly evaluated
in [19]. The effect of background coefficient b is used to leverage the effect of
those popular ROAs, which is set to a reasonable value (i.e., 0.4).

4.2 Identification of Regions of Attraction

Though the ROA identification is not the main concern in this work, the
quality of ROAs, however, is important to the travel topic extraction. In this
section, we demonstrate the effectiveness of our refinement and reinforcement
process (cf. Section 3.2 and 3.3) on different clustering techniques [26,40].

Metric functions. The evaluation is based on a set of ground truth ROAs
M, that are extracted from the meta-data of OpenStreetMap 2. In this work,
we use a score function, Score(R,M), to assess the identification quality, which
aims to assess the uniqueness of the identification. We claim that an ROA ri
accurately identifies a ground truth region mj if all photos in mj are contained
in ri. Given a ground truth regionmj , the most accurate ROA r∗j that identifies
mj can be defined as follows.

r∗j = argmax
r∗j∈R

|r∗j ∩mj |
|mj |

(15)

2 To simplify our evaluation, we use minimum bounded rectangle to assign the photos
into the ROA of M.
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where |r∗j | and |mj | are the number of photos in r∗j and mj , respectively,
|r∗j ∩mj | is the number of photos in the intersection of r∗i and mj .

Based on the definition of r∗j , we define a function ρ to measure the unique-
ness degree as follows.

ρ(r∗j ,mj) =
|r∗j ∩mj |
|mj |

· 1

fP (r∗j )
(16)

where fP (r∗j ) is a penalty factor which indicates the number of the ground
truth ROAs treating r∗j as their representation. Accordingly, the score of R is
defined by the average uniqueness degree of the ground truth ROAs in M.

Score(R,M) =
∑
mj∈M

ρ(r∗j ,mj)/|M| (17)

r1

r1 r1
r1

r1

r1
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r2
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r2r2r2
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r1 r1
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r3

m1
m2

r3

r3

Fig. 8 Example of evaluation

We use an example in Figure 8 to demonstrate Score(R,M). In this exam-
ple, there are three ROAs R identified by our algorithm and two real ROAs M
extracted from OpenStreetMap. Suppose Score({r1, r2, r3}, M) is 0.95. If we
merge r1 and r2, then Score({r1 ∪ r2, r3}, M) becomes 1 since m2 is uniquely
identified by the refined ROA r1 ∪ r2 (i.e., fP (r1 ∪ r2)=1).

Evaluation. Our reinforcement framework, Mutual Reinforcing Travel Topic
Discovery (MRTD), requires a set of pre-defined ROAs as input. As reported
by [40], mean-shift [26] and self-tuning [40] are the best two methods to identify
ROAs from geo-tagged data. Thus we demonstrate the effect of our ROA
refinement process using the result of these methods as input. For fairness, we
tune the best parameters for [26] 3.

As shown in Figure 9, our refinement process improves the ROA quality
in terms of their uniqueness (i.e., Score function). This demonstrates merging
small ROAs based on their closeness (i.e., travel topics, spatial, and sequence)
is effective.

3 [40] is a parameter free technique.
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Fig. 9 Evaluation of ROA identification

(a) Mean-shift (b) MRTD

Fig. 10 Identification of Madison Square Garden

We illustrate a real ROA identification result in Figure 10. In this example,
Madison Square Garden is divided into several small ROAs by Mean-shift,
that obviously affects the travel topic analysis. The ROAs returned by our
iterative framework are more preferred as our framework successfully refines
a set of small ROAs into a large ROA (i.e., the coverage area is very close to
the ground truth ROA). The quality of ROAs is important to our problem as
each travel topic is extracted based on the ROAs (cf. Algorithm 1).

4.3 Travel Topic Analysis

In this section, we compare our topic discovery result with two recent works,
RouteSimilarity [45] and Topic-Markov Model [26], and two baseline approaches,
Frequent Pattern tree-based pattern fragment Growth mining method (FP-
Growth) [14] and Latent Dirichlet Allocation (LDA) [4]. RouteSimilarity [45]
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uses longest common sub-sequence as the similarity metric and applies hierar-
chical agglomerative clustering to group similar travel trajectories as a travel
topic. Topic-Markov Model [26] recommends ROAs based on probabilistic la-
tent semantic analysis (PLSA), where the result of PLSA is analogous to the
result of our mixture probability model. FP-Growth is an efficient method for
mining frequent patterns and LDA is another widely accepted method in topic
discovery problems.

