7%
university of 5%,
groningen % %

i

University Medical Center Groningen

University of Groningen

Numerically stable LDLT-factorization of F-type saddle point matrices
Niet, Arie C. de; Wubs, Friederik

Published in:
Ima journal of numerical analysis

DOI:
10.1093/imanum/drn005

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2009

Link to publication in University of Groningen/lUMCG research database

Citation for published version (APA):
Niet, A. C. D., & Wubs, F. W. (2009). Numerically stable LDLT-factorization of F-type saddle point matrices.
Ima journal of numerical analysis, 29(1), 208-234. https://doi.org/10.1093/imanum/drn005

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 18-02-2019

https://doi.org/10.1093/imanum/drn005
https://www.rug.nl/research/portal/en/publications/numerically-stable-ldltfactorization-of-ftype-saddle-point-matrices(776b493e-b694-4b5b-9bc3-80d184fbe608).html

IMA Journal of Numerical Analysi€009)29, 208-234
doi:10.1093/imanum/drn005
Advance Access publication on March 14, 2008

Numerically stable LDL "-factorization of .#-type saddle point matrices

ARIE C.DE NIET

Research Institute of Mathematics and Computing Science,
University of Groningen, Nijenborgh 9, 9747 AG Groningen, The Netherlands,
and Witteveen+Bos, Consulting Engineers, van Twickelostraat 2,

7411 SC Deventer, The Netherlands

AND

FRED W. WuBst

Research Institute of Mathematics and Computing Science,
University of Groningen, Nijenborgh 9, 9747 AG Groningen, The Netherlands

[Received on 7 December 2006; revised on 4 December 2007]

We present a new algorithm that constructs a fill-reducing ordering for a special class of saddle point ma-
trices: theZ -matrices. This class contains the matrix occurring after discretization of the Stokes equation
on a C-grid. The commonly used approach is to construct a fill-reducing ordering for the whole matrix
followed by an adaptation of the ordering such that it becomes feasible. We propose to compute first a
fill-reducing ordering for an extension of the definite submatrix. This ordering can be easily extended to
an ordering for the whole matrix. In this manner, the construction of the ordering is straightforward and it
can be computed efficiently. We show that much of the structure of the matrix is preserved during Gaus-
sian elimination. For at¥7-matrix, the preserved structure allows us to prove that any feasible ordering
obtained in this way is numerically stable. The growth factor of this factorization is much smaller than the
one for general indefinite matrices and is bounded by a number that depends linearly on the number of
indefinite nodes. The algorithm allows for generalization to saddle point problems that arefdypé

and are nonsymmetric, e.g. the incompressible Navier—Stokes equations (with Coriolis force) on a C-grid.
Numerical results for7-matrices show that the algorithm is able to produce a factorization with low fill.

Keywords saddle point problem; indefinite matri%?-matrix; factorization; numerical stability; growth
factor; C-grid; (Navier—)Stokes equations; electrical networks.

1. Introduction

In this paper, we study the direct solution of the equation
Kx = b, 1.1)

whereK e RMM*+M (n > m) is a saddle point matrix that has the form

K=(BAT S), (1.2)

TEmail: wubs@math.rug.nl

(© The author 2008. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

NUMERICALLY STABLE LDLT-FACTORIZATION OF .Z-TYPE SADDLE POINT MATRICES 209

v

e

v

FIG. 1. Positioning of velocityy, ») and pressurep variables in the C-grid.

with A € R™" andB e R"™™M, In this paper, we consider only symmetric positive defifiteThis
makes the matriX itself symmetric indefinite. Although we assume&o be symmetric, many of the
results in this paper can be easily generalized for nonsymmetric mafxices

A survey of the occurrence of saddle point problems and their numerical solution can be found in
Benziet al. (2005. In many cases, saddle point problems can be solved efficiently via a Krylov sub-
space iterationvan der Vorst 2003 combined with appropriate preconditioninBgnziet al., 2005
de Niet & Wubs 2007 Elmanet al, 2002 Kay et al., 2002. Nevertheless, in this paper we will fo-
cus on the direct solution of saddle point problems that occur in computational fluid dynamics. If the
problem is 2D, direct solvers can compete in many cases with iterative methods. Also in general di-
rect methods are more robust than iterative methods. The disadvantage is that they often require more
memory.

