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Abstract Many economic problems can be formulated as dynamic games in which
strategically interacting agents choose actions that determine the current and future
levels of a single capital stock. We study necessary as well as sufficient conditions
that allow us to characterise Markov-perfect Nash equilibria for these games. These
conditions can be translated into an auxiliary system of ordinary differential equations
that helps us to explore stability, continuity and differentiability of these equilibria.
The techniques are used to derive detailed properties of Markov-perfect Nash equi-
libria for several games including voluntary investment in a public capital stock, the
inter-temporal consumption of a reproductive asset, and the pollution of a shallow
lake.

JEL classification C73, D92, Q22
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1 Introduction

Many economic problems can be formulated as dynamic games in which strategically
interacting agents choose actions based on an inter-temporal objective that determine
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the current and future levels of a single capital stock. When formulated in continuous
time these games are differential games with a single state variable.1

In this paper we formulate a class of differential games in which n players either
exploit or accumulate a single capital stock by choosing Markov strategies, where
they select their current actions by fixing a policy function that relates the current state
of the system (the single capital stock) to current actions. State dependent Markov (or
feedback) strategies can be contrasted to strategies that are set as simple time paths
at the beginning of the game with the need for every player to pre-commitment to
the announced time profile throughout the entire duration of the game. From an eco-
nomics modeling point of view pre-commitment is a very strong assumption for a
dynamic game and largely unattractive.2 On the contrary Markov equilibrium stra-
tegies exhibit several desirable properties such as subgame perfectness, in case they
are derived using backward induction, and no commitment, allowing rival players to
immediately react to unexpected changes in the state of the system.

Finding subgame perfect Markov Nash equilibrium strategies of a differential
game, even if the game is of the linear-quadratic type, is a formidable analytical
problem. For instance, to find a Markov-perfect Nash equilibrium in the general case
of n players and m state variables requires to solve a system of n coupled nonlinear
implicit m-dimensional partial differential equations (PDE). In case the underlying
economic system can be described by a single state variable (a single capital stock)
the system of PDE’s collapses to a system of ordinary differential equations in the
value functions that is much easier to deal with. Because of this tractability, the paper
focuses on the least complex situation m = 1.

This system of ordinary differential equations in the value functions can be solved
explicitly and the Markov-perfect Nash equilibrium (MPNE) can be derived analyt-
ically only for a restricted class of specific functional forms of the primitives of the
model. Starting with the pioneering work of Case (1979), differential game theorists
have modified this approach. Instead of working with the ordinary differential equa-
tions in the value functions, they derive a system of differential equations in shadow
prices, that is, in the first derivatives of the value functions. Structurally this system is
much simpler to work with, in particular when symmetric equilibrium strategies are
analyzed. For the shadow price system reduces then to a single quasi-linear3 differen-
tial equation, explicitly dependent on the state variable, which for specific functional
forms of the state equation and the objective functionals can be solved explicitly.

Using the shadow price system approach, Tsutsui and Mino (1990) derived non-
linear Markov equilibria for a linear quadratic differential game. The same approach
was used by Dockner and Long (1994) in a model of transboundary pollution control
and by Wirl (1996) in a public goods investment problem.

1 For a general introduction to the theory of differential games we refer the reader to Dockner et al.
(2000).

2 Pre-commitment strategies that are set as time functions only are also referred to as open-loop strate-
gies and the corresponding dynamic game as an open-loop game.

3 A differential equation is called quasi-linear if it is linear in the highest derivatives of the unknown
function.
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For a differential game with m state variables and n players, Rincón-Zapatero
et al. (1998)4 show that the approach introduced by Case (1979) can be made sys-
tematic when two assumptions are satisfied. The game must have an equal number
of state and control variables and equilibria must be restricted to interior MPNE.
Rincón-Zapatero et al. (1998) differentiate the Bellman equations to arrive at a sys-
tem of quasi-linear partial differential equations in the shadow prices. Using the max-
imum condition they are able to eliminate shadow prices and arrive at what can be
referred to as a generalised Euler equation system (GEES) that is a system of partial
differential equations in the state and control variables. By solving an example they
already point out that if the game is characterised by a single state variable the GEES
reduces to a linear system of ordinary differential equations.5

The shadow price system and the GEES can be seen as two approaches to char-
acterise MPNE, which are often mathematically equivalent. In this paper we extend
these two approaches substantially for n-player differential games with a single state
variable and an infinite horizon. The n-dimensional system of ordinary quasi-linear
non-autonomous differential equations in shadow prices is used to derive an auxili-
ary (n+1)-dimensional system of ordinary autonomous differential equations whose
solution trajectories trace out graphs of the equilibrium strategies. The auxiliary sys-
tem opens up the opportunity to geometrically analyze and study Markov-perfect
Nash equilibria for games with general functional forms. We introduce the concepts
of local and global Markov equilibria and point out how the auxiliary system can be
used to identify these two types of equilibria. In addition, the auxiliary system can be
used to gain important insights into the continuity and differentiability properties of
MPNE. Points where the Markov strategies are continuous but not differentiable can
conveniently be described by singularities of the auxiliary system. Moreover, using
the auxiliary system we are also able to find non-continuous Markov-perfect Nash
strategy equilibria. The derivation of the auxiliary system and its use to characterise
non-continuous and non-differentiable Markov-perfect Nash equilibria for differen-
tial games with a single state variable and general functional forms comprises, to-
gether with the analysis of several economic examples, the main contributions of this
paper.

Dynamic games with a single capital stock can be applied in resource economics
where n agents exploit a single renewable or exhaustible resource so as to maximise
the present value of future consumption, see for example Levhari and Mirman (1980),
Sundaram (1989), Benhabib and Radner (1992), Clemhout and Wan (1994), Dutta
and Sundaram (1993), Dockner and Sorger (1996), Rincón-Zapatero et al. (1998)
and Benchekroun (2003).

A game with n agents investing in a single public stock of capital also fits the class
of differential games analyzed in this paper, see Fershtman and Nitzan (1991), Wirl
(1996) and Rowat (2007). Dynamic public bads games arise in case of transboundary
pollution where the emissions of countries accumulate a single stock of pollution that
incurs costs for each player. For more details on these kinds of game problems see

4 See also the paper by Rincón-Zapatero (2004) for differential games and Josa-Fombellida and Rincón-
Zapatero (2007) for stochastic control problems.

5 Kossioris et al. (2008) apply the shadow price system approach to an environmental economics prob-
lem.
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van der Ploeg and de Zeeuw (1992), Dockner and Long (1994) and Dockner et al.
(1996). Finally, environmental economists have recently started to explore equilibria
in the shallow lake problem. This problem is structurally similar to the exploitation
of a single renewable resource stock but with a non-concave production function. Re-
cent papers dealing with the shallow lake problem include Brock and Starrett (2003),
Mäler et al. (2003), Wagener (2003), Kossioris et al. (2008), Kiseleva and Wagener
(2010), Kossioris et al. (2010).

The article is organised as follows. Section 2 presents the general theory to derive
MPNE for the class of differential games with a single state variable and includes
a linear quadratic example. Section 3 makes use of the auxiliary system to study
non-continuity and non-differentiability of MPNE. Section 4 applies the approach
presented to two distinct examples from resource and environmental economics and
section 5 concludes.

2 General theory

In this section we derive the auxiliary system for general feedback Nash equilibria in
a dynamic game with a single state variable. In this game, n players choose Markov
strategies, ui(x), to maximise an inter-temporal objective function. The strategies de-
termine the level of a single capital stock, x, that is governed by the state dynamics.
For this game we characterise Markov perfect Nash equilibria that are either differ-
entiable, or continuous, or have at most a finite number of jump points.

2.1 Definitions

We consider a game where n players can, at every point t ≥ 0 in time, choose actions
from a given action set. These actions determine the evolution of an underlying state
variable x(t) that takes values in a state space X; we shall call x(t) the ‘state of the
game at time t’. The initial value of the state will be denoted by x0:

x(0) = x0 ∈ X.

We restrict attention to the case that X is a closed interval of the real line R. For
every x ∈ X , the set U(x) of actions u available to one of the players is the closure
of a convex open subset of Rq . We do not require the sets U(x) to be bounded. The
union

U =
∪
x∈X

{x} × U(x) ⊂ X × Rq

is the action space of the player. We shall also assume that the action space is the
closure of an open set.

