
J. Symbolic Computation (1988) 5, 285-294 

Constructing Normalisers in Finite Soluble Groups 

S. P. G L A S B Y t  

Department of Pure Mathematics, The University of Sydney, 
New South Wales 2006, Australia 

(Received 1 November 1985) 

This paper describes algorithms for constructing a Hall n-subgroup H of a finite soluble group 
G and the normaliser No(H). If G has composition length n, then H and No(H ) can be 
constructed using O(n ~ log IGI) and O(n ~ log IGI) group multiplications, respectively. These 
algorithms may be used to construct other important subgroups such as Carter subgroups, 
system normalisers and relative system normalisers. Computer implementations of these 
algorithms can compute a Sylow 3-subgroup of a group with n = 84, and its normaliser in 47 
seconds and 30 seconds, respectively. Constructing normalisers of arbitrary subgroups of a 
finite soluble group can be complicated. This is shown by an example where constructing a 
normaliser is equivalent to constructing a discrete logarithm in a finite field. However, there 
are no known polynomial algorithms for constructing discrete logarithms. 

1. Introduction and Basic Ideas 

The normalisers of  Hall n-subgroups play an important  role in the theory of finite soluble 
groups, occurring in the Fratt ini  argument and in Burnside's lemma (Hall, 1959, Lemma 
14.3.1). They also occur in the definitions of many important  subgroups such as Carter 
subgroups and system normalisers, as well as providing a rich source of abnormal 
subgroups. This paper describes algorithms for constructing Hall n-subgroups and their 
normalisers. 

The groups discussed in the present paper will be finite and soluble. For  reasons 
mentioned later we choose to represent these groups by power-commutator (or pc-) 
presentations. A pc-presentation is a presentation of the form 

G = (g~ . . . . .  g, lge ~ =ui~, 1 <~i<~n, [gj, g~] = u ~ ,  1 ~ i < j ~ n ) ,  (1) 

in which 

(a) utj, 1 <~i~j<~n, is a word  of the form ~i+"*(iJ'i+l)l . . .  gkt~j,,,) with O~k(i , j ,  l) <Pl,  
(b) each Pt is prime, 
(c) IGI = p l  " ' ' P,, and 
(d) there exists a normal  series G = N I  t > . . .  t> N,+I = (1 ) ,  where each Nl/Ni+l is 

elementary abelian and each N~ has the form (g,,(~), g,,(i) + 1 . . . . .  g,,) for some integer 
n(i). 

Every finite soluble group is isomorphic, to a pc-presentation and conversely, every 
g roup  defined by a pc-presentation is finite and soluble. When G is a p-group it is 
cus tomary  to choose the normal  series so that each N~/Ni+t has order p. In this case 
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[gj, g~], 1 ~< i <j.%< n, is a word in the generators gj+ x . . . . .  g,. The presentations of the 
form (1) which satisfy (a), (b), (e), but possibly not (d), have been called AG-systems by 
Jfirgensen (1970), from the German Aufl6sbare Gruppe, 

An example of a pc-presentat ion is given for the symmetric group $4 of order 24. Let 

a = ( a , ,  a 3 ,  g ,  = = = = 1, Ig2 ,  a l l  = a 2 9 3 ,  a s ]  = 1, 

[g4, gl]  = g3, [.g3, g2] = g3g, ,  [g,,gz] = g3, [g4,03] = 1). (2) 

Then identifying g~, g2, g3, go with the permutations (1, 2, 3, 4), (l, 2, 3), (1, 3)(2, 4), 
(1, 2)(3, 4) establishes an isomorphism between G and $4. The presentation (2) shows that 
the subgroups Nz = (g2, g3, g4), N3 = ( g 3 ,  g4)  and N4= (1)  are normal in G. The 
subgroup N2 is the alternating group and N 3 is the Klein 4-group. 