In Duff et al. (1986 andMeurant(1999, one can find extended introductions to the field of sparse
matrix factorizations. The basics are Gaussian elimination, matrix graphs, elimination trees, fill-reducing
orderings, etc. We will introduce these notions only briefly where we need them.

1.1 .%-matrices

In a large part of this paper, we will pay attention to a special class of saddle point matrices, namely, the
F-matrices. We start off by defining the gradient matrix which is used to specifg-tmaatrix.

DEFINITION 1.1 A gradient matrix has at most two entries per row. Moreover, if there are two entries,
their sum is zero.

We have chosen the name ‘gradient matrix’ because this type of matrix typically results from the
discretization of a pressure gradient in flow equations. It is important to note that the definition allows a
gradient matrix to be nonsquare. Now, we can defineZhmatrices.

DEFINITION 1.2 An.Z-matrix is a saddle point matrixl(2) with A symmetric positive definite and
B a gradient matrix.

The definition is originally due t@tima(2002. .#-matrices occur in various fluid flow problems
where Arakawa A-grids (collocated) or C-grids (staggered, se€lfaye used. For example, Arioli
& Manzini (2003 the discretization of Darcy’s equation in groundwater flow results iZamatrix.
They occur as well in electrical networkggvasis 1994).

In the example below, we introduce tl#e-matrix that will be used throughout the paper to illustrate
the theory.

ExampPLE 1.3 LetK be a saddle point matrix as defined th1) where the matrice®\ and B are,
respectively,

210 A. C.DENIET AND F. W. WUBS

F(K)= : : . ’

FIG. 2. The sparsity patterf (K) (left) and the adjacency gragh(K) (right) of the matrixK as given in Examplé.3. In the
adjacency graph, the numbers of the nodes correspond to the réw&of The P-nodes are coloured black;-nodes are white.

2 -1 0 0 0 -1 0 1 O
-1 2 -1 0 0 1 -1 0 0

A=|0 -1 2 -1 0| and B=|0 0 0 O (1.3)
0 0 -1 2 -1 0O 0 0 -1
0 0 0 -1 2 0O 1 0 O

SoK is a 9x 9 symmetric saddle point matrix.

1.2 Factorization of sparse indefinite matrices

We define the ‘adjacency graph’ of the matkxas follows:
G(K) ={V UP, E},
where the nodes or vertices are a union of two disjoint sets
V={i|Kij#0 and P={i|Kj=0}
and the edges are given by the off-diagonal nonzerds in
E={{i,j}i#] Kjj =Kji #0}.

The graph is undirected, so the eddesj} and{j,i} are considered to be the same. Note that our
definition of an adjacency graph differs from the commonly used definition. We distinguish the vertices
with zero diagonal entry il from the ones with nonzero diagonal entry. From the definition, it follows
immediately that the sef contains precisely the nodes that originate from the submatrika fluid
problems, these are the velocity nodes. ThePsebntains all the nodes that originate from the empty
(2, 2) block in K. In fluid terms, these are the pressure nodes. The nod€sand P will be called
V-nodes andP-nodes, respectively.

In Fig. 2, one finds the sparsity pattern and the adjacency graph of the matrix in Exar@pior
this exampleyV = {1, 2, 3,4, 5} andP = {6, 7, 8, 9}. The P-nodes are coloured black in the adjacency
graph.

The aim of this paper is to find a fill-reducing pre-orderi@gsuch that we can perform Gaussian
elimination on the permuted saddle point ma@X Q', resulting in a factorization of the form

QKQ"=LDL", (1.4)

NUMERICALLY STABLE LDLT-FACTORIZATION OF .Z-TYPE SADDLE POINT MATRICES 211

T(Q/KQ}) =

FiG. 3. Two elimination trees for the saddle point matrix in Exampl& The tree at the left belongs to the minimum degree
ordering, the tree at the right to the ordering given by Algorith&

wherelL is a unit lower triangular matrix anB is a block-diagonal matrix with blocks of sizexl1 or
2x 2.