Each player formulates his action choices in terms of a strategy, which specifies
for each point in time which action to take. A Markov strategy is characterised by the
requirement that the actions at each point in time are conditioned only on the state
of the system. That is, a Markov strategy is a function u : X ′ → Rq , where X ′ is a
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subinterval of X with x0 ∈ X ′, such that if x(t) ∈ X ′, the agent takes at time t the
action u(x(t)). Necessarily we have that

u(x) ∈ U(x)

for all x ∈ X ′; or, equivalently, the graph of u should be contained in the action
space U . If X ′ = X , we call the Markov strategy globally defined or just global;
if X ′ ⊂ X , it is said to be locally defined or local.

Let i be an index, running from 1 to n, which denotes the different players;
player i’s strategy is then a real-valued function ui defined on the interval X ′

i . Let

X ′ =

n∩
i=1

X ′
i

be the common domain of definition of all the strategies, and introduce the strategy
vector u : X ′ → (Rq)n, given as

u(x) = (u1(x), · · · , un(x)) .

Note that the elements of the strategy vector are the individual strategies. Also intro-
duce the vector

u−i(x) = (u1(x), · · · , ui−1(x), ui+1(x), · · · , un(x))

of strategies other than the strategy of player i. Given a strategy vector u, the state
variable will evolve according to a state equation of the form

dx

dt
= f(x,u(x)), x(0) = x0. (1)

On the right hand side of equation (1), the time argument of the function x is sup-
pressed for readability; this will be done throughout the article.

It will be assumed that the vector field f satisfies the consistency requirement
that for all available actions it is ‘inward pointing’ on the boundary ∂X of the state
space X . In the present context, this means the following. For x ∈ ∂X let ν(x) be
an outward pointing unit ‘vector’: that is, ν(x) = 1 if x is the upper endpoint of X ,
and ν(x) = −1 if x is the lower endpoint. Let

U(x) = U1(x)× · · · × Un(x) ⊂ (Rq)
n

be the set of available actions at x, and let U = ∪x{x} × U(x). Then f is inward
pointing (with respect to U), if for x ∈ ∂X the inequality

f(x,u) · ν(x) ≤ 0

holds for all u ∈ U(x).
The pay-off of the players will depend on their strategies as well as on the state

dynamics. In this article, we assume that the pay-off of the strategy choice ui of
player i, given that the other players play u−i, is of the general form

Ji(ui,u−i) =

∫ ∞

0

Li(x,u(x))e
−ρtdt.
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We shall assume the functions f and Li to be smooth, which is meant to be ‘in-
finitely often differentiable’, but which could be read as ‘as often differentiable as is
necessary’. But even with smooth data, the set of strategies that are available to the
players has to be restricted in order for the dynamics and the pay-offs to be at least
well–defined. The specification of the available strategy set is an integral part of the
specification of the game in question.

Attention will be restricted to Markov strategies that are piecewise continuously
differentiable and bounded. That is, we assume that for every strategy ui there are
finitely many non-overlapping intervals that cover X ′

i and which are such that ui is
continuously differentiable on the interior of each interval. Note that the strategies
are not required to be continuous.

The right hand side of (1) is not necessarily Lipschitz-continuous, and the the-
orem of existence and uniqueness of solutions to differential equations does not apply
at those points where Lipschitz-continuity fails to hold. By assumption, these points
are a subset of the endpoints of the non-overlapping intervals covering X ′

i; in par-
ticular there are only finitely many of them. We need to specify in what sense we
interpret (1) at those points; this is done in Appendix A

We say that, given the strategies u−i of the other players, a strategy ui is admiss-
ible or available to player i, if it is a bounded piecewise continuously differentiable
function on X ′ such that its graph is contained in Ui, and such that it satisfies the
following consistency condition. Let F (x) = f(x, ui(x);u−i(x)), fix a point x̂, and
denote by FL and FR respectively the left and right limit of F (x) as x tends to x̂.
The condition requires that if FL > 0 > FR, then the value of ui(x̂) satisfies

F (x̂) = f(x̂, ui(x̂);u−i(x̂)) = 0. (2)

Note that such a value always exists as a consequence of the intermediate value the-
orem and the convexity of Ui(x̂). This mathematical condition may be interpreted as
follows: by choosing the strategy ui such that FL > 0 and FR < 0, player i intends
to stabilise the system at x = x̂. But then the choice of ui(x̂) should reflect that x̂ is
a stable steady state.

The space of strategies available to player i, given X and Ui, is denoted by Ai.
The spaces X and U, together with the dynamics f and the instantaneous pay-
offs Li and the space of available strategies Ai, for i = 1, . . . , n, define a differential
game G .

We recall the definition of a Markov-perfect Nash equilibrium strategy of a game.

Definition 1 The strategy vector u∗ is an (global) Markov perfect Nash equilibrium
of G , if

Ji(u
∗
i ,u

∗
−i) ≥ max

ui∈Ai

Ji(ui,u
∗
−i)

for each i; that is, if for each player his strategy is a best response to the strategies of
the other players.

When investigating Markov equilibrium strategies for a differential game, the
phenomenon is encountered that the Hamilton-Jacobi equation, which characterises
these strategies, has typically many solutions that are not defined on the whole state
space (see for instance Wirl 1996, Kossioris et al. 2008). In the context of the original
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game, these solutions are not admissible, as they do not specify the action of the
players if the state leaves the domain of definition of one of the strategies. To address
this, we introduce the concept of a local Markov perfect Nash equilibrium as follows.

Spaces X ′, U ′
i and A ′

i define a restriction G ′ of the game G , if X ′ ⊂ X , U ′
i ⊂ Ui,

if f is inward pointing on ∂X ′ with respect to U′, and if A ′
i is the set of strategies

available to player i, given X ′ and U ′
i .

Definition 2 The strategy vector u∗ is a local Markov perfect Nash equilibrium of G ,
if it is a global Markov perfect Nash equilibrium for a suitable restriction G ′ of G .

In economic terms, a local Markov perfect Nash equilibrium might arise if the play-
ers can commit cooperatively on restricting their action spaces and then proceed to
play non-cooperatively with the restricted action spaces. See Rowat (2007) for a dis-
cussion of this ‘endogenising’ of the state space. Alternatively, the restriction of the
action spaces could be imposed by a regulating agency. We shall see that in several
examples, local Markov perfect Nash equilibria may improve on the global equilibria.

As a consequence, we obtain the notion of a state that can be stabilised, or is
stabilisable, by a local Markov-perfect Nash strategy.

Definition 3 A state x∗ ∈ X can be stabilised by a local Markov-perfect Nash equi-
librium strategy u∗, if there is a restriction G ′ = (X ′, {Ui,A ′

i }) of the differential
game such that

1. u∗ is a Markov perfect Nash equilibrium for G ′;
2. X ′ contains x∗ in its interior;
3. x∗ is a stable steady state for the stock evolution dynamics

ẋ = f(x,u∗(x)).

Stabilisable steady states are those long-term steady states which can be obtained
in a non-cooperative differential game if the players play a (local) Nash equilibrium.
One might want to call them Nash attractors.

2.2 The vector Hamilton-Jacobi equation.

Given an n-person differential game G , the present value Pontryagin function6 of
player i reads as

Pi(x, pi, ui;u−i) = Li(x,u) + pif(x,u).

If this function is maximised, with respect to ui, at

ui = vi(x, pi;u−i) (3)

the Hamilton function is defined as

Hi(x, pi;u−i) = Pi (x, pi, vi(x, pi;u−i);u−i) .

6 Also called Hamilton, pre-Hamilton or unmaximised Hamilton function.
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The Hamilton-Jacobi equation for the value function of player i reads then as

ρVi(x) = Hi(x, V
′
i (x);u−i(x)).

Introduce the notations

v(x,p,u) = (v1(x, p1;u−1), · · · , vn(x, pn;u−n))

and

∂v

∂u−
=



0 ∂v1

∂u2

∂v1

∂un

∂v2
∂u1

0
. . .

. . . . . . . . .
. . . 0 ∂vn−1

∂un
∂vn

∂u1

∂vn

∂un−1
0


.

In order to eliminate the functions ui(x) from the problem, the system of equations

Fi(x,u) = ui − vi(x, pi;u−i) = 0, i = 1, · · · , n (4)

has to be solved for the ui; in vector notation, this system reads as

F(x,u) = u− v(x,p,u) = 0.