C. R. Leedham-Green (personal communication, 1983) has developed an algorithm 
which takes as input a soluble permutation group and outputs a pc-presentation together 
with an isomorphism between the two presentations. If G is a soluble permutation group 
of degree d, then this algorithm is polynomial in d. Indeed, there is a connection between the 
complexity of permutation group algorithms and the complexity of algorithms for groups 
endowed with pc-presentations. If G has degree d and composition length n, then 
2" ~< d! ~ d ~ and hence n ~< d log 2 d ~< d z. Therefore any algorithm which is polynomial in n 
may be regarded as a permutation group algorithm which is polynomial in d. The 
converse, however, is false because the minimal degree of a permutation group of 
composition length n may be exponential in n, as shown by the cyclic group Co,. 

Perhaps one of the greatest virtues of pc-presentations, compared to matrix and 
permutation representations, is that arbitrary quotient groups are easily represented. The 
quotient groups in this paper all have the form G/N~. Note that the pc-presentation 

G/Na = (g l ,  gz I g~ -- g~ = 1, [g2, g~] = g2)  

may be obtained from (2) by setting g3 = g o =  1. This quotient property is vitally 
important to the normaliser algorithm which recursively constructs NG(H) from 
Nam~(HN~/N~). 

If G is defined by the pc-presentation (1), then every element of G can be uniquely 
represented as a collected word g~' k. � 9  g,,, with 0 ~< k~ < p~. The expressions u, and u~j for 
gp' and [#j, g~] can be used to rewrite the product, (#~ '  "~k"V'~l~ I,. �9 ' �9 ~,, ~ I  �9 �9 �9 #,, ), of tWO collected 
words as a collected word, g ' ~ ' . . ,  g,,",. This rewriting process was called collection by Hall 
(1969, p. 29), and is well suited to implementation on a computer, see FeIsch (1976) and 
the references therein. 

Denote by G~ the subgroup (#~ . . . . .  g,), for 1 -%< i ~ n. An element g e G~ is said to have 
weight i, written w ( g ) =  i, if g~ G~+ 1. By convention G,,+ ~ is the trivial subgroup, and the 
identity element has weight n + l .  Let H be a subgroup of G, then the standard 
composition series G = G ~  ~ . . . ,  t> G, ,+I=(1)  for G induces a composition series 
H = H~ t> . . .  t> Hm+l = (1)  for H, where H~ = H n G j ~  o. Furthermore, this composition 
series refines the normal series H = H n N I ~ . . . t > H c ~ N ~ + I = ( 1 ) ,  which has 
elementary abelian factors. A sequence h~ . . . . .  h,, of elements of H may be chosen so that 
Hi/H~+ 1 = (h iH~+l) ,  and hence w ( h l ) < . . .  < w ( h , , ) < n +  1. By replacing each hl by a 
power of itself, if necessary, we may additionally assume that h~Gj+l =gjGj+~,  where 
j = w ( h ~ ) .  A sequence h~ . . . .  , h,, which satisfies these properties is called an induced 
sequence o f  pc-generators for H (relative to G), or more briefly, an induced sequence for H. 

Let G be a group which is defined by a pc-presentat ion and acts on a set f~. If neff,  
then an algorithm due to C. R. Leedham-Green (Laue et al., 1984, p. 110) may be used to 
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calculate the orbit ct G, and the stabiliser G~. As G acts via conjugation on the set of 
conjugates of H, the normaliser N~(H), may be calculated as the stabiliser in G of H. A 
more effective algorithm for constructing N~(H) is to recursively construct the stabiliser 
N~(HN~+~/Ni+I), from Nc,(HNt/Ni). However, when the factors Ni/N~+~ are large, these 
stabilisers can be costly to compute. 

2. Theorems and Examples 

The following lemmas and theorems are basic to the ensuing algorithms. The proofs of 
Lemmas l, 2 and 3 are not difficult and the proofs of Theorems 4, 5 and 6 appear in Hall 
(1959) on pages 141, 46 and 155, respectively. 

LEMMA 1. Let N be an abelian normal subgroup of G. I f  h~G, then the map 
[h, - ] :  N-~ N : x~-~[h, x], satisfies Lh, xy] = I-h, x]['h, y]. I f  N is elementary abelian, then 
[h, - ]  may be regarded as a linear transformation of  a vector space. 

LEMMA 2. Let G = HN be a split extension of N by H. Then NG(H) = H x Cs(H). 