The ‘elimination tree’ of the reordered matri@K QT is constructed in the following way. Each
vertex is assigned precisely one parent

PARENT[j] = min(i > j |lij # O},

whereljj is the entry on theth row andjth column of the lower triangular matrix of (1.4). So to find
the parent ofj, we search the first nonzero entry below the diagonal injthecolumn ofL. One gets
the elimination tree by drawing an edge between each vertex and its parent. For an example 3see Fig.
Both the elimination tree and the adjacency graph play an important role in sparse matrix factorization.
Operations on the matrix like reorderings and Gaussian elimination can be translated into operations on
the adjacency graph and the elimination tree (3ae1990.

The search for an appropriate orderi@gs far from trivial for large sparse matrices in general and
especially in the case of symmetric indefinite saddle point matrices. There are three major issues that
we have to address about the factorizatibm)

(1) factorizability’: given an orderindQ, does the factorization exist?
(2) ‘sparsity’: can we construd® such that it reduces the fill in tHe-factor?

(3) ‘numerical stability”: given an orderin@ and the correspondingD L "-factorization, can we
prove that the errors iR = L~TD~1L~1b are bounded?

We start with (1), the factorizability. Positive definite matrices like our submarace ‘strongly
factorizable’, i.e. all possible orderings give a factorizable matrix. This does not hold for saddle point
matrices. We illustrate this with an example.

ExamMpPLE 1.4 In Examplel.3 we can choose th® such that it is the reordering matrix corresponding
to the permutatio = {6,7,8,9, 1, 2, 3,4, 5}. This would give the following permuted saddle point

matrix:
0 BT
B A’

212 A. C.DENIET AND F. W. WUBS

which is not factorizable, because if we start performing Gaussian elimination, we get in the first
step a zero pivot. The minimum degree ordering for the matrix (computed with MATLAB), is=
{6,8,1,3,5,9, 4, 2,7}. This ordering has the same problem, as it wants to eliminate the black nodes
6 and 8 first. In fact, any ordering that starts witiPanode will suffer from this problem. In general,

a node inP cannot be eliminated before one of its neighbours (which are all because thé2, 2)

block is zero) is eliminated. Or, equivalently, as formulatedima(2002, a necessary condition for
factorizability is that the elimination tree of the permuted matrix has no leav€s For our model
problem, letQm be the permutation matrix corresponding to the permutajjgirnthen the elimination

tree for the matrixQmK QT,T} has three leaves iR as is shown in Fig3 (left), so the reordered saddle
point matrix is not factorizable.

The example shows that the ordering for saddle point matrices has to be chosen carefully. An order-
ing that gives a factorizable permuted matrix is called ‘feasible’.

Most of the literature is about the factorization of sparse symmetric indefinite matrices in general,
e.g. Duff et al. (1979 1991), which is a much larger class than the saddle point problems that we
consider. To produce a feasible ordering, algorithms for factorization of indefinite matrices often use the
pivoting strategies of Bunch—Parlett or Bunch—KaufmBor(ch & Parlett 1971, Bunch & Kaufman
1977 andAshcraftet al, 1999. These strategies are applied in the factorization phase and basically do
the following: if a zero pivot is encountered, a search is started for a second node that is coupled to the
first such that the two together form a stable and invertibleZmatrix. In the case of our example, the
nodes{6, 2} would form an acceptable pivot because

i

is invertible. Because of the Bunch—Parlett and Bunch—Kaufman pivoting strategies, the natrix
(1.4) is allowed to have X% 2 blocks on the diagonal.