We assume that this system is solvable for u, and that the solution

u = û(x,p)

is a continuously differentiable function of x and p. For instance a sufficient condition
for the solvability of the system is that the matrix

∂F

∂u
= I − ∂v

∂u−

is invertible everywhere.
Consequently, it may be assumed that the game Hamilton functions Gi, i =

1, · · · , n of the players can be written as

Gi = Gi(x, V
′
1 , · · · , V ′

n) = Hi(x, V
′
i ; û−i(x,V

′(x))),

and that we solve the following vector Hamilton-Jacobi equation

ρV(x) = G(x,V′(x)), (5)

where G = (G1, · · · , Gn). Taking derivatives with respect to x and substituting

p(x) = V′(x)

yields

ρp(x) =
∂G

∂x
+

∂G

∂p
p′(x). (6)
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Note that ∂G/∂x is an n-dimensional vector, whereas ∂G/∂p is an n × n matrix.
We obtain finally the equation

∂G

∂p
p′(x) = ρp− ∂G

∂x
. (7)

Equation (7) is referred to as the shadow price system. Due to the special structure
of our class of games the shadow price system is a system of quasi-linear differential
equations in p(x). As already pointed out, the shadow price system approach traces
back to the analysis of Case (1979) who studied non-linear Markov equilibria for the
sticky price model, which was also analysed in detail by Tsutsui and Mino (1990).
The shadow price system approach has subsequently been applied by Dockner and
Long (1994) and by Wirl (1996) to derive non-linear symmetric Markov-perfect Nash
equilibria.

If the relation u = û(x,p) can be solved for p, which is often possible if u is in
the interior of the action space U, then we can rewrite equation (7) in terms of the
actions u, which is often more convenient in applications; we do this regularly in the
examples given further below. Actually Rincón-Zapatero et al. (1998) analyse a ver-
sion of equation (7) expressed in controls rather than costates for state spaces of gen-
eral dimension, and demonstrate its applicability by considering specific examples.
However, in problems where control constraints become active, or more generally
when the relation between controls and costates is not one-to-one, the analysis has to
be done in terms of the shadow price vector p.

In the important symmetric special case that all players are equal and play the
same strategies, the vector G of game Hamilton functions is invariant under per-
mutations of the pi,

Gi(x, p1, · · · , pn) = Gσ(i)(x, pσ(1), · · · , pσ(n)),

where σ is any permutation of n elements. If this is the case, the game is called
symmetric.

Symmetric Markov-perfect Nash equilibria then correspond to value functions
V(x) = (V (x), · · · , V (x)), which are sought as solutions of the scalar Hamilton-
Jacobi equation

ρV (x) = G(x, V ′(x)), (8)

where
G(x, p) =

1

n!

∑
Gσ(i)(x, pσ(i), · · · , pσ(n)), (9)

where the sum is taken over all permutations of n elements. Of course, the sum is just
equal to G1(x, p, · · · , p).

2.3 Sufficiency.

In the following we shall be interested, amongst other things, in finding geomet-
ric criteria that characterise possible jump points of Nash equilibrium strategies. As
these are usually connected to points of nondifferentiability of the value function, the
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question arises in what sense the Hamilton-Jacobi equation is satisfied in such points.
Crandall and Lions (1983) have shown that the value function of an optimal control
problem is usually the only viscosity solution of the Hamilton-Jacobi equation. It has
since then been widely accepted that this is the ‘right’ solution concept.

We recall the notion of viscosity solutions of scalar Hamilton-Jacobi equations of
the form

ρV −H(x, V ′(x)) = 0. (10)

For this we give some preliminary definitions.

Definition 4 A vector p is a subgradient of a function V at a point x̂, if for all x in a
neighbourhood of x̂ we have

V (x) ≥ V (x̂) + ⟨p, x− x̂⟩. (11)

Equivalently, this can be expressed by requiring x̂ to be a local minimiser of the
difference V − v, where

v(x) = V (x̂) + ⟨p, x− x̂⟩. (12)

The subdifferential D−V of V at x̂ is the set of all subgradients.

Supergradients and superdifferentials are defined analogously.
The following definition of viscosity solutions, though not the most general, suf-

fices for our purposes. It is adapted from chapter II of Fleming and Soner (2006).

Definition 5 Let V be a continuous function on X .

1. The function V is a viscosity supersolution of (10), if for all subgradients p ∈
D−V (x) we have

H(x, p)− ρV (x) ≤ 0. (13)

2. The function V is a viscosity subsolution of (10), if for all supergradients p ∈
D+V (x) we have

H(x, p)− ρV (x) ≥ 0. (14)

3. Finally, V is a viscosity solution of (10), if it is both a viscosity subsolution and a
viscosity supersolution.

If V is differentiable at x, then D+V (x) = D−V (x) = {V ′(x)}, and equation (10)
holds in the classical sense.

The following theorem says that solving equation (5) indeed gives us a Markov
perfect Nash equilibrium.

Theorem 1 Let V be a continuous and piecewise continuously differentiable vector-
valued function, such that Vi is a viscosity solution of

ρVi(x) = Hi(x, V
′
i (x);u

∗
−i(x)). (15)

Assume for every admissible trajectory x that

lim
t→∞

V(x(t))e−ρt = 0. (16)

Let u∗ : X → Rn be a vector-valued function that satisfies the following conditions.
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1. The strategy vector u∗ is admissible.
2a. If V′ is differentiable at x, then

u∗(x) = û(x,V′(x)).

2b. If V′ is not differentiable at x, then either

u∗(x̂) = lim
x↑x̂

û(x,V′(x))

or
u∗(x̂) = lim

x↓x̂
û(x,V′(x)).

Then u∗ is a Markov-perfect Nash equilibrium of the differential game.

For instance, condition (16) is satisfied if all admissible trajectories are bounded.
The proof of theorem 1 is given in appendix B.

We shall call V a viscosity solution of the equation

ρV = G(x,V′),

if for each i the function Vi is a viscosity solution of the associated equation (15).

2.4 Auxiliary system.

Recall the definition of the adjoint matrix A∗ of a given matrix A: it is the matrix
whose (i, j)’th element is the cofactor of A that is obtained by deleting the j’th row
and i’th column of A and taking the determinant of the remaining matrix. We have
that AA∗ = (detA)I , where I is the identity matrix; hence A−1 = (detA)−1A∗

if detA ̸= 0. Multiplying an equation of the form

Ax = b

from the left with A∗ yields
(detA)x = A∗b.

Multiplying the shadow price system (7) from the left with the cofactor matrix

(∂G/∂p)∗

yields therefore(
det

∂G

∂p
(x,p)

)
dp

dx
(x) =

(
∂G

∂p
(x,p)

)∗(
ρp(x)− ∂G

∂x
(x,p)

)
.

The auxiliary system to equation (5) is now defined as
dp

ds
=

(
∂G

∂p
(x,p)

)∗(
ρp− ∂G

∂x
(x,p)

)
,

dx

ds
= det

∂G

∂p
(x,p),

(17)

where s ∈ R is some real parameter that has no immediate economic significance. In
fact, we have the following result.
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Theorem 2 Let the function V(x) be continuous and piecewise continuously differ-
entiable, and let it be a viscosity solution of

ρV(x) = G(x,V′(x)). (18)

Set p(x) = V′(x) whenever the derivative is defined. Assume that x0 and p0 are
such that p is defined and continuous at x0, such that p0 = p(x0), and such that

det
∂G

∂p
(x0,p0) ̸= 0.

Then p is continuously differentiable in a neighbourhood of x0, and its graph is
traced out by the curve

s 7→ (x(s),p(s))

that satisfies (17) with initial conditions (x(0),p(0)) = (x0,p0).

This theorem characterises solutions of the vector Hamilton-Jacobi equation (18)
whenever they are differentiable, by relating the graph x 7→ (x,V′(x)) to solution
curves of the auxiliary system (17). This relation is general, and in particular, it can
be applied to find non-symmetric Markov perfect Nash equilibrium strategies.

When attention is restricted to symmetric Nash equilibria, the auxiliary system
simplifies to 

dp

ds
= ρp− ∂G

∂x
(x, p),

dx

ds
=

∂G

∂p
(x, p).

(19)

Mathematically speaking, these equations are the characteristic equations of the
Hamilton-Jacobi equation (5). However, in crucial contrast to the ‘one-player’ op-
timal control situation, the parameter s is different from the time parameter t. In a
way, it is this fact that allows the occurrence of many Nash equilibrium strategies.

2.5 A linear-quadratic example

This subsection illustrates the theory by applying it to a standard economic problem,
the analysis of private investment in a public capital stock.

