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Abstract 

In this paper, we propose a nonlinear dimensionality reduction algorithm for the manifold of 

Symmetric Positive Definite (SPD) matrices that considers the geometry of SPD matrices and 

provides a low dimensional representation of the manifold with high class discrimination. The 

proposed algorithm, tries to preserve the local structure of the data by preserving distance to 

local mean (DPLM) and also provides an implicit projection matrix. DPLM is linear in terms of 

the number of training samples and may use the label information when they’re available in 

order to performance improvement in classification tasks. We performed several 

experiments on the multi-class dataset IIa from BCI competition IV. The results show that our 

approach as dimensionality reduction technique - leads to superior results in comparison with 

other competitor in the related literature because of its robustness against outliers. The 

experiments confirm that the combination of DPLM with FGMDM as the classifier leads to the 

state of the art performance on this dataset. 

Keywords: Brain computer interface, nonlinear dimentionality reduction, Riemannian 

geometry, SPD manifold 

 

1. Introduction 

Motor Imagery (MI) based Brain Computer Interface (BCI) relies on using electrical activity of 
brain - which is usually Electroencephalography (EEG) signals - to decode human motor 
intentions. This kind of BCI is very useful in rehabilitating sensorimotor functions in patients 
who have severe motor disabilities [1-5]. 
 

The most common approach for feature extraction from EEG signals in MI paradigm is 

Common Spatial Patterns (CSP) [6]. CSP projects multichannel EEG signals into a more 

discriminative subspace, which can have a lower dimension. Therefore, we can consider CSP 

as a nonlinear dimensionality reduction technique [7]. CSP is originally designed for two class 

problems but there are multiclass extensions available [8, 9]. The performance of CSP is highly 

dependent to the number of electrodes and also their locations [10].  

Using covariance matrices for describing data has attracted more attention recently in several 

fields specially, computer vision [11] and brain computer interfacing [12]. Providing a compact 

and informative representation are the motivations for using covariance matrices as 

descriptor. However, in many applications that rely on using covariance matrices as 

descriptors, such as MI BCI and computer aided diagnosis systems, insufficient training 



samples might cause the curse of dimensionality problem. Therefore, it is critical to use a 

dimensionality reduction technique. 

Covariance matrices lie in the space of Symmetric Positive Definite (SPD) matrices, which can 

be formulated as a Riemannian manifold. There are three major approaches for reducing the 

dimensionality of SPD matrices. The first approach is to map the SPD matrices into tangent 

spaces and then use Euclidean methods for dimensionality reduction in resulting Euclidean 

space. Principal Geodesic Analysis (PGA) [13] is based on this approach and provides a 

generalization of Principal Component Analysis (PCA) to Riemannian manifolds. It tries to find 

a tangent space that maximizes the variability of mapped data points. However, PGA is 

equivalent to mapping the data to the tangent space of the geometric mean of the data [14]. 

Goh et.al.  [15], provide the generalization of three local Nonlinear Dimensionality Reduction 

(NLDR) algorithms including Locally Linear Embedding (LLE), Laplacian Eigenmaps (LE) and 

Hessian LLE (HLLE) to Riemannian manifold. They provide an embedding to lower dimensional 

space based on Riemannian geometry, for example using Karcher mean and Riemannian 

logarithmic map. Since, these NLDR algorithms doesn't provide an implicit mapping, they can't 

be used in non-transductive scenarios.  

The second approach for dimensionality reduction over Riemannian manifolds relies on 

kernel approach, which tries to embed SPD matrices in a Reproducing Kernel Hilbert Space 

(RKHS) and then perform dimensionality reduction using existing kernel based methods such 

as KPCA.  Goh et. Al. [16]  proposed a kernel function that embeds the SPD manifold into a 

Euclidean space. This mapping can be considered as mapping the SPD manifold into the 

tangent space at identity matrix [14]. Barachant et. al. [21] proposed a kernel that is very 

similar to the one proposed by Goh et. al. [16] with the difference at base point of tangent 

space. They choose the Karcher mean as the base point of the tangent space. Jayasumana et. 

al.  [17] proposed a positive definite Gaussian RBF kernel, which embeds the SPD manifold 

into an RKHS. In [18] a Riemannian pseudo kernel is proposed, which is positive definite under 

certain conditions. In [7] a kernel is proposed by manipulating the indefinite isometric kernel 

using a geometry preserving conformal transform. As the dimension of SPD matrices grows, 

the computational cost of kernel approaches highly increases. 

