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We present a new algorithm that constructs a fill-reducing ordering for a special class of saddle point ma-
trices: theF -matrices. This class contains the matrix occurring after discretization of the Stokes equation
on a C-grid. The commonly used approach is to construct a fill-reducing ordering for the whole matrix
followed by an adaptation of the ordering such that it becomes feasible. We propose to compute first a
fill-reducing ordering for an extension of the definite submatrix. This ordering can be easily extended to
an ordering for the whole matrix. In this manner, the construction of the ordering is straightforward and it
can be computed efficiently. We show that much of the structure of the matrix is preserved during Gaus-
sian elimination. For anF -matrix, the preserved structure allows us to prove that any feasible ordering
obtained in this way is numerically stable. The growth factor of this factorization is much smaller than the
one for general indefinite matrices and is bounded by a number that depends linearly on the number of
indefinite nodes. The algorithm allows for generalization to saddle point problems that are not ofF -type
and are nonsymmetric, e.g. the incompressible Navier–Stokes equations (with Coriolis force) on a C-grid.
Numerical results forF -matrices show that the algorithm is able to produce a factorization with low fill.

Keywords: saddle point problem; indefinite matrix;F -matrix; factorization; numerical stability; growth
factor; C-grid; (Navier–)Stokes equations; electrical networks.

1. Introduction

In this paper, we study the direct solution of the equation

K x = b, (1.1)

whereK ∈ R(n+m)×(n+m) (n > m) is a saddle point matrix that has the form

K =
(

A B

BT 0

)
, (1.2)
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FIG. 1. Positioning of velocity (u, v) and pressure (p) variables in the C-grid.

with A ∈ Rn×n and B ∈ Rn×m. In this paper, we consider only symmetric positive definiteA. This
makes the matrixK itself symmetric indefinite. Although we assumeA to be symmetric, many of the
results in this paper can be easily generalized for nonsymmetric matricesA.

A survey of the occurrence of saddle point problems and their numerical solution can be found in
Benzi et al. (2005). In many cases, saddle point problems can be solved efficiently via a Krylov sub-
space iteration (van der Vorst, 2003) combined with appropriate preconditioning (Benzi et al., 2005;
de Niet & Wubs, 2007; Elmanet al., 2002; Kay et al., 2002). Nevertheless, in this paper we will fo-
cus on the direct solution of saddle point problems that occur in computational fluid dynamics. If the
problem is 2D, direct solvers can compete in many cases with iterative methods. Also in general di-
rect methods are more robust than iterative methods. The disadvantage is that they often require more
memory.

In Duff et al. (1986) andMeurant(1999), one can find extended introductions to the field of sparse
matrix factorizations. The basics are Gaussian elimination, matrix graphs, elimination trees, fill-reducing
orderings, etc. We will introduce these notions only briefly where we need them.

1.1 F -matrices

In a large part of this paper, we will pay attention to a special class of saddle point matrices, namely, the
F -matrices. We start off by defining the gradient matrix which is used to specify theF -matrix.

DEFINITION 1.1 A gradient matrix has at most two entries per row. Moreover, if there are two entries,
their sum is zero.

We have chosen the name ‘gradient matrix’ because this type of matrix typically results from the
discretization of a pressure gradient in flow equations. It is important to note that the definition allows a
gradient matrix to be nonsquare. Now, we can define theF -matrices.

DEFINITION 1.2 AnF -matrix is a saddle point matrix (1.2) with A symmetric positive definite and
B a gradient matrix.

The definition is originally due toTůma(2002). F -matrices occur in various fluid flow problems
where Arakawa A-grids (collocated) or C-grids (staggered, see Fig.1) are used. For example, inArioli
& Manzini (2003) the discretization of Darcy’s equation in groundwater flow results in anF -matrix.
They occur as well in electrical networks (Vavasis, 1994).

In the example below, we introduce theF -matrix that will be used throughout the paper to illustrate
the theory.

EXAMPLE 1.3 Let K be a saddle point matrix as defined in (1.1) where the matricesA and B are,
respectively,



210 A. C. DE NIET AND F. W. WUBS

FIG. 2. The sparsity patternF(K ) (left) and the adjacency graphG(K ) (right) of the matrixK as given in Example1.3. In the
adjacency graph, the numbers of the nodes correspond to the rows ofF(K ). TheP-nodes are coloured black;V-nodes are white.

A =











2 −1 0 0 0

−1 2 −1 0 0

0 −1 2 −1 0

0 0 −1 2 −1

0 0 0 −1 2











and B =











−1 0 1 0

1 −1 0 0

0 0 0 0

0 0 0 −1

0 1 0 0











. (1.3)

So K is a 9× 9 symmetric saddle point matrix.

1.2 Factorization of sparse indefinite matrices

We define the ‘adjacency graph’ of the matrixK as follows:

G(K ) = {V ∪ P, E},

where the nodes or vertices are a union of two disjoint sets

V = {i | Kii 6= 0} and P = {i | Kii = 0}

and the edges are given by the off-diagonal nonzeros inK

E = {{i, j } | i 6= j, Ki j = K ji 6= 0}.

The graph is undirected, so the edges{i, j } and { j, i } are considered to be the same. Note that our
definition of an adjacency graph differs from the commonly used definition. We distinguish the vertices
with zero diagonal entry inK from the ones with nonzero diagonal entry. From the definition, it follows
immediately that the setV contains precisely the nodes that originate from the submatrixA. In fluid
problems, these are the velocity nodes. The setP contains all the nodes that originate from the empty
(2, 2) block in K . In fluid terms, these are the pressure nodes. The nodes inV and P will be called
V-nodes andP-nodes, respectively.

In Fig. 2, one finds the sparsity pattern and the adjacency graph of the matrix in Example1.3. For
this example,V = {1, 2, 3, 4, 5} andP = {6, 7, 8, 9}. TheP-nodes are coloured black in the adjacency
graph.

The aim of this paper is to find a fill-reducing pre-orderingQ such that we can perform Gaussian
elimination on the permuted saddle point matrixQK QT, resulting in a factorization of the form

QK QT = L DLT, (1.4)
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FIG. 3. Two elimination trees for the saddle point matrix in Example1.3. The tree at the left belongs to the minimum degree
ordering, the tree at the right to the ordering given by Algorithm2.2.

whereL is a unit lower triangular matrix andD is a block-diagonal matrix with blocks of size 1× 1 or
2 × 2.

The ‘elimination tree’ of the reordered matrixQK QT is constructed in the following way. Each
vertex is assigned precisely one parent

PARENT[j ] = min
i

{i > j | l i j 6= 0},

wherel i j is the entry on thei th row and j th column of the lower triangular matrixL of (1.4). So to find
the parent ofj , we search the first nonzero entry below the diagonal in thej th column ofL. One gets
the elimination tree by drawing an edge between each vertex and its parent. For an example, see Fig.3.
Both the elimination tree and the adjacency graph play an important role in sparse matrix factorization.
Operations on the matrix like reorderings and Gaussian elimination can be translated into operations on
the adjacency graph and the elimination tree (seeLiu, 1990).

The search for an appropriate orderingQ is far from trivial for large sparse matrices in general and
especially in the case of symmetric indefinite saddle point matrices. There are three major issues that
we have to address about the factorization (1.4):

(1) ‘factorizability’: given an orderingQ, does the factorization exist?

(2) ‘sparsity’: can we constructQ such that it reduces the fill in theL-factor?

(3) ‘numerical stability’: given an orderingQ and the correspondingL DLT-factorization, can we
prove that the errors inx = L−T D−1L−1b are bounded?

We start with (1), the factorizability. Positive definite matrices like our submatrixA are ‘strongly
factorizable’, i.e. all possible orderings give a factorizable matrix. This does not hold for saddle point
matrices. We illustrate this with an example.

EXAMPLE 1.4 In Example1.3, we can choose theQ such that it is the reordering matrix corresponding
to the permutationq = {6, 7, 8, 9, 1, 2, 3, 4, 5}. This would give the following permuted saddle point
matrix:

[
0 BT

B A

]

,
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which is not factorizable, because if we start performing Gaussian elimination, we get in the first
step a zero pivot. The minimum degree ordering for the matrix (computed with MATLAB) isqm =
{6, 8, 1, 3, 5, 9, 4, 2, 7}. This ordering has the same problem, as it wants to eliminate the black nodes
6 and 8 first. In fact, any ordering that starts with aP-node will suffer from this problem. In general,
a node inP cannot be eliminated before one of its neighbours (which are all inV because the(2, 2)
block is zero) is eliminated. Or, equivalently, as formulated inTůma(2002), a necessary condition for
factorizability is that the elimination tree of the permuted matrix has no leaves inP. For our model
problem, letQm be the permutation matrix corresponding to the permutationqm; then the elimination
tree for the matrixQmK QT

m has three leaves inP as is shown in Fig.3 (left), so the reordered saddle
point matrix is not factorizable.