This game was introduced by Fershtman and Nitzan (1991). They assumed that
each agent derives quadratic utility from the consumption of the public capital stock.
Investment in the stock is costly and results in quadratic adjustment costs. Fershtman
and Nitzan solved both the open-loop game and the game with Markov strategies
and found that the dynamic free rider problem is more severe when agents use linear
Markov strategies. Wirl (1996) challenged these results and studied the identical lin-
ear quadratic game but solved it for non-linear Markov equilibria. He found that if the
discount rate is small enough non-linear Markov strategies can support equilibrium
outcomes that are close to the efficient provision of the public capital. Finally, Rowat
(2007) derived explicit analytic expressions for the non-linear Markov equilibria.
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There are n players; player i voluntarily invests in the nonnegative public capital
stock x at a rate ui ≥ 0. The single public capital stock evolves according to

ẋ =
n∑

j=1

uj − δx; (20)

here δ > 0 is the constant depreciation rate. Following Fershtman and Nitzan we
assume that player i’s utility functional is given by

Ji =

∫ ∞

0

(
ax− b

2
x2 − 1

2
u2
i

)
e−ρtdt, (21)

where a, b > 0 are positive parameters. Note that compared to the formulation
of Wirl (1996), one parameter has been scaled away. We see from this formulation
that both X and Ui(x), for all i and all x ∈ X , are equal to the interval [0,∞).

The corresponding present value Pontryagin function becomes

Pi(x, pi, ui;u−i) = ax− b

2
x2 − 1

2
u2
i + pi

 n∑
j=1

uj − δx

 .

The function ui 7→ Pi(x, pi, ui;u−i) is maximised at

ui = vi(pi) =

{
pi pi ≥ 0,
0 pi < 0.

The present value Hamilton function Hi of player i reads as

Hi(x, pi;u−i) =


ax− b

2
x2 − 1

2
p2i + pi

∑
j ̸=i

uj − δx

 , if pi ≥ 0,

ax− b

2
x2 + pi

∑
j ̸=i

uj − δx

 , otherwise.

We now restrict our attention to the symmetric case, for which all players use the
same strategy. The symmetric version of equation (5) reads as

ρV = G(x, V ′) =


ax− b

2
x2 +

2n− 1

2
(V ′)2 − δxV ′, if V ′ ≥ 0,

ax− b

2
x2 − δxV ′, otherwise.

(22)

Fershtman and Nitzan (1991) obtained a solution to this equation by the well-known
method of substituting V (x) = c0+c1x+c2x

2 and comparing coefficients of x. Wirl
(1996) pointed out that due to the fact that the Hamilton-Jacobi equation (22) has no
initial conditions, there may be actually more solutions to this equation. He derived
his conclusions from the shadow price system (7), which takes the form{(

(2n− 1)p− δx
)
p′ = (ρ+ δ)p− a+ bx if p ≥ 0,

−δxp′ = (ρ+ δ)p− a+ bx otherwise.
(23)
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Figure 1 Solutions of the auxiliary system (drawn curves) as well as the line of equilibria l1 : dx/dt =
0 (thickly dashed line) and the isocline l2 : dx/ds = 0 of the auxiliary system (thinly dashed line).
Parameters: a = 0.1, b = 0.1, δ = 0.2, ρ = 0.1.

Note that while equation (22) was an implicit nonlinear first order ordinary differen-
tial equation in V , equation (23) is easily rewritten as an explicit equation in p with
non-constant coefficients. Rowat (2007) derives an explicit solution for this equation
by carefully considering the singularity locus (2n− 1)p− δx = 0. We do not repeat
his approach here but refer to his paper instead.

The auxiliary system associated to (23) takes for p ≥ 0 the form

dp

ds
= (ρ+ δ)p− a+ bx,

dx

ds
= (2n− 1)p− δx, (24)

while for p < 0 it reads as

dp

ds
= (ρ+ δ)p− a+ bx,

dx

ds
= −δx. (25)

Note that the derivatives are taken with respect to a parameter s which has no a
priori economic interpretation; the point of the auxiliary system is that its solution
trajectories

s 7→ (x(s), p(s))

trace out graphs of solutions p = p(x) of equation (23). This follows in the region p ≥
0 from the chain rule, which states that

dp

dx
(x(s)) =

dp

ds
(s)

dx

ds
(s)

=
(ρ+ δ)p− a+ bx

(2n− 1)p− δx
. (26)

This is the same expression as in equation (23). Some trajectories of the auxiliary
system are shown in figure 1. There, solutions of the auxiliary system are represented
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by drawn curves. They can, locally and for p > 0, be interpreted as the graphs of
possible symmetric feedback strategies u(x) = p(x).

This system has a single steady state

P : (xP , pP ) =

(
(2n− 1)a

(2n− 1)b+ δ2 + δρ
,

aδ

(2n− 1)b+ δ2 + δρ

)
In figure 1 five generic strategies u1, · · · , u5 are highlighted. We shall show that none
of these can correspond to Markov perfect Nash equilibrium strategies.

First consider u1 and u2. Both have the unstable eigenspace of the equilibrium P
as its asymptotic limit as x → ∞. It is straightforward to show that the unstable
eigenvector, corresponding to the unstable eigenvalue λu, is of the form (1, v) with

v =
δ + λu

2n− 1
> 0

and λu > δ for all ρ ≥ 0. It follows that v > δ/n, and consequently that for each
strategy, like u1 and u5, that tends asymptotically towards the unstable eigenspace
of P there is a state x̄ > 0 such that dx/dt > 0 for all x > x̄. But such a strategy
cannot correspond to a Markov perfect Nash equilibrium, since for x sufficiently large
the integrand of (21) is negative, and a strategy for which u(x) = 0 whenever x > x̄
is a deviation with a better payoff.

Next we note that there is no interval X ′ ⊂ X such that f(x, u3(x)) is inward
pointing into X ′; therefore u3 cannot be even a local Markov perfect Nash equilib-
rium strategy.

Finally we consider u4 and u5. Note that both are in the region that ẋ = nu −
δx < 0, and both satisfy uj(x) = 0 if x is sufficiently small. Hence x(t) tends to 0
as t → ∞. Since

dx

dt
= −δx =

dx

ds

if uj(x) = 0, it follows that in this particular case s = t. Moreover, from the auxiliary
system, it follows that

p(t) = Ce(ρ+δ)t + o(e(ρ+δ)t),

with C < 0. Consequently, the transversality condition

lim
t→∞

p(t)e−ρt ≥ 0 (27)

is not satisfied for these strategies.
After all strategies are removed that cannot correspond to Markov Nash equilib-

ria, we retain a single global Markov-perfect Nash equilibrium and a family of local
Markov-perfect Nash equilibrium strategies; these are illustrated in figure 2.
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Figure 2 Local (thin curves) and global (thick curve) Markov-perfect Nash equilibrium strategies, to-
gether with the lines l1 and l2. Also indicated is the supremum x̄∗ of the state values that can be stabilised
by a local Markov-perfect Nash equilibrium strategy. Parameters as in figure 1.

Properties of equilibria. The feedback strategy that is formed by the upper two in-
variant manifolds of the steady state P of the auxiliary system is of the ‘kink’ or
‘corner’ type to be discussed below in subsection 3.1. Also the globally defined
strategy, thickly drawn in figure 2, has a corner: it is located at the point where the
invariant manifold of P intersects the horizontal axis. This corner is however of a
different kind, as it represents a control constraint that becomes active.

Consider the line l1 = {(x, p) : f(x, p) = 0} of equilibria of the state dynamics
(the broken thickly drawn line in the figure): the quantity dx

dt is positive above l1, and
negative below. From the figure, it is readily apparent that points on l1 close to the
origin (lower left hand corner) are stable, while points on l1 in the upper right hand
corner are unstable. Hence there is a point on l1 where equilibria change from stable
to unstable; it is the unique point (x∗∗, p∗∗) where a solution curve of the auxiliary
system touches the line l1.

Let p(x) determine a local Markov-perfect Nash equilibrium strategy. The stock
then evolves according to

dx

dt
= f(x, p(x)) = np(x)− δx. (28)

Let x∗ be a steady state equilibrium of this equation; then p∗ = p(x∗) = (δ/n)x∗
and (x∗, p∗) ∈ l1. This equilibrium is stable if

d

dx
f(x, p(x))

∣∣∣
x=x∗

= n
dp

dx
(x∗)− δ < 0.

This stability condition holds, using (26), when

dp

dx
(x∗) =

(ρ+ δ)p∗ − a+ bx∗

(2n− 1)p∗ − δx∗
=

(ρ+ δ) δnx∗ − a+ bx∗

(2n− 1) δnx∗ − δx∗
<

δ

n
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is satisfied. This condition can be simplified to read as

x∗ <
a

b+ δρ
n + δ2

n2

= x∗∗.

