
1

SMASH: A Heuristic Methodology for Designing
Partially Reconfigurable MPSoCs

Riccardo Cattaneo, Christian Pilato, Gianluca C. Durelli,
Marco D. Santambrogio, Donatella Sciuto

Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, Milano, Italy
{rcattaneo,durelli}@elet.polimi.it, {christian.pilato,marco.santambrogio,donatella.sciuto}@polimi.it

Abstract—The exploitation of the capabilities offered by recon-
figurable architectures is traditionally a demanding task due to
the intrinsic time consuming and error prone customization of
these systems around the specific application. Moreover, existing
approaches are not able to integrate the notion of partial and
dynamic reconfiguration (PDR) from the early stages of the
decision phases, potentially leading to sub-optimal solutions.

In this work, we propose SMASH (Simultaneous Mapping and
Scheduling with Heuristics), a highly automated design method-
ology focused on explicitly taking into account PDR during the
design of reconfigurable designs. It combines heuristics for both
the design of the architecture and the mapping and scheduling
of the partitioned application. We show how this additional
degree of freedom leads to architectures whose performance are
improved with respect to the baseline.

I. INTRODUCTION

Nowadays, the design of efficient embedded systems relies
on heterogeneous MPSoCs [1] that combine general purpose
processors with dedicated hardware accelerators. Indeed, effi-
cient tools (e.g., Xilinx Vivado HLS, Synopsys C Compiler,
Cadence C-to-Silicon, Calypto CatapultC) are becoming very
popular for the automatic generation of hardware implemen-
tations from the corresponding behavioral specifications, also
allowing the possibility to explore different implementations
(e.g., trade-offs between performance and requirements of
resources). As a result, high-performance and low-power ar-
chitectures can be obtained with the hardware acceleration of
different parts of the application [2], even if their design still
requires high expertise.

In particular, Field Programmable Gate Arrays (FPGAs)
are very attractive solutions that allow implementing large
parts of the application in hardware at low cost. Moreover,
exploiting Partial Dynamic Reconfiguration [3] (PDR) offers
the possibility of reusing some part of the logic across different
tasks, despite of an overhead in the execution time required
to reconfigure the corresponding logic cells. For this reason,
this technique introduces several challenges that have to be
properly taken into account during the design of such systems.
In particular, one of the main issues in designing heteroge-
neous systems, especially when PDR is taken in account, is
the customization of the architecture [4] in terms of hardware
accelerators (either static or reconfigurable) that are usually de-
fined in advance, potentially leading to sub-optimal solutions.
Then, the designer has to determine which tasks have to be
hardware accelerated and the level of reconfiguration for each

of them (if any), also with respect to the number of available
resources. Moreover, since a task reconfiguration requires to
load the new configuration bitstream for the corresponding
region, this can introduce a penalty in the execution time
if it is not properly taken into account in the design of
the application [5]. Finally, the effects of the data transfers
between the tasks are crucial aspects [6] and thus the impact
of the interconnection infrastructure (e.g., bus, NoC, FIFO)
has to be necessarily taken into account. In conclusion, novel
and efficient methodologies are definitely required to take into
account the reconfiguration aspects for the early stages of the
design process.

In this paper, we propose SMASH (Simultaneous Mapping
and Scheduling with Heuristics), a design methodology that
aims at addressing the limitations cited above. It combines
different heuristics for both customizing the architecture and
implementing the application to generate reconfigurable sys-
tems tailored for the input partitioned specification. Indeed, it
determines which implementation has to be adopted for each
task and the level of reconfiguration of the corresponding hard-
ware modules, also potentially taking into account different
topologies that can adopted for interconnecting the processing
elements. In fact, SMASH includes an exploration phase that
is able to determine the proper mapping and scheduling for
the different tasks of the application, determining the tasks’
implementations and the processing elements where they have
to be executed. During this exploration, it also determines
which hardware modules have to be included into the recon-
figurable logic (either to be used as static or reconfigurable
regions) and the resulting reconfigurations are taken into
account during the evaluation of the solution, along with the
required communications. Moreover, taking into account the
resulting resource requirement of the different regions during
the exploration allows to limit the generation of unfeasible
solutions. Simulations by means of virtual platforms have been
adopted to validate the proposed approach.

The rest of the paper continues as follows. Section II
overviews existing approaches that aim at addressing similar
problems, highlighting the contributions of the proposed so-
lution whose overall organization is presented in Section III.
Then, Section IV and Section V present the heuristics at the
basis of this work and the solution evaluation method, respec-
tively. In Section VI presents the experimental evaluation of
the proposed approach, while Section VII concludes the paper
and outlines the future directions of work.