The example shows that the ordering for saddle point matrices has to be chosen carefully. An order-
ing that gives a factorizable permuted matrix is called ‘feasible’.

Most of the literature is about the factorization of sparse symmetric indefinite matrices in general,
e.g. Duff et al. (1979, 1991), which is a much larger class than the saddle point problems that we
consider. To produce a feasible ordering, algorithms for factorization of indefinite matrices often use the
pivoting strategies of Bunch–Parlett or Bunch–Kaufman (Bunch & Parlett, 1971, Bunch & Kaufman,
1977, andAshcraftet al., 1999). These strategies are applied in the factorization phase and basically do
the following: if a zero pivot is encountered, a search is started for a second node that is coupled to the
first such that the two together form a stable and invertible 2× 2 matrix. In the case of our example, the
nodes{6, 2} would form an acceptable pivot because

[
0 1

1 2

]

is invertible. Because of the Bunch–Parlett and Bunch–Kaufman pivoting strategies, the matrixD in
(1.4) is allowed to have 2× 2 blocks on the diagonal.

Recently, these pivoting strategies were fruitfully combined with a weighted matchings search algo-
rithm in the package PARDISO (Röllin & Schenk, 2005; Hagemann & Schenk, 2006; Schenk & G̈artner,
2006). Similar techniques were used in the CMP-algorithm as described inDuff & Pralet (2007) and
Pralet(2004). Both algorithms take the following steps: (i) groupV- andP-nodes beforehand in 2× 2
blocks by a weighted matchings algorithm, (ii) treat the 2× 2 blocks as a supernode and construct the
compressed graph, (iii) compute an ordering for the compressed graph, and (iv) expand the ordering
to the original graph. Since these two algorithms are most competitive for sparse symmetric indefinite
systems, we will compare the algorithm that we propose in this paper to PARDISO.

The second important issue is (2), i.e. the sparsity of the factors. To reduce both memory require-
ments and construction time, we would like the factorL to be as sparse as possible. The two most
important algorithms to compute a fill-reducing ordering for a matrix are approximate minimum degree
(Amestoyet al., 1996) and nested dissection (George, 1973). Unfortunately, they apply only to matri-
ces that have no zeros on the diagonal because they are based on the adjacency graph of the matrix,
which assumes a positive diagonal entry. The algorithms do not see the difference between white (V)
and black (P) nodes in Fig.2. In our example, the approximate minimum degree ordering gives a non-
feasible ordering because the black node 6 (see orderingqm above) is selected first in the factorization
phase.

If the approximate minimum degree algorithm is applied to a general saddle point matrixK , it is
unlikely that the computed ordering is feasible. So the ordering has to be repaired either during elimina-
tion, by delaying the elimination ofP-nodes, or by adapting the ordering beforehand. For repair during
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elimination, we have to check all pivots, which gives some increase in the work required during the
factorization phase. InTůma(2002), the ordering is repaired before elimination. After the computation
of a fill-reducing ordering forK , the ordering is adapted on the basis of, elimination tree operations only.
ForF -matrices, it can be proven that the final ordering is feasible. However, a delay in the elimination of
indefinite nodes either during elimination or beforehand creates extra fill in the factorL. Especially, if we
deal with saddle point problems whereBT has fewer entries per row thanA—which is often the case for
F -matrices—a fill-reducing ordering like (approximate) minimum degree will choose the nodes inP
to be eliminated first because they have the lowest degree. InTůma(2002), it was observed that 80% of
the leaves of the elimination tree belong to the setP. For all these leaves, elimination had to be delayed.

There is one more alternative, which is called the Schur complement approach. The elimination of
the nodes fromP is delayed until allV-nodes have been eliminated. Unfortunately, in many cases the
Schur complement−BT A−1B is completely full. So this approach is not very practical and we will not
give further attention to this approach.

Instead of eliminating theV-nodes first, one could also choose to eliminate allP-nodes, together
with an equal number of nodes fromV . Since the choice of the requisiteV-nodes is not unique, the crux
here is to find good combinations. The interesting point is that the Schur complement of this elimination
will be sparse if we can splitBT into [BT

1 , BT
2 ] such that the inverse ofB1 is sparse. A different kind of

view on this approach is that a basis for the null space ofBT is given by the columns of [−B2B−1
1 , I ]T,

which are sparse. Hence, if the equation associated with the lower part of (1.2) readsBTv = 0, then
the solution for the velocities is just a linear combination of the basis of the null space. By substitution
in the equation for the upper part of (1.2) and just testing (premultiplying) with the null space, we find
exactly the same sparse Schur complement system as before. Therefore, the approach is also called the
null-space method. The problem is to find a good splitting ofB such that a sparse representation of the
kernel is possible. This is called the nice basis problem and is usually solved using graph theory; for
more details seeArioli & Manzini (2003), Pinaret al. (2006) or Benziet al. (2005). A related approach
in electromagnetics is the tree/co-tree decomposition; which is used to transform an underdetermined
problem into a uniquely solvable one (Webb, 1993).

The last issue is (3), i.e. numerical stability. The growth factor

ρ =
maxi, j,l |k(l )

i j |

maxi, j |ki j |
(1.5)

is an important measure for stability. The growth factor is the largest entry that occurs in the Schur
complements during Gaussian elimination divided by the largest entry in the matrixK . This growth
factor can become very large, even if we have a feasible ordering forK . If we consider Bunch–Kaufman
or Bunch–Parlett pivoting, the stability bound for the growth factor is very weak:ρ 6 2.57(n+m−1)

(Higham, 2002, Section 11.1). Although in many applications no problems were reported with numerical
stability, there is a lack of better bounds forρ.

Next to bounding the growth factor, it is important to bound the size of the entries in the matrixL
because the error in the solutionx = L−T D−1L−1b is clearly related to the size of the entries inL
(see, e.g.Ashcraftet al., 1999). Finally, we note that the error in the solution is also determined by the
condition number ofK , which is a given fact as long asK is not modified.

One of the important results in this paper is that forF -matrices we are able to give much better
bounds for the growth factor and for the size of the entries inL.

In this paper, we will not pay much attention to the actual construction of theL DLT-factorization.
We will focus on the construction of a feasible ordering, numerical stability and the sparsity of the
computed factors. Given a feasible, numerically stable ordering forK , there are several efficient codes
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available for construction of the correspondingL DLT-factorization. We mention MA47 (Duff et al.,
1991) as an example.

The outline of the paper is as follows. In Section2, we sketch the algorithm to compute a fill-
reducing ordering for a saddle point matrix. In Section3, we show properties that remain invariant
under Gaussian elimination with this ordering. In Section4, we give a proof for numerical stability of
Gaussian elimination forF -matrices using this ordering. Fast construction of the ordering is treated in
Section5. In Section6, we show the numerical results for a Stokes equation in a driven cavity and for a
set ofF -matrices that is used inTůma(2002). We end with a discussion in Section7.

2. Sketch of the algorithm

As we mentioned in Section1.2, many of the current algorithms have in common that they compute a
fill-reducing ordering forK and then somehow adapt it to make it feasible. The delay in elimination will
give an increase of the fill in the factors. Unfortunately, the increase is hard to predict, but it certainly
implies an increase in the construction time of the factors. To overcome this inefficiency, we propose
a different approach. The idea is to compute an ordering for the velocity nodesV—based on a graph
that contains information of the whole matrix—and then to insert the pressure nodesP appropriately.
Assume that we have an elimination order onV ; then we use the following simple rule to insert elements
of P in the ordering forV .

RULE 2.1 If during Gaussian elimination withK the nodev ∈ V is to be eliminated and it is connected
to a p ∈ P thenv and p are eliminated together using a 2× 2 pivot.

Note that with this rule we get as many 2× 2 pivots as there are nodes inP. Only if a nodev ∈ V
becomes totally disconnected fromP due to the elimination of previous nodes, can it be eliminated
singly.

Because allP-nodes are eliminated together with aV-node in pivots of the form
(

α β
β 0

)
,

there is no doubt about factorizability. We immediately get a feasible ordering, so we do not need any
additional repairs.