In other words, the value x∗∗ is the supremum of the stock values that can be stabil-
ised by a local Markov-perfect Nash equilibrium strategy. In the present situation we
have that for every x∗ < x∗∗, there is an equilibrium strategy determined by p such
that x∗ is a stable steady state under the dynamics (28).

The maximal stream of utility derived from consuming the public good, that is,
the maximum of ax − 1

2bx
2, is obtained at xm = b/a. Note that as the number n of

players tends to infinity, the value x∗∗, and with it the region of stock values that can
be stabilised, increases towards xm. This is to be expected: as the adjustment costs
are convex, it is better in terms of average costs per player that they are distributed
over more players.

From figure 1 we can also draw conclusions about which strategies maximise the
pay–off for the players, if the initial state x0 = x(0) of the system is given; we obtain
from equation (22) that

ρV = ax− b

2
x2 +

2n− 1

2
p2 − δxp = G(x, p). (29)

For fixed x the value of G, and hence of V , increases for increasing p if p > δx/(2n−
1).

Consider first the case that x0 = 0. Then

ρV (0) = G(0, p) =
2n− 1

2
p2,

and we see that the highest payoff is attained if p is chosen as large as possible; from
figure 2 we infer that this corresponds to the strategy that ends at the semi-stable
steady state x = x∗∗.

In general, for fixed x, the function p 7→ G(x, p) is convex, taking its minimum
at p = δx/(2n − 1). It follows that to maximise payoff for all players, the initial
value of p has to be taken as large as is feasible for x ≤ xP . Beyond that point, the
solutions with maximal p have to be compared with the globally defined strategy.
For x sufficiently large, there is only a single candidate, which is necessarily optimal.

3 Structure of MPNE

In the preceding section we derived the auxiliary system from the shadow price sys-
tem and documented its use to derive qualitative insights into (symmetric) Markov
perfect Nash equilibria for infinite horizon games. In this section we will make use
of the auxiliary system to gain insights into the general structure of Markov-perfect
Nash equilibria. In particular, we demonstrate that non-differentiability of equilib-
rium strategies corresponds to singularities of the auxiliary system and the number
and values of discontinuities of Markov-perfect Nash equilibrium strategies are re-
lated to solutions of the game Hamilton-Jacobi equation ρV(x) = G(x,V ′(x)).
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3.1 Corner points.

Let p : X → Rn be a given function. The graph of p is said to have a corner point or
corner at (x0,p(x0)), if there is a neighbourhood U of x0 such that p is continuous
on U , differentiable on U\{x0}, and such that the left and right limits of p′ at x0

exist and satisfy
lim
x↑x0

p′(x) ̸= lim
x↓x0

p′(x).

Theorem 2 already answers the question of when a continuous equilibrium Markov
shadow price vector p(x) may fail to be differentiable at certain (isolated) points x0:
it is necessary that

det
∂G

∂p
(x0,p(x0)) = 0

at such points. This is therefore a necessary criterion for the occurrence of corner
points in Markov-perfect Nash equilibrium strategies. More generally, we have

Theorem 3 Let the same assumptions about V as in theorem 2 hold. Assume that
p = V′ has a corner at (x0,p(x0)). Then necessarily the following equations hold:

0 = det
∂G

∂p
(x0,p(x0)), (30)

0 =

(
∂G

∂p
(x0,p(x0))

)∗(
ρp(x0)−

∂G

∂x
(x0,p(x0))

)
. (31)

The proof of this result is immediate. For the symmetric case, we have the fol-
lowing corollary.

Corollary 1 Let the same assumptions as in theorem 2 hold with respect to the func-
tion V. Assume moreover that the game is symmetric, and that V has the form

V(x) = (V (x), · · · , V (x)).

If p(x) = V ′(x) has a corner at (x0, p(x0)), then this point is a steady state of the
auxiliary system (19).

Summing up: if p is continuous, we have the following two implications. If p
has a corner at (x0,p(x0)), then (30) is satisfied; obversely, if (30) is not satisfied
at (x0,p(x0)), then p is differentiable at x0.

3.2 Jump points.

The function p : X → Rn is said to have an isolated jump point at x0, or simply to
jump at x0, if there is a neighbourhood U of x0 such that p is continuous on U\{x0},
and such that the left and right limits of p at x0 exist and satisfy

lim
x↑x0

p(x) ̸= lim
x↓x0

p(x).

Analogously to theorem 3 the following result gives a necessary condition for the
costate function of an equilibrium strategy to have an isolated jump point.
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Theorem 4 Let the function V(x) be continuous, piecewise continuously differenti-
able, and let it solve the vector Hamilton-Jacobi equation (5). If p(x) = V′(x) has
an isolated jump discontinuity at x = x0, then necessarily

lim
x↑x0

G(x,p(x)) = lim
x↓x0

G(x,p(x)).

Proof This is a direct consequence of the vector Hamilton-Jacobi equation (5) to-
gether with the continuity of V.

We make a couple of remarks concerning this theorem. First, we note that it is
possible to give a priory conditions that ensure the continuity of V: the relevant
condition is that the system dynamics are locally controllable for every player.

If V is continuous, the possible values of p to jump starting from a point (x0,p0)
are evidently the solutions of the system of equations

G(x0,p) = G(x0,p0).

For the symmetric situation, we have the following result.

Theorem 5 Let the game be symmetric, and let the function

V(x) = (V (x), · · · , V (x))

be continuous, piecewise continuously differentiable, and let it be a viscosity solution
of the vector Hamilton-Jacobi equation (5), or, equivalently, let V (x) be a viscosity
solution of the scalar Hamilton-Jacobi equation

ρV = G(x, V ′(x)).

Assume that G(x, p) is strictly convex in p, and that p(x) = V ′(x) has a jump dis-
continuity at x = x̂; that is, assume that the left and right limits pL and pR of p(x)
exist as x → x̂.

Then
G(x, pL) = G(x, pR) and pL ≤ pR.

The equality follows from the left and right continuity of G(x, V ′(x)) at x = x̂. The
inequality is a consequence of theorem 8 in the appendix.

4 Applications

The class of differential games introduced in the preceding sections is fairly general
and allows us to study Markov equilibria for a variety of different examples. Here we
apply the techniques of the auxiliary system to two alternative models that have been
dealt with in the literature: (i) the exploitation of a reproductive asset (Benhabib and
Radner 1992, Dockner and Sorger 1996) and (ii) the shallow lake problem (Mäler
et al. 2003, Brock and Starrett 2003, Wagener 2003, Kossioris et al. 2008, Kiseleva
and Wagener 2010).
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4.1 Exploitation of reproductive assets.

Consider the problem where n agents strategically exploit a single reproductive asset,
like fish or other species (see Dockner and Sorger 1996). The reproduction of the
stock x occurs at rate h(x), whereas player i extracts the stock at rate ui. Hence, the
state dynamics are given by

ẋ = h(x)−
n∑

i=1

ui. (32)

The instantaneous utility that agent i derives from the consumption of the stock is
assumed to be of the constant elasticity type

Li(ui) =
u1−σ
i

1− σ

with 0 < σ < 1, so that the utility functional of player i therefore is

Ji =

∫ ∞

0

u1−σ
i

1− σ
e−ρtdt.

The function Pi becomes

Pi =
u1−σ
i

1− σ
+ pi

h(x)−
n∑

j=1

uj

 .

From ∂Pi/∂ui we obtain pi = u−σ
i and ui = p

−1/σ
i , and the game Hamilton func-

tions read as

Gi =
1

1− σ
p
(σ−1)/σ
i + pi

h(x)−
n∑

j=1

p
−1/σ
j

 .

In the symmetric case p1 = · · · = pn = p, this simplifies to

G =
1− n+ nσ

1− σ
p(σ−1)/σ + ph(x),

and we obtain the auxiliary system
dx

ds
=

n− 1− nσ

σ
p−1/σ + h(x),

dp

ds
= (ρ− h′(x))p.

Using the relation u = p−1/σ , we find the form of the auxiliary system in state-
control variables: 

dx

ds
=

n− 1− nσ

σ
u+ h(x),

du

ds
=

h′(x)− ρ

σ
u.

(33)
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Figure 3 local (thin) and global (thick) Markov perfect Nash equilibria, obtained from the auxiliary
system (33), together with the isocline ẋ = h(x)− nu = 0 (dashed) in the symmetric two player case of
the fishery model with production function h(x) = x(1− x) and parameters ρ = 0.2 and σ = 0.8.

