
J. Symbolic Computation (1988) 5, 285-294

Constructing Normalisers in Finite Soluble Groups

S. P. G L A S B Y t

Department of Pure Mathematics, The University of Sydney,
New South Wales 2006, Australia

(Received 1 November 1985)

This paper describes algorithms for constructing a Hall n-subgroup H of a finite soluble group
G and the normaliser No(H). If G has composition length n, then H and No(H) can be
constructed using O(n ~ log IGI) and O(n ~ log IGI) group multiplications, respectively. These
algorithms may be used to construct other important subgroups such as Carter subgroups,
system normalisers and relative system normalisers. Computer implementations of these
algorithms can compute a Sylow 3-subgroup of a group with n = 84, and its normaliser in 47
seconds and 30 seconds, respectively. Constructing normalisers of arbitrary subgroups of a
finite soluble group can be complicated. This is shown by an example where constructing a
normaliser is equivalent to constructing a discrete logarithm in a finite field. However, there
are no known polynomial algorithms for constructing discrete logarithms.

1. Introduction and Basic Ideas

The normalisers of Hall n-subgroups play an important role in the theory of finite soluble
groups, occurring in the Fratt ini argument and in Burnside's lemma (Hall, 1959, Lemma
14.3.1). They also occur in the definitions of many important subgroups such as Carter
subgroups and system normalisers, as well as providing a rich source of abnormal
subgroups. This paper describes algorithms for constructing Hall n-subgroups and their
normalisers.

The groups discussed in the present paper will be finite and soluble. For reasons
mentioned later we choose to represent these groups by power-commutator (or pc-)
presentations. A pc-presentation is a presentation of the form

G = (g~ g, lge ~ =ui~, 1 <~i<~n, [gj, g~] = u ~ , 1 ~ i < j ~ n) , (1)

in which

(a) utj, 1 <~i~j<~n, is a word of the form ~i+"*(iJ'i+l)l . . . gkt~j,,,) with O~k(i , j , l) <Pl,
(b) each Pt is prime,
(c) IGI = p l " ' ' P,, and
(d) there exists a normal series G = N I t > . . . t> N,+I = (1) , where each Nl/Ni+l is

elementary abelian and each N~ has the form (g,,(~), g,,(i) + 1 g,,) for some integer
n(i).

Every finite soluble group is isomorphic, to a pc-presentation and conversely, every
g roup defined by a pc-presentation is finite and soluble. When G is a p-group it is
cus tomary to choose the normal series so that each N~/Ni+t has order p. In this case

t This research was undertaken at Rutgers University, N.J., U.S.A. and was supported by a Commonwealth
Postgraduate Research Award.

0747-7171/88/030285 + 10 $03.00/0 �9 I988 Academic Press Limited

286 s.P. Glasby

[gj, g~], 1 ~< i <j.%< n, is a word in the generators gj+ x g,. The presentations of the
form (1) which satisfy (a), (b), (e), but possibly not (d), have been called AG-systems by
Jfirgensen (1970), from the German Aufl6sbare Gruppe,

An example of a pc-presentat ion is given for the symmetric group $4 of order 24. Let

a = (a , , a 3 , g , = = = = 1, Ig2 , a l l = a 2 9 3 , a s] = 1,

[g4, gl] = g3, [.g3, g2] = g3g, , [g,,gz] = g3, [g4,03] = 1). (2)

Then identifying g~, g2, g3, go with the permutations (1, 2, 3, 4), (l, 2, 3), (1, 3)(2, 4),
(1, 2)(3, 4) establishes an isomorphism between G and $4. The presentation (2) shows that
the subgroups Nz = (g2, g3, g4), N3 = (g 3 , g4) and N4= (1) are normal in G. The
subgroup N2 is the alternating group and N 3 is the Klein 4-group.

C. R. Leedham-Green (personal communication, 1983) has developed an algorithm
which takes as input a soluble permutation group and outputs a pc-presentation together
with an isomorphism between the two presentations. If G is a soluble permutation group
of degree d, then this algorithm is polynomial in d. Indeed, there is a connection between the
complexity of permutation group algorithms and the complexity of algorithms for groups
endowed with pc-presentations. If G has degree d and composition length n, then
2" ~< d! ~ d ~ and hence n ~< d log 2 d ~< d z. Therefore any algorithm which is polynomial in n
may be regarded as a permutation group algorithm which is polynomial in d. The
converse, however, is false because the minimal degree of a permutation group of
composition length n may be exponential in n, as shown by the cyclic group Co,.