We randomly select 10% trajectories as the testing data. Except the testing
data, all remaining trajectories are treated as the training data. Note that
RouteSimilarity [45] does not summarize the result where each travel topic
simply consists of a group of trajectories instead of a summarization (cf.,
Definition 3). To fairly assess the performance of RouteSimilarity, we calculate

the importance of an ROA rj of a topic
−→
θ i by the number of trajectories (in

−→
θ i) passing rj . Moreover, every method uses the same set of ROAs (generated
by MRTD) as input since the quality is better than other clustering approaches
(cf., Figure 8).

Given a list of k travel topics
−→
θ 1:k (i.e., a subset of

−→
θ 1:K), we claim that

a user would satisfy if the suggested travel topic(s) cover lots of her travel
interests (i.e., ROAs). In this work, we only use the k most similar topics
−→
θ 1:k to assess the quality of a topic set

−→
θ 1:K since users are not interested in

screening everything but would instead like a more informative and manage-

able result (i.e., k topics). First, we define the similarity between a topic
−→
θ i

and a trajectory t as follows.

similarity(t,
−→
θ i) =

∑
rj∈R(t)

hit(rj ,
−→
θ i) (18)

where hit(rj ,
−→
θ i) = 1 if rj is one of top-m ROAs (e.g., m = 100) in

−→
θ i and

hit(rj ,
−→
θ i) = 0 otherwise.

Given the k most similar topics
−→
θ 1:k based on similarity(·), we define

the coverage ratio metric that indicates the percentage of a user tour t being

covered by
−→
θ 1:k (where

−→
θ1 ≺

−→
θ2 ≺ · · ·

−→
θk).

coverage(t,
−→
θ 1:k) =

1

|R(t)|
∑

rj∈R(t)

max−→
θ i∈
−→
θ 1:k

{hit(rj ,
−→
θ i)

i
} (19)

where the denominator, i, can be viewed as a punishment based on the ranking
order. In the ideal case, every ROA of t is covered by the first topic so that
there is no punishment. R(t) represents the set of ROAs visited by tour t, that
indicates the ground truth travel interests of a user (i.e., their real travel tour).
If the coverage ratio is high, the user should be satisfied with the suggested

topics as her interests (i.e., trajectory t) are well covered by
−→
θ 1:k.

Figure 11 is a concrete example to demonstrate the coverage metric. Our

objective is to assess the quality of 3 most similar travel topics
−→
θ 1,
−→
θ 2, and

−→
θ 3
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Fig. 11 Example of coverage

to a tour t (illustrated by the arcs in the figure). There are 3 ROAs covered by
−→
θ 1, 2 ROAs covered by

−→
θ 2 and 1 ROA covered by

−→
θ 3 (cf. function hit(·)).

Thereby, coverage(t,
−→
θ 1:k) = (3/1 + 2/2 + 1/3)/6 = 13/18 = 0.72.

Figure 12 and Figure 13 show the coverage ratio and construction time as
a function of number of topics on all eight datasets, after setting k = 1 (i.e.,
assessing the best travel topic). It should be noted that only LDA and PLSA
are sensitive to the number of topics. In our internal tuning, the performance
of RouteSimilarity is steadily worse than our method since RouteSimilarity
groups topics by visit order similarity but not by user interests. Thereby, we
only report the best performance of RouteSimilarity in Figure 12. Interest-
ingly, FP-Growth has the lowest construction time but its coverage ratio is
also the lowest since the extracted topics contain too many popular ROAs
(i.e., over-popular landmarks). Moreover, PLSA is superior to LDA for travel
topic discovery as PLSA can generate a trajectory with certain accuracy based
on fewer topics 4. Our approach, ITC (cf. Algorithm 1), offers the best cov-
erage ratio in the majority cases since ITC aims at generating trajectories by
limited travel topics (based on the incremental construction and the originality
assessment). PLSA and LDA are better than ITC on the Tokyo dataset when
their number of topics are properly set; however, it is time consuming to tune
the best number of topics as shown in Figure 13.