978-1-4799-2409-7/13$31.00 c©2013 IEEE 102

T0

T1 T2

T4T3

T5

Fig. 1: Example of application DAG.

II. RELATED WORK

The synthesis of heterogeneous MPSoCs usually requires
an efficient exploration of the design space. Daedalus [7] is
an interesting and integrated framework for starting from a
sequential application and then generating the correspond-
ing parallel implementation, along with the corresponding
system. However, it only focuses on streaming applications
and reconfiguration aspects are not taken into account. It is
worth noting that these aspects are usually not taken into
account for such applications due to synchronization issues
in the FIFOs when reconfiguring the blocks. Moreover, single
stages of this computation are usually quite simple and, thus,
reconfiguration is usually not attractive in this scenario. On the
other hand, task-based applications are usually characterized
by time-consuming computational blocks interleaved by data
transfers. They are usually represented as Direct Acyclic
Graphs (DAGs), as the example shown in Figure 1.

As opposite to creating full-custom architectures, platform-
based design [4] is instead a viable solution for reducing
the complexity of designing such systems by a progressive
refinement of an architectural template. Based on this idea,
different approaches [6], [8], [9] have been proposed for
optimizing partitioned applications, especially in the case of
hardware acceleration. In particular, [8] uses an approach
based on task clustering, while [6] explores different mapping
and scheduling alternatives with a constructive approach for
limiting unfeasible solutions. However, in both of the cases,
PDR is not addressed and thus tasks can be executed in
hardware only as long as they fit in the available area. On the
other hand, [9] proposes a method for mapping and scheduling
of reconfigurable systems, but the target architecture (e.g.,
the number of reconfigurable regions) have to be defined in
advance, potentially leading to sub-optimal solutions.

In [10], the authors propose a set of techniques focusing
on the partitioning of the code and the generation of the
corresponding adaptive system. However, they mainly focus
on dynamic aspects and the support for the Operating System
(OS), while we are more interested in design-time decisions,
in order to have a very lightweight OS or even a bare-metal
synchronization of the application.

On the other hand, it is worth noting that, for creating a
feasible implementation of the system, another step is usually
required: the definition of the physical constraints within
the FPGA to satisfy the resource requirements (e.g., LUTs,
BRAMs, DSPs) of the hardware modules and to avoid their
overlapping. The authors in [5] propose a methodology for

FPGA

INTERCONNECTION CHANNEL

RR0CPU1CPU0

SHARED

MEMORY

I/O

INTERFACE
...

ICAP

RR1

RR2 IP0

Fig. 2: Example of target architecture.

mapping the tasks to processing elements taking into account
reconfiguration aspects and also placement issues. However,
their assumptions are quite simplistic (e.g., homogeneous
resources for the regions) and they are difficult to be applied
to recent FPGA devices, where the designer can design very
different and two-dimensional reconfigurable regions. In this
paper, we separate the problems: we identify the number of
hardware modules while exploring the mapping of tasks with
respect to them. Then, we only verify that the total amount of
resources required by the regions can be effectively satisfied by
the target FPGA. Extending the proposed approach to integrate
the verification of the physical constraints is straightforward: a
floorplanning algorithm (e.g., the one proposed in [11]) can be
integrated in the evaluation of the solution and return to the
exploration algorithm if the assignment results in a feasible
allocation of the resulting regions or not. However, this is out
of the scope of this paper and it has been left as a future work.

In conclusion, the main contributions of the proposed ap-
proach can be summarized as follows:

• it optimizes the execution of the given task graphs with
respect to an architectural template, determining the level
of reconfiguration for each of the tasks that are decided to
be executed in hardware and the nature of the hardware
modules to be introduced in the final platform;

• it defines an exploration framework that can easily ac-
commodate different algorithms, metrics and evaluation
methods to design a reconfigurable system;

• it generates the specification of the virtual platform
corresponding to the identified solution.

This approach has been validated by means of synthetic ap-
plications that are representative of real-life applications. The
corresponding solutions have been then evaluated with high-
level simulations of the generated virtual platforms through
Synopsys Platform Architect [12].

III. PROPOSED METHODOLOGY

The proposed methodology, namely SMASH, starts from
the description of the architectural template to be customized
(as the one shown in Figure 2) and of one or more partitioned
applications to be concurrently executed. Each of these appli-
cations can be represented as a DAG (as the one shown in
Figure 1) and a unique representation can always be obtained
by combining them. A list of admissible implementations (e.g.,
combination of performance and resource requirements) has to
be also provided for each task. For software tasks, they can
be computed by profiling or estimating its execution. On the
other hand, for hardware tasks, it is possible to obtain both
execution time and required resources by estimations or by
actual synthesis through a HLS tool such as Vivado HLS [13].