Perhaps one of the greatest virtues of pc-presentations, compared to matrix and
permutation representations, is that arbitrary quotient groups are easily represented. The
quotient groups in this paper all have the form G/N~. Note that the pc-presentation

G/Na = (g l , gz I g~ -- g~ = 1, [g2, g~] = g2)

may be obtained from (2) by setting g3 = g o = 1. This quotient property is vitally
important to the normaliser algorithm which recursively constructs NG(H) from
Nam~(HN~/N~).

If G is defined by the pc-presentation (1), then every element of G can be uniquely
represented as a collected word g~' k. � 9 g,,, with 0 ~< k~ < p~. The expressions u, and u~j for
gp' and [#j, g~] can be used to rewrite the product, (#~ ' "~k"V'~l~ I,. �9 ' �9 ~,, ~ I �9 �9 �9 #,,), of tWO collected
words as a collected word, g ' ~ ' . . , g,,",. This rewriting process was called collection by Hall
(1969, p. 29), and is well suited to implementation on a computer, see FeIsch (1976) and
the references therein.

Denote by G~ the subgroup (#~ g,), for 1 -%< i ~ n. An element g e G~ is said to have
weight i, written w (g) = i, if g~ G~+ 1. By convention G,,+ ~ is the trivial subgroup, and the
identity element has weight n + l . Let H be a subgroup of G, then the standard
composition series G = G ~ ~ . . . , t> G, ,+I=(1) for G induces a composition series
H = H~ t> . . . t> Hm+l = (1) for H, where H~ = H n G j ~ o. Furthermore, this composition
series refines the normal series H = H n N I ~ . . . t > H c ~ N ~ + I = (1) , which has
elementary abelian factors. A sequence h~ h,, of elements of H may be chosen so that
Hi/H~+ 1 = (h iH~+l) , and hence w (h l) < . . . < w (h , ,) < n + 1. By replacing each hl by a
power of itself, if necessary, we may additionally assume that h~Gj+l =gjGj+~, where
j = w (h ~) . A sequence h~ , h,, which satisfies these properties is called an induced
sequence o f pc-generators for H (relative to G), or more briefly, an induced sequence for H.

Let G be a group which is defined by a pc-presentat ion and acts on a set f~. If neff,
then an algorithm due to C. R. Leedham-Green (Laue et al., 1984, p. 110) may be used to

Constructing Normalisers 287

calculate the orbit ct G, and the stabiliser G~. As G acts via conjugation on the set of
conjugates of H, the normaliser N~(H), may be calculated as the stabiliser in G of H. A
more effective algorithm for constructing N~(H) is to recursively construct the stabiliser
N~(HN~+~/Ni+I), from Nc,(HNt/Ni). However, when the factors Ni/N~+~ are large, these
stabilisers can be costly to compute.

2. Theorems and Examples

The following lemmas and theorems are basic to the ensuing algorithms. The proofs of
Lemmas l, 2 and 3 are not difficult and the proofs of Theorems 4, 5 and 6 appear in Hall
(1959) on pages 141, 46 and 155, respectively.

LEMMA 1. Let N be an abelian normal subgroup of G. I f h~G, then the map
[h, -] : N-~ N : x~-~[h, x], satisfies Lh, xy] = I-h, x]['h, y]. I f N is elementary abelian, then
[h, -] may be regarded as a linear transformation of a vector space.

LEMMA 2. Let G = HN be a split extension of N by H. Then NG(H) = H x Cs(H).

LEMMA 3. Let N be a normal re-subgroup of G. I f H/N is a ~c-subgroup (respectively Hall
7z-subgroup) of G/N, then H is a 7z-subgroup (respectively Hall n-subgroup) of G.

THEOREM 4. Let G be a finite soluble group and let n be a set of primes. Then G contains a
Hall n-subgroup, any two Hall n-subgroups are conjugate, and each n-subgroup of G is
contained in a Hall n-subgroup of G.