LEMMA 3. Let N be a normal re-subgroup of G. I f  H/N is a ~c-subgroup (respectively Hall 
7z-subgroup) of  G/N, then H is a 7z-subgroup (respectively Hall n-subgroup) of G. 

THEOREM 4. Let G be a finite soluble group and let n be a set of  primes. Then G contains a 
Hall n-subgroup, any two Hall n-subgroups are conjugate, and each n-subgroup of  G is 
contained in a Hall n-subgroup of  G. 

THEOREM 5. I f  H is a Hall n-subgroup of G, then every subgroup containing N~(H) is self- 
normalising in G. 

THEOREM 6. I f  each Sylow p-subgroup of the.finite group G is normal, then G is nilpotent. 

The normalisers of two cyclic groups are constructed to motivate the ensuing 
discussions. The first example shows how to construct certain centralisers, and the 
second, how to conjugate certain subgroups. Let G be the symmetric group of order 24 
defined by (2). 

For the first example, let h=glgzg 4 generate the subgroup H of order 2. Then 
No(H ) = Ca(h ). The idea is to inductively construct an induced sequence for Na(HN~+ 1) 
from an induced sequence for No(HNi). Note that NG(HN~) is the pre-image in G of 
Nom,(HN~/N~), so that the calculations may be carried out in the smaller group G/N,.. 

Now hN 2 is an induced sequence for Nam2(HN2/N2). (Here we have used the obvious 
definition for weight in G/N2.) If - denotes the natural homomorphism G ~ G/N3, then 

using Lemma 2, Na(-Q) =/7  x C~7~(/7). However,/g2, hi = ~ so that C~(H) is trivial and 
is an induced sequence for No(~7). Applying Lemma 2 to HNa gives 

N~I~3(H) = H x CN3(H). However, by Lemma 1 [h, - ]  induces a linear transformation of 
N 3, and so the kernel of [ h , - ]  is CN3(H ). Since [h, g3-] = [h, g4] =g3g4, it follows that 
[h, gag4] = 1 and hence that glg2g4, g3g4 is an induced sequence for No(H ). 

For the second example, let h = g2 and H = (h).  Then ~ ,  h is an induced sequence for 
No(H). By Lemma 2, NnN~(H) = H x CN~(H ). However, the equations [h, ga] = gag4 and 
I-h, g4] = g3 together with Lemma 1, imply that Cn~(H) is trivial. By Theorem 4, there is 
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an element xEN3 such that H a` = H  x. Therefore, glx  -1, h is an induced sequence for 
No(H). Now h ~ = g~g3, so let k = ( h ~  2 ~ - g 2 9 4 ,  then h - l k  = g4. The equation [h, x] = g4 
can be solved for x eN3. In this case, there is precisely one solution, viz. x=g3g4.  
Premultiplying the equation [-h, x] = h - ~ k  by h gives h~= k, or H ~ = H  ~ Hence, 
gig394, g2 is an induced sequence for No(H). 

3. Preliminary Algorithms 

The sifting, centraliser, conjugation and Hall n-subgroup algorithms will be discussed 
in this section. The sifting algorithm may be used to write an element of a subgroup as a 
collected work in an induced sequence of pc-generators for the subgroup. The centraliser 
algorithm constructs certain centralisers, and the conjugation algorithm is used to 
construct a conjugating element given two Hall n-subgroups. The conjugation algorithm 
is used by the Hall 7r-subgroup algorithm to construct a Hall r~-subgroup. The centraliser 
and conjugation algorithms are motivated by the techniques of the previous section. 

THE SIFTING ALGORITHM 

This algorithm is used by an algorithm for constructing an induced sequence of 
pc-gencrators given an arbitrary set of generators for a subgroup. The algorithm is due to 
M. F. Newman (Laue et al., 1984, p. 108) and is called the non-commutative Gauss 
algorithm or the echelonisation algorithm. 

Input: E1emcnts y, lq . . . . .  k,, of G where w ( k t ) < . . .  < w(k,.) and for each i, 
ks G~+ 1 = g~ G~ + 1 where j = w(ki). 

Output: An element z of G such that yz-~ equals a "collected" word k ] ' . . ,  k~' where 
c~ ~ 0 and i is as large as possible. (The word is said to be collected if for 
1 ~< l ~< i, 0 ~< ct < pj where j = w(kl).) 