If we apply this rule to an ordering ofV that is constructed as a fill-reducing ordering forA, the
resulting ordering forK will not be fill-reducing in general. To ensure that the final orderingis fill
reducing, we have to use information about the whole matrix, so somehow the sparsity patterns ofB
andBT have to be included. This is the case if the ordering forV is fill-reducing for the sparsity pattern
F(A)∪F(B BT), whereF(A) denotes the sparsity pattern ofA. This matrix is an envelope for the fill that
will be created by the elimination of the nodes inP. In many cases, this will be equal toF(A + BBT),
but to avoid possible cancellation in the addition we will use the matrixF(A)∪ F(B BT). Summarizing,
we get the following algorithm.

ALGORITHM 2.2 To compute a feasible fill-reducing ordering for the saddle point matrixK :

1. Compute a fill-reducing ordering for theV-nodes based onF(A) ∪ F(BBT).

2. Insert theP-nodes into the ordering according to Rule2.1.

The P-nodes (Step 2) can be inserted during Gaussian elimination, which means that we have to
adapt the algorithm for Gaussian elimination. However, in case ofF -matrices, this can be done sym-
bolically before elimination. A very efficient algorithm for that is described in Section5.
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FIG. 4. The sparsity patternF ′ = F(A) ∪ F(BBT) (left) and the corresponding adjacency graph (right) that is used to compute
an ordering for theV-nodes of Example1.3.

EXAMPLE 2.3 To clarify the algorithm, we apply it to the matrix in Example1.3. In the first step, we
will compute an ordering for theV-nodes that is based on the sparsity patternF(A) ∪ F(BBT). This
sparsity pattern and the adjacency graph can be found in Fig.4. The minimum degree ordering for this
matrix isqv = {1, 3, 5, 2, 4}. The second step is the insertion of theP-nodes in this ordering. The first
node in the ordering (qv(1) = 1) is connected to theP-nodes 6 and 8 (see Fig.2), so according to
Rule 2.1 we have to choose one of these two nodes to eliminate together with node 1. For now this
choice is arbitrary, but in Section5 we will argue that we had better choose node 8 because it has the
least degree (number of neighbours) of the two. If we remove nodes 1 and 8 from the graph and continue
the elimination and insertion ofP-nodes, we finally get the orderingq f = {1, 8, 3, 5, 7, 2, 6, 4, 9}. With
this ordering, the permuted saddle point matrix becomes (we leave out the zeros)

Q f K QT
f =





















2 1 −1 −1

1

2 −1 −1

2 1 −1

1 −1

−1 −1 −1 2 1

−1 1

−1 −1 2 −1

−1





















(2.1)

and its factors are

L =





















1
1
2 1

1

1
1
2 1

−1
2 −1 −1

2 2 1

−1
2 −1 2

7 1
−1

2 −1
2 −1 −3

7 −3
2 1

1 1





















and
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D =





















2

−1
2

2

2

−1
2

7
2

−2
7

3
2

−2
3





















.

We chose here to build the factorization such thatD is a diagonal matrix with no 2× 2 blocks on the
diagonal. Consequently,D has negative entries on the diagonal. This factorization allows us to construct
the elimination tree that is based on theL-factor. The tree is depicted in Fig.3 (right).

REMARK 2.4 The motivation for this approach can be understood from a nested dissection point of
view. In our type of applications, oftenBT is a discrete divergence andB a discrete gradient operator.
The rows ofBT then represent the continuity equation in each cell of the grid. If we deal with a C-type
staggered grid (e.g. the pressure nodes are in cell centres, the velocity nodes on cell faces; see Fig.1),
it means that all velocity nodes occur in the continuity equation of two different cells. To compute the
pressure gradient in a velocity node, we take the difference of the pressure values in the two neigh-
bouring cells. The elimination of a velocity node forces the two neighbouring cells to merge. We need
only one pressure node to fix the pressure in a cell, so we can eliminate one of the two, together with
the velocity node. Or, equivalently, we can eliminate one of the two continuity equations because the
pressure nodes in the two cells get connected by the elimination of the velocity node. In this view, we
can consider the velocity nodes as separators of the pressure nodes, which need to be eliminated as soon
as possible. That is precisely what is formulated in Rule2.1and is used in Algorithm2.2.

REMARK 2.5 We make one last comment to clarify the relation with other approaches. The adjacency
graph ofF(A) ∪ F(BBT) can be viewed as the compressed graph of a supernode that consists of both
a node inV and one inP, where for the latter we leave open which of theps, that are connected tov,
will be taken. In the expanded elimination tree, we have to choose and the choice is made by Rule2.1.
It is advantageous to delay the choice since in the proof of Theorem3.4 we will see that couplings to
a P-node can be lost due to cancellation (see also Remark3.5). During the insertion of theP-nodes,
described in Section5, we can track cancellation and hence no repairs need to be made during the actual
factorization.

In the rest of the paper,K (l ) denotes the matrixK after l steps of Gaussian elimination according
to an ordering defined by the algorithm above. If this is not necessary we will not make a distinction
betweenK (l ) or any symmetric permutation of the matrix.

3. Properties invariant under Gaussian elimination

In this section, we will show that Algorithm2.2 gives an ordering with the nice property that during
elimination much of the structure of the original matrix is preserved. If we perform Gaussian elimination
on the matrixK , we get a sequence of Schur complementsK (l ) for l = 1, . . . , n. If we separate the
V- andP-nodes, the structure of all these matrices is
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K (l ) =

(
A(l ) B(l )

B(l ),T C(l )

)

.

The first important property is that Gaussian elimination subject to Rule2.1on a saddle point matrix
(1.2) with C = 0 always gives a saddle point matrix with the very same structure as Schur complement.
In other words, the nodes inP are not coupled inK and will never become coupled inK (l ).

THEOREM 3.1 If C(0) = 0 then for alll we haveC(l ) = 0.

Proof. The proof is by induction. By assumption, we haveC(0) = 0. Now, suppose thatC(l ) = 0. Let
us computeK (l+1) by eliminating the first row inK (l ). Now, we have to distinguish two cases that can
occur.
Case 1.The first possibility is that thel th node is not connected to a node inP. We can make this more
explicit by splittingA(l ) andB(l ):

K (l ) =






α a 0

aT Â B̂

0 B̂T 0




 .

According to Rule2.1, this node can be eliminated singly. The Schur complement ofα is equal toK (l+1)

and easy to compute:

K (l+1) =

(
A(l+1) B(l+1)

B(l+1),T 0

)

(3.1)

with

A(l+1) = Â − aaT/α (3.2)

and

B(l+1) = B̂. (3.3)

Clearly,C(l+1) = 0.
Case 2.The other possibility is that thel th nodeis connected to a node inP. Then, the structure is

K (l ) =









α β a b

β 0 b̂ 0

aT b̂T Â B̂

bT 0 B̂T 0









.

To satisfy Rule2.1, the first two rows are eliminated together, using a 2× 2 pivot. Elimination gives
again a matrix with structure (3.1), but now we have

A(l+1) = Â − aT(b̂/β) − (b̂/β)Ta + α(b̂/β)T(b̂/β) (3.4)

and

B(l+1) = B̂ − (b/β)Tb̂. (3.5)

Also, in this case, we haveC(l+1) = 0. �
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In the proof of the theorem, we see that in both casesB(l+1) is determined by the elements ofB(l )

only. No elements ofA are involved.

COROLLARY 3.2 For all l the matrix B(l ) is independent of the sparsity pattern and the size of the
entries inA. It depends only on the ordering of theV-nodes.

An immediate consequence of this corollary is that we can compute the sequence ofB(l )s without
using the size of the entries ofA. We can exploit this during the insertion of theP-nodes into the
ordering of theV-nodes in Section5. Note that on the other hand the fill structure and the size of the
entries ofA(l+1) do depend onB, as is clear from (3.4).

The following theorem is important for stability.

THEOREM 3.3 If A is symmetric positive definite,A(l ) is symmetric positive definite for alll .

Proof. This is easy to prove by induction. We haveA(0) = A is symmetric positive definite by assump-
tion. Now, assume thatA(l ) is symmetric positive definite. Elimination of the next node will give us
K (l+1) andA(l+1). As in the proof of Theorem3.1, we have to distinguish two cases.
Case 1.If the l th node is not coupled to a node inP, A(l+1) is given by (3.2). It is the Schur complement
of a symmetric positive definite matrix; which is again symmetric positive definite.
Case 2.If the l th node is coupled to a node inP, A(l+1) is given by (3.4). We can rewrite it as

A(l+1) = Â − aaT/α + α(a/α − b̂/β)T(a/α − b̂/β). (3.6)

It is the Schur complement of a positive definite matrix (Â−aaT/α) plus the termα(a/α−b̂/β)T(a/α−
b̂/β), which is obviously symmetric and positive definite ifα > 0. BecauseA(l ) is symmetric positive
definite, all its diagonal elements are positive, so we indeed haveα > 0. �

THEOREM 3.4 If K is anF -matrix, all K (l ) areF -matrices.