Recently, these pivoting strategies were fruitfully combined with a weighted matchings search algo-
rithm in the package PARDISORpIlin & Schenk 2005 Hagemann & SchenR006 Schenk & Gartner
2006. Similar techniques were used in the CMP-algorithm as describ&adifh& Pralet (2007 and
Pralet(2004. Both algorithms take the following steps: (i) groMp and P-nodes beforehand in2 2
blocks by a weighted matchings algorithm, (ii) treat the 2 blocks as a supernode and construct the
compressed graph, (iii) compute an ordering for the compressed graph, and (iv) expand the ordering
to the original graph. Since these two algorithms are most competitive for sparse symmetric indefinite
systems, we will compare the algorithm that we propose in this paper to PARDISO.

The second important issue is (2), i.e. the sparsity of the factors. To reduce both memory require-
ments and construction time, we would like the factoto be as sparse as possible. The two most
important algorithms to compute a fill-reducing ordering for a matrix are approximate minimum degree
(Amestoyet al,, 1996 and nested dissectio®éorge 1973. Unfortunately, they apply only to matri-
ces that have no zeros on the diagonal because they are based on the adjacency graph of the matrix,
which assumes a positive diagonal entry. The algorithms do not see the difference betweel vhite (
and black P) nodes in Fig2. In our example, the approximate minimum degree ordering gives a non-
feasible ordering because the black node 6 (see ordggirabove) is selected first in the factorization
phase.

If the approximate minimum degree algorithm is applied to a general saddle point ridatitixs
unlikely that the computed ordering is feasible. So the ordering has to be repaired either during elimina-
tion, by delaying the elimination dP-nodes, or by adapting the ordering beforehand. For repair during

NUMERICALLY STABLE LDLT-FACTORIZATION OF .Z-TYPE SADDLE POINT MATRICES 213

elimination, we have to check all pivots, which gives some increase in the work required during the
factorization phase. Ifitima(2002, the ordering is repaired before elimination. After the computation
of afill-reducing ordering foK , the ordering is adapted on the basis of, elimination tree operations only.
For.Z-matrices, it can be proven that the final ordering is feasible. However, a delay in the elimination of
indefinite nodes either during elimination or beforehand creates extra fill in the fadispecially, if we
deal with saddle point problems wheBé& has fewer entries per row thaa—which is often the case for
Z-matrices—a fill-reducing ordering like (approximate) minimum degree will choose the nodres in
to be eliminated first because they have the lowest degr@@ira(2002), it was observed that 80% of
the leaves of the elimination tree belong to theReFor all these leaves, elimination had to be delayed.
There is one more alternative, which is called the Schur complement approach. The elimination of
the nodes fronP is delayed until alV-nodes have been eliminated. Unfortunately, in many cases the
Schur complement BT A~1B is completely full. So this approach is not very practical and we will not
give further attention to this approach.
Instead of eliminating th&/-nodes first, one could also choose to eliminatePathodes, together
with an equal number of nodes frovh Since the choice of the requiskenodes is not unique, the crux
here is to find good combinations. The interesting point is that the Schur complement of this elimination
will be sparse if we can splBT into [B/, BZT] such that the inverse d3; is sparse. A different kind of
view on this approach is that a basis for the null spacBofs given by the columns off B, Bl‘l, 1,
which are sparse. Hence, if the equation associated with the lower pdr2pféadsBTv = 0, then
the solution for the velocities is just a linear combination of the basis of the null space. By substitution
in the equation for the upper part df.9) and just testing (premultiplying) with the null space, we find
exactly the same sparse Schur complement system as before. Therefore, the approach is also called the
null-space method. The problem is to find a good splittin@&uch that a sparse representation of the
kernel is possible. This is called the nice basis problem and is usually solved using graph theory; for
more details seArioli & Manzini (2003, Pinaret al. (2006 or Benziet al. (2005. A related approach
in electromagnetics is the tree/co-tree decomposition; which is used to transform an underdetermined
problem into a uniquely solvable on@/¢bh 1993.
The last issue is (3), i.e. numerical stability. The growth factor

|
ma i [k{}'|

max,j |kij |

is an important measure for stability. The growth factor is the largest entry that occurs in the Schur
complements during Gaussian elimination divided by the largest entry in the nkatfbhis growth
factor can become very large, even if we have a feasible orderin§.ffiwe consider Bunch—Kaufman
or Bunch—Parlett pivoting, the stability bound for the growth factor is very wpak: 2.57("+m—1)
(Higham 2002 Section 11.1). Although in many applications no problems were reported with numerical
stability, there is a lack of better bounds for