(1) Set z = y. 
(2) If w(z) = n + 1, or w(kt) ~ w(z) for all i, then stop. 
(3) Suppose that  w(k~) = w(z) = s, say. 
(4) If zG~+~=g~'Gs+l, then set z=ki-C'z and go to step 2. (Note that 

w(k?"z) > w(z).) 

This procedure is called sifting y through k 1 . . . . .  k~. If k 1 . . . . .  k~ is an induced sequence 
for a subgroup K of G, and y ~ K ,  then y may be written as a collected word in the 
generators by sifting y through k~ . . . .  , kin. In this case z equals the identity element. 

THE CENTRALISER ALGORITHM 

In order to calculate the normaliser in Lemma 2, we shall calculate the centraliser 
CN(H) where H normalises N. When N is elementary abelian, Lemma 1 reduces the 
calculation of CN(H) to a calculation in linear algebra, or to be more precise, to an 
application of the Gaussian elimination algorithm. Recall that N, is a non-trivial 
elementary abelian normal subgroup of G which is defined by the pc-presentation of G. 

Input: A subgroup H which normalises the subgroup Nr of G. Let h 1 . . . . .  h, be an 
induced sequence for H and let g , , , . . . ,  g,, be an induced sequence for N,. 

Output: An induced sequence zl, �9 �9 zc for CN~(tt). 
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(1) 

(2) 

If a > 1, then recursively construct M = C N . ( ( h 2 ,  . . . ,  h,)). Then hi normalises 
both N~ and (hz . . . . .  h,) and thus M. Recursively construct Cu((ha)), then set 
CN~(H) = CM((hl)) and stop. 
Suppose now that a = 1. For m ~< i ~< n find the collected word 0,b, '~" . . .  9,~'" for 
[h~, 9J. Then the linear transformation [h~, - ]  of Nr may be represented by the 
( n - m +  l) x ( n - m +  1) matrix B = (b~j) with respect to the basis 9m . . . . .  0,, for 
N~. A basis for the kernel of B may be determined by applying elementary row 
operations to the augmented matrix [/31/]. Let z~ . . . . .  z~ be the elements of N~ 
corresponding to the basis elements of the kernel. 

THE CONJUGATION ALGORITHM 

Let H and K be two Hall n-subgroups of G which are equal modulo N~. The conjugation 
algorithm constructs an element geN~ which conjugates H to K. The conjugation 
algorithm is useful for constructing Hall n-subgroups and their normalisers. Kantor & 
Taylor (1987) have described a different algorithm which finds a conjugating element 
given two Sylow subgroups of a permutation group. 

Input: 
Output: 
(1) 
(2) 

(3) 

(4) 

Two Hall n-subgroups H and K of G which are equal modulo Nr. 
An element x e Nr such that H x = K. 
If N, is a n-subgroup, then H = K so set x = 1 and stop. 
Henceforth, assume that N, is an elementary abelian n'-subgroup. If K has 
composition length greater than one, then let L = Kc~G~ be a normal subgroup 
ofK ofprimeindex p where Gjis the subnormal subgroup (gj . . . . .  g,)  of G and where 
HNr ~< Gj_ 1. Since H n  G~ and L are Hall ~-subgroups of Gj, recursively find y e N~ 
such that (H c~ G y  = L. 
Let H y = (h, L)  and K = (k, L)  where hGj = kG 1 = #j_ 1Gj. Factorise the 
order of h - l k  into a z-part s, and a ~'-part s'. (The order Pgl, of 9 ~ G  may be 
recursively factorised into primes as follows. If  w(9)= n + l ,  then ]91 = 1, 
otherwise 191 = PkP#Pk[ where k = w(9).) If s' = 1, then set x = y and stop. 
Assume that s '>  1. Use Euclid's algorithm to find integers (r and v such that  
(rs--1 (rood s') and z ( - p ) =  1 (rood s'). This is possible because s and p are 
zr-numbers, while s' is a n'-number. Let m = (h- Xk)~ and 
z = (mh(m2) h~ . �9 (m ~- 1)h'- ')~. Set x = yz and stop. 