Figure 14 shows the coverage ratio as a function of k (i.e., the number of k
most similar topics) on all datasets. Based on the tradeoff between the quality
and the construction cost, we set the number of topics in PLSA and LDA as
50. ITC consistently outperforms other methods in terms of the coverage ratio
(except Tokyo). This means that ITC offers more informative travel topics to
users when there are only k most similar topics available.

4 This is because the travel topics discovered by PLSA do not necessarily follow the
Dirichlet distribution.
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(b) Coverage ratio: NY
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(c) Coverage ratio: Rome
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(d) Coverage ratio: London
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(e) Coverage ratio: Tokyo
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(f) Coverage ratio: Hong Kong
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(g) Coverage ratio: Berlin
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(h) Coverage ratio: Barcelona

Fig. 12 Travel topic coverage ratio

4.4 Travel Topic Illustrations

In this section, we demonstrate our result by plotting the first two travel topics
(in terms of their coefficients πi) and the background (most popular) topic in
Pairs, New York and Rome. In each travel topic, we report the best 5 ROAs

based on their probability p(rj |
−→
θ i). Background topic demonstrates the most

common travel interests while a travel topic shows a special travel interest.
To illustrate the result more clearly, we highlight the areas in the map of the
cities and show the representative building of each area in tables.

Travel Topic of Paris. According to Table 2, we can found that the back-
ground topic contains the world-renowned landmarks, such as Eiffel Tower,
Louvre Palace, and Arc de Triomphe. Besides, the best 5 ROAs in these
two travel topics of Paris are completely different which reveals the effective-
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0 10 20 30 40 50 60 70 80 90100
Number of Topics in PLSA/LDA

0

20

40

60

80

100

120

140

160

C
o
n
st

ru
ct

io
n
 T

im
e
 (

se
c)

ITC
RouteSimilarity
FP-Growth

PLSA
LDA

(b) Construction time: NY
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(c) Construction time: Rome
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(d) Construction time: London
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(e) Construction time: Tokyo
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(f) Construction time: Hong
Kong
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(g) Construction time: Berlin
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Fig. 13 Travel topic construction time

Table 2 Travel Topic of Paris

Rank 1st Travel Topic,
−→
θ Paris

1 2nd Travel Topic,
−→
θ Paris

2 Background Topic,
−→
β Paris

1 Louvre Palace Place Saint-Michel Eiffel Tower
2 Great Palace Pont des Arts Louvre Palace
3 Gare du Nord Jardins du Trocadéro Arc de Triomphe
4 Gare Saint-Lazare Place de l’Opéra basilique du sacré-cœur
5 Tuileries Palace Pont Neuf Cathédrale Notre Dame de Paris

ness of our incremental topic construction algorithm. More specifically, the
first travel topic visits the famous museums (Louvre Palace, Great Palace

and Tuileries Palace) and 2 historical stations (Gare du Nord and Gare

Saint-Lazare). The tourists, who are interested in ancient wisdom, will find
it is very useful if we recommend this travel topic to them. The second travel
topic mainly recommends the public squares (Place Saint-Michel, Jardins
du Trocadéro, Place de l’Opéra, Invalides Gardens) and the bridges (Pont
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(b) NY
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(c) Rome
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(d) London
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(e) Tokyo
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(f) Hong Kong
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(g) Berlin
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Fig. 14 Effect of k in θ1:k

des Arts and Pont Neuf). The 2nd topic lists the most awesome open places
for taking photos in Paris, which could be a very good reference to those
tourists who would like to have a recreation trip in Paris. We plot their geo-
graphical locations in Figure 15 for clarity.