THEOREM 5. I f H is a Hall n-subgroup of G, then every subgroup containing N~(H) is self-
normalising in G.

THEOREM 6. I f each Sylow p-subgroup of the.finite group G is normal, then G is nilpotent.

The normalisers of two cyclic groups are constructed to motivate the ensuing
discussions. The first example shows how to construct certain centralisers, and the
second, how to conjugate certain subgroups. Let G be the symmetric group of order 24
defined by (2).

For the first example, let h=glgzg 4 generate the subgroup H of order 2. Then
No(H) = Ca(h). The idea is to inductively construct an induced sequence for Na(HN~+ 1)
from an induced sequence for No(HNi). Note that NG(HN~) is the pre-image in G of
Nom,(HN~/N~), so that the calculations may be carried out in the smaller group G/N,..

Now hN 2 is an induced sequence for Nam2(HN2/N2). (Here we have used the obvious
definition for weight in G/N2.) If - denotes the natural homomorphism G ~ G/N3, then

using Lemma 2, Na(-Q) =/7 x C~7~(/7). However,/g2, hi = ~ so that C~(H) is trivial and
is an induced sequence for No(~7). Applying Lemma 2 to HNa gives

N~I~3(H) = H x CN3(H). However, by Lemma 1 [h, -] induces a linear transformation of
N 3, and so the kernel of [h , -] is CN3(H). Since [h, g3-] = [h, g4] =g3g4, it follows that
[h, gag4] = 1 and hence that glg2g4, g3g4 is an induced sequence for No(H).

For the second example, let h = g2 and H = (h). Then ~ , h is an induced sequence for
No(H). By Lemma 2, NnN~(H) = H x CN~(H). However, the equations [h, ga] = gag4 and
I-h, g4] = g3 together with Lemma 1, imply that Cn~(H) is trivial. By Theorem 4, there is

288 S.P. Glasby

an element xEN3 such that H a` = H x. Therefore, glx -1, h is an induced sequence for
No(H). Now h ~ = g~g3, so let k = (h ~ 2 ~ - g 2 9 4 , then h - l k = g4. The equation [h, x] = g4
can be solved for x eN3. In this case, there is precisely one solution, viz. x=g3g4.
Premultiplying the equation [-h, x] = h - ~ k by h gives h~= k, or H ~ = H ~ Hence,
gig394, g2 is an induced sequence for No(H).

3. Preliminary Algorithms

The sifting, centraliser, conjugation and Hall n-subgroup algorithms will be discussed
in this section. The sifting algorithm may be used to write an element of a subgroup as a
collected work in an induced sequence of pc-generators for the subgroup. The centraliser
algorithm constructs certain centralisers, and the conjugation algorithm is used to
construct a conjugating element given two Hall n-subgroups. The conjugation algorithm
is used by the Hall 7r-subgroup algorithm to construct a Hall r~-subgroup. The centraliser
and conjugation algorithms are motivated by the techniques of the previous section.

THE SIFTING ALGORITHM

This algorithm is used by an algorithm for constructing an induced sequence of
pc-gencrators given an arbitrary set of generators for a subgroup. The algorithm is due to
M. F. Newman (Laue et al., 1984, p. 108) and is called the non-commutative Gauss
algorithm or the echelonisation algorithm.

Input: E1emcnts y, lq k,, of G where w (k t) < . . . < w(k,.) and for each i,
ks G~+ 1 = g~ G~ + 1 where j = w(ki).

Output: An element z of G such that yz-~ equals a "collected" word k] ' . . , k~' where
c~ ~ 0 and i is as large as possible. (The word is said to be collected if for
1 ~< l ~< i, 0 ~< ct < pj where j = w(kl).)

(1) Set z = y.
(2) If w(z) = n + 1, or w(kt) ~ w(z) for all i, then stop.
(3) Suppose that w(k~) = w(z) = s, say.
(4) If zG~+~=g~'Gs+l, then set z=ki-C'z and go to step 2. (Note that

w(k?"z) > w(z).)