The third approach for overcoming the problem of high dimensionality in SPD manifolds is 

mapping from a high dimensional SPD manifold to a lower dimensional one while the 

geometry of SPD manifolds is preserved. This kind of dimensionality reduction has two 

important properties: 1) it directly works on the original manifold to learn a mapping [14] and 

2) the resulting low dimensional manifold can be used as the input to existing SPD based 

algorithms. The only work of this kind is Harandi's work [14]. They learn a mapping that 

maximize the geodesic distances between inter-class samples and simultaneously minimize 

the distances between intra-class samples and it is done via an optimization on Grassmann 

manifolds. This method has two drawbacks: 1) As all of the pairs of samples have the same 

weight in the optimization formula, the result is prone to outlier samples and 2) One cycle of 

the optimization process has an order of 𝑂(𝑁2) where 𝑁 is the number of samples and thus 

it becomes intractable when the number of samples grows. 



In this paper, we propose a dimensionality reduction algorithm for the space of SPD matrices, 

which can be considered as a method that belongs to the third approach. This algorithm tries 

to preserve the local structure of the data by distance preservation to local mean (DPLM), 

considers the geometry of SPD matrices, provides an implicit mapping and applies the 

supervised information for embedding to lower dimensional space. As we just use the 

neighbors of every sample in the optimization process, there is a good chance that outliers 

don’t contribute in the optimization. One cycle of the optimization process has an order of 

𝑂(𝐾𝑁) where 𝑁 is the number of samples and 𝐾 is the number of the neighbors of every 

sample. Thus it is linear in terms of number of samples. 

The rest of this paper is organized as follows: in section 2, we describe the mathematical 

preliminaries. Details of the proposed algorithm are presented in section 3. Section 4 reports 

our experiments on a BCI dataset and also a comparison with Harandi's method. We conclude 

the results in section 5.   

2. Geometry of SPD matrices 

A d -dimensional topological manifold is a connected paracompact Hausdorff space that is 

locally homeomorphic to the 𝑑-dimensional Euclidean space ℝ𝑑. A differentiable manifold is 

a topological manifold that has a globally defined differential structure. The tangent space at 

a point 𝑝 on a differentiable manifold is the plane tangent to the surface of the manifold at 

that point. A Riemannian manifold is a differentiable manifold with a Riemannian metric. The 

Riemannian metric of a manifold consists of all inner products on all of the tangent spaces of 

the manifold. We can measure the angle between two curves and also the length of a curve 

by using a Riemannian metric. The geodesic distance between two points on a Riemannian 

manifold is the length of the shortest path between these two points.  

A real symmetric matrix 𝑋 ∈ ℝ𝑑×𝑑 is a SPD matrix if and only if 𝑣𝑇𝑋𝑣 > 0 for every non-zero 

𝑣 ∈ ℝ𝑑. The set of 𝑑 × 𝑑 SPD matrices is denoted by 𝑆𝑦𝑚𝑑
+, which is a differentiable manifold 

with a natural Riemannian structure. The most common Riemannian metric proposed on 

𝑆𝑦𝑚𝑑
+ is Affine Invariant Riemannian Metric (AIRM)[19]: 

𝛿𝑔
2(𝑋, 𝑌) = ‖𝑙𝑜𝑔(𝑋𝑌−1)‖𝐹𝑟𝑜𝑏

2  (1) 

 

where 𝑋, 𝑌 ∈ 𝑆𝑦𝑚𝑑
+ and log⁡(. ) is matrix logarithm. AIRM is a true geodesic distance but is 

computationally expensive, especially when the dimension is larger than 20 [20]. Jensen-