Travel Topic of New York. As shown in Figure 16 and Table 3, the back-



24 Ngai Meng Kou et al.

34

1
2

5

(a) 1st Travel Topic

1

2

3

4

5

(b) 2nd Travel Topic

1

2

3

4

5

(c) Background Topic

Fig. 15 Travel topic illustration of Paris

Table 3 Places in New York travel topics

Rank 1st Travel Topic,
−→
θ NY

1 2nd Travel Topic,
−→
θ NY

2 Background Topic,
−→
β NY

1 Broadway theatre Metropolitan Museum of Art Rockefeller Center
2 Brooklyn Bridge American Folk Art Museum, Museum of

Modern Art
Times Square

3 Herald Square National Academy Museum, Solomon R.
Guggenheim Museum, Cooper-Hewitt De-
sign Museum

Apple Store

4 New York Public Library Fulton Ferry, Brooklyn Empire State Building
5 Madison Square Garden SoHo Grand Central Terminal

ground topic of New York City consists of modern buildings and skyscrapers,
such as Rockefeller Center, Times Square, Apple Store, Empire State

Building and Grand Central Terminal. The first travel topic,
−→
θ NY1 , in-

cludes some popular places, such as Broadway theatre and Herald Square

(i.e., venues for theatrical performances), Brooklyn Bridge (i.e., the old-
est suspension bridges), and the New York Public Library (i.e., 3rd largest
public library in the world). The second topic is related to art, where it covers
a lot of museums (Metropolitan Museum of Art, Museum of Modern Art,
etc.) and SoHo (SoHo-Cast Iron Historic District) which used to be the
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Fig. 16 Travel topic illustration of New York

district of many artists’ lofts and art galleries located, and is now a place for
outlets and shops.

Travel Topic of Rome. Figure 17 and Table 4 list the top-2 travel topics

Table 4 Places in Rome travel topics

Rank 1st Travel Topic,
−→
θ Rome

1 2nd Travel Topic,
−→
θ Rome

2 Background Topic,
−→
β Rome

1 Altare della Patria Ara Pacis The Colosseum
2 Arch of Constantine Palace of Justice Pantheon
3 Piazza della Repubblica Piazza near Spanish Steps Fontana di Trevi, Accademia di

San Luca, Istituto Nazionale per la
Grafica

4 Acqua Felice, Santa Maria della
Vittoria, Santa Susanna

Ponte Vittorio Emanuele II Saint Peter’s Square

5 Roman Forum Quirinal Palace Spanish Steps

and the background topic of Rome. It is not surprising that the background
topic covers The Colosseum, Pantheon, Saint Peter’s Square, and Spanish

Steps since these places are commonly visited by travelers. For instance, The
Colosseum is the most reputable ancient building of Roman Empire, Pantheon
is considered as one of the greatest works of Roman architecture and en-
gineering which is still used for celebrating masses, Saint Peter’s Square

is the open space in front of St. Peter’s Basilica which remains one of
the largest churches of Renaissance architecture, and Spanish Steps is the

widest stair case in Europe. The first travel topic,
−→
θ Rome1 , is a set of his-
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Fig. 17 Travel topic illustration of Rome

toric building in Rome. It contains monuments(Altare della Patria, Arch
of Constantine), churches(Santa Maria della Vittoria, Santa Susanna)
and plazas(Piazza della Repubblica, Roman Forum). Travelers who like ar-

chitectural aesthetics would not miss them. The second travel topic,
−→
θ Rome2 ,

covers the official residence of the president of the Italian Republic(Quirinal
Palace), the seat of Supreme Court of Cassation(Palace of Justice), and
some places from the Tibre River to Spanish Steps (including Ara Pacis,
Piazza near Spanish Steps, Ponte Vittorio Emanuele II). The travel in-

terest of
−→
θ Rome2 is a fusion of multiple domains such as nature, history and

politics.

5 Related Work

Our work is related to trajectory mining problems. Giannotti et al. [13] dis-
cover moving behaviors based on the transition time of trajectories, where
their ROAs are identified by grid and point density. Choudhury et al. [9,10]
proposed a method to construct trajectories from photo data automatically.
Wei et al. [38] construct the top-k popular routes from uncertain trajecto-
ries using a mutual reinforcement approach. Cho et al. [8] observed that a
long-distance travel correlates with user’s social relationship such that they
proposed a model to capture periodic day-to-day movements and social struc-
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tures. Popescu and Greffenstette [33] studied how to construct high quality
trajectories from noise geo-tagged photos. Jeung et al.[17] refine the trajectory
clustering by decomposing large clusters which helps to detect hidden trajec-
tory patterns by Hidden Markov Models (HMM). Lee et al. [27] proposed
a problem that extracts similar sub-trajectories from a trajectory dataset.
Monreale et al. [31] studied a framework which recommends the next moving
location based on trajectory patterns. The development of trajectory mining
problems is summarized in [18]. However, all these work focus on the visiting
order of trajectories while our work ignores the visiting order and concentrates
on mining the latent interests of tourism. A travel topic in this work is the
interest of ROAs for a group of travelers instead of a single trajectory.