This procedure is called sifting y through k 1 k~. If k 1 k~ is an induced sequence
for a subgroup K of G, and y ~ K , then y may be written as a collected word in the
generators by sifting y through k~ , kin. In this case z equals the identity element.

THE CENTRALISER ALGORITHM

In order to calculate the normaliser in Lemma 2, we shall calculate the centraliser
CN(H) where H normalises N. When N is elementary abelian, Lemma 1 reduces the
calculation of CN(H) to a calculation in linear algebra, or to be more precise, to an
application of the Gaussian elimination algorithm. Recall that N, is a non-trivial
elementary abelian normal subgroup of G which is defined by the pc-presentation of G.

Input: A subgroup H which normalises the subgroup Nr of G. Let h 1 h, be an
induced sequence for H and let g , , , . . . , g,, be an induced sequence for N,.

Output: An induced sequence zl, �9 �9 zc for CN~(tt).

Constructing Normalisers 289

(1)

(2)

If a > 1, then recursively construct M = C N . ((h 2 , . . . , h,)). Then hi normalises
both N~ and (hz h,) and thus M. Recursively construct Cu((ha)), then set
CN~(H) = CM((hl)) and stop.
Suppose now that a = 1. For m ~< i ~< n find the collected word 0,b, '~" . . . 9,~'" for
[h~, 9J. Then the linear transformation [h~, -] of Nr may be represented by the
(n - m + l) x (n - m + 1) matrix B = (b~j) with respect to the basis 9m 0,, for
N~. A basis for the kernel of B may be determined by applying elementary row
operations to the augmented matrix [/31/]. Let z~ z~ be the elements of N~
corresponding to the basis elements of the kernel.

THE CONJUGATION ALGORITHM

Let H and K be two Hall n-subgroups of G which are equal modulo N~. The conjugation
algorithm constructs an element geN~ which conjugates H to K. The conjugation
algorithm is useful for constructing Hall n-subgroups and their normalisers. Kantor &
Taylor (1987) have described a different algorithm which finds a conjugating element
given two Sylow subgroups of a permutation group.

Input:
Output:
(1)
(2)

(3)

(4)

Two Hall n-subgroups H and K of G which are equal modulo Nr.
An element x e Nr such that H x = K.
If N, is a n-subgroup, then H = K so set x = 1 and stop.
Henceforth, assume that N, is an elementary abelian n'-subgroup. If K has
composition length greater than one, then let L = Kc~G~ be a normal subgroup
ofK ofprimeindex p where Gjis the subnormal subgroup (gj g,) of G and where
HNr ~< Gj_ 1. Since H n G~ and L are Hall ~-subgroups of Gj, recursively find y e N~
such that (H c~ G y = L.
Let H y = (h, L) and K = (k, L) where hGj = kG 1 = #j_ 1Gj. Factorise the
order of h - l k into a z-part s, and a ~'-part s'. (The order Pgl, of 9 ~ G may be
recursively factorised into primes as follows. If w(9)= n + l , then]91 = 1,
otherwise 191 = PkP#Pk[where k = w(9).) If s' = 1, then set x = y and stop.
Assume that s '> 1. Use Euclid's algorithm to find integers (r and v such that
(rs--1 (rood s') and z (- p) = 1 (rood s'). This is possible because s and p are
zr-numbers, while s' is a n'-number. Let m = (h- Xk)~ and
z = (mh(m2) h~ . �9 (m ~- 1)h'- ')~. Set x = yz and stop.

The correctness of the conjugation algorithm is proved as follows. Without loss of
generality assume that y = 1, and H and K share a common normal subgroup L, of prime
index p. If S = (H, K) , then L is normal in S, as it is normal in both H and K. Since
K = (k , L) , S = (H , k) . However, h - l k = I m so that S = (H, m) = HM, where
M=Sc~Nr is the normal closure of (m) in S. Since L n M = (1) , it follows that
[L , M] = (1) . Now h - l k e S n G j = L x M , so if s ' = l , then h - l k E L and so H = K ,
However, if s' > 1, then s' is the exponent of M, and m = (hk-1)'~s is the component of
h - l k in M. Let l = (h-lk)rn -~ be the component of h - l k in L.