The correctness of the conjugation algorithm is proved as follows. Without loss of 
generality assume that y = 1, and H and K share a common normal subgroup L, of prime 
index p. If S = (H,  K) ,  then L is normal in S, as it is normal in both H and K. Since 
K = ( k , L ) ,  S = ( H , k ) .  However, h - l k = I m  so that S =  (H,  m) = HM,  where 
M=Sc~Nr is the normal closure of (m) in S. Since L n M = ( 1 ) ,  it follows that  
[ L , M ] = ( 1 ) .  Now h - l k e S n G j = L x M ,  so if s ' = l ,  then h - l k E L  and so H = K ,  
However, if s' > 1, then s' is the exponent of M, and m = (hk-1)'~s is the component of 
h - l k  in M. Let l =  (h-lk)rn -~ be the component of h - l k  in L. 

Let ~ be the linear transformation of the vector space M induced via conjugation by h. 
Then q~ has order p because hP~L, and L centralises M. By Gorenstein (1968), Theorem 
5.2.3, M = Cu(H) x [H, M] where both Cu(H) and [H, M] are normal in S. If m = mlrn 2 
where maeCu(H) and m 2 e [ H , M ] ,  then z = z l z 2  where z l e C u ( H  ) and z 2 e [ H , M  ]. 
However, H -~ = H z~ so there is no loss of generality in assuming that CM(H) is trivial. 
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Since CM(H) is trivial, 
i=0 

and writing linear transformations 

p-1 
r is the zero transformation of M. Using additive notation 

on the right gives 

z(I--r ('cmP~l ir 

) = rm r  - 1)4)" 
\ i = 1  

= zm(-l--(p- 111) 

= ~(-p)m 
~Pd'l ,  

Therefore [h, zl = m  or h-~h~= h-lk1-1. Premultiplying by h gives h"~= k1-1. Hence, 
H-" ~ K (mod L) and the correctness of the algorithm follows. 

An alternate, though equivalent, method of finding z is to solve the linear equation 
[h, z] = m for z s M. This method was used in 3.2, whereas the explicit formula for z is due 
to Kantor  (1985). 

If H and K are arbitrary conjugate subgroups of G, then it may no longer be true that 
H and K are conjugate by an element of Nr. To generalise the conjugation algorithm, 
more knowledge of the cohomology group Hi(H, N,) is needed. The fact that this 
cohomology group is trivial when IHI and [Nrl are coprime accounts for the success of the 
previous algorithms. 

If H and K are ~-pro jec tors  for some saturated formation ~ see Gaschutz (1963), then 
the conjugation algorithm can be used to find a conjugating element. In particular, H and 
K could be Carter  subgroups of G. 

Kantor  & Taylor  (1987) noted that a conjugation algorithm may be used to construct 
Hall n-subgroups. 

Input: 
Output:  
(1) 
(2) 

(3) 

(4) 
(5) 

The  

THE HALL n=SUBGROUP ALGORITHM 

A finite soluble group G. 
A Hall n-subgroup H of G. 
If G is a n-group set H = G, and if G is a n'-group set H = ( i ) ,  and stop. 
Recursively construct a Hall n-subgroup K/Nr of G/Nr. If Nr is a n-subgroup, 
then set H = K and stop. (Henceforth, assume that N r is a rc'-subgroup and that 
kl . . . .  , ks is an induced sequence for K.) 
Recursively construct a Hall n-subgroup M of L = (k 2 . . . .  , ks). If p = [K :L[ ~n, 
then set H = M and stop. 
If p ~n, then use the conjugation algorithm to find y e N, such that (Mk') y = M. 
Factorise the order of kl y into a n-part p and a n'-part cr. Set H = ((kl y)~, M )  
and stop: 

correctness of the Hall n-subgroup algorithm follows from Lemma 3 and 
Theorem 4. 
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4. Constructing Normalisers of Hall ~-subgroups 

The conjugation and centraliser algorithms have applications to the construction of 
system normalisers, relative system normalisers, normalisers of Hail :r-subgroups and 
Carter subgroups. These applications are presented after reviewing some terminology. 