103

SMASH is then applied to this resulting DAG and it is
mainly composed of two parts, as shown in Figure 3:

1) Design Space Exploration: an exploration of the mapping
and scheduling for the input DAG to statically determine
which implementation has to be adopted for each of the
tasks and where they have to be executed (e.g., processors
or reconfigurable logic).

2) Architecture Refinement: a final customization of the
architecture, where it is possible to identify static IP cores
(i.e., modules with only one task associated with), as well
as reconfigurable regions.

As output, it produces a description of the system to be
implemented, including the specification of the customized
architecture and the mapping and scheduling of the tasks
(including reconfiguration ones) with respect to this generated
architectural solution.

In details, the exploration heuristic (further detailed in
Section IV) aims at evaluating different solutions in terms of
mapping and scheduling to determine the best implementation
for the given DAG with respect to the target architecture en-
hanced with hardware modules. In particular, when assigning
multiple tasks to the same region, the heuristic is able to
automatically compute its overall resources requirements and,
taking into account the requirements of all the blocks, whether
the solution is feasible or not. Then, the solution evaluation
determines the reconfiguration tasks that have to be introduced
(i.e., when consecutive tasks executing different functions are
assigned to the same module) and evaluates the performance
of the solution taking into account also the reconfiguration
overhead. Note that this term is computed on the basis of
the size of the reconfigurable region (i.e., its requirement of
resources) as it results from the generated mapping.

The last phase of the methodology is a post-processing
step that analyzes the mapping solution and the architectural
template. In such a situation, each hardware module that has
been introduced by the exploration algorithm can have one or
more tasks assigned. If the module has only one task assigned,
it means that it can be converted into a static IP block, since no
reconfiguration is required, thus reducing its area consumption
and design complexity. Otherwise, modules with more than
one task assigned to are represented as actual reconfigurable
regions in the final architecture.

In conclusion, the methodology can produce the description
of the resulting system. In particular, we assume that the
generated solution performs correctly from the functional point
of view and then we are only interested into evaluating non-
functional properties of the system (e.g., performance). For
this reason, in this work, we generated a virtual platform
for the high-level evaluation of the solutions, where each
processing element is represented as a Virtual Processing Unit
(VPU) and all the VPUs are interconnected as specified by the
input architectural template. Then, the initial DAG is mapped
onto these VPUs as specified by the generated mapping
solution and the reconfiguration tasks are assigned to the VPU
that has in charge of performing the actual reconfiguration
(e.g., a dedicated processor or one of the available GPPs) to
correctly model its execution overhead.

DFG

Architecture

Template
Mapping and Scheduling Heuristic

(Fast)

Solution

Evaluation

Design Space

Exploration

Solution

Architecture

Refinement

Architecture Solution

SMASH

Implementations

Fig. 3: Overview of the proposed methodology.

IV. MAPPING AND SCHEDULING EXPLORATION

Our mapping and scheduling exploration is based on Ant
Colony Optimization (ACO) [14]. This meta-heuristic relies
on the abstraction of an agent (i.e., the “ant”) stochastically
exploring the design space, described as a sequence of choices.
At each step, the agent computes all the available choices
and ranks them according to a rule which helps the algorithm
finding the best solutions, iteration by iteration.

The rule for ranking choices relies on two heuristics: local
and global. The former is a function that assigns a score to a
choice given the current state of the exploration, and integrates
knowledge about the specific problem. It allows the agent to
make an informed (yet local) decision about the next step of
the exploration. The latter is a model for the abstraction of
ants’ pheromones, a substance ants naturally release on the
path they traverse and to which are naturally attracted. Being
a volatile substance, the intensity of the pheromone trail will
eventually disappear at a rate inversely proportional to the
number of ants traversing (i.e. reinforcing) it. On the other
hand, on a heavily traversed path the deposited pheromone
trail will be reinforced, and more ants will be attracted to it.
If a path to a target is optimal, ants will reach it in lesser time
than other paths; thus, the amount of pheromones on that trail
will evaporate relatively slower because it takes less time to
traverse it (in other words, it is reinforced more frequently).
In a sense, the amount of pheromones on a path globally keep
track of how good that path is to reach the goal.