Proof. By assumption, we know thatK (0) = K is anF -matrix. According to Definition1.2, it holds
thatC(0) = 0, A(0) is symmetric positive definite andB(0) is a gradient matrix. Theorems3.1and3.3,
respectively, ensure thatC(l ) = 0 andA(l ) is symmetric positive definite, so we have only to prove that
B(l ) is a gradient matrix.

Once more we use induction. So let us assume thatB(l ) is a gradient matrix. Again, we distinguish
the two cases that occur during Gaussian elimination.
Case 1.If the l th node is not coupled to a pressure node,B(l+1) is given by (3.3). The only difference
with B(l ) is the omission of the first (empty) row. So properties like the number of entries per row and
row sum are certainly preserved andB(l+1) is a gradient matrix.
Case 2.If the l th node is coupled to a pressure node,B(l+1) is given by (3.5). The gradient matrixB(l )

has at most two entries per row; when a row has precisely two entries, they have zero sum. The first
row of B(l ) is (β b). Becauseβ is nonzero, the row vectorb has either one entry with value−β or no
entries at all. Hence,−b/β is either a vector with one entry with value 1 or a zero vector. In (3.5), b̂T

(i.e. the first column ofB(l )) is multiplied with this vector and added tôB. This leads to the following
simple procedure to constructB(l+1). We getB(l+1) from B(l ) by removing its first row and first column
(b̂T)—which gives B̂—and addb̂T to the column that had an entry on the first row (b). Obviously,
the rows with no entry in the first column do not change at all, so the number of entries and the row
sum are preserved. Of interest are the rows that have an entry inb̂T. Now, there are two possibilities.
If b = 0, the only change is that the number of entries on the row decreases by one and the row sum
does not matter anymore because there is either one or no entry left. In that case,B(l+1) is a gradient
matrix. Otherwise (ifb has precisely one entry), the row sum is preserved because we multiply the first
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column by 1 and add it to one of the other columns of the matrixB̂. So nowB(l+1) is a gradient matrix
as well. �

REMARK 3.5 Exact cancellation can occur inB(l+1) during Gaussian elimination. Fortunately, we know
precisely when this happens, namely, if there is a row (not the first one) inB(l ) that is a multiple of the
first row. As shown in the last proof, the entries on that row are summed up inB(l+1) and cancel each
other out because their sum is zero. It is advantageous to know when cancellation happens because this
allows us to insert the nodes beforehand in the ordering in the symbolic factoring phase, as we will see
in Section5.

REMARK 3.6 ForB(l ), the size of the entries does not change. Each row inB(l ) can be traced back to
a row in B = B(0). If the row in B(l ) is not empty, the size of the entries (at most two) on both rows is
exactly the same. This is an immediate consequence of the proof of the last theorem. Entries on a row
can move and possibly coincide, in which case they annihilate, but the size never changes. So we have
maxi j |b(l )

i j | 6 maxi j |b(0)
i j |. This simplifies the study of the numerical stability of the elimination.

Summarizing, we can say that with Rule2.1much of the structure of the original saddle point matrix
is preserved during Gaussian elimination. In particular, all Schur complements ofF -matrices are again
F -matrices. This is advantageous for the study of the stability of the method, which we consider next.

4. Numerical stability

For the numerical stability of the factorization, we need to show that both the growth factorρ defined
in (1.5) and the elements ofL are bounded (seeHigham, 2002, Chapter 9;Duff et al., 1986, Chapters 4
and 5; andAshcraftet al., 1999, for more details).

The pivoting strategies of Bunch–Parlett and Bunch–Kaufman guarantee the boundρ 6
(2.57)(n+m−1). This bound is very weak because it grows exponentially with the problem size.
Fortunately, in many cases, the growth factor stays far away from the bound, but it appears to be hard to
find a substantially smaller upper bound. We found such a smaller bound forF -matrices. In this section,
we present a bound onρ that depends only linearly onm, i.e. the number ofP-nodes. A similar bound
will be given for the elements ofL.

In this section, we assume that all entries inB have a value in{−1, 0, 1}. This is not a restriction
because ifB does not satisfy this property it can be forced to do so by a simple row scaling. Note,
however, that such a scaling influences the condition number ofK , for better or worse.

Before we give the theorem, we introduce the numberχ(A) that denotes the maximum number of
entries per row in the matrixA. Moreover, we introduce a number for the largest entry in the matrixA,
the formal definition being

μ(A) = max
i j

|ai j |.

This can be used to define the growth factorρA of A during the elimination

ρA = max
l

μ(A(l ))/μ(A).

THEOREM4.1 LetK be anF -matrix with an ordering given by Algorithm2.2and letm be the number
of columns inB; then for theL DLT-factorization ofK it holds that: (i) the growth factor is bounded by

ρ 6
max(ρAμ(A), 1)

max(μ(A), 1)
, with ρA 6 (2 + m)χ(A) − 1,

and (ii) the elements inL are bounded by
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μ(L) 6 max([(1 + m)χ(A) − 1]μ(A), 1).

Hence, the factorization is numerically stable.

The bound on the growth factor is much smaller than the general one for indefinite matrices. It
grows, in the worst case thatμ(A) ≈ 1, only linearly withm instead of exponentially.

REMARK 4.2 Another intriguing issue of the theorem is that in the case where max[ρA, (1+m)χ(A)−1]
μ(A) 6 1 both the growth factor ofK and the elements ofL are bounded by 1. Indeed,μ(A) can be
made arbitrarily small by scalingK , but as mentioned before, this influences its condition number.
However, if we do so the bounds tell us that the scaling should be more severe if the computational grid
for the problem, in the case of a Stokes problem, is refined. We would rather like to have found bounds
independent of the grid resolution. This is precisely what we saw for an example that is presented at the
end of this section. However, we were not able to prove it. Hence, we conjecture that there is a class
of problems, the Stokes problem, for which (if combined with an appropriate ordering) the bounds are
independent of the grid resolution and hence a bounded scaling exists such that the growth factor ofK
is bounded by 1. This is similar to the Cholesky factorization of a symmetric positive definite matrix, of
which the growth factor is also bounded by 1.

We give the proof of Theorem4.1 later in this section, after introducing a few useful lemmas on
gradient matrices. For these general lemmas,A andB are arbitrary, as aren, m andl .

LEMMA 4.3 LetG be an invertible gradient matrix with entries in{−1, 0, 1}. Then all entries ofG−1

are in{−1, 0, 1} as well.

Proof. The matrixG is a so-called totally unimodular matrix (see Theorem 6.27 fromCook et al.,
1997). A totally unimodular matrix is a matrix with elements in{−1, 0, 1} for which the determinant
of every square submatrix has also a value in{−1, 0, 1}. Hence, if the gradient matrix is nonsingular,
then its determinant has magnitude 1. The inverse of a nonsingular totally unimodular, matrix is also
totally unimodular, since one can express every subdeterminant of the inverse in a subdeterminant of the
original, divided by the determinant of the whole matrix times a factor of unit magnitude (see Section
0.8.4 inHorn & Johnson, 1985). This completes the proof. �

LEMMA 4.4 LetG be an invertible gradient matrix with values in{−1, 0, 1}. There exist permutation
matricesQ1 andQ2 and a diagonal matrixD with entries±1 such thatU = DQ1GQ2 is a unit upper
triangular gradient matrix. Moreover, the matrixU is anM-matrix.

Proof. The most important concern is to get it in upper triangular form. We will prove that by induction.
First, we show that it is possible to bring a general nonsingular gradient matrixG of ordern to the form

(
G′ u

0 d

)

,

whered is a scalar. For that, note thatG must contain at least one row with a single element, otherwise
the sum of all columns would be zero and hence the matrix would be singular. By column and row
permutations, this element can be brought to the last position, giving a matrix of the above form.