Bregman Log-det Divergence (JBLD) [20] has been proposed as a similarity measure for SPD 

matrices: 

𝐽(𝑋, 𝑌) = 𝑙𝑜𝑔𝑑𝑒𝑡 (
𝑋 + 𝑌

2
) −

1

2
𝑙𝑜𝑔𝑑𝑒𝑡(𝑋𝑌) (2) 

 

where⁡𝑋, 𝑌 ∈ 𝑆𝑦𝑚𝑑
+. It has been shown that: 

𝛿𝑙𝑑
2 (𝑋, 𝑌) = √𝐽(𝑋, 𝑌) (3) 

 



is a metric on 𝑆𝑦𝑚𝑑
+[21] and has a lower computational cost compared to AIRM [20]. 

The mean of 𝑁 SPD matrices, which is also referred to as the geometric mean, is given by: 

𝜑(𝑃1, … , 𝑃𝑁) = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑃∈𝑆𝑦𝑚𝑑

+
∑𝛿𝑔

2(𝑃, 𝑃𝑖)

𝑁

𝑖=1

 (4) 

 

This mean exist and is unique [22] but has no closed form expression. An iterative method for 

computing the geometric mean is proposed in [23]. 

3. The proposed algorithm 

Given an SPD manifold Μ, we wish to find a lower dimensional representation of it at the 

space of SPD matrices by preserving the local structure, which is done by preserving distance 

to Local Mean (DPLM). To this end, we calculate the Riemannian mean of the K nearest 

neighbor of each training sample and try to find a projection matrix that preserves the 

distances between each of the K nearest neighbors and their means. This is illustrated in Fig. 

1. As we just use the neighbors of each sample in the optimization process, there is a good 

chance that the outliers doesn't contribute in the optimization and therefore leads to 

robustness against outliers.  

 

 

Fig. 1.   An illustration of DPLM. m1 is the mean of 2,3 and 4, which are the three NNs of 
1. m2 is the mean of 4,6 and 7, which are the three NNs of 5. m3 is the mean of 7,8 and 9, 
which are the three NNs of 10. m4 is the mean of 2,8 and 10, which are the three NNs of 
11. The two sided arrows mean that we want to preserve the distance between the two 
samples. Note that sample 11 is an example of an outlier that doesn’t contribute in the 

optimization, as it’s not in the 3 NNs set of the other samples.    
 



We now describe DPLM in more details. Suppose we have 𝑁 training samples 

{(𝑋1, 𝑦1), (𝑋2, 𝑦2), … , (𝑋𝑁, 𝑦𝑁)} where 𝑋𝑖 ∈ 𝑆𝑦𝑚𝑛
+ and 𝑦𝑖 is its corresponding class label. We 

aim to find a projection matrix 𝑈 that maps the samples to 𝑆𝑦𝑚𝑚
+  where m n . 

Suppose 𝑁𝑖 = {𝑋𝑖,1, 𝑋𝑖,2, … , 𝑋𝑖,𝑘}, 1 ≤ 𝑖 ≤ 𝑁 is the set of 𝐾 nearest neighbors of sample 𝑋𝑖. 

For classification purpose, it's better to select the 𝐾 nearest neighbors that have the same 

label as that of 𝑋𝑖, i.e.⁡𝑦𝑖. The Riemannian mean of each set 𝑁𝑖 denoted by 𝑁̅𝑖 is calculated 

using Eq. (4). 

Next we find the projection matrix 𝑈 by solving the following optimization problem: 

min
𝑈∈ℝ𝑛×𝑚

𝐻(𝑈),   𝑠. 𝑡⁡⁡⁡𝑈𝑇𝑈 = 𝐼𝑚 (5) 

 

where 

𝐻(𝑈) =∑∑|𝛿𝑙𝑑
2
(𝑋𝑖,𝑗, 𝑁̅𝑖)− 𝛿𝑙𝑑

2
(𝑈𝑇𝑋𝑖,𝑗𝑈,𝑈

𝑇𝑁̅𝑖𝑈)|

𝐾

𝑗=1

𝑁

𝑖=1

 (6) 

 

𝑈 = [𝑈1, 𝑈2, … , 𝑈𝑚] ∈ ℝ𝑛×𝑚 is an orthonormal matrix and 𝐼𝑚 is an 𝑚 ×𝑚 identity matrix. The 

constraint 𝑈𝑇𝑈 = 𝐼𝑚 is required to ensure that 𝑈𝑇𝑋𝑈 is positive definite for every 𝑋 ∈ 𝑆𝑦𝑚𝑛
+ and 

therefore is a valid SPD matrix. This constraint also helps to avoid degeneracy in the 

optimization process.  

