
Refactoring and Migration of Cascading Style Sheets
Towards Optimization and Improved Maintainability

Davood Mazinanian
Department of Computer Science and Software Engineering

Concordia University, Montréal, Canada
d_mazina@cse.concordia.ca

ABSTRACT
Cascading Style Sheets is the standard styling language, and
is extensively used for defining the presentation of web, mo-
bile and desktop applications. Despite its popularity, the
language’s design shortcomings have made CSS develop-
ment and maintenance challenging. This thesis aims at de-
veloping techniques for safely transforming CSS code (through
refactoring, or migration to a preprocessor language), with
the goal of optimization and improved maintainability.

CCS Concepts
•Software and its engineering → Software mainte-
nance tools; Maintaining software;

Keywords
Cascading style sheets, refactoring, duplication, migration

1. INTRODUCTION
Background. The Lingua Franca of styling is Cascading
Style Sheets (CSS). On web, CSS allows separating the
presentation concern from the concerns of organizing con-
tent (done in HTML) and interacting with users (fulfilled
in JavaScript). CSS allows a consistent content presenta-
tion across different media (e.g., displays with various sizes,
printers). Today, 91% of top 10 million websites in the Alexa
ranking [25] and over 90% of web developers [23] use CSS.

Indeed, CSS now plays a vital role in businesses by di-
rectly affecting the perceived user experience. At Dropbox,
for example, there existed around 1200 Style Sheet files (ex-
ceeding 150K LOC). In one incident, a change in some of
these files unknowingly broke the presentation of a revenue-
generating page that developers were not aware it even ex-
isted, and lack of adequate tools yielded to concealing the
fact that the page used the modified CSS file [7]. This could
damage Dropbox’s professional relationship with the busi-
ness partner that depended on the broken page.

Challenges. CSS files contain several style rules, in which
a selector defines the elements that should be styled (e.g., p
for selecting all paragraphs), and the style of the selected el-
ements are defined using style declarations [1]. Despite this
apparent simplicity, developing and maintaining CSS code
can be challenging [12, 9, 20], primarily because CSS was
initially designed without maintainability concerns in mind.
For instance, there is no notion of functions in CSS; con-
sequently, duplicated code (i.e., clones) is prevalent in CSS
[19]. Advanced features like cascading and value propagation
[14] also add to this intricacy. Tool support (e.g., debugging,
automatic refactoring) is also quite immature; mainly be-
cause CSS code interacts with HTML, which could be gen-
erated at server-side, or manipulated by JavaScript at run-
time. Also, CSS code can be intertwined with HTML and
JavaScript, making static analysis tricky. Consequently,
an imprudent refactoring transformation may break the be-
havior (i.e., the presentation semantics) of CSS code.
The tackled problem. Code duplication is considered as
a potentially serious problem that might have negative im-
pact on the maintainability and error-proneness of the code
base [15, 11]. To our knowledge, no studies had specifically
investigated clones in CSS code. Our investigation showed
that, on average, 60% of style declarations in the CSS code
of modern web applications are duplicated [19]. This may
impose a considerable amount of maintenance burden on de-
velopers. In addition, duplication leads to larger CSS files,
causing extra bandwidth usage, energy consumption and de-
lays in rendering user interfaces. Thus, refactoring might be
a resort for reducing duplication in CSS files.

Unfortunately, CSS has very limited support for abstract-
ing duplicated style declarations; e.g., declarations with dif-
ferences in style values cannot be unified in CSS. To mitigate
this limitation, industry has come up with CSS preproces-
sors (e.g., Less, Sass): super-set languages for CSS that
bring the missing features (e.g., functions) to CSS [17]. Us-
ing CSS preprocessors is a trend in the industry [6], and
some of the aforementioned problems can be solved with
them. For instance, duplicated CSS code might be ab-
stracted using functions in a preprocessor language.
Our goal. This thesis is dedicated to the problem of dupli-
cation in CSS. We attempt to propose techniques for detect-
ing refactorable duplicated style declarations in CSS, and
safely refactoring them, either directly in the CSS code, or
by migrating existing CSS code to a preprocessor language.
We propose methods for testing the correctness of the ap-
plied refactorings, and evaluate it on a large data set of web
applications. A tool suite is under development that auto-
mates the application of transformations right in the IDE.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author.
Copyright is held by the owner/author(s).