Now, assume we have the above form whered is a square upper triangular matrix of orderk. Since
the determinant of the whole matrix is the product of the determinant ofd and that ofG′, the latter must
be nonsingular. Hence,G′ is also a nonsingular gradient matrix and we can repeat the process described
above. After that,d is extended to an upper triangular matrix of orderk + 1 andG′ is shrunk to a matrix
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of ordern − k − 1. Hence, by induction, we see that the matrixG can be brought to upper triangular
form by permuting rows and columns.

This gives us an upper triangular matrixŨ = Q1GQ2 with entries±1 on the diagonal. ChooseD
equal to the diagonal of̃U andU = DŨ = DQ1GQ2 is a unit upper triangular gradient matrix.

According to Example 6.5b inAxelsson(1994), all upper and lower triangular matrices with positive
diagonal elements and nonpositive off-diagonal elements areM-matrices;U is of this form. �

By definition,M-matrices have non-negative inverse; hence, together with Lemma4.3we immedi-
ately have the following.

COROLLARY 4.5 The elements of the inverse ofU defined in Lemma4.4are in{0, 1}.

In the following lemmas, we derive some properties ofμ.

LEMMA 4.6 Let A ∈ Rn×m andB ∈ Rm×l ; then

μ(AB)6 χ(A)μ(A)μ(B),

μ(AB)6 χ(BT)μ(A)μ(B),

μ(AB)6mμ(A)μ(B).

Proof. The second bound follows from the first if we note thatμ(AB) = μ((AB)T) = μ(BT AT).
Becauseχ(A) 6 m andχ(BT) 6 m, the third bound is easily obtained as well, so we have only to
prove the first bound. This follows from

μ(AB) = max
i j

∣
∣
∣
∣
∣

m∑

k=1

aikbk j

∣
∣
∣
∣
∣
6 max

i j

m∑

k=1

|aik ||bkj | 6 μ(B) max
i

m∑

k=1

|aik | 6 μ(B)χ(A)μ(A). (4.1)

�
If we deal with a diagonally dominant matrix, we have a sharper bound.

LEMMA 4.7 Let A ∈ Rn×m be diagonally dominant andB ∈ Rm×l ; then

μ(AB) 6 2μ(A)μ(B).

Proof. The matrixA is diagonally dominant, so
∑m

k=1 |aik | 6 2|aii | 6 2μ(A). If we use this in the last
step in (4.1) in the proof of Lemma4.6, we get the desired expression. �

If at least one of the two matrices in a matrix product is a gradient matrix, we can say more about
the size of the elements of the product. In the following lemma, we useA 6 0 (or A > 0) to express
that all elements ofA are nonpositive (or non-negative).

LEMMA 4.8 LetG ∈ Rn×m be a gradient matrix with entries in{−1, 0, 1} and letA ∈ Rm×l . If A 6 0
or A > 0 then

μ(G A) 6 μ(A).

Proof. This inequality follows immediately from the properties of a gradient matrix as given in Defini-
tion 1.1. An entry ofG A is either equal to an entry ofA or equal to the difference of two entries ofA of
equal sign, soμ(G A) 6 μ(A). �
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LEMMA 4.9 Let G1 ∈ Rn×m and G2 ∈ Rm×m be gradient matrices with entries in±1. Let G2 be
invertible; then

μ(G1G−1
2 ) 6 1.

Proof. The matrixG2 is an invertible gradient matrix with entries in±1, so we can apply Lemma4.3and
obtain a factorizationG−1

2 = Q2U−1DQ1, whereQ1 andQ2 are permutations,D is a diagonal matrix
with ±1 on the diagonal andU is a unit upper triangular gradient matrix. If we insert the expression for
G−1

2 in μ, we get

μ(G1G−1
2 ) = μ(G1Q2U−1DQ1) = μ(G1Q2U−1),

where the last equality holds becauseμ is independent of permutations and diagonal scaling with±1.
(This follows from the definition, but can be derived from Lemma4.6 as well.) Note thatG1Q2 is a
gradient matrix and that 06 U−1 because of Corollary4.5. This allows us to apply Lemma4.8and we
obtain

μ(G1G−1
2 ) = μ(G1Q2U−1) 6 μ(U−1) = 1.

�

LEMMA 4.10 LetG1 ∈ Rm×m andG2 ∈ Rm×n be gradient matrices with entries in±1 such that the
matrix [G1G2] is a gradient matrix as well. LetG1 be invertible; then

μ(G−1
1 G2) 6 1.

Proof. We extend the composite matrix [G1G2] with a zero block and a minus identity matrix such that
we get the invertible gradient matrix

G =

(
G1 G2

0 −I

)

with inverseG−1 =

(
G−1

1 G−1
1 G2

0 −I

)

.

Lemma4.3applies toG, so we immediately see that the matrixG−1
1 G2, which is a submatrix ofG−1,

has entries in±1. �
We now have all the tools to prove the theorem.
Proof of Theorem4.1. For part (i), the goal is to obtain a bound on the size of the entries inK (l ) in
terms of the largest entry ofK (0). We start with the following considerations.

(1) The size of the entries inK (l ) is not influenced by a change of ordering within the firstl V -nodes
and the correspondingP-nodes.

(2) K (0) is anF -matrix, so Remark3.6 implies thatμ(B(l )) 6 μ(B(0)) 6 1 for all l . The critical
part is the growth of the entries inA(l ), so we will try to bound the growth factorρA of A during
the elimination.

(3) Theorem3.3 states that for alll the matrix A(l ) is positive definite. Gaussian elimination on
symmetric positive definite matrices is unconditionally stable with growth factorρ < 1 (see
Problem 10.4 inHigham, 2002). Hence, we can ignore the elimination of singleV-nodes in the
computation of the growth factor. Consequently, we can focus on the effect of the elimination of
the coupledV- andP-nodes.

Suppose that at a certain stage of Gaussian elimination we usedk 2×2 pivots. Then, we can reorder
and split the original matrices
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A =

(
A11 A12

A21 A22

)

and B =

(
B11 B12

B21 B22

)

such that thek 2 × 2 pivots are in the first blocksA11 andB11. Note that with this choiceB11 is square.
If we insert the splitting of the matricesA andB in K , we get, after a little rearrangement,









A11 B11 A12 B12

BT
11 0 BT

21 0

A21 B21 A22 B22

BT
12 0 BT

22 0









. (4.2)

The matrixB11 is square and invertible, so

(
A11 B11

BT
11 0

)−1

=

(
0 B−T

11

B−1
11 −B−1

11 A11B−T
11

)

. (4.3)

Hence, the Schur complement of the first two block rows becomes
(

S22 B22 − B21B−1
11 B12

BT
22 − BT

12B−T
11 BT

21 0

)

with

S22 = A22 − A21B−T
11 BT

21 − B21B−1
11 A12 + B21B−1

11 A11B−T
11 BT

21.

Because of Theorem3.4, we know thatB22 − B21B−1
11 B12 is a gradient matrix (with a bound of 1);

hence, to compute the growth factor we have to focus on the blockS22:

μ(S22) 6 μ(A22) + μ(A21B−T
11 BT

21) + μ(B21B−1
11 A12) + μ(B21B−1

11 A11B−T
11 BT

21). (4.4)

We now apply Lemma4.6 in order to get

μ(S22) 6 μ(A22) + 2χ(A12)μ(A12)μ(B21B−1
11 ) + kχ(A11)μ(A11)μ(B21B−1

11 )2. (4.5)

The matricesB21 andB11 are gradient matrices andB11 is invertible, so we can apply Lemma4.9and
that gives

μ(B21B−1
11 ) 6 1. (4.6)

This simplifies the bound to

μ(S22) 6 μ(A22) + 2χ(A12)μ(A12) + kχ(A11)μ(A11). (4.7)

It is obvious that for all four subblocks ofA, we haveμ(Ai j ) 6 μ(A). Furthermore,A is positive
definite, so it has strictly positive diagonal entries and the off-diagonal blockA12 satisfiesχ(A12) 6
χ(A) − 1. Usingχ(A11) 6 χ(A) andk 6 m, we finally get

μ(S22) 6 (1 + 2(χ(A) − 1) + mχ(A))μ(A).
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Division by μ(A) gives the bound for the growth factorρA of A. Next, we have to combine this result
with the fact that there is no growth in the elements ofB(l ) during the elimination (see Remark3.6) in
order to obtain a growth factor forK . The maximum ofK is just the maximum ofμ(A) and 1, and the
maximum over allK (l ) is just the maximum over allA(l ) and 1, where the maximum over allA(l ) is
preciselyρAμ(A), which leads to the bound given in part (i).