A Hall {p}'-subgroup of G is called a Sylow p-complement of G. Let {q~ . . . . .  q~} be the 
set of positive prime divisors of [G[. Then a set {H~ . . . . .  H~} is called a complement basis 
for G if each H, is a Sylow q~-complement. If {K~ . . . .  , K~} is another complement basis, 
then there exists a 9 e G such that Hi~ = K~ for 1 ~< i ~< s. An element 9 is found as follows. 
If G is a p-group, or more generally if G is nilpotent, then set 9 - 1. If G is not nilpotent, 
then recursively find x ~ G  such that H~--K~ (rood N~) for 1 <~i~<s. This is possible 
because {Ha N,/Nr . . . . .  HsN,/N,} is a complement basis for G/N,. Let qj be the exponent 
of N,, then Nr ~< Hi for i # j .  Use the conjugation algorithm to find y~N,  such that 
(HI) y = Kj. Set 9 = xy, then H~ ~ = K s for 1 ~< i ~< s. 

This simple algorithm may be generalised to construct system normalisers. The system 
normaliser of the complement basis 2 = {H~ . . . . .  H~} is defined to be 

N(~,) NG(H~). 
i= l  

THE SYSTEM NORMALISER ALGORITHM 

Input: A complement basis Z = {H1 . . . . .  Hs} for G. 
Output: The system normaliser N(Z). 
(1) If G is known to be nilpotent, for example, if G is a p-group, then set N(E) = G 

and stop. 
(2) Recursively construct an induced sequence x l N ,  . . . . .  xeNr for the system 

normaliser 

N(Y~NJN,) = ~ Namr(HtN/N~). 
i - - t  

(3) Let qj be the exponent of N,, Then for 1 ~< i ~ t, use the conjugation algorithm to 
find Yt E N r such that (Hf')Y'= Hj. 

(4) Use the centraliser algorithm to find an induced sequence z l , . . . ,  z,, for Cur(Hj). 
Then x 1 Yl . . . . .  xtyt, zl . . . .  , zu is an induced sequence of N(Z). 

The correctness of this algorithm is proved as follows. Since N. ~ H~ for i # j ,  it follows 
that K = (x  1Yl . . . . .  x,y  t, z~ . . . . .  zu) is contained in N(Z). However, 

N(Y, Nr/N~) = N(Z)NJN,  = KN./N, and N(X) c~ N~ = K c~ N. = CN.(Hj), 

so using the second isomorphism theorem N(Z)/C~.(Hj)~-K/Cu.(Hj) and K = N(Z) as 
claimed. 

The system normaliser algorithm is almost identical to an algorithm for constructing 
the normaliser of a Hall n-subgroup. 

THE HALL n-NORMALISER ALGORITIqM 

Input: A Hall n-subgroup H of G. 
Output: The normaliser No(H ). 
(1) Find the smallest integer i such that Nr is a n-subgroup of G. If i~<r, then 

recursively construct K/Ni = Nom,(H/N3. Set No(H) = K and stop. 
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(2) Assume that Nr is a rc'-subgroup of G. Recursively construct an induced sequence 
xl Nr . . . . .  x, Nr for NG/Nr(HNJN,). Since H ~' and H are Hall re-subgroups of HNr, 
use the conjugation algorithm to find y ~  N, such that (HX')Y' = H. 

(3) Use the centraliser algorithm to find an induced sequence zl . . . . .  z, for CNr(H). 
Then xl Yl . . . . .  xt Yt, zl . . . . .  z u is an induced sequence for Na(H). 

The correctness of the Hall ~-normaliser algorithm is proved in a similar manner to the 
correctness of the system normaliser algorithm. Both of these algorithms can be 
generalised to accommodate normal subgroups. For example, if H is a Hall r~-subgroup of 
a normal subgroup N of G, and x~N,..., xtN generate G/N, then a modification of the 
conjugation algorithm can be used to find y ~ N  such that (HX~) y ' = H .  The Hall 
rc-normaliser algorithm can be used to find an induced sequence zt . . . . .  z, for NN(H). 
Therefore x 1 Yl . . . . .  xt Yr, zl . . . . .  z, generates N~(H). 