FSE’16, November 13–18, 2016, Seattle, WA, USA
ACM. 978-1-4503-4218-6/16/11...$15.00
http://dx.doi.org/10.1145/2950290.2983943

1057

Finally, the relevance of the identified refactoring/migration
opportunities will be evaluated through a user study.

Related work. Despite the widespread popularity, CSS is
utterly underrated from academia. The few studies on CSS
maintenance are limited to finding dead code [20, 9, 2], de-
tecting code smells [10], defining quality metrics [12], and
visualizing change impact [13]. As mentioned, we investi-
gated clones in CSS, with the goal of optimizing the size of
CSS files [19]. Having the same goal, Boash et al. proposed
techniques to reason about the selectors and declarations
that can be safely removed from style sheets [4, 2, 3].

Expected contributions. This research can gain the at-
tention of software engineering community to improve the
state-of-the-art techniques in maintaining CSS code. The
developed infrastructure for analyzing CSS code of web ap-
plications and applying transformations can be used by other
researchers to this aim. In addition, the developed tech-
niques in this work, and the corresponding tool support,
can facilitate the daily work of countless developers that
deal with CSS code, e.g., front-end web developers.

2. THE STATE OF THE RESEARCH
Refactoring duplication in CSS. In a previous study
[19], we defined three types of duplicated declarations, i.e.,
declarations that result to identical styles (e.g., they all make
a hyperlink blue). We found that, in the CSS files of our
dataset (containing 38 popular websites), around 60% of
declarations fell in one of the mentioned duplication types.
We defined some preconditions which, when they are met,
one can safely refactor the duplicated declarations. On aver-
age, our approach identified 165 refactoring opportunities in
each CSS file, of which 62 could be safely applied. Applying
refactorings yielded up to 40% file size reduction.

Refactoring using this technique is not always possible; be-
cause it includes re-ordering of CSS style rules, which could
result in breaking an existing order dependency between
style rules [19]. Finding these dependencies is not trivial
since, for instance, CSS code can be affecting HTML pages
which are manipulated by JavaScript at runtime. Thus,
we used Crawljax [21], a tool that allows crawling web ap-
plications that heavily use JavaScript, and extracted order
dependencies using a hybrid (static and dynamic) approach.

Empirical study on the use of CSS preprocessors.
When two style declarations have the same properties but
neither equal nor equivalent values, they can be only uni-
fied by parameterizing the differences in a function-like con-
struct; something which is missing in CSS. In CSS prepro-
cessors, mixins fill this gap [17]. To identify relevant oppor-
tunities for extracting mixins from duplicated CSS code, we
need to study how developers usually use them, so that our
recommendations are closer to what developers would man-
ually extract. We studied the source code of 150 websites,
having their CSS code written in two popular preproces-
sors, and found out (among other findings) that, developers
tend to define mixins with less than three declarations, hav-
ing one parameter on average, mostly grouping declarations
that style the same property for different web browsers [17].

Automatic migration of CSS code to preprocessors.
With the gained knowledge in the previous work, we have
devised a technique that finds duplicated declarations in the
CSS code, parameterizes differences, extracts them into a
mixin, and tests whether these changes are safe (i.e., the

technique migrates existing CSS code to take advantage of
mixins by removing duplications) [18]. For finding dupli-
cations, we used a relaxed version of the approach used
in our first work [19], so that it allows differences in style
values. These differences are identified and parameterized,
by mapping corresponding values in the duplicated decla-
rations. We use an approach that mimics the behavior of
web browsers, so that the style values with the same role
are mapped together (e.g., style values that both define the
width of a border are mapped together). For testing, we
compare the applied styles before and after refactoring for
each of the elements of target documents. Our evaluation
shows that our approach is able to propose opportunities
that are safe to apply, with 98% recall (i.e., it detects a large
portion of mixins manually defined by developers) [18].