Next to bounding the growth factor, it is important to bound the size of the entries in the rhatrix
because the error in the solutiosn= L~ TD~1L~1b is clearly related to the size of the entrieslin
(see, e.gAshcraftet al, 1999. Finally, we note that the error in the solution is also determined by the
condition number oK, which is a given fact as long &€ is not modified.

One of the important results in this paper is that fBrmatrices we are able to give much better
bounds for the growth factor and for the size of the entrids.in

In this paper, we will not pay much attention to the actual construction of. & T-factorization.
We will focus on the construction of a feasible ordering, numerical stability and the sparsity of the
computed factors. Given a feasible, numerically stable ordering fahere are several efficient codes

p= (1.5)

214 A. C.DENIET AND F. W. WUBS

available for construction of the correspondib@ L T-factorization. We mention MA470uff et al,
1991 as an example.

The outline of the paper is as follows. In Sectidnhwe sketch the algorithm to compute a fill-
reducing ordering for a saddle point matrix. In Sect®)rwe show properties that remain invariant
under Gaussian elimination with this ordering. In Sectlome give a proof for numerical stability of
Gaussian elimination fag#-matrices using this ordering. Fast construction of the ordering is treated in
Sectionb. In Section6, we show the numerical results for a Stokes equation in a driven cavity and for a
set of. #-matrices that is used ifiima(2002. We end with a discussion in Secti@n

2. Sketch of the algorithm

As we mentioned in Sectioh.2, many of the current algorithms have in common that they compute a
fill-reducing ordering folK and then somehow adapt it to make it feasible. The delay in elimination will
give an increase of the fill in the factors. Unfortunately, the increase is hard to predict, but it certainly
implies an increase in the construction time of the factors. To overcome this inefficiency, we propose
a different approach. The idea is to compute an ordering for the velocity nbddsased on a graph

that contains information of the whole matrix—and then to insert the pressure Rodppropriately.
Assume that we have an elimination ordenbrthen we use the following simple rule to insert elements

of P in the ordering folV.

RULE 2.1 If during Gaussian elimination witk the nodev € V is to be eliminated and it is connected
to ap € P theno andp are eliminated together using ax22 pivot.

Note that with this rule we get as manyx22 pivots as there are nodeskh Only if a nodev € V
becomes totally disconnected frofhdue to the elimination of previous nodes, can it be eliminated
singly.

Because alP-nodes are eliminated together wittvanode in pivots of the form

(5 4).

there is no doubt about factorizability. We immediately get a feasible ordering, so we do not need any
additional repairs.

If we apply this rule to an ordering of that is constructed as a fill-reducing ordering frthe
resulting ordering forlK will not be fill-reducing in general. To ensure that the final ordeiimdll
reducing, we have to use information about the whole matrix, so somehow the sparsity pattrns of
andBT have to be included. This is the case if the orderingvfas fill-reducing for the sparsity pattern
F(A)UF (BBT), whereF (A) denotes the sparsity pattern&fThis matrix is an envelope for the fill that
will be created by the elimination of the nodesRn In many cases, this will be equal EXA + BBT),
but to avoid possible cancellation in the addition we will use the mai(i&) U F (BBT). Summarizing,
we get the following algorithm.