The situation σ = (1−1/n) is special, as then the factor (n−1−nσ)/σ vanishes
and the system can be integrated, yielding

u(x) = Ch(x)n/(n−1) exp

(
− nρ

n− 1

∫ x

x0

h(ξ)−1dξ

)
.

Compare equation (4) of Dockner and Sorger (1996).

Stability of steady states. As in the linear-quadratic example given in subsection 2.5,
for a given symmetric Nash equilibrium strategy u(x), the state dynamics are given
as f(x) = h(x)−nu(x). A state-control pair (x, u), with u = u(x), corresponds to a
steady state for these dynamics if f(x) = h(x)−nu = 0, that is, if u = h(x)/n. The
state is locally attracting if f ′(x) < 0. We compute, using the relation u = h(x)/n:

f ′(x) = h′(x)− nu′(x) = h′(x)− n
du
ds
dx
ds

= h′(x)− n
h′(x)−ρ

σ u
n−1−nσ

σ u+ h(x)
=

nρ− h′(x)

n− 1
.

It follows that (x, u) corresponds to an attracting steady state if

ρ <
h′(x)

n
,

and to an unstable state if the inequality sign is reversed. In particular, if h′(x) < 0,
then (x, h(x)/n) always corresponds to an unstable equilibrium for the state dynam-
ics. Moreover, since the derivative h′(x) is bounded from above, if

ρ > max
h′(x)

n
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then the state dynamics does not have stable equilibria in the interior of the state
space.

Let us finally consider the “semi-stable” state x̄ that satisfies

ρ =
h′(x̄)

n
;

this point is in the boundary of the set of all stabilisable states. Compare it to the
optimal long term steady state xcollusive of the collusive outcome, for which

ρ = h′(xcollusive)

holds, the so-called “golden rule”. The strategic behaviour in the semi-stable state x̄
can be described as each player behaving as if he had a private fish stock available
with reproduction rate h(x̄)/n.

Analysis of the auxiliary system. We shall assume that ρ ≤ h′(0). Then there is a
unique xρ ∈ [0, 1) such that h′(xρ) = ρ. The auxiliary system has then fixed points

(x, u) ∈
{
(0, 0), (1, 0),

(
xρ,

σ

1− n(1− σ)
h(xρ)

)}
.

Note that the third equilibrium satisfies u > 0 only if n < 1/(1− σ).

Theorem 6 Assume that x1 is such that h is strictly decreasing for x > x1. Then
every n-player symmetric Markov perfect Nash equilibrium x 7→ u(x) satisfies

u(x) ≥ h(x)

n

for all x ≥ x1.

Proof Let ū be an n-player symmetric Markov perfect Nash equilibrium, and assume
that for x0 > x1 the inequality is violated, that is

ū(x0) <
h(x)

n
. (34)

If x(0) = x0, this implies that x(t) > x0 for all t > 0, and therefore, since all
solutions of

ẋ = h(x)− nū(x)

are increasing, and since h is strictly decreasing for x > x1, that

ū(x(t)) ≤ h(x(t))

n
<

h(x0)

n

for all t > 0. Consequently

J(ū, · · · , ū) < J̄0
def
= ρ−1 (h(x0)/n)

1−σ

1− σ
.
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Figure 4 Local Markov-perfect Nash equilibria in the symmetric two player case of the fishery model
with production function h(x) = x(1− x) and parameters ρ = 0.2 and σ = 0.4.

Now assume that player 1 deviates by playing the constant strategy

u1(x) = h(x0)− (n− 1)ū(x0).

The system dynamics

ẋ = h(x)−
n∑

i=1

ui(x) = h(x)− u1(x)− (n− 1)ū(x)

has then x = x0 as steady state. From equation (34) it follows that

u1(x0) > h(x0)− (n− 1)
h(x0)

n
=

h(x0)

n
= ū(x0);

hence
J1(u1, ū, · · · , ū) > J̄0 > J1(ū, · · · , ū).

We finally obtain that ū cannot be a Nash equilibrium strategy.

Using the theorem, we have plotted the symmetric Markov perfect Nash equilibria
in figures 3 and 4. A characteristic feature of these strategy equilibria is that if the
initial fish stock is higher than the semi-stable threshold value x̄ introduced above, it
cannot be stabilised. Moreover, for these non-stabilisable initial stocks, we see that
as the initial stock is larger, the eventually reached steady state stock grows smaller.

Asymmetric strategies. Here the assumption is dropped that the players play sym-
metric strategies; for simplicity, we restrict to the two–player case n = 2 and assume
that σ = 1/2 holds. Then

Gi(x, p) =
2

pi
+ pi

(
h(x)− 1

p21
− 1

p22

)
.
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The system (7) takes the form

h(x)− 1

p21
− 1

p22
2
p1
p32

2
p2
p31

h(x)− 1

p21
− 1

p22



dp1
dx
dp2
dx

 = (ρ− h(x))

(
p1

p2

)
.

Using the relation pi = u
−1/2
i , we get

(
h− u1 − u2 2u1

2u2 h− u1 − u2

)
du1

dx
du2

dx

 = 2(h′ − ρ)

(
u1

u2

)

It is convenient to consider instead of u1 and u2 the quantities v = u1 + u2 and w =
u1 − u2; the systems then takes the simpler form

dv

dx
= 2

h′ − ρ

∆

(
hv − 2v2 + w2

)
,

dw

dx
= 2

h′ − ρ

∆
(h− v)w,

with ∆(x) = h2 − 2hv + w2 = (h − v)2 + w2 − v2. The auxiliary system to this
system of equations reads as

dx

ds
= ∆ = h2 − 2hv + w2,

dv

ds
= 2(h′ − ρ)

(
hv − 2v2 + w2

)
,

dw

ds
= 2(h′ − ρ)(h− v)w.

Note that the plane w = 0, corresponding to the symmetric case u1 = u2, is invariant
under the flow of the auxiliary system; in other words, that case is nested in the
present one.

We will not give a full analysis of this system, leaving that to future work. How-
ever, we would like to point out one consequence of the equation ẇ = 2(h′ − ρ)(h−
v)w. Recall that ẋ = h− v; hence, if the system is on a time path for which the stock
decreases, the factor h− v < 0, and the sign of ẇ/w is the opposite of h′ − ρ.

In the example above, the factor h′ − ρ is positive for small ρ and small x, and it
follows that then the differences between strategies decay exponentially if the stock
decreases towards an equilibrium close to x = 0. Conversely, if ρ sufficiently large,
differences between strategies increase exponentially, which can be interpreted as a
mad scramble to exploit the last remnants of the stock.
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Figure 5 Local (thin) and global (thick) Markov perfect Nash equilibrium strategies in the symmetric
two player case of the lake game, for parameter values (b, c, ρ) = (0.65, 0.5, 0.03). The global Nash
equilibrium strategy is discontinuous at xi.

4.2 Shallow lake.

Consider the following environmental problem. There are n players (countries, com-
munes, farmers) sharing the use of a lake. Each player has revenues from farming,
for which artificial fertiliser is used. The use of fertiliser has two opposing effects:
more fertiliser means better harvests and hence higher revenues from farming. On the
other hand fertiliser is washed from the fields by rainfall and eventually accumulates
a stock of phosphorus in the shallow lake. The higher the level of phosphorus the
higher are the costs (for fresh water, decreased income from tourism) to the player.
Since the level of the stock of phosphorus is the result of activities of all players shar-
ing the lake, the resulting problem can best be described by a differential game. The
shallow lake system has been investigated by Brock and Dechert (2008), Mäler et al.
(2003), Wagener (2003), Kossioris et al. (2008), Kiseleva and Wagener (2010); we
refer to these papers for background information. Particularly, Kossioris et al. (2008)
found local Markov-perfect Nash equilbria of the 2-player game by analysing the
shadow price equation expressed in controls numerically, but they failed to find the
global equilibrium.

Let the stock variable x represent the amount of phosphorus in a shallow lake and
let ui be the amount of fertiliser used by farmer i. Assuming a concave technology
to produce farming output and quadratic costs coming from the stock x, player i
maximises intertemporal utility

Ji =

∫ ∞

0

(log ui − cx2)e−ρtdt.
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The level of phosphorus is assumed to evolve according to the following state equa-
tion:

ẋ = f(x, u) =
n∑

i=1

ui − bx+
x2

x2 + 1
.