If H~ . . . . .  H~ is a complement basis for N, then the relative system normaliser 

N No(Bt), of N in G may be calculated similarly. The y~ being found by conjugating 
i = l  

complement bases of N, as described above. It is particularly useful to be able to 
construct normalisers of the form N~(H), where H is a Hall zc-subgroup of N, and relative 
system normalisers, because many complements to normal subgroups have these forms 
(Carter, 1961b). 

The Hall 7r-normaliser algorithm may be used to construct Carter subgroups. In 1961, 
Carter proved the existence and conjugacy of nilpotent self-normalising subgroups of a 
finite soluble group. These subgroups, now called Carter subgroups, aroused considerable 
interest due partly to an analogy with the Cartan subalgebras of a Lie algebra. (Finite 
dimensional Lie algebras possess a single conjugacy class of nilpotent self-idealising 
subalgebras called Cartan subalgebras.) Subsequent work by Gaschfitz (1963) on the 
theory of formations made precise the notion that a Carter subgroup is a "generalised" 
Hall r~-subgroup. The ideas behind the Carter subgroup algorithm are embodied in 
Theorems 4, 5 and 6 (Carter, 1961a, Section 3). 

Input: 
Output:  
(1) 
(2) 
(3) 

(4) 

THE CARTER SUBGROUP ALGORITHM 

A finite soluble group G. 
A Carter subgroup C of G. 
If G is a p-group, or more generally if G is nilpotent, then set C = G and stop. 
Recursively construct a Carter subgroup K/N, of G/N,. 
If the exponent of Nr is q, then use the Hall zc-subgroup algorithm to construct a 
Hall {q}'-subgroup H of K. 
Use the Hall n-normaliser algorithm to construct Nr(H). Set C = Nr(H) and 
stop. 

5. Performance and Complexity 

The author has implemented the Hall 7~-subgroup algorithm and the Hall 7r-normaliser 
algorithm in FORTRAN. These implementations will be included in the group theory 
program CAYLEY (Cannon, 1982) and are similar, but not identical, to the algorithms of 
this paper. Some run-time statistics, obtained on a VAX 11/780, are shown in Tables 1 
and 2 below. The programs were run on two groups. The first group was the wreath 
product  ((C7 wr C5) wr Ca) wr C2, of four cyclic groups and had order 21325673~ The 
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second group was the wreath product ($4 wr $4) wr $4, of three symmetric groups and had 
order 26332~. The pc-presentations used for these groups had very short relations. Had 
there been many long relations in the pc-presentations, the timings could have been up to 
ten times slower. 

The symbols used in Tables 1 and 2 are explained below. Given a group G and a set rc 
of primes, tmH and t,o~m denote the times taken by the Hall n-subgroup algorithm to 
construct a Hall re-subgroup H, and the Hall zc-norrrialiser algorithm to construct Na(H). 
The number of calls made to the conjugation algorithm by the Hall n-subgroup 
algorithm, and the total time spent by the conjugation algorithm are denoted by n~o,j and 
t~o,j, respectively. Similarly, neent and teent relate to the calls to the centraliser algorithm by 
the Hall n-normaliser algorithm. 

Table 1. Running times for the Hall n-subgroup algorithm 

IGI ~ till tH., (see) n,..j too.fft.~. 

21325673~ {2} 21 0'03 0 0'00 
21325673~ {3} 32 0"74 2 0'45 
21325673~ {5} 56 1'82 5 0'48 
21325673~ {2, 5) 2156 2'19 6 0'50 
2132567 a~ {3, 5} 3256 2'59 7 0'50 
2132567 ~ {2, 3, 5} 213256 2'94 8 0'50 
263321 {2} 263 62"57 36 0'50 
26332t {3} 321 46'92 28 0'47 

Table 2. Running times for the Hall 7z-normaliser algorithm 

IGI n INa(H)i t . . . .  ( s e e )  /'leant t~.t/t . . . .  