Let ~ be the linear transformation of the vector space M induced via conjugation by h.
Then q~ has order p because hP~L, and L centralises M. By Gorenstein (1968), Theorem
5.2.3, M = Cu(H) x [H, M] where both Cu(H) and [H, M] are normal in S. If m = mlrn 2
where maeCu(H) and m 2 e [H , M] , then z = z l z 2 where z l e C u (H) and z 2 e [H , M].
However, H -~ = H z~ so there is no loss of generality in assuming that CM(H) is trivial.

290 S.P. Glasby

Since CM(H) is trivial,
i=0

and writing linear transformations

p-1
r is the zero transformation of M. Using additive notation

on the right gives

z(I--r ('cmP~l ir

) = rm r - 1)4)"
\ i = 1

= zm(-l--(p- 111)

= ~(-p)m
~Pd'l ,

Therefore [h, zl = m or h-~h~= h-lk1-1. Premultiplying by h gives h"~= k1-1. Hence,
H-" ~ K (mod L) and the correctness of the algorithm follows.

An alternate, though equivalent, method of finding z is to solve the linear equation
[h, z] = m for z s M. This method was used in 3.2, whereas the explicit formula for z is due
to Kantor (1985).

If H and K are arbitrary conjugate subgroups of G, then it may no longer be true that
H and K are conjugate by an element of Nr. To generalise the conjugation algorithm,
more knowledge of the cohomology group Hi(H, N,) is needed. The fact that this
cohomology group is trivial when IHI and [Nrl are coprime accounts for the success of the
previous algorithms.

If H and K are ~-pro jec tors for some saturated formation ~ see Gaschutz (1963), then
the conjugation algorithm can be used to find a conjugating element. In particular, H and
K could be Carter subgroups of G.

Kantor & Taylor (1987) noted that a conjugation algorithm may be used to construct
Hall n-subgroups.

Input:
Output:
(1)
(2)

(3)

(4)
(5)

The

THE HALL n=SUBGROUP ALGORITHM

A finite soluble group G.
A Hall n-subgroup H of G.
If G is a n-group set H = G, and if G is a n'-group set H = (i) , and stop.
Recursively construct a Hall n-subgroup K/Nr of G/Nr. If Nr is a n-subgroup,
then set H = K and stop. (Henceforth, assume that N r is a rc'-subgroup and that
kl , ks is an induced sequence for K.)
Recursively construct a Hall n-subgroup M of L = (k 2 , ks). If p = [K :L[~n,
then set H = M and stop.
If p ~n, then use the conjugation algorithm to find y e N, such that (Mk') y = M.
Factorise the order of kl y into a n-part p and a n'-part cr. Set H = ((kl y)~, M)
and stop:

correctness of the Hall n-subgroup algorithm follows from Lemma 3 and
Theorem 4.

Constructing Normalisers 291

4. Constructing Normalisers of Hall ~-subgroups

The conjugation and centraliser algorithms have applications to the construction of
system normalisers, relative system normalisers, normalisers of Hail :r-subgroups and
Carter subgroups. These applications are presented after reviewing some terminology.

A Hall {p}'-subgroup of G is called a Sylow p-complement of G. Let {q~ q~} be the
set of positive prime divisors of [G[. Then a set {H~ H~} is called a complement basis
for G if each H, is a Sylow q~-complement. If {K~ , K~} is another complement basis,
then there exists a 9 e G such that Hi~ = K~ for 1 ~< i ~< s. An element 9 is found as follows.
If G is a p-group, or more generally if G is nilpotent, then set 9 - 1. If G is not nilpotent,
then recursively find x ~ G such that H~--K~ (rood N~) for 1 <~i~<s. This is possible
because {Ha N,/Nr HsN,/N,} is a complement basis for G/N,. Let qj be the exponent
of N,, then Nr ~< Hi for i # j . Use the conjugation algorithm to find y~N, such that
(HI) y = Kj. Set 9 = xy, then H~ ~ = K s for 1 ~< i ~< s.