Here b is the constant rate of self-purification (sedimentation, outflow) and the non-
linear term x2/(x2 + 1) is the result of biological effects in the lake.

For this differential game the function Pi is given by

Pi = log ui − cx2 + pi

 n∑
j=1

uj − bx+
x2

x2 + 1

 .

Maximising over ui yields that ui = −1/pi. Restricting again our attention to sym-
metric strategies, we find on setting pj = p for all j = 1, · · · , n that

G(x, p) = − log(−p)− cx2 − n+ p

(
−bx+

x2

x2 + 1

)
.

The auxiliary system now reads as
dx

ds
=

∂G

∂p
= −1

p
− bx+

x2

x2 + 1
,

dp

ds
= ρp− ∂G

∂x
= (ρ+ b)p+ 2cx− 2px

(x2 + 1)2
,

or, in terms of controls, as
dx

ds
= u− bx+

x2

x2 + 1
,

du

ds
= −(ρ+ b)u+ 2cu2x+

2ux

(x2 + 1)2
.

Solutions to the auxiliary system are given in figure 5. The most important feature
of the solution set is that there is a globally defined non-continuous Markov-perfect
Nash equilibrium strategy, indicated by a thick line in the figure. Indeed, it has been
known for some time that the Hamilton-Jacobi equation of some economic optimal
control problems may have jumps in the policy function, see Skiba (1978), and for
the shallow lake model Mäler et al. (2003) and Wagener (2003). Since the game
Hamilton-Jacobi equation for the case of two or more players is identical to that of
the one player case, the same jump occurs. Note that the Nash strategies that are para-
metrised by parts of the stable and unstable manifolds of one of the saddle points of
the auxiliary system are continuous, but not continuously differentiable everywhere.

Finally notice that the auxiliary system does not depend on the number of agents,
and therefore coincides with the state–control system of the shallow lake optimal
control problem. In practical terms, this means that figure 5 can be used to analyse
the situation for any number of players. The only difference is in the symmetric time
dynamics

ẋ = nu− bx+
x2

1 + x2
.
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Increasing the number of players n leads to a decrease of the isocline ẋ = 0. In par-
ticular, though this will not be demonstrated here, for large values of n no states in the
low-pollution region can be stabilised by a locally defined feedback Nash equilibrium
strategy.

5 Conclusions

In this article, a framework has been elaborated to find sufficient conditions as well as
necessary conditions for Markov-perfect Nash equilibrium strategies in differential
games with a single state variable. The Nash equilibria have been characterised as
solutions of a system of explicit first order ordinary differential equations, usually
nonlinear.

By analyzing a series of classical examples, we have shown that this character-
ization can be used to find both direct analytic information, by integration of the
equations, and indirect qualitative information, by a geometric analysis of the solu-
tion curves of an auxiliary system in the phase space.

Additionally, we have addressed the issues of continuity and differentiability of
Markov strategies in this class of differential games. In particular, in the shallow
lake model, we have shown the existence of a non-continuous Markov-perfect Nash
equilibrium. Our simple approach is capable enough to deliver interesting insights
into a large class of capital accumulation games.
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A Evolution near non-Lipschitz points

For continuous one-dimensional vector fields F : X → R, where X is a closed interval of R, Peano’s
theorem (Peano 1890) guarantees the existence of a positive constant T > 0, possibly infinite, and a
differentiable function x : [0, T ] → R satisfying

ẋ = F (x) (35)

for all t ∈ [0, T ], and such that x(T ) ∈ ∂X .
At points x̂ where the right hand side F of an ordinary differential equation has an isolated discontinu-

ity, Peano’s theorem does not apply. For our purposes, it is sufficient to have the existence of continuous
functions x(t) that satisfy (35) for all t ∈ [0,∞)\N , where N is a discrete set, that is, a set without
limit points. For the purpose of this appendix, we shall call these piecewise solutions in analogy to piece-
wise differentiable functions. Piecewise solutions are a special case of Carathéodory solutions, which are
absolutely continuous functions x(t), satisfying (35) almost everywhere on [0,∞) (cf. Hajek 1979).

The theorem of this section gives a condition for one-dimensional vector fields with isolated jump
discontinuities to have piecewise solutions.
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Theorem 7 Let U ⊂ R be an open interval including x̂, and let F restricted to U\{x̂} be continuous,
non-zero and such that the right and left limits FR and FL of F (x) exist as x tends to x̂ from the right
and from the left respectively. Assume that

if FL ≥ 0 ≥ FR, then F (x̂) = 0.

Then for all x0 ∈ U there exists a piecewise solution of (35) that satisfies x(0) = x0 and that is defined
for all t such that x(t) ∈ U .

Proof In the proof, ‘trajectory’ will indicate a solution x of the differential equation, whose existence is
guaranteed by Peano’s theorem, that is, as long as x(t) ̸= x̂. A statement about a trajectory x that holds
‘for all t’ will always mean ‘for all t such that x(t) ∈ U ’.

There are a number of different situations. Firstly, if FL = FR, then F is continuous on U , and
Peano’s theorem yields the existence of a solution to the differential equation for all t.

Secondly, FL and FR may be both non-negative or both non-positive. Assume for definiteness that
both are non-negative. Then a trajectory starting at x0 > x̂ does not decrease, never reaches x̂, and yields
a piecewise solution for all t, while a trajectory x1 starting at x0 ≤ x̂ reaches x̂ at some time T ≥ 0;
if T = ∞, then x1 is already a piecewise solution. Assume therefore that T is finite. Introduce

G(x) =

{
F (x) x > x̂,

FR x ≤ x̂.
(36)

Let then x2 be a solution of ẋ = G(x) with initial condition x2(T ) = x̂, which exists as G is continuous.
The trajectory that is equal to x1(t) for 0 ≤ t < T and x2(t) for t ≥ T is a piecewise solution.

Thirdly, there is the possibility that FL > 0 > FR. By assumption we then have F (x̂) = 0. A
trajectory x1 starting at x0 < x̂ will satisfy limt↑T x1(T ) = x̂ for some finite time T . Concatenation
with the constant trajectory x2(t) = x̂ for t ≥ T again yields a piecewise solution. The case x0 > x̂ is
handled in the same manner.

Lastly, there is the situation that FL < 0 < FR. As above, a trajectory with initial value x0 > x̂ is
increasing, hence defined for all t and yields a piecewise solution; likewise, trajectories starting at x0 < x̂
are decreasing and are also defined for all t ≥ 0. If finally x0 = x̂, let G be defined as in (36), and let x
be a solution of ẋ = G(x) with x(0) = x0. As G(x) > 0 for all x, x(t) is increasing in t and satisfies
therefore G(x(t)) = F (x(t)) for all t > 0. Hence it is a piecewise solution as well. ⊓⊔

B Proof of the sufficiency theorem

In this section, the proof of theorem 1 is given. Before starting, we make a general remark on supergradients
of viscosity solutions V : X → R to the Hamilton-Jacobi equation

ρV = G(x, V ′),

where G : X × R → R.

Theorem 8 Let G = G(x, p) be a continuous function that is strictly convex in p, let x̂ be a point in X ,
let U be an open neighbourhood of x̂ in X , and let V be a viscosity solution of the Hamilton-Jacobi
equation (10) that is continuously differentiable on U\{x̂}. Then necessarily

lim
x↑x̂

V ′(x) ≤ lim
x↓x̂

V ′(x)

and
lim
x↑x̂

Gp(x, V
′(x)) ≤ lim

x↓x̂
Gp(x, V

′(x)).

Corollary 2 Let G and V be as in theorem 8. Consider the state evolution equation

ẋ = F (x) = Gp(x, V
′(x)), (37)

defined for all x where V ′ is differentiable in x. If at a point x̂ the left and right limits FL and FR of F
exist, then FL ≤ FR.
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Remark 1 It follows from theorem 7 that under the conditions of theorem 8 the state evolution equa-
tion (37) has a piecewise solution.

Remark 2 Theorem 8 applies for instance to the global Markov-perfect Nash equilibrium of the shallow
lake model, discussed in subsection 4.2.

Proof (Of theorem 8). Let
pL = lim

x↑x̂
V ′(x), pR = lim

x↓x̂
V ′(x),

and assume by contradiction that
pL > pR.

Note that since V is C1 on U\{x̂}, we have

ρV (x̂) = G(x̂, pL) = G(x̂, pR).

Moreover, since pL > pR
[pR, pL] ⊂ D+V (x̂).