For part (ii), the bound on the size of the elements inL, it is sufficient to look at a general lower
diagonal block because for each entry ofL we can define a block that includes that entry. If we use the
splitting in (4.2) and the inverse as in (4.3), a lower diagonal block ofL is given by

(
A21 B21

BT
12 0

)(
A11 B11

BT
11 0

)−1

=

(
B21B−1

11 A21B−T
11 − B21B−1

11 A11B−T
11

0 BT
12B−T

11

)

. (4.8)

Now, we have to find the bounds for the subblocks. With (4.6), we already have a bound for the heading
block. For the(2, 2) block, we can use Lemma4.10, which gives

μ(BT
12B−T

11 ) = μ(B−1
11 B12) 6 1. (4.9)

The right upper block is a bit more difficult, but once more using (4.6) and Lemma4.6, we get

μ(A21B−T
11 − B21B−1

11 A11B−T
11 )6 χ(A21)μ(A21)μ(B−T

11 )

+kμ(B21B−1
11 )χ(A11)μ(A11)μ(B−T

11 )

6 (χ(A) − 1)μ(A) + kχ(A)μ(A)

6 ((m + 1)χ(A) − 1)μ(A). (4.10)

Combining the bounds finishes the proof. �
Compared to the general boundρ 6 (2.57)n+m−1, this bound is very sharp. In practice, even this

bound forF -matrices is hardly attained, first of all because the bounds in Lemmas4.6and4.7are quite
pessimistic. Especially, if we choose fill-reducing orderings forF(A) ∪ F(BBT), the matrixB21B−1

11
will not be a matrix full of 1s, but sparse, and thereforeB21B−1

11 A11B−T
11 BT

21 will have a maximum
element much smaller thankχ(A)μ(A). Even if B21B−1

11 would be a matrix full of 1s, it is likely that
the product will have a smaller maximum value because in general summation of entries on a row in
A11 will be much smaller thanχ(A)μ(A).

For one special case, we can give slightly better bounds, i.e. whenA is diagonally dominant.

THEOREM 4.11 Let K be anF -matrix with an ordering given by Algorithm2.2 and letm be the
number of columns inB. Furthermore, letA be a diagonally dominant; then for theL DLT-factorization
of K it holds that: (i) the growth factor is bounded by

ρ 6
max(μ(A)ρA, 1)

max(μ(A), 1)
, with ρA 6 2m + 3,

and (ii) the elements inL are bounded by

μ(L) 6 max{(2m + 1)μ(A), 1}.

Hence, the factorization is numerically stable.
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Proof. We can give sharper bounds on the terms in (4.4). BecauseA is symmetric and diagonally
dominant, we have

n∑

j =1, j 6=i

|ai j | 6 |aii | 6 μ(A).

It immediately follows that the off-diagonal blocksA12 and A21 have row sums smaller thanμ(A). If
we use that in (4.1), we can derive a sharper bound forμ(A21B−T

11 BT
21), i.e.

μ(A21B−T
11 BT

21) = μ(B21B−1
11 A12) 6 μ(B21B−1

11 )μ(A) 6 μ(A).

We can apply Lemma4.6 in combination with Lemma4.7to the last term in (4.4):

μ(B21B−1
11 A11B−T

11 BT
21) 6 kμ(B21B−1

11 )μ(B21B−1
11 A11) 6 2kμ(B21B−1

11 )2μ(A11) 6 2mμ(A),

where we again used the fact thatμ(B21B−1
11 ) 6 1,μ(Ai j ) 6 μ(A) andk 6 m. Combining all estimates

gives

μ(S22) 6 (2m + 3)μ(A).

Division byμ(A) provides the bound for the growth factorρA.
With respect to the bound on the elements ofL, if A is diagonally dominant, we have instead of

(4.10) the bound

μ(A21B−T
11 − B21B−1

11 A11B−T
11 ) 6 μ(A) + 2kμ(A) 6 (2m + 1)μ(A). �

REMARK 4.12 The proofs of Theorems4.1 and4.11can be extended to a wider class of saddle point
matrices. The only relevance ofF -matrices lies in the boundsμ(B21B−1

11 ) 6 1 andμ(B−1
11 B12) 6 1.

If B is not a gradient matrix, it might have other properties such that the entries of both matrices are
bounded. That would be enough to compute much better bounds for the growth factor and for the size
of the elements inL than the general ones for indefinite matrices.

EXAMPLE 4.13 At the end of this section, we show as an example the growth factor forF -matrices from
a Stokes problem on a square staggered grid. We will describe the problem in more detail in Section6.
We compute an ordering for the matrix with Algorithm2.2 based on three different initial orderings
for F(A)∪ F(BBT) [natural, reverse Cuthill–McKee (George & Liu, 1981) and approximate minimum
degree (Amestoyet al., 1996, 2004)]. We perform Gaussian elimination on the reordered matrix, mean-
while monitoring the growth of the entries in the Schur complement. The results can be found in Fig.5
and Table1.

In Fig.5, we plotρ(l )
A = μ(A(l ))/μ(A(0)) for each Schur complementl for a square grid of size 9×9.

The actual growth factor is the maximum of allρ
(l )
A s. For all three orderings, the growth factor is rather

small. The theoretical bound can be computed using Theorem4.11 because the matrix is diagonally
dominant. Here, the bound isρA 6 2m + 3 = 163, which is still quite far from the computed values of
ρA. It is of course much better than the general bound 2.57223 ≈ 2.60× 1091. Of interest is the effect
of the different ordering algorithms on the growth of the elements. In the case of the natural ordering,
the maximum growth is realized almost immediately after elimination of the first row in the grid. After
that, the growth remains constant except for a tiny peak halfway. The best results in terms of a small
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FIG. 5.μ(A(l ))/μ(A(0)) during Gaussian elimination for the natural (dash-dot), approximate minimum degree (dash) and reverse
Cuthill–McKee (solid) for the Stokes problem on a square grid of 9× 9 cells,n = 144, m = 80.

TABLE 1 Growth factorρA for several Stokes matrices for the natural ordering (nat), reverse
Cuthill–McKee (rcm), approximate minimum degree (amd) and the theoretical upper bound
given by Theorem4.11 (Bound). The column n contains the number of V -nodes and m the
number of P-nodes

Matrix n m nat rcm amd Bound
Stokes 3× 3 12 8 6.0 5.6 6.5 19

Stokes 5× 5 40 24 9.0 5.0 7.5 51

Stokes 9× 9 144 80 15.0 5.0 8.5 163

Stokes 17× 17 544 288 27.0 5.0 14.0 579

Stokes 33× 33 2,112 1,088 51.0 5.0 15.0 2,179

Stokes 63× 63 8,320 4,224 99.0 5.0 15.0 8,451

growth factor are obtained for the reverse Cuthill–McKee ordering. This is in agreement with a theorem
in Bohte(1975). Apparently, a small bandwidth is a good guarantee for a small growth factor.

To illustrate how the growth factorρA of A depends on the size of the grid and the number of
P-nodes we show Table1. As one can see, the growth factor remains very small in the case of reverse
Cuthill–McKee. It seems to be more or less independent of the grid size. This is in contrast to the
natural ordering, which gives a growth factor that increases with the grid size, by approximately a factor
of 1.5 if the number of nodes is doubled in two directions; more precisely the data are fitted exactly by
3(1 +

√
m + 1)/2. Note that it still grows less than linearly withm. The growth factor of approximate

minimum degree is somewhere in between those two and appears to flatten for bigger problems. By
inspection of the factorization, we saw that also the elements ofL are bounded for reverse Cuthill–
McKee and approximate minimum degree. In all cases, the boundρA provided by Theorem4.11 is
quite pessimistic. In the experiments, it was easy to find a scaling that bounded the elements ofL by one
for all resolutions, independent of the mesh size. These two observations led to the conjecture posted in
Remark4.2.

We can conclude that for Gaussian elimination onF -matrices both the growth factorρ and the size
of the elements inL are bounded by a number that grows linearly withm, i.e. the number of indefinite
nodes. So Gaussian elimination is numerically stable forF -matrices and iterative refinement is hardly
needed to compute accurate solutions.
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5. Fast insertion ofP-nodes

The application of Algorithm2.2requires the insertion of theP-nodes into the ordering for theV-nodes.
In this section, we show that this can be done very efficiently.

In Corollary3.2, we expressed that the sequence ofB(l )s is independent ofA; it only depends on the
ordering of theV-nodes. We can exploit this for the insertion ofP-nodes in the ordering for theV-nodes.
The insertion can be done before the actual elimination based on the entries ofB only. Especially, if we
deal with anF -matrix, an efficient algorithm exists. We only need to know the sparsity pattern ofB.