3. OPEN ISSUES AND FUTURE WORK
Other types of migration. Besides mixins, migrating to
preprocessors can embrace other types of transformations,
e.g., introducing variables, nested rules, or the extend con-
struct [17]. We are going to explore approaches for migrating
CSS to take advantage of these constructs in preprocessor
languages, and include them in our migration tool suite.
Ranking migration opportunities. Our technique for
migrating CSS to preprocessors using mixins [18] suffers
from the limitation that it may suggest a large number of op-
portunities to the developer, due to the abundance of dupli-
cated declarations. This could happen when suggesting op-
portunities for extracting other constructs (e.g., variables).
As a result, we are going to devise and evaluate ranking
mechanisms, so that the tool ranks higher the opportunities
that are more relevant. For instance, as developers tend to
create mixins for grouping declarations which style the same
property in different web browsers (for achieving a consis-
tent presentation across them) [17], opportunities extracted
from such properties should be ranked higher. Likewise, we
aim at finding similar patterns, by investigating existing pre-
processor code bases, or using the context information (i.e.,
HTML pages on which the CSS code under migration is ap-
plied), or interviewing developers, to extract features that
may help in ranking. We will then explore various techniques
(e.g., statistical models) for feature selection and ranking.
Testing. The introduced testing technique [18] is far from
a complete testing solution for CSS. The state-of-the-art
techniques for detecting presentational differences in HTML
pages across different web browsers [5, 16, 24] might be
exploited for determining whether the transformations are
safe, however, these approaches are computationally expen-
sive, and suffer from false positives. As a result, we need
a technique for enabling developers to write tests for CSS
code, so that it can be tested after refactoring/migration.
We might also be able to aid developers by automatically
generating test cases. This can be done by extending our
testing technique [18], by taking advantage of the latest ad-
vances in testing JavaScript [22, 8], which can facilitate
understanding the interaction between CSS and HTML.
Other possible directions. CSS is extensively used, yet
extremely under-researched. Thus, there are several inter-
esting research topics to investigate, including but not lim-
ited to: refactoring CSS to eliminate code smells (e.g., the
ones proposed in [10]), empirical studies on how CSS code
is maintained and evolved, or how bugs look like and fixed
in CSS code (e.g., performance bugs versus styling bugs).

1058

4. REFERENCES
[1] Css syntax module level 3. Technical report, World

Wide Web Consortium, November 2013.

[2] M. Bosch, P. Genevès, and N. Layäıda. Automated
refactoring for size reduction of css style sheets. In
Proceedings of the 2014 ACM Symposium on
Document Engineering (DocEng), pages 13–16, 2014.

[3] M. Bosch, P. Genevès, and N. Layäıda. Reasoning
with style. In Proceedings of the 24th International
Conference on Artificial Intelligence (IJCAI), pages
2227–2233, 2015.

[4] M. Bosch, P. Genevès, and N. Layäıda. Automated
and Semantics-Preserving CSS Refactoring. Technical
report, HAL - Inria Open Archive, Nov. 2014.

[5] S. R. Choudhary, H. Versee, and A. Orso. WEBDIFF:
Automated identification of cross-browser issues in
web applications. In Proceedings of the 26th IEEE
International Conference on Software Maintenance
(ICSM), pages 1–10, 2010.

[6] C. Coyier. Popularity of CSS Preprocessors.
http://css-tricks.com/
poll-results-popularity-of-css-preprocessors/.

[7] D. Eden. Move slow and fix things.
http://www.thedotpost.com/2015/12/
daniel-eden-move-slow-and-fix-things, 2015. Talk at
dotCSS Conference.