This simple algorithm may be generalised to construct system normalisers. The system
normaliser of the complement basis 2 = {H~ H~} is defined to be

N(~,) NG(H~).
i= l

THE SYSTEM NORMALISER ALGORITHM

Input: A complement basis Z = {H1 Hs} for G.
Output: The system normaliser N(Z).
(1) If G is known to be nilpotent, for example, if G is a p-group, then set N(E) = G

and stop.
(2) Recursively construct an induced sequence x l N , xeNr for the system

normaliser

N(Y~NJN,) = ~ Namr(HtN/N~).
i - - t

(3) Let qj be the exponent of N,, Then for 1 ~< i ~ t, use the conjugation algorithm to
find Yt E N r such that (Hf')Y'= Hj.

(4) Use the centraliser algorithm to find an induced sequence z l , . . . , z,, for Cur(Hj).
Then x 1 Yl xtyt, zl , zu is an induced sequence of N(Z).

The correctness of this algorithm is proved as follows. Since N. ~ H~ for i # j , it follows
that K = (x 1Yl x,y t, z~ zu) is contained in N(Z). However,

N(Y, Nr/N~) = N(Z)NJN, = KN./N, and N(X) c~ N~ = K c~ N. = CN.(Hj),

so using the second isomorphism theorem N(Z)/C~.(Hj)~-K/Cu.(Hj) and K = N(Z) as
claimed.

The system normaliser algorithm is almost identical to an algorithm for constructing
the normaliser of a Hall n-subgroup.

THE HALL n-NORMALISER ALGORITIqM

Input: A Hall n-subgroup H of G.
Output: The normaliser No(H).
(1) Find the smallest integer i such that Nr is a n-subgroup of G. If i~<r, then

recursively construct K/Ni = Nom,(H/N3. Set No(H) = K and stop.

292 S,P. Glasby

(2) Assume that Nr is a rc'-subgroup of G. Recursively construct an induced sequence
xl Nr x, Nr for NG/Nr(HNJN,). Since H ~' and H are Hall re-subgroups of HNr,
use the conjugation algorithm to find y ~ N, such that (HX')Y' = H.

(3) Use the centraliser algorithm to find an induced sequence zl z, for CNr(H).
Then xl Yl xt Yt, zl z u is an induced sequence for Na(H).

The correctness of the Hall ~-normaliser algorithm is proved in a similar manner to the
correctness of the system normaliser algorithm. Both of these algorithms can be
generalised to accommodate normal subgroups. For example, if H is a Hall r~-subgroup of
a normal subgroup N of G, and x~N,..., xtN generate G/N, then a modification of the
conjugation algorithm can be used to find y ~ N such that (HX~) y ' = H . The Hall
rc-normaliser algorithm can be used to find an induced sequence zt z, for NN(H).
Therefore x 1 Yl xt Yr, zl z, generates N~(H).

If H~ H~ is a complement basis for N, then the relative system normaliser

N No(Bt), of N in G may be calculated similarly. The y~ being found by conjugating
i = l

complement bases of N, as described above. It is particularly useful to be able to
construct normalisers of the form N~(H), where H is a Hall zc-subgroup of N, and relative
system normalisers, because many complements to normal subgroups have these forms
(Carter, 1961b).

The Hall 7r-normaliser algorithm may be used to construct Carter subgroups. In 1961,
Carter proved the existence and conjugacy of nilpotent self-normalising subgroups of a
finite soluble group. These subgroups, now called Carter subgroups, aroused considerable
interest due partly to an analogy with the Cartan subalgebras of a Lie algebra. (Finite
dimensional Lie algebras possess a single conjugacy class of nilpotent self-idealising
subalgebras called Cartan subalgebras.) Subsequent work by Gaschfitz (1963) on the
theory of formations made precise the notion that a Carter subgroup is a "generalised"
Hall r~-subgroup. The ideas behind the Carter subgroup algorithm are embodied in
Theorems 4, 5 and 6 (Carter, 1961a, Section 3).

Input:
Output:
(1)
(2)
(3)

(4)

THE CARTER SUBGROUP ALGORITHM

A finite soluble group G.
A Carter subgroup C of G.
If G is a p-group, or more generally if G is nilpotent, then set C = G and stop.
Recursively construct a Carter subgroup K/N, of G/N,.
If the exponent of Nr is q, then use the Hall zc-subgroup algorithm to construct a
Hall {q}'-subgroup H of K.
Use the Hall n-normaliser algorithm to construct Nr(H). Set C = Nr(H) and
stop.