The P-nodes are inserted by Algorithm5.1. The basic idea is that we track the elimination of
P-nodes in an ancestor arrayπ . At the beginning, all nodes are their own ancestors, soπ [i ] = i for all
i = 1, . . . , m. We add one extra element to this vector:π [m + 1] = m + 1. If a nodev in V is coupled
to two nodesj andk in P, it has to be eliminated together with one of them. Say we eliminatev and
j together. As we saw in the proof of Theorem3.4, all V-nodes that were coupled toj get coupled to
k instead. We reflect this by a change in the ancestor array:π [ j ] = k; k becomes the ancestor ofj . In
the ancestor array, we can easily check what happened to theP-nodes by iteration on the array until a
fixed point is found. All fixed points are not yet eliminatedP-nodes. There is freedom to choosej or k.
It is beneficial and in agreement with the minimum degree idea to pick the one with the least fill in the
corresponding column ofB(l ). We will use an arraynnzto store an estimate of the number of nonzeros
in the columns ofB(l ). The array is used to make the decision as to whetherj or k is to be eliminated.
We will explain this in more detail in Remark5.5.

ALGORITHM 5.1 Insert theP-nodes in the ordering forV .
Assume that we have a permutationqv = {qv(1), qv(2), . . . , qv(n)} for the nodes inV .

1. Initialize the ancestor arrayπ [i ] = i for i = 1, . . . , n.

2. Initializennz[i ]—the number of nonzeros on thei -th column inB—for i = 1, . . . , n.

3. Initialize final orderingqf = ∅.

4. Fori = 1 ton

(a) Find j andk, the row numbers of the entries on theqv(i )-th row of B.

(b) If there is only one entry assignk := (m + 1).

(c) If the row is empty assignj := (m + 1) andk := (m + 1).

(d) Trace back ancestors ofj andk until fixed points are found:
- Repeatj := π [ j ] until j == π [ j ]
- Repeatk := π [k] until k == π [k]

(e) If j == k
- Expand the orderingq f := {qf , qv(i )}.

(f) Else
- If ( j == (m + 1)) or (nnz[k] < nnz[ j ]), swap j andk,
- Expand the orderingq f :=

{
qf , qv(i ), j + n

}
,

- Changeπ to reflect elimination:π [ j ] := k.
- Estimatennzafter elimination:nnz[k] := nnz[ j ] + nnz[k] − 2.

(g) Endif

5. Returnq f .

We add a few remarks on this algorithm.
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REMARK 5.2 One might fear cycles in the ancestor arrayπ such that the algorithm never terminates
Step 4(d). Fortunately, the only cycles that can appear inπ are the fixed points. This can be simply
explained as follows. Initially, all points are fixed points. The vector is changed only at Step 4(f) where
one fixed point of the ancestor array is replaced by a reference to another fixed point. So during the
algorithm all paths inπ will always end in a fixed point; hence, the algorithm will certainly terminate.

REMARK 5.3 The length of the iterations at Step 4(d) ism in the worst-case scenario. The number of
iterations is related to the depth of the elimination tree with respect to the nodes inP. If we use a fill-
reducing ordering for a 2D problem, it will hardly ever be bigger than

√
m. In any case, the time used

by the algorithm was always a fraction of the time used to compute the ordering forF(A) ∪ F(BBT).

REMARK 5.4 If we trace back the ancestors of two nodesj andk in Step 4(d), the fixed point ancestors
that we finally get might very well be equal. If they are, the two entries have the same magnitude but
opposite sign at the same position, so summing up gives zero: they annihilate. Hence, in that case, the
nodev is no longer coupled to a pressure node, so we cannot insert any. This conforms with Step 4(e).
Only if we have anF -matrix, do we know exactly when this exact cancellation happens.

REMARK 5.5 If there are two entries in a row, say at positionsj andk, we have a choice in Step 4(f) as
to which of the two we will eliminate and insert in the ordering. Remember that the goal is to reduce the
fill in the factorization. In (3.1), we see that the amount of (new) fill in the Schur complementA(l+1) is
determined by the number of nonzeros in the vector(b̂/β)T, i.e. the column inB(l ) that belongs to the
P-node that is eliminated. So to reduce the number of nonzeros inA(l+1), we should eliminate the node
with the fewest entries in its column. However, it is too expensive to compute the number of nonzeros
in the columns ofB(l ) precisely; therefore, we estimate this number in the arraynnz. At Step 2, the
numbernnz[i ] is computed as the number of nonzeros on thei th column inB. At that step it is still
exact. However, if at Step 4(f)j is eliminated we estimate that the number of nonzeros in the column
of k in B(l+1) is equal to the sum of the number of entries in the two columns minus 2. We subtract 2
because we delete the first row inB(l ). This number is an overestimate because it does not take account
of exact cancellation. Nevertheless, the approximation is good enough to make the right decision in Step
4(f). If the decision leads to an elimination ofk instead ofj , we swap both entries in order to simplify
the notation in the algorithm.

If we do not have anF -matrix, a similar algorithm can be used. Corollary3.2holds for general sad-
dle point matrices, so still onlyB and an ordering forV are needed to insert theP-nodes. Nevertheless,
it will be less efficient because we cannot benefit from a simple structure ofB. Furthermore, we need to
monitor the size of the entries inB(l ) as well and it will be more difficult to detect exact cancellation.

6. Numerical results

In this section, we will show the results of our algorithm for two sets of matrices. We implemented
Algorithms 2.2 and5.1 in MATLAB 7.1.0.183 (R14) Service Pack 3. The first ordering is computed
with MATLAB’s symmetric approximate minimum degree ordering SYMAMD (Amestoyet al., 1996,
2004).

We compare the results of Algorithm2.2 to those of PARDISO version 3.1 (serial) (Schenk &
Gärtner, 2004, 2006; Schenket al., 2000), which is able to factorize indefinite symmetric matrices.
It uses either AMD (approximate minimum degree) or METIS (nested dissection,Karypis & Kumar,
1998) as the basic ordering. We use the standard parameter settings except that we follow the advice of
the manual to use scaling (IPARM(11) = 1) and weighted matchings (IPARM(13) = 1) in the case of
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highly indefinite matrices like saddle point problems. If we choose to switch off weighted matchings,
PARDISO is still able to build a factorization, but the error in the solution without using iterative refine-
ment rises fromO(10−13) to O(10−6). So we really need weighted matchings to compute an accurate
factorization.

The package PARDISO offers the possibility of ignoring its ordering algorithms and instead per-
forms factorization based on an ordering provided by the user. We use this facility with the ordering of
Algorithm 2.2 as input. In the tables in this section, we will use ‘PARDISO(amd/metis/uo)’ to denote
the PARDISO factorization based on amd, metis and the user ordering, respectively. The MATLAB
factorization is called ‘L DLT(amd)’.

All numerical experiments were done on a PC with two 2.4-GHz AMD Opteron processors and
7.6-GB memory.

6.1 Stokes flow in a driven cavity

The first problem is a 2D Stokes equation in a driven cavity. Here, the following set of equations has to
be solved on the unit squareΩ:

−νΔu + ∇ p = 0

∇ ∙ u = 0

}

, (6.1)

whereu(x, y) is the velocity field andp(x, y) the pressure field; the parameterν controls the amount
of viscosity. The nontrivial solution is determined by the boundary conditions, which are zero on three
sides of the unit square. At the upper boundary (y = 1), we prescribe a horizontal velocityu(x, 1) = 1.

We can get rid of the parameterν by defining a new pressure variablep̄ = p/ν. If the first equation
is divided byν, we can substitutep by p̄ and the parameterν is gone. So we may assume thatν = 1.

If the equations are discretized on a uniform staggered grid (a C-grid) with mesh sizeh, we get an
F -matrix. It is singular because the pressure field is determined up to a constant. We get rid of this
problem by fixing one pressure node in the domain. So the number of pressure nodes is reduced by one.
Table2 shows the size and the number of nonzeros in the upper triangular part of the Stokes matrices.