Since G(x̂, p) is strictly convex in p, it follows that for p̄ ∈ (pR, pL), we have

G(x̂, p̄) < ρV (x̂)

On the other hand, since V is a viscosity solution and p̄ ∈ D+V (x̂), it follows that

G(x̂, p̄) ≥ ρV (x̂).

This is impossible, hence pL ≤ pR. ⊓⊔

We now give the proof of theorem 1.

Proof We have to show the following. If the strategy vector of the players other than player i equals u∗
−i,

then u∗
i is a best response of player i; in other words, ui(x) = u∗

i (x) solves the optimisation problem of
player i.

The proof consists of two parts, and it rests on the verification that Vi(x) is the value function of the
optimisation problem of player i. Let ui(x) be any admissible strategy, set

ū(x) = (ui(x),u
∗
−i(x)),

and let x̄ be any piecewise solution of

˙̄x = f(x̄, ū(x̄)), x̄(0) = x0, (38)

whose existence is guaranteed by theorem 7. The first part of the proof shows that then∫ ∞

0
Li(x̄, ū(x))e

−ρtdt ≤ Vi(x0); (39)

that is, Vi(x0) is an upper bound for the payoff of player i.
Then for ui = u∗

i (x), and x = x∗ being any piecewise solution of

ẋ = f(x,u∗(x)), x(0) = x0, (40)

the second part of the proof demonstrates the opposite inequality∫ ∞

0
Li(x

∗,u∗(x∗))e−ρtdt ≥ Vi(x0). (41)

Together, these inequalities show that u∗
i is a best response of player i.

Part one. As ū is piecewise differentiable, the set C of points where f(x, ū(x)) fails to be differentiable
is a set of isolated points.
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Let D be the set of states at which V fails to be differentiable. By assumption this is a set of isolated
points as well. Take ε ∈ (0, 1) arbitrarily. Because of condition (16) there is a constant T > 1/ε > 0
such that ∣∣∣Vi(x̄(T ))e−ρT

∣∣∣ < ε. (42)

Let Σ ⊂ [0, T ] be such that

x̄(t) ∈ C ∪D

if and only if t ∈ Σ. As x̄ is a piecewise solution, there are time points

0 ≤ t1 < t2 < · · · < tk ≤ T,

such that the set Σ is the union of the finite set Σ1 = {t1, · · · , tk−1} and the interval Σ2 = [tk, T ],
where it is understood that Σ1 may be empty and Σ2 may have zero length. Note that

f(x̄(t), ū(x̄(t))) = 0

if t ∈ Σ2.

Also set

xj = x̄(tj), j = 1, · · · , k.

From (42) it follows that

−Vi(x0) ≤ ε+ Vi(x̄(T ))e−ρT − Vi(x0)

= ε+
k∑

j=1

∫ tj

tj−1

d

dt

(
Vi(x̄)e

−ρt
)
dt+

∫ T

tk

d

dt

(
Vi(xk)e

−ρt
)
dt. (43)

As Vi(x) is differentiable in the open intervals (xj−1, xj) as a function of x and x̄ is differentiable
in (tj−1, tj) as a function of t, the differentiations can be performed to yield

−Vi(x0) ≤ ε+

k∑
j=1

∫ tj

tj−1

(
V ′
i (x̄)f

(
x̄, ū(x̄)

)
− ρVi(x̄)

)
e−ρtdt (44)

+

∫ T

tk

(
pif

(
xk, ū(xk)

)
− ρVi(xk)

)
e−ρtdt. (45)

Here, the constant pi ∈ D−Vi(xk) is an arbitrary subderivative of Vi at xk; as xk is a steady state, we
have that the inserted term

pif(xk, ū(xk)) = 0.
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We compute∫ T

0
Li(x̄, ū)e

−ρtdt− Vi(x0)

≤ ε+
k∑

j=1

∫ tj

tj−1

(
Li(x̄, ū(x̄)) + V ′

i (x̄)f(x̄, ū)− ρVi(x̄)
)
e−ρtdt

+

∫ T

tk

(
Li(xk, ū(xk)) + pif(xk, ū(xk))− ρVi(xk)

)
e−ρtdt

= ε+
k∑

j=1

∫ tj

tj−1

(
Pi

(
x̄, V ′

i (x̄), ui(x̄);u
∗
−i(x̄)

)
− ρVi(x̄)

)
e−ρtdt

+

∫ T

tk

(
Pi(xk, pi, ui(xk);u

∗
−i(xk))− ρVi(xk)

)
e−ρtdt

≤ ε+

k∑
j=1

∫ tj

tj−1

(
Hi

(
x̄, V ′

i (x̄);u
∗
−i(x̄)

)
− ρVi(x̄)

)
e−ρtdt

+

∫ T

tk

(
Hi(xk, pi;u

∗
−i(xk))− ρVi(xk)

)
e−ρtdt

≤ ε+
k∑

j=1

∫ tj

tj−1

(
Gi

(
x̄,V′(x̄)

)
− ρVi(x̄)

)
e−ρtdt = ε.

Note that for the second inequality, we used that Hi(x, pi) = maxui Pi(x, pi, ui). In the last inequality,
we used that Vi is a viscosity supersolution of the Hamilton-Jacobi equation (15). Letting ε → 0 now
yields inequality (39).

Part two. It remains to show the opposite inequality (41) if ui(x) = u∗
i (x) for all x, and x = x∗

solving (40). Let C denote the isolated set of states where f(x,u∗(x)) fails to be differentiable; and let
the set D be defined as above. Repeat the construction of T , the ti, and the sets Σ1 and Σ2, but now
with x̄ replaced by x∗.

With a analogous reasoning as used to derive (44), we can show that

−Vi(x0) ≥ −ε+
k∑

j=1

∫ tj

tj−1

(
V ′
i (x

∗)f
(
x∗,u∗(x∗)

)
− ρVi(x

∗)
)
e−ρtdt (46)

+

∫ T

tk

(
pif

(
xk,u

∗(xk)
)
− ρVi(xk)

)
e−ρtdt,

where pi ∈ D−Vi(xk) is any subderivative of Vi at xk .
Again, if the interval Σ2 is nontrivial, the point xk is a steady state of equation (38), with ū replaced

by u∗. Introduce
F (x) = f(x,u∗(x)).

By assumption, the strategy vector u∗, and consequently the function F , is either left or right continuous
at xk – say it is left continuous, the other case being similar. Setting

piL = lim
x↑xk

V ′
i (x),

it follows by continuity that

Pi(x
∗, V ′

i (x
∗), ui;u

∗
−i(x

∗)) → Pi(x
∗, piL, ui;u

∗
−i(x

∗)) as x ↑ xk,

and hence that
u∗
i (xk) = arg maxui

Pi(xk, piL, ui;u
∗
−i(xk)). (47)
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Inequality (46) implies that∫ T

0
Li(x

∗,u∗(x∗))e−ρtdt− Vi(x0)

≥ −ε+
k∑

j=1

∫ tj

tj−1

(
Li(x

∗,u∗(x∗)) + V ′
i (x

∗)f
(
x∗,u∗(x∗)

)
− ρVi(x

∗)
)
e−ρtdt

+

∫ T

tk

(
Li(xk,u

∗(xk)) + piLf
(
xk,u

∗(xk)
)
− ρVi(xk)

)
e−ρtdt

= −ε+
k∑

j=1

∫ tj

tj−1

(
Pi(x

∗, V ′
i (x

∗), u∗
i (x

∗);u∗
−i(x

∗))− ρVi(x
∗)
)
e−ρtdt

+

∫ T

tk

(
Pi(xk, piL, u

∗
i (x

∗);u∗
−i(xk))− ρVi(xk)

)
e−ρtdt,

by definition of Pi, and

= −ε+

k∑
j=1

∫ tj

tj−1

(
Hi(x

∗, V ′
i (x

∗);u∗
−i(x

∗))− ρVi(x
∗)
)
e−ρtdt

+

∫ T

tk

(
Hi(xk, piL;u

∗
−i(xk))− ρVi(xk)

)
e−ρtdt,

by equation (47).
All the terms of the sum vanish, since

Hi(x, V
′
i (x);u

∗
−i(x)) = Gi(x,V

′(x)) = ρVi(x)

whenever x ∈ (xj−1, xj). The final integral vanishes as well, as by continuity

ρVi(x) = Gi(x,V
′(x)) → Hi(xk, piL;u

∗
−i(xk)) as x ↑ xk.

Continuity of Vi then implies that

ρVi(xk) = Hi(xk, piL;u
∗
−i(xk)).

Sending ε → 0 demonstrates inequality (41). ⊓⊔
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