[8] A. M. Fard, A. Mesbah, and E. Wohlstadter.
Generating Fixtures for JavaScript Unit Testing. In
Proceedings of the 2015 30th IEEE/ACM
International Conference on Automated Software
Engineering (ASE), pages 190–200, 2015.

[9] P. Genevès, N. Layäıda, and V. Quint. On the analysis
of cascading style sheets. In Proceedings of the 21st
International Conference on World Wide Web
(WWW), pages 809–818, 2012.

[10] G. Gharachorlu. Code smells in Cascading Style
Sheets: an empirical study and a predictive model.
Master’s thesis, University of British Columbia, 2014.

[11] E. Juergens, F. Deissenboeck, B. Hummel, and
S. Wagner. Do code clones matter? In Proceedings of
the 31st International Conference on Software
Engineering (ICSE), pages 485–495, 2009.

[12] M. Keller and M. Nussbaumer. CSS code quality: a
metric for abstractness; or why humans beat machines
in CSS coding. In Proceedings of the 7th International
Conference on the Quality of Information and
Communications Technology (QUATIC), pages
116–121, 2010.

[13] H.-S. Liang, K.-H. Kuo, P.-W. Lee, Y.-C. Chan, Y.-C.
Lin, and M. Y. Chen. SeeSS: Seeing What I Broke –
Visualizing Change Impact of Cascading Style Sheets

(CSS). In Proceedings of the 26th Annual ACM
Symposium on User Interface Software and
Technology, pages 353–356, 2013.

[14] H. W. Lie. Cascading Style Sheets. Ph.D. Thesis,
University of Oslo, Norway, 2005.

[15] A. Lozano and M. Wermelinger. Assessing the effect of
clones on changeability. In Proceedings of the 24th
IEEE International Conference on Software
Maintenance (ICSM), pages 227–236, 2008.

[16] S. Mahajan and W. G. J. Halfond. WebSee: A Tool
for Debugging HTML Presentation Failures. In
Proceedings of the 8th International Conference on
Software Testing, Verification and Validation (ICST),
pages 1–8, 2015.

[17] D. Mazinanian and N. Tsantalis. An empirical study
on the use of CSS preprocessors. In Proceedings of the
23rd IEEE International Conference on Software
Analysis, Evolution, and Reengineering (SANER),
2016.

[18] D. Mazinanian and N. Tsantalis. Migrating Cascading
Style Sheets to Preprocessors by Introducing Mixins.
In Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering, pages
672–683, 2016.

[19] D. Mazinanian, N. Tsantalis, and A. Mesbah.
Discovering Refactoring Opportunities in Cascading
Style Sheets. In Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations
of Software Engineering (FSE), pages 496–506, 2014.

[20] A. Mesbah and S. Mirshokraie. Automated analysis of
CSS rules to support style maintenance. In
Proceedings of the International Conference on
Software Engineering (ICSE), pages 408–418, 2012.

[21] A. Mesbah, A. van Deursen, and S. Lenselink.
Crawling Ajax-based web applications through
dynamic analysis of user interface state changes. ACM
Transactions on the Web, 6(1):3:1–3:30, 2012.

[22] S. Mirshokraie, A. Mesbah, and K. Pattabiraman.
JSEFT: Automated Javascript Unit Test Generation.
In 2015 IEEE 8th International Conference on
Software Testing, Verification and Validation, pages
1–10, 2015.

[23] Mozilla Developer Network. Web developer survey
research. Technical report, Mozilla, 2010.

[24] S. Roy Choudhary, M. R. Prasad, and A. Orso.
X-PERT: Accurate Identification of Cross-browser
Issues in Web Applications. In Proceedings of the 2013
International Conference on Software Engineering
(ICSE), pages 702–711, 2013.

[25] W3Techs. World Wide Web Technology Surveys. http:
//w3techs.com/technologies/details/ce-css/all/all.

1059