An ACO algorithm implements the exploration in an it-
erative way by using “generations of ants”. A generation
is composed of N ants performing design space exploration
(DSE), all using the same values of the global pheromone
matrix. At the end of each generation, only some ants (i.e., a
parameter K defined by the user) are considered for global
heuristic reinforcement, proportional to the quality of the
corresponding solution. After a convergence criteria is met,
the best solutions are kept and the others are discarded.

104

A. Detailed overview of the algorithm

This algorithm describes the steps required to map an appli-
cation represented as a DAG onto a reconfigurable architecture
composed of different processing elements with the goal of
minimizing the total execution time.

Algorithm 1: Overview of exploration algorithm
input : A task graph and a reconfigurable architecture
output: A mapping trace

1 forall the numGenerations do
2 forall the antsPerGeneration do
3 readySet ← tasksWithoutPreds ()
4 scheduledSet ← ∅
5 while readySet 6= ∅ do
6 forall the Ti ∈ readySet do
7 pTi

← localHeuristic (Ti)

8 chosenT ← roulette (pT)

9 iSet ← implsOfTask (chosenTask)
10 forall the Ii ∈ iSet do
11 pSet ← processorsPerImpl (Ii)
12 forall the Pi ∈ pSet do
13 pIi,Pi

← localHeuristic (Ii, Pi)

14 chosenI, chosenP ← roulette (pI,P)
15 choice ← <chosenT, chosenI, chosenP >
16 mappingTrace.add (choice)
17 readySet ← resolveDependencies ()

18 ant.Metrics ← computeMetrics (currentAnt)
19 ant.Objective ← computeObjective (ant.Metrics)
20 thisGenerationSolutions.add (ant)

21 bestAnts.add (selectBest (thisGenerationSolutions))
22 updateGlobalPheromones (bestAnts)

23 bestAnt = selectSingleBestAnt (bestAnts)
24 return bestAnt.trace

The algorithm evolves a certain number of generations
of ants (lines 1-22) until termination criteria is met. In
our case, the termination criteria is the number of gen-
erations to evolve and is a configurable parameter of
the exploration process. Each ant builds a solution as a
sequence of choices (lines 2-22): in our specific case,
they are mapping choices, i.e., 3-tuples of the form <
task, implementation, processing element > representing
how a task should be implemented and where. In this context,
an implementation is one of the available ways to execute
a task either in software or in hardware. An ant computes a
complete trace, i.e. a list of mapping choices where an explicit
scheduling priority is expressed by the ordering of the choices
in the list itself.

In order to iteratively build a solution, the ants generate all
feasible choices at each step of the algorithm, ranking each of
them according to a rule based on two heuristic functions, one
for the choice of the task to map (lines 6-8) and one to choose
both the implementation and the processing element to execute
this task onto (lines 10-14). Note that the exploration starts
with a minimum number (minHW , a configurable parameter)
of hardware modules to employ into the final architecture.
Then, at each step, the choice may reuse the allocated modules
or may instantiate an additional hardware module to better
exploit hardware resources, given that the area constraint is
never violated and the total number of hardware modules is

less than a maximum value (maxHW , another configurable
parameter) or the number of tasks. After assigning a score to
each mapping choice (line 13), the ant selects one of those
choices using a roulette wheel selection scheme (line 14),
where the probability of each choice is proportional to its
heuristic value. After a decision for this iteration is made,
the ant computes what tasks may be executed afterward (line
17), and the process continues until no more tasks need to be
scheduled (lines 5-17).

At this point, the solution is evaluated according to a
reconfiguration-aware scheduler (further detailed in Section
V), and an objective function is assigned to it (line 19). When
the last ant of the current generation ends, the best solutions
are used to reinforce the global pheromone matrices (line 22).

This ACO-based algorithm is known to efficiently solve
large instances of task mapping problems [6]. However, we
further improved it to devise efficient schedules exploiting
knowledge about the problem and the reconfigurable archi-
tecture onto which tasks are mapped.

B. Reconfiguration-aware Heuristics

As described in IV-A, a 2-step decision process is adopted
to reduce the complexity of the exploration, as in [6]. The first
one is the task local heuristic, which selects, at each decision
point, what is the current “best” task to schedule among the
set of ready tasks. The second one is the mapping local
heuristic, which selects, at each decision point, given a task,
what is the current “best” choice of processing element and
implementation to execute the chosen task with. To balance the
relative weight of all the choices, all heuristic values (local and
global) are scaled in the (0, 1) interval, where higher values
mean better choices.