To the best of our knowledge, Zheng et al. [45] is the closest competitor
to our work which extracts travel topics from a set of user trajectories. Their
framework first identifies ROAs by DBSCAN algorithm based on a user tra-
jectory database and then discover similar trajectories as a travel topic using
hierarchical agglomerative clustering, where the the similarity of two trajec-
tories is measured by their longest common subsequence (LCSS). The major
weakness of their work is that LCSS treats two trajectories as similar when
their visiting orders are similar. As explained in Section 1, the visiting order
of tours is not the most critical factor to identify travel topics. Instead, our
approach adopts a mixture model to extract travel topics based on the visiting
ROAs of trajectories. This setting overcomes the weakness of LCSS such that
our approach returns more meaningful result to travelers. In addition, our so-
lution identifies better ROAs using a mutual reinforcing method instead of a
simple clustering approach (e.g., DBSCAN or hierarchical clustering).

Our work is also related to other tour recommendation problems. Kodama
et al. [24] take user locations and preferences into account such that they can
recommend surrounding locations by a spatial skyline method. Park et al. [32]
recommend the locations of the most preferred items based on user profiles and
their context information (i.e., weather information, temperature, season, time
of day, periods and user location). Shi et al. [36] propose category-regularized
matrix factorization for personalized recommendation system based on user-
to-landmark preferences. Zheng et al. [44] analyze the user-location relation-
ship and recommend locations based on a HITS framework [23]. Popescu
and Grefenstette [34] adopt collaborate filtering to recommend personalized
tours. Hao et al. [15] propose a Location-Topic model to extract location-
representative knowledge from text. Xia et al. [39] apply Markov chain to
conduct travel analysis and provide recommendations. Levandoski et al. [28]
develop a local-aware recommendation system based on location-based rating.
Kurashima et al. [26] propose a Markov-Topic model that combines transition
probability and a spatial topic model based on a probabilistic latent semantic
analysis (PLSA). Their work can be viewed as a competitor to ours as PLSA
returns analogous probabilities to our mixture probability model. To the best
of our knowledge, these tour recommendation problems either recommend the
next visiting location or offer a suggested tour route to their users. Instead,
our work aims at revealing travel topics based on user common interests which
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helps travel agents, trip advisers and governments to predominate the entire
picture of the tour interests in a city.

Our travel topic extraction is based on topic discovery problems of docu-
ments [16,19,42] while the corpus words (i.e., regions of attraction) are up-
dated over each iteration in our work. The work [42] is a variant of [16], where
[42] provides a study on the background distribution. Recently, the work [19]
derives an idea from [3] that builds a dynamic model involving significance and
novelty. Yin et al. [41] propose a geographical topic model for the documents
with spatial information, which enriches the content of topic in GPS-associated
information such as tweets with location in microblogging. All these models
are adopted for text mining and discovering the topics of documents. In this
work, we extend their ideas to support travel topic extraction from geo-tagged
photoes.

6 Conclusion

In this manuscript, we studied a travel topic extraction problem in geo-tagged
photo datasets. To the best of our knowledge, this is the first thorough study
for this problem based on mixture models. We proposed a novel framework by
mutually refining the travel topics and regions of attraction. We demonstrated
that our approach can further improve the quality of ROAs that are generated
by the state-of-the-art clustering techniques. Moreover, our travel topics are
particularly helpful in trip recommendation especially when there is no prior
personal information from users. We believe our travel topic discovery tech-
niques are easily integrated into existing trip advisor systems. In the future,
we plan to revisit the iterative refinement procedure where the ROAs are re-
fined by both merging (i.e., generalizing tourist regions) and partitioning (i.e.,
specifying tourist spots) techniques.
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