21325o730 {2} 2131527 Is 1'38 3 0'86 
213256730 {3} 2~325271~ 2'00 3 0"88 
2~32567~~ {5} 21325676 3'41 3 0"86 
213256730 12 5} 21315673 3'31 2 0"95 
2132557 ~~ ~31 5} 2~325672 3'46 2 0"94 
2~3356730 {2, 3, 5} 21325671 3'35 1 0"99 
263321 {2~ 263 5'19 3 0"95 
263321 {3} 273 z~ 30'35 6 0"55 

To gain insight into the complexity of the general normaliser problem, we compare it 
with the discrete logarithm problem (Coppersmith, 1984). Let G = X Y Z  be a group of 
semilinear transformations of the field GF(2r), with 2' elements. Let X = (x) ,  where x is 
the squaring automorphism, Y = ( y )  where y generates the multiplieative group, and let 
Z be the additive group of GF(2'). The order of G is r(2 r -  1)2L 

We construct an example for r = 3 using the irreducible polynomialf(x) = x3+ x + 1. If 
w is a root off(x) in GF(23), then 1, w, w 2 generate Z. Identify y with w and Zo, zt, z2 with 
1, w, W 2, Then it follows that yX = y 2  z~ -- go. z~ = z 2 and z~ = zx +zz, since w ~ = w + w  2. 
Similarly, z~ = z 1, z] = z2 and z~ = Zo + zi. Thus a pc-presentation for G is 

( x , y , z  o ,z l ,z2]x  3 = Y~=Z02=z 12=z 2__1, 

I-y, x] = y ,  [Zo, x] = 1, [z~, x3 = zlz2,  [z2, x] =21, 

[zo, y] = zozl,  [zl, y] = 21z2, [22, y] = zozl Zz, 

l-b, zi3 = 1, 0~<i < j  <~ 2) .  
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Let  h be a non-ze ro  e lement  of  Z.  Then  calculat ing the normal i ser  Na((h))  --- C~(h) is 
equiva len t  to finding Cxr(h) since CG(h)= Cxr(h)Z. Since Y conjugates  h to every other 
n o n - z e r o  e lement  of  Z, IXY: Cxr(h)[ = 2 ~ -  1. Thus  Cxr(h) = (xy i ) ,  for some 0 ~< i < 2 r -  1. 
S u p p o s e  w genera tes  the mult ipl icat ive g roup  of GF(2') ,  then identify y with w, and  h with 
the  vec tor  ho + hx w + . . .  + h,_ ~ w ' -  ~. I f  �9 denotes  field mult ipl icat ion,  then xfi  eentralises 
h, w h e n  h = h  x y ' = ( h , h )  y ' = ( h , h ) * w  i. Thus  h o + h l w + . . . + h ~ - l w  , - t = w  -i  and 
calcula t ing N~((h) )  is equivalent  to finding - i, the discrete logar i thm of h. 

T h e  mos t  efficient a lgor i thm current ly  k n o w n  for c o m p u t i n g  discrete logar i thms in 
GF(2  ") is due to C o p p e r s m i t h  (1984) and  has a sympto t i c  running time 
O ( e x p  (cr ~/3 log 213 r)), where  c is a constant .  Indeed,  since calculat ing discrete logar i thms 
is difficult, m a n y  c ryp tog raph ic  schemes require  the evaluat ion of  discrete logar i thms for 
code -b reak ing .  

If  m = log IGI, then  it can be shown that  the n u m b e r  of  g roup  mult ipl icat ions required 
by  the sifting, central iser ,  conjugat ion ,  Hall  re-subgroup and  Hall  rc-normaliser a lgori thms 
is O(rnn), O(mn2), O(mn3), O(mn 4) and  O(mnS), respectively. I t  seems unlikely that  there 
exists a general  p u r p o s e  normal i se r  a lgor i thm which is O(mn k) for  some fixed k. If  there 
were such an  a lgor i thm,  then there  would  be an a lgor i thm for finding discrete logar i thms 
in GF(2 ' )  which  is po lynomia l  in r. This follows since, for  G = X Y Z ,  [G[ = r ( 2 ' -  1)2' so 
m < 3r and n < 3r, and  O(mn k) is O(rk+l) .  

I am indebted to Dr J. J. Cannon and Dr D. E. Taylor for their help and guidance, to Dr C. R. 
Leedham-Green for his inspiring conversations, to Mr J, H. Brownie for his assistance with 
programming, and to the referees for their helpful suggestions. 
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