The task local heuristic yields high values for tasks char-
acterized by low mobility values and relatively fast execution
times (averaged over all the task’s possible implementations).
This rule particularly favors an early execution of ready
tasks on the critical path that might otherwise unnecessarily
increase the overall execution time. It also slightly increases
the heuristic value for tasks that executes relatively faster than
the others.

The mapping local heuristic, instead, is computed in dif-
fering ways depending on the implementation. Moreover,
since the architecture might feature static, reconfigurable and
software processors, we have to rank the choices featuring
any of them in a way that they can be fairly compared to
each other. The first step, then, is to understand whether the
implementation is hardware or software.

If software, we compute the heuristic as the product of
two terms in the (0, 1) interval: H1

SW and H2
SW . H1

SW is
the likelihood of a software implementation of the task with
respect to any hardware one (if available), to take into account
how a software implementation might be better or worse than
a hardware one. H2

SW computes the average mobility of all
software processors, as the sum of the mobility values of
all the tasks previously assigned to each software processor,
divided by the number of those tasks. Software processors
that have not been assigned tasks yet are automatically ranked

105

better than any other software processor choices. This choice
privileges software processors that have never been assigned
tasks before and that have been previously mapped with tasks
with relatively lower average mobility.

If hardware, instead, we consider the set of hardware
modules available in the system. For the computation of
the heuristic of a reconfigurable region, we compute the
product of three terms in the (0, 1) interval: H1

HW , H2
HW

and H3
HW . H1

HW is a general likelihood factor for a hardware
implementation with respect to any software one (if available).
H2

HW is a factor that relates to area usage for instantiating
the implementation on this reconfigurable region. This term
takes into account the number of tasks that are yet to be
scheduled in order to assign each task a (potentially) fair share
of the resources of the FPGA. We penalize the heuristic values
of those choices which would consume more resources (in
percent terms) than the percent advancement of the mapping
algorithm. For example, if the ant is mapping the 5th task
out of 10 available tasks, a good choice must not consume
more than 50% of the available FPGA area, after mapping
this task to the choice’s reconfigurable region. If this limit is
violated, but the overall constraint on total FPGA area is not
violated, the choice is still viable but is consuming more area
than it should and so its heuristic value is halved. If instead
the violation leads to a global area violation, the solution is
discarded (i.e., heuristic value = 0, preventing to take this
decision). This allow for an early discovery of unfeasible
solutions for faster termination. H3

HW term is similar to H2
SW :

the lower the average mobility of the tasks already assigned
to a reconfigurable region, the better this term.

V. SOLUTION EVALUATION

At each iteration, we evaluate the current solution and
provide feedback to the exploration heuristic. In this paper, we
only considered the overall execution time of the application
as the metric to be optimized. However, the framework has
been designed to accommodate the usage of different metrics
(e.g., execution time, power consumption and area occupation)
or any combination of them. Furthermore, it is possible to
integrate different methods to compute the metrics, ranging
from mathematical models to actual simulations, to trade-
off elaboration time and accuracy of the evaluation. As an
example, the designer can adopt cycle-accurate simulations
when analyzing small applications and then simpler heuristics
when considering large ones. Also the method adopted for
the final validation, i.e., high-level simulation with virtual
platforms, can be integrated. In all the cases, the metrics are
intended to work on the scheduling trace of the DAG produced
by the exploration heuristic previously described.

It is worth noting that the scheduling trace only contains the
mapping decisions for the tasks on the processing elements;
however, given the possibility of exploiting PDR, it is clear that
this trace is not enough to determine the application execution
time since it does not include the reconfiguration tasks. For
this reason, it is then necessary to construct a more detailed
representation of the application to be evaluated, starting
from this scheduling trace. Note that the transformations that

TABLE I: Example of scheduling trace for the TG in Fig. 1

Task Name Implementation Processing Element
T0 A CPU0
T1 A RR0
T2 B RR0
T3 A RR1
T4 A RR0
T5 C CPU0

we applied to construct this enhanced representation can be
applied to compute any of the metrics mentioned above;
however the designer can also apply other transformations to
support even more detailed descriptions of the system.

As an example, we consider the trace shown in Table I: it
reports an admissible mapping and scheduling for the DAG of
Figure 1 with respect to the architecture shown in Figure 2. It
is worth noting that reconfigurations are extracted only when
two consecutive tasks are assigned to the same region, but with
different implementations. This allows supporting hardware
reuse, when multiple tasks are assigned to the same region with
the same implementation; in fact, in this case, reconfigurations
are not required to switch the functionality.