The JBLD metric, which provides the same result as 𝛿𝑔
2 [21] up to a scale of 2√2 [14], is an 

appropriate choice for  Eq. (6) because of its lower computations.  

Wen et. al. [24] proposed a method for optimization of problems with orthogonality 

constraints similar to Eq. (5). This constraint is non-convex and satisfying it during iterations 

is numerically expensive. Given a feasible point 𝑋, and its corresponding gradient 𝐺, the new 

trial point with the step size 𝜏 ≥ 0 is obtained by the Crank-Nicolson-like scheme: 

𝑌(𝜏) = (𝐼 +
𝜏

2
𝐴)

−1

(𝐼 +
𝜏

2
𝐴)𝑋 (7) 

 

where 𝐴 ≔ 𝐺𝑋𝑇 − 𝑋𝐺𝑇 is a skew symmetric matrix. Because of some nice properties of⁡𝑌(𝜏), 

the {𝑌(𝜏)}𝜏≥0 is a descent path. Therefore, to guarantee the convergence, a curvilinear search 

is applied to find a proper step size (𝜏).  

To use Wen‘s approach for solving Eq. (5) the gradient of Eq. (6) with respect to 𝑈 is computed 

as follows: 



𝜕𝐻(𝑈)

𝜕𝑈
= −∑∑[𝑠𝑔𝑛 (𝛿𝑙𝑑

2 (𝑋𝑖,𝑗 , 𝑁̅𝑖) − 𝛿𝑙𝑑
2 (𝑈𝑇𝑋𝑖,𝑗𝑈,𝑈

𝑇𝑁̅𝑖𝑈))

𝐾

𝑗=1

𝑁

𝑖=1

× ((𝑋𝑖,𝑗 + 𝑁̅𝑖)𝑈 (𝑈𝑇
𝑋𝑖,𝑗 + 𝑁̅𝑖

2
𝑈)

−1

− 𝑋𝑖,𝑗𝑈(𝑈
𝑇𝑋𝑖,𝑗𝑈)

−1

− 𝑁̅𝑖𝑈(𝑈
𝑇𝑁̅𝑖𝑈)

−1)] 

(8) 

   

with the following prior knowledge [14]: 

𝜕𝛿𝑙𝑑
2 (𝑈𝑇𝑋𝑈,𝑈𝑇𝑌𝑈)

𝜕𝑈

= (𝑋 + 𝑌)𝑈 (𝑈𝑇𝑋+ 𝑌

2
𝑈)

−1

−𝑋𝑈(𝑈𝑇𝑋𝑈)
−1

− 𝑌𝑈(𝑈𝑇𝑌𝑈)
−1

 

(9) 

 

where 𝑠𝑔𝑛(. ) is the sign function.  

The lower dimensional representation of a new sample 𝑋𝑛𝑒𝑤 in 𝑆𝑦𝑚𝑚
+  space can be computed 

as: 

𝑋𝑛𝑒𝑤
′ = 𝑈𝑇𝑋𝑛𝑒𝑤𝑈 ∈ 𝑆𝑦𝑚𝑚

+
 (10) 

 

where 𝑋𝑛𝑒𝑤
′  is the representation of  𝑋𝑛𝑒𝑤 in 𝑆𝑦𝑚𝑚

+  space. 