5. Performance and Complexity

The author has implemented the Hall 7~-subgroup algorithm and the Hall 7r-normaliser
algorithm in FORTRAN. These implementations will be included in the group theory
program CAYLEY (Cannon, 1982) and are similar, but not identical, to the algorithms of
this paper. Some run-time statistics, obtained on a VAX 11/780, are shown in Tables 1
and 2 below. The programs were run on two groups. The first group was the wreath
product ((C7 wr C5) wr Ca) wr C2, of four cyclic groups and had order 21325673~ The

Constructing Normalisers 293

second group was the wreath product ($4 wr $4) wr $4, of three symmetric groups and had
order 26332~. The pc-presentations used for these groups had very short relations. Had
there been many long relations in the pc-presentations, the timings could have been up to
ten times slower.

The symbols used in Tables 1 and 2 are explained below. Given a group G and a set rc
of primes, tmH and t,o~m denote the times taken by the Hall n-subgroup algorithm to
construct a Hall re-subgroup H, and the Hall zc-norrrialiser algorithm to construct Na(H).
The number of calls made to the conjugation algorithm by the Hall n-subgroup
algorithm, and the total time spent by the conjugation algorithm are denoted by n~o,j and
t~o,j, respectively. Similarly, neent and teent relate to the calls to the centraliser algorithm by
the Hall n-normaliser algorithm.

Table 1. Running times for the Hall n-subgroup algorithm

IGI ~ till tH., (see) n,..j too.fft.~.

21325673~ {2} 21 0'03 0 0'00
21325673~ {3} 32 0"74 2 0'45
21325673~ {5} 56 1'82 5 0'48
21325673~ {2, 5) 2156 2'19 6 0'50
2132567 a~ {3, 5} 3256 2'59 7 0'50
2132567 ~ {2, 3, 5} 213256 2'94 8 0'50
263321 {2} 263 62"57 36 0'50
26332t {3} 321 46'92 28 0'47

Table 2. Running times for the Hall 7z-normaliser algorithm

IGI n INa(H)i t (s e e) /'leant t~.t/t

21325o730 {2} 2131527 Is 1'38 3 0'86
213256730 {3} 2~325271~ 2'00 3 0"88
2~32567~~ {5} 21325676 3'41 3 0"86
213256730 12 5} 21315673 3'31 2 0"95
2132557 ~~ ~31 5} 2~325672 3'46 2 0"94
2~3356730 {2, 3, 5} 21325671 3'35 1 0"99
263321 {2~ 263 5'19 3 0"95
263321 {3} 273 z~ 30'35 6 0"55

To gain insight into the complexity of the general normaliser problem, we compare it
with the discrete logarithm problem (Coppersmith, 1984). Let G = X Y Z be a group of
semilinear transformations of the field GF(2r), with 2' elements. Let X = (x) , where x is
the squaring automorphism, Y = (y) where y generates the multiplieative group, and let
Z be the additive group of GF(2'). The order of G is r(2 r - 1)2L

We construct an example for r = 3 using the irreducible polynomialf(x) = x3+ x + 1. If
w is a root off(x) in GF(23), then 1, w, w 2 generate Z. Identify y with w and Zo, zt, z2 with
1, w, W 2, Then it follows that yX = y 2 z~ -- go. z~ = z 2 and z~ = zx +zz, since w ~ = w + w 2.
Similarly, z~ = z 1, z] = z2 and z~ = Zo + zi. Thus a pc-presentation for G is

(x , y , z o ,z l ,z2]x 3 = Y~=Z02=z 12=z 2__1,

I-y, x] = y , [Zo, x] = 1, [z~, x3 = zlz2, [z2, x] =21,

[zo, y] = zozl, [zl, y] = 21z2, [22, y] = zozl Zz,

l-b, zi3 = 1, 0~<i < j <~ 2) .