Starting from this trace, we introduce two more entities
in the graph to be scheduled which are the reconfiguration
nodes and the communication nodes. The former represents
a reconfiguration that has to be performed to change the
functionality of a hardware module and it is mapped on a
dedicated component (i.e., the ICAP on Xilinx devices). The
latter, instead, is used to represent the data exchanged directly
between tasks or through the memories, according to the
communication infrastructure. Given this enhanced represen-
tation, we adopted a simple yet effective list-based scheduling
algorithm [15] to compute the overall execution time (i.e., the
make-span) of the application. The execution time of each
task is reported into the implementation determined by the
mapping, while reconfiguration and communication overheads
are computed as described below.

A. Reconfiguration nodes
The heuristic described in Section IV assumes the pos-

sibility that the hardware modules may have multiple tasks
assigned to the same hardware module. Adding reconfiguration
nodes consists in identifying where the reconfigurations take
place and performing an estimate of their execution time. Start-
ing from the information in Table I, it is possible to determine
where reconfigurations occur by identifying which hardware
modules implement more than one different implementation.
In this example, it is possible to identify reconfigurations only
for the module RR0, since RR1 is set to execute only T3.
Once the reconfigurations have been identified, they have to
be accordingly introduced in the task graph. In particular, each
reconfiguration is inserted between the task implemented on
the hardware core and the one that needs to be reconfigured
for the execution on the same module. Furthermore since
the scheduling trace also defines the priorities between the
tasks, the reconfigurations must respect this order and they
can be accordingly ordered. Given the trace in Table I, the
reconfiguration nodes identified are reported in Table II and
the resulting task graph is reported in Figure 4 (left).

106

TABLE II: Reconfiguration nodes identified starting from the
trace reported in Table I.

Rec. Node Proc. Elem. Function Prev. Task Next Task Prev. Rec.
REC0 RR0 B T1 T2 -
REC1 RR0 A T2 T4 REC0

T0: A

T1: A

T2: B

T4: AT3: B

T5: C

REC0

REC1

T0: A

T1: A

T2: B

T4: A

T3: A

T5: C

REC0

REC1

Read

Write

Read

Write

Read

Write

Read

Write

Read

Write

Read

Write

Fig. 4: Task Graph of Figure 1 extended with reconfiguration
nodes (on the left) and with both reconfiguration and commu-
nication nodes (on the right).

Concerning the execution time of a reconfiguration task,
we assume that it is proportional to the size of the largest bit-
streams of the implementations assigned to the corresponding
hardware module. Then, we adopt the same approach proposed
in [16] to estimate the actual reconfiguration time required for
each region. In our algorithm all the reconfiguration nodes are
scheduled to be executed in sequence by a dedicated processor.

B. Communication nodes

After the reconfiguration, also the communication nodes can
be introduced, based on the topology of the interconnection
between the modules where the tasks have been assigned.
Representing communications as explicit nodes and keeping
them separated from the actual computation of the tasks allows
to provide, if needed, a more accurate simulation of the overall
system behavior. For example, it is possible to include bus
congestion metrics during the simulations and envision explo-
ration phases that aim at customizing also the communication
architecture for the given application. Considering a bus-based
architecture with shared memory, before executing a task, it
is necessary to read data from the memory and, after its
termination, to send the results to the memory to be used
by subsequent tasks. Thus, communication nodes are added
before (read) and after (write) each task and their execution
time is proportional to the amount of data to be transferred.
The result of integrating communication nodes to the task
graph of Figure 1 is reported in Figure 4 (right).

Regarding the communication time, this is estimated based
on the given amount of data to be transferred, as specified in
the DAG representation. Note that exploration of data transfers
can be also integrated, as in [6], but this is out of the scope
of this work.

VI. EXPERIMENTAL EVALUATION

We implemented SMASH in C++ and we then applied the
resulting framework to a set of benchmarks generated with
TGFF, as in [6]. We then generated the Virtual Platforms (VPs)
corresponding to the resulting solutions and we simulated them
with Synopsys Platform Architect [12] for rapid prototyping
of system-level integration. This allows us to validate the
proposed approach in a wide range of case studies and also
to analyze the scalability of the approach. In particular, the
generated task graphs are converted to VP models by using
the Generic Task Library, where their processing time is
based on the implementation details which the corresponding
tasks have been mapped onto. Then, each processing element
model is typically available in the Platform Architect library
as a Virtual Processing Unit (VPU). VPUs can thus represent
all programmable, configurable, or fixed logic processing
elements, based on the specified VPU configurations. Also the
ICAP controller of the reconfiguration process is modeled as a
VPU to execute reconfiguration tasks. Then, modules of other
regular IP blocks (e.g., interconnect, memories and DMAs)
are instantiated to allow a complete simulation.