The results of factorization of these matrices with different ordering algorithms can be found in
Table3. Obviously, Algorithm2.2 is able to produce an ordering that gives a factorization with low fill.
For all grid sizes, it results in a factorization that is sparser than the factorizations of PARDISO. The
large gap between the numbers of nonzeros for PARDISO(uo) andL DLT(amd) is remarkable since

TABLE 2 The set of Stokes matrices. n is the number of V -nodes, m the number of P-nodes
andnnzthe number of nonzeros in the upper triangular part of thematrix

Matrix n m n+ m nnz
Stokes 3× 3 12 8 20 48
Stokes 5× 5 40 24 64 180
Stokes 9× 9 144 80 224 684
Stokes 17× 17 544 288 832 2,652
Stokes 33× 33 2,112 1,088 3,200 10,428
Stokes 65× 65 8,320 4,224 12,544 41,340
Stokes 129× 129 33,024 16,640 49,664 164,604
Stokes 257× 257 131,584 66,048 197,733 656,892
Stokes 513× 513 525,312 263,168 788,480 2,624,508
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TABLE 3 Number of nonzeros for various factorizations of the Stokesmatrices

Matrix PARDISO(amd) PARDISO(nd) PARDISO(uo)L DLT(amd) Estimate
Stokes 3× 3 146 129 114 82 49
Stokes 5× 5 646 743 555 403 279
Stokes 9× 9 3,203 3,668 2,829 2,134 1,705
Stokes 17× 17 18,060 20,731 15,296 11,415 9,700
Stokes 33× 33 98,936 114,307 79,131 63,304 56,926
Stokes 65× 65 529,368 594,132 448,320 365,311 345,310
Stokes 129× 129 2,761,774 3,014,234 2,444,302 2,039,458 1,995,350
Stokes 257× 257 13,999,517 14,615,960 12,682,925 10,877,966 10,838,918
Stokes 513× 513 69,350,006 69,354,497 63,766,827 55,900,33156,276,468

the same orderings are used. The only explanation we have is that probably theL-factor of PARDISO
contains a lot of entries close to machine precision because it cannot detect exact cancellation, as we
could in our algorithm.

The last column in Table3 contains the number of nonzeros in theL DLT-factorization of the re-
ordered fill matrixF(A) ∪ F(BBT). We used MATLAB’s symbfact function to compute this number.
If we compare the last two columns, we can conclude that the number of nonzeros in the symbolic
factorization ofF(A) ∪ F(BBT) based on the first orderingqV provides a reasonable estimate for the
number of nonzeros that we get in the factorization of theF -matrix K after extension of the ordering
to the whole matrix with Algorithm2.2. The estimate becomes even better for larger matrices.

6.2 Matrices of T̊uma

The second set of test matrices consists of seven matrices provided by Miroslav Tůma, of which four
can be found inTůma(2002). The matrices arise in mixed-hybrid finite-element discretizations of 3D
potential fluid flow problems (Maryškaet al., 2000). In Table4, we show the size and number of nonze-
ros of the matrices. InTůma(2002), the matrices have a slightly larger number of nonzeros because the
sparse matrix format contains some ‘zero nonzeros’ that we removeda priori. We have to remark that
the Tůma matrices do not satisfy the assumption that the number of nonzeros in a row inB is smaller
than the number of nonzeros inA. All As in the T̊uma set have at most three nonzeros per row, while
at least a quarter of the rows inB have more than three nonzeros. Maybe Rule2.1 is not the best in that
case. Possibly, a weakening of the rule could provide a further improvement of the performance.

Table5 contains the number of nonzeros of the factors with different fill-reducing ordering algo-
rithms. We compare the results of Algorithm2.2with the results of T̊uma and PARDISO. The ordering
of Tůma is better than the two orderings of PARDISO. However, in all cases our ordering gives the
sparsest factors. The big difference between the approximate minimum degree and nested dissection
ordering in PARDISO is quite remarkable. It must be due to the structure of the Tůma matrices because
for the Stokes matrices the results for both orderings are similar. The qualitative difference between the
two sets of matrices is noticed as well in the effect of the choice we made in Remark5.5. If we do not
eliminate the node that has the least nonzeros in its column ofBT, but simply pick the first node, the
results ofL DLT(amd) in Table3 hardly change, whereas the results in Table5 seriously deteriorate.

Also, here we added in the last column the estimate of the number of nonzeros ofL DLT(amd),
which is in this case slightly worse than that for the Stokes matrices.
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TABLE 4 The set of T̊uma’s matrices. n is the number of V -nodes, m the number of
P-nodes and nnz the number of nonzeros in the upper triangular part of thematrix

Matrix n m n+ m nnz
S3P 270 207 477 1,008
M3P 2,160 1,584 3,744 8,136
DORT2 7,515 5,477 12,992 28,440
DORT 13,360 9,607 22,967 50,560
L3P 17,280 12,384 29,664 65,376
dan2 63,750 46,661 110,411 318,304
novak 152,645 114,113 266,758 744,912

TABLE 5 Number of nonzeros in various factorizations of the Tůma matrices. The column
Tůma contains results fromTůma(2002)

Matrix PARDISO(amd) PARDISO(nd) PARDISO(uo)L DLT(amd) T̊uma Estimate
S3P 3,154 3,290 2,754 2,195 2,957 1,729
M3P 60,305 61,144 45,248 35,553 44,002 31,469
DORT2 558,522 276,376 243,088 208,393 231,312 188,697
DORT 1,278,505 641,788 598,130 527,602 551,215 491,736
L3P 1,445,900 1,000,789 785,689 690,932 — 643,277
dan2 4,465,051 3,040,497 2,686,839 2,240,202 — 1,973,721
novak 15,453,022 9,785,185 9,351,503 8,217,979 —7,577,723

7. Discussion

In this paper, we proposed a new algorithm to compute a stable fill-reducing ordering forF -matrices,
a special class of symmetric saddle point matrices. The algorithm is based on a simple idea: compute
an ordering for theV-nodes first and then add theP-nodes. The ordering for theV-nodes is a fill-
reducing ordering forF(A) ∪ F(BBT). The P-nodes are added under the rule ‘eliminateP-nodes as
soon as possible’. The final ordering is guaranteed to be feasible and in the case ofF -matrices it can be
computed very fast.

In Section3, we showed that the ordering guarantees that much of the structure of the saddle point
problem is preserved in the Schur complements during Gaussian elimination; in particular the zero block
remains empty andB(l ) is independent ofA(l ). Positive definiteness ofA and theF -matrix properties
are also preserved. From an engineering point of view, this is a very attractive property. Moreover, it
eases the proof of the numerical stability of the method.

One of the important results is Theorem4.1, where we give a bound for the growth factor in Gaussian
elimination onF -matrices as well as a bound for the size of the elements in the factorL of theL DLT-
factorization. The general bound for the growth factor grows exponentially fast, but it is too pessimistic.
At least in the case ofF -matrices with the ordering of Algorithm2.2, the growth factor is bounded by
a number that grows linearly with the dimension. It is likely that this holds for a larger class of saddle
point matrices because it seems possible to weaken the assumptions of the proof. IfB is not a gradient
matrix, it might have other properties such thatB21B−1

11 and B−1
11 B12 are bounded, as we have argued

in Remark4.12. We have to emphasize the word ‘might’ in the previous sentence, as clearly there exist
examples ofBs such that entries inB21B−1

11 become very large.
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The numerical experiments on the Stokes and Tůma matrices show that the algorithm is able to
produce a good factorization with a sparser structure than the factorizations of other methods.

Another nice property is that the very same algorithm can be used for more generalF -matrices like
the 2D Navier–Stokes equations (with Coriolis force) on a C-grid.

There is a lot more to study. In some cases, Rule2.1 should be weakened to get a sparser factor-
ization. There might be better ways to compute the first ordering because we lose information in the
construction ofF(A) ∪ F(BBT). In general, we overestimate the fill with this matrix. For example,
the matrix will even be dense ifB contains a single full row. One more important question: how do we
generalize the algorithm such that it is able to handle a saddle point matrix that is not anF -matrix?
Clearly, there are several ways to do this, but which one is the best, and can we keep the nice properties
that we showed in Section3?

Another interesting subject is the generalization to higher-order discretizations of the gradient in
flows. In many cases, the new gradient matrix can be written as the product of a smoothing matrix and a
gradient matrix as defined in this paper. This knowledge should be used to derive a variant of the current
algorithm and to prove the stability of the algorithm. For other generalizations, we would start over again
from a nested dissection (see Remark2.4) of the problem. The separators surrounding a subdomain
should be such that the problem on that subdomain is well conditioned or, in partial differential equation
terminology, it should be well posed.

Finally, in this paper we showed that the simple ideas behind the algorithm make sense. The con-
struction of the ordering is straightforward and fast. It keeps nice properties of the matrix during Gaus-
sian elimination and in the experiments it appears to be powerful enough to result in a factorization with
significantly lower fill than the factorizations of existing methods.
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