4. Evaluations 

To evaluate our dimensionality reduction method, we use the Dataset IIa of BCI competition 
IV [25]. We use the proposed method in conjunction with the two simple but powerful 
classifiers: Minimum Distance to Mean (MDM) [12] and Filter Geodesic MDM (FGMDM) [12]. 
In MDM, first the Riemannian mean of each class is calculated, then a test sample is assigned 
to the class that has the shortest distance to its mean. Since MDM is not robust to noise, it is 
suggested to perform some filtering over the data before applying MDM [26]. FGMDM first 
tries to find a set of filters by applying an extension of Fisher Linear Discriminant Analysis 
(FLDA) named Fisher Geodesic Discriminant Analysis (FGDA) [12] and then apply these filters 
to data using a geodesic filtering approach that result in a set of SPD matrices with the same 
dimensionality as initial data. At last MDM will be used for classification.  
  
4.1. Dataset description and preprocessing 

Dataset IIa of BCI competition IV consists of EEG signals of 9 subjects. Each subject performs 

four kinds of motor imagery tasks (foot, tongue, right hand and left hand). Twenty-two 

electrodes are used for recording EEG signals. For each subject two sessions on two different 

days are recorded. One of them is for training and the other is for testing. Each session 

file:///C:/Users/Alireza/Downloads/Geometry%20preserving%20dimensionality%20reduction%20algorithm%20for%20SPD%20matrices%20and%20its%20application%20in%20BCI(1).docx%23_ENREF_26


consists of 288 trials, i.e. 72 trials per class. This is a classification problem where we need to 

assign each testing sample to one of the four classes. 

Before performing feature extraction, some preprocessing steps like the band-pass filtering 

and time interval selection are necessary. It has been shown that these pre-processing steps 

have a large impact on the final classification performance [26]. Here we propose a simple yet 

effective band-pass filter and time window selection algorithm that is based on cross-

validation. 

 
Fig. 2.    Time schema of one trial of dataset IIa from BCI competition IV [25] 

 

The timing schema of one trial is illustrated in Fig. 2. At the beginning of a trial a fixation cross 

appears on the screen and lasts for 2 seconds. At t = 2s a cue corresponding to one of the four 

classes appears and stays on screen for 1.25 seconds. After that the user starts the motor 

imagery task until the fixation cross disappears from the screen.  

To find the efficient band-pass filter and time window for every subject, we use their training 

data. Next, we consider all of the possible windows with lengths from 1s to 4s with step 0.25s 

(i.e. 1, 1.25, 1.5, 1.75,…) from the starting point t = 3s, together with the set of four band-pass 

filters with the lower bands 5Hz and 8Hz and the higher bands 30Hz and 35Hz. Therefore, we 

have 180 test cases for evaluation. Note that each test case consists of a time window and a 

band-pass filter, i.e. we search for the efficient combination of time window and band pass 

filter. The evaluation is performed using 10-fold cross-validation and MDM. At last the mean 

of the K test cases with highest cross-validation accuracies is selected as the efficient time 

window and band pass filter for the corresponding subject. Here we selected K = 10.  

Suppose 𝑋 ∈ ℝ22×𝑁 is the band-passed EEG signal extracted from a desired time window of 

a trial. The covariance matrix of  𝑋 is calculated as follows: 

𝐶 =
1

𝑁 − 1
𝑋𝑋𝑇 (11) 

In this paper, we use 𝐶 as a descriptor for 𝑋. 

Table 1 illustrates the results of using the proposed approach for time window and band-pass 

filter selection compared to when a fixed time window and band-pass filter is selected for all 

the subjects. As you can see, both MDM and FGMDM leads to higher kappa values where the 

proposed approach for preprocessing is used. Note that we selected the fixed band-pass filter 



as 8-35 Hz and the fixed time window as 3.75s to 5.75s. These are common values, which 

have been used in many studies [7, 27-29].  

 

Table 1. Result of MDM and FGMDM after applying proposed preprocessing for selecting 
time window and band-pass filter. We  compare it with the results achieved over fixed 

time window and band-pass filter (showed by a “fixed” postfix) in terms of kappa value.  