The generated task graphs ranges from 10 to 100 nodes,
where each task has at least one SW implementation and mul-
tiple HW ones, representing realistic trade-offs between exe-
cution time and requirement of resources. Large task graphs
can also represent multiple applications to be simultaneously
executed onto the target platform. The adopted architectural
templates (similar to the ones in Figure 2) can easily represent
embedded systems featuring either soft or hard processors
(e.g., Xilinx XUPV5 with Microblazes [17] or the newer
AVNET Zedboard with ARM Dual Core Cortex-A9 [18]),
augmented with a set of hardware modules. We adopted three
architectural templates as starting point for our experiments:
static, mixed and reconfigurable. Static identifies architectures
where the FPGA area is divided into a set of up to kS static IP
cores. Mixed identifies architectures where both IP cores and
reconfigurable regions are employed to devise a solution, but
no more than kIPM IPs and kRM reconfigurable regions may be
used at once. Reconfigurable represents an architecture with
no more than kR regions. Note that in the second and the
last cases, the reconfigurable regions can be also deployed as
static cores in the final architecture, in case they are assigned
with only one task. We generated two sets of architectures
from these templates, based on commercially available Xilinx
Zynq-7000 FPGA devices: an Artix-7 and a Kintex-7, with
28, 000 and 125, 000 logic cells, respectively. For the lack of
space, we report only the results related to Kintex-7, given
that the other ones show a similar behavior.

Figure 5 reports the results obtained when executing
SMASH for 75 generations with 10 ants for each of them.
Indeed, this combination of parameters is an empiric good
compromise between greedy search and evolution towards a
global optimum based on the pheromone matrices. Note that,
in the graph, we reported the execution times normalized with
respect to the fully static execution. Table III reports instead
information about the resulting architectures, along with infor-
mation about hardware accelerated tasks and reconfigurations.

107

static
mixed
reconfigurable

S
p
e
e
d
u
p

0

1

2

3

Number of tasks

12 20 31 41 52 60 70 83 90 100

Fig. 5: Speedups of mixed and reconfigurable architectures
with respect to the static one.

Results show that SMASH is always able to map a large
number of tasks in hardware, generally obtaining relevant
speedups when starting from mixed and fully reconfigurable
templates. In particular, between 40 to 80 nodes, SMASH
is able to obtain speedups up to 3x with respect to static
architectures, which limits the number of tasks that can be
ported in hardware without exploiting PDR. It is worth noting
that, for small instances, reconfiguration can also introduce
a slow-down in the execution time since, in this case, its
overhead has a proportionally larger impact. On the other hand,
larger instances show limited speedups because less tasks can
fit in the available area and both software tasks and data
transfers can affect the execution time.

The results in Table III also show that SMASH is effectively
able to identify the best combination of static IP cores and
reconfigurable regions based on the problem structure. Indeed,
when starting from both mixed and fully reconfigurable archi-
tectures, it is able to devise which hardware modules require to
be reconfigured and, at the same time, determine how to assign
and schedule the tasks to mask the reconfiguration overhead.

It is also worth noting that SMASH is able to efficiently
exploit available hardware resources, occupying always more
than 90% of them and never violating the total area constraint.

In conclusion, the results show that the proposed methodol-
ogy is effectively able to support the designer in the develop-
ment of reconfigurable architectures, limiting the impact of the
decisions performed by the designer about the configuration of
the initial architectural template in terms of hardware modules.

VII. CONCLUSIONS AND FUTURE WORK

This paper presented SMASH, a heuristic and iterative
methodology for supporting the design of reconfigurable em-
bedded systems. The methodology have been tested using
a set of synthetic task graphs of different size with respect
to different architectural templates. It proved to be effective,
overcoming the classical limitation in the design of such
systems, where the designer is faced with the problem of
manually deciding the structure of the architecture.

Future works will focus on two aspects: the first one is the
integration of multiple metrics to optimize multiple objectives
as for instance performance and power consumption; while the
second consists in the integration of a floorplanning phase to
identify also the physical constraints of the resulting modules.

TABLE III: Results in terms of architectures (number of
static IPs and reconfigurable regions - IPs and RRs), along
with number of hardware tasks (HW tasks) and required
reconfigurations (#Reconf).