294 S.P. Glasby

Let h be a non-ze ro e lement of Z. Then calculat ing the normal i ser Na((h)) --- C~(h) is
equiva len t to finding Cxr(h) since CG(h)= Cxr(h)Z. Since Y conjugates h to every other
n o n - z e r o e lement of Z, IXY: Cxr(h)[= 2 ~ - 1. Thus Cxr(h) = (xy i) , for some 0 ~< i < 2 r - 1.
S u p p o s e w genera tes the mult ipl icat ive g roup of GF(2') , then identify y with w, and h with
the vec tor ho + hx w + . . . + h,_ ~ w ' - ~. I f �9 denotes field mult ipl icat ion, then xfi eentralises
h, w h e n h = h x y ' = (h , h) y ' = (h , h) * w i. Thus h o + h l w + . . . + h ~ - l w , - t = w -i and
calcula t ing N~((h)) is equivalent to finding - i, the discrete logar i thm of h.

T h e mos t efficient a lgor i thm current ly k n o w n for c o m p u t i n g discrete logar i thms in
GF(2 ") is due to C o p p e r s m i t h (1984) and has a sympto t i c running time
O (e x p (cr ~/3 log 213 r)), where c is a constant . Indeed, since calculat ing discrete logar i thms
is difficult, m a n y c ryp tog raph ic schemes require the evaluat ion of discrete logar i thms for
code -b reak ing .

If m = log IGI, then it can be shown that the n u m b e r of g roup mult ipl icat ions required
by the sifting, central iser , conjugat ion , Hall re-subgroup and Hall rc-normaliser a lgori thms
is O(rnn), O(mn2), O(mn3), O(mn 4) and O(mnS), respectively. I t seems unlikely that there
exists a general p u r p o s e normal i se r a lgor i thm which is O(mn k) for some fixed k. If there
were such an a lgor i thm, then there would be an a lgor i thm for finding discrete logar i thms
in GF(2 ') which is po lynomia l in r. This follows since, for G = X Y Z , [G[= r (2 ' - 1)2' so
m < 3r and n < 3r, and O(mn k) is O(rk+l) .

I am indebted to Dr J. J. Cannon and Dr D. E. Taylor for their help and guidance, to Dr C. R.
Leedham-Green for his inspiring conversations, to Mr J, H. Brownie for his assistance with
programming, and to the referees for their helpful suggestions.

References

Cannon, J. J. (I982). (Preprint). A Language./br Group Theory. University of Sydney, Australia.
Carter, R. W. (1961a). Nilpotent self-normalizing subgroups of soluble groups. Malhs. Z. 75, 136-139.
Carter, R. W. (1961b). Splitting properties of soluble groups. J. London Math. Soc. 36, 89-94.
Coppersmith, D. (1984). Evaluating logarithms in GF(2"). In: Proceedings 16th Annual Symposium on the Theory

of Computing. Pp. 201-207. New York: ACM.
Felsch, V. (1976). A machine independent implementation of a collection algorithm for the multiplication of

group elements~ ln: Proceedings of the 1976 ACM symposium on symbolic and algebraic computation.
Pp. 159-166. New York: ACM.

Gasch/.itz, W. (1963). Zur Theorie der endfichen auflrsbaren Gruppen. Math. Z. 80, 300-305.
Gorenstein, D. (1968). Finite Groups. New York: Harper and Row.
Hail, M,, Jr. (1959). The Theory of Groups. New York: Macmillan Co.
Hall, P. (1969). Nilpotent Groups. (Notes of lectures given at the Canadian Mathematical Congress summer

seminar, University of Alberta, 1957). London, Queen Mary College.
Jfirgensen, H. (1970). Calculation with elements in a finite group given by generators and defining relations.

Computational Problems in Abstract Algebra. Proe. Conf., Oxford, 1969. Oxford: Pergamon.
Kantor, W. M. (1985). Sylow's theorem in polynomial time. J. Comp. Syst. Sci. 30, 359-394.
Kantor, W. M., Taylor, D. E. (1987). Polynomial-time versions of Sylow's theorem. 3'. Algorithms (in press).
Laue, R., Neubilser, J., Schoenwaelder, U. (1984). Algorithms for finite soluble groups and the SOGOS system.

In: (Atkinson, M. D., ed.) Computational Group Theory. Proceedings of the London Mathematical Society
Symposium on Computational Group Theory. Pp. 105-135. London: Academic Press.