 Time 
Window  
(seconds) 

Band-pass 
filter (Hz) 

MDM FGMDM MDM_fixed FGMDM_fixed 

start end Lower upper 
S1 3.1 5.848 8 32 0.73 0.72 0.71 0.69 
S2 3.1 5.848 8 31 0.45 0.50 0.39 0.35 
S3 3 5.248 8 32 0.56 0.64 0.52 0.60 
S4 3 5.9 6 32 0.50 0.38 0.43 0.28 
S5 3 4.948 8 35 0.23 0.28 0.12 0.21 
S6 3.2 6 8 32 0.24 0.34 0.21 0.30 
S7 3 5.8 6 33 0.39 0.64 0.32 0.46 
S8 3.048 5.9 8 32 0.60 0.68 0.55 0.62 
S9 3 4.1 6 33 0.57 0.75 0.55 0.53 

Average Kappa 0.47 0.55 0.42 0.45  
 

Hereafter, we use the covariance descriptors of the EEG data that have been preprocessed 

using the proposed method.  

4.2. Experiments 

To the best of our knowledge, the only competitor for embedding an SPD manifold into a 

lower dimensional symmetric positive definite space is Harandi's method [14]. Table 2 reports 

the results of MDM classifier for comparison between DPLM and Harandi's method, where 

22 dimensional SPD matrices reduced to two up to 12 dimensional SPD matrices. The 

significant superiority of the proposed method in comparison with Harandi’s method has 

been confirmed using the two-tailed Wilcoxson signed-rank statistical test, which results in p-

value 0.01 (<0.05). To apply this test, we supposed that every pair of subject and dimension 

is a separated domain.  

 

Table 2.  A comparison between DPLM and Harandi's method in 2 up to 12 dimensional 
SPD space using the MDM classifier 

 DPLM Harandi's method 

Dim. 2 4 6 8 10 12 2 4 6 8 10 12 
S1 0.46 0.58 0.63 0.64 0.68 0.70 0.36 0.50 0.63 0.62 0.65 0.68 
S2 0.31 0.21 0.37 0.43 0.45 0.44 0.19 0.30 0.32 0.43 0.44 0.44 
S3 0.48 0.58 0.59 0.62 0.58 0.62 0.47 0.53 0.57 0.57 0.56 0.57 
S4 0.22 0.33 0.38 0.39 0.41 0.46 0.18 0.25 0.35 0.40 0.42 0.41 
S5 0.10 0.16 0.19 0.20 0.18 0.19 0.04 0.14 0.19 0.16 0.21 0.23 



S6 0.15 0.17 0.19 0.20 0.18 0.19 0.15 0.15 0.14 0.18 0.14 0.19 
S7 0.19 0.30 0.35 0.27 0.32 0.36 0.21 0.18 0.24 0.29 0.24 0.30 
S8 0.49 0.59 0.62 0.64 0.63 0.61 0.34 0.58 0.58 0.57 0.61 0.56 
S9 0.45 0.47 0.52 0.53 0.55 0.55 0.43 0.44 0.49 0.51 0.53 0.56 

Avg. 0.31 0.38 0.43 0.44 0.45 0.47 0.26 0.34 0.39 0.41 0.42 0.44 
 

 

In Table 3, the performance of the proposed method, Harandi's method, FGMDM and the 

three first winners of BCI Competition IV on Dataset IIa are compared in terms of Kappa value. 

We used FGMDM for classifying the data in lower dimensional space. We should note that 

the proper dimension for each subject were achieved using 10-fold cross-validation. As it can 

be seen, the proposed approach when combined with FGMDM, achieves the highest mean 

Kappa, which is three percent better than the Harandi's mean Kappa. 