Static Mixed Reconfigurable

#T
as

ks

IP
s

R
R

s

H
W

ta
sk

s

#R
ec

on
f

IP
s

R
R

s

H
W

ta
sk

s

#R
ec

on
f

IP
s

R
R

s

H
W

ta
sk

s

#R
ec

on
f

12 7 0 7 0 7 0 7 0 6 0 6 0
20 20 0 20 0 18 1 20 1 17 1 19 1
31 30 0 30 0 20 4 31 7 16 7 30 7
41 30 0 30 0 18 8 40 14 12 12 40 16
52 30 0 30 0 17 9 51 25 8 17 51 26
60 30 0 30 0 15 10 53 28 10 14 51 27
70 30 0 30 0 17 9 55 28 9 16 58 33
83 30 0 30 0 15 11 80 54 6 19 81 56
90 30 0 30 0 23 3 31 5 9 12 39 18

100 30 0 30 0 16 7 46 23 3 17 53 33

Acknowledgments

This work was partially funded by the European Commis-
sion in the context of the FP7 FASTER project (#287804).

REFERENCES

[1] G. Nicolescu, I. O’Connor, and C. Piguet, Design technology for
heterogeneous embedded systems. Springer, 2012.

[2] M. Duranton, D. Black-Schaffer, S. Yehia, and K. De Bosschere, The
HiPEAC Vision, M. Duranton, Ed., 2011.

[3] M. Santambrogio and D. Sciuto, “Design methodology for partial
dynamic reconfiguration: a new degree of freedom in the HW/SW
codesign,” in Proceedings of IPDPS ’08, 2008, pp. 1–8.

[4] A. Sangiovanni-Vincentelli, L. Carloni, F. D. Bernardinis, and M. Sgroi,
“Benefits and challenges for platform-based design,” in Proceedings of
DAC ’04, 2004, pp. 409–414.

[5] S. Banerjee, E. Bozorgzadeh, and N. Dutt, “Integrating Physical Con-
straints in HW-SW Partitioning for Architectures With Partial Dynamic
Reconfiguration,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 14, no. 11, pp. 1189–1202, 2006.

[6] F. Ferrandi, P. Lanzi, C. Pilato, D. Sciuto, and A. Tumeo, “Ant colony
heuristic for mapping and scheduling tasks and communications on
heterogeneous embedded systems,” IEEE Trans. on CAD of Integrated
Circuits and Systems, vol. 29, no. 6, pp. 911–924, june 2010.

[7] M. Thompson, H. Nikolov, T. Stefanov, A. D. Pimentel, C. Erbas,
S. Polstra, and E. F. Deprettere, “A framework for rapid system-level
exploration, synthesis, and programming of multimedia MP-SoCs,” in
Proceedings of CODES+ISSS ’07, 2007, pp. 9–14.

[8] Y. M. Lam, J. Coutinho, W. Luk, and P.-W. Leong, “Mapping and
scheduling with task clustering for heterogeneous computing systems,”
in Proceedings of FPL ’08, 2008, pp. 275–280.

[9] J. Clemente, V. Rana, D. Sciuto, I. Beretta, and D. Atienza, “A
hybrid mapping-scheduling technique for dynamically reconfigurable
hardware,” in in Proceedings of FPL ’11, 2011, pp. 177–180.

[10] D. Gohringer, M. Hubner, M. Benz, and J. Becker, “A Design Method-
ology for Application Partitioning and Architecture Development of
Reconfigurable Multiprocessor Systems-on-Chip,” in Proceedings of
FCCM ’10, may 2010, pp. 259 –262.

[11] C. Bolchini, A. Miele, and C. Sandionigi, “Automated Resource-Aware
Floorplanning of Reconfigurable Areas in Partially-Reconfigurable
FPGA Systems,” in In Proceedings of FPL ’11, 2011, pp. 532–538.

[12] Synopsys, Inc., “Platform Architect,”
http://www.synopsys.com/Systems/ArchitectureDesign.

[13] “Xilinx Vivado Design Suite, available at http://www.xilinx.com.”
[14] M. D., Middendorf, M., and H. Schmeck, “Ant colony optimization

for resource-constrained project scheduling,” in IEEE Transactions on
Evolutionary Computation, vol. 6, no. 4, 2002, pp. 333–346.

[15] “List scheduling with and without communication delays,” Parallel
Computing, vol. 19, no. 12, pp. 1321 – 1344, 1993.

[16] “Partial Reconfiguration Cost Calculator (PRCC), available at
http://users.isc.tuc.gr/ kpapadimitriou/prcc.html .”

[17] Xilinx Inc., “Microblaze processor reference guide,” 2012.
[18] Avnet Design Services ZedBoard, “http://www.zedboard.org.”

108