 

Table 3. The performance of DPLM, Harandi's method, FGMDM and the three first 
winners of BCI Competition IV on Dataset IIa in terms of Kappa value. (The values in the 

parentheses show the dimensionality of the resulting space) 

 S1 S2 S3 S4 S5 S6 S7 S8 S9 
Mean 
Kappa 

DPLM 0.74(15) 
0.48 
(18) 

0.72 
(14) 

0.47 
(18) 

0.28 
(20) 

0.33 
(20) 

0.63 
(20) 

0.72 
(17) 

0.76 
(20) 

0.571 

1st 0.68 0.42 0.75 0.48 0.40 0.27 0.77 0.75 0.61 0.57 

FGMDM 0.72 0.50 0.64 0.38 0.28 0.34 0.64 0.68 0.75 0.55 

Harandi 
0.68 
(19) 

0.43 
(19) 

0.72 
(19) 

0.46 
(16) 

0.25 
(15) 

0.31 
(19) 

0.64 
(20) 

0.63 
(20) 

0.68 
(20) 

0.54 

2nd 0.69 0.34 0.71 0.44 0.16 0.21 0.66 0.73 0.69 0.52 
3rd 0.38 0.18 0.48 0.33 0.07 0.14 0.29 0.49 0.44 0.31  

 

The best performances for DPLM and Harandi's method in terms of Kappa value are reported 

in Table 4. As it can be seen, the mean Kappa of DPLM has superiority in comparison with 

Harandi's mean Kappa (three percent).  To have a better comparison between these two 

methods, for each subject we use the lower dimension of the two methods in Table 4 and 

report the resulting performances in terms of Kappa value in Table 5. The results show that 

DPLM performs significantly better than Harandi's method.  

 

Table 4. Comparison between the best performances for DPLM and Harandi's method in 
terms of Kappa value. (The values in the parentheses are dimensions)  

 S1 S2 S3 S4 S5 S6 S7 S8 S9 
Mean 
Kappa 

DPLM 
0.75 
(19) 

0.49 
(14) 

0.76 
(12) 

0.49 
(14) 

0.34 
(17) 

0.36 
(15) 

0.68 
(15) 

0.76 
(14) 

0.76 
(20) 

0.60 

Harandi 
0.73 
(20) 

0.46 
(20) 

0.75 
(15) 

0.49 
(9) 

0.25 
(14) 

0.34 
(14) 

0.65 
(18) 

0.71 
(18) 

0.74 
(20) 

0.57 
 

 



Table 5. Performance of DPLM and Harandi's method when for every subject the lower 
dimensions that are reported in Table 4 is used. 

 S1 S2 S3 S4 S5 S6 S7 S8 S9 
Mean 
Kappa 

DPLM 0.75 0.49 0.76 0.46 0.26 0.33 0.68 0.76 0.76 0.58 
Harandi 0.68 0.38 0.72 0.49 0.25 0.34 0.61 0.67 0.74 0.54  

 

In Fig. 3 (a), the execution time of DPLM for different values of K and the Harandi's algorithm 

versus the size of the sample set is illustrated. As we noted before, our method is linear in 

terms of the number of samples ( N ), however Harandi's method has an order of  2O N . 

Therefore, as it can be seen from Fig. 3 (a), DPLM performs much faster than Harandi’s 

method when the number of samples grows. We have also compared the execution time of 

these two methods versus the number of dimensions that is illustrated in Fig. 3 (b) and as it 

can be seen, DPLM is much faster. 
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(b) 

Fig. 3.   Comparison of the execution time between DPLM and Harandi’s method (a) 
execution time versus number of samples and (b) execution time versus number of 

dimensions. 
 

5. Conclusion 

We proposed a dimensionality reduction algorithm for the manifold of symmetric positive 

definite matrices, which preserves local structure of data by preserving distance to local 

means. This algorithm maps from a high dimensional SPD manifold to a lower dimensional 

one and can also use the label information in order to perform better in classification tasks. 

We compared our algorithm with the only similar method in the literature, i.e. Harandi’s 

algorithm. We showed that our algorithm performs significantly better in terms of both 

execution time and accuracy. As our algorithm is linear in terms of number of samples, it can 

simply scale to larger number of samples without worrying about the execution time. We also 

proposed a time window and band-pass filter selection algorithm, which can find proper 

parameters for each subject and as we showed this would result in better performances in 

MI BCI application. We showed that using the proposed dimensionality reduction algorithm 

in conjunction with FGMDM as the classifier leads to the state of the art results on dataset IIa 

of BCI competitions IV.  
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