ALGORITHM 2.2 To compute a feasible fill-reducing ordering for the saddle point mitrix

1. Compute a fill-reducing ordering for thé-nodes based oR (A) U F(BBT).
2. Insert theP-nodes into the ordering according to Rald.
The P-nodes (Step 2) can be inserted during Gaussian elimination, which means that we have to

adapt the algorithm for Gaussian elimination. However, in cas# ahatrices, this can be done sym-
bolically before elimination. A very efficient algorithm for that is described in Sediion

NUMERICALLY STABLE LDLT-FACTORIZATION OF .Z-TYPE SADDLE POINT MATRICES

F =

ary=1) (@)

215

FIG. 4. The sparsity patter’ = F(A) U F(B BT) (left) and the corresponding adjacency graph (right) that is used to compute
an ordering for th&/-nodes of Examplé.3.

ExXAMPLE 2.3 To clarify the algorithm, we apply it to the matrix in Examgl&. In the first step, we

will compute an ordering for th¥ -nodes that is based on the sparsity patfeti) U F(BBT). This
sparsity pattern and the adjacency graph can be found iftFihe minimum degree ordering for this
matrix isq, = {1, 3,5, 2, 4}. The second step is the insertion of tAenodes in this ordering. The first

node in the orderingg, (1) = 1) is connected to th&-nodes 6 and 8 (see Fig), so according to

Rule 2.1 we have to choose one of these two nodes to eliminate together with node 1. For now this
choice is arbitrary, but in Sectidghwe will argue that we had better choose node 8 because it has the
least degree (number of neighbours) of the two. If we remove nodes 1 and 8 from the graph and continue
the elimination and insertion &-nodes, we finally get the ordering = {1, 8, 3,5, 7, 2, 6, 4, 9}. With

this ordering, the permuted saddle point matrix becomes (we leave out the zeros)

and its factors are

QiKQf =

NI

NI NI

2
1

[
[N

1
2
2 1
1
~1 -1
-1 -1
1
1
1
I
1
-1 2 1
g
1 1 3
-z —3 -1 =3

-1

Nlw

-1

N

-1
-1
(2.1)
2 -1
_l i
and
1—

216 A. C.DENIET AND F. W. WUBS

-2 -

|
Nl

@)
I
|
NI
NI~
|
~iIno

NIw

_2
- 3_
We chose here to build the factorization such thais a diagonal matrix with no Z 2 blocks on the
diagonal. Consequentli) has negative entries on the diagonal. This factorization allows us to construct
the elimination tree that is based on thdactor. The tree is depicted in Fig.(right).

REMARK 2.4 The motivation for this approach can be understood from a nested dissection point of
view. In our type of applications, ofteBT is a discrete divergence ala discrete gradient operator.

The rows ofBT then represent the continuity equation in each cell of the grid. If we deal with a C-type
staggered grid (e.g. the pressure nodes are in cell centres, the velocity nodes on cell faces1yee Fig.

it means that all velocity nodes occur in the continuity equation of two different cells. To compute the
pressure gradient in a velocity node, we take the difference of the pressure values in the two neigh-
bouring cells. The elimination of a velocity node forces the two neighbouring cells to merge. We need
only one pressure node to fix the pressure in a cell, so we can eliminate one of the two, together with
the velocity node. Or, equivalently, we can eliminate one of the two continuity equations because the
pressure nodes in the two cells get connected by the elimination of the velocity node. In this view, we
can consider the velocity nodes as separators of the pressure nodes, which need to be eliminated as soon
as possible. That is precisely what is formulated in Rufleand is used in Algorithn2.2

REMARK 2.5 We make one last comment to clarify the relation with other approaches. The adjacency
graph of F(A) U F(BBT) can be viewed as the compressed graph of a supernode that consists of both
a node inV and one inP, where for the latter we leave open which of thg that are connected tg

will be taken. In the expanded elimination tree, we have to choose and the choice is made BylRule

It is advantageous to delay the choice since in the proof of The8témve will see that couplings to

a P-node can be lost due to cancellation (see also Re@&yk During the insertion of thé>-nodes,
described in Sectioh, we can track cancellation and hence no repairs need to be made during the actual
factorization.

In the rest of the papek () denotes the matriX after| steps of Gaussian elimination according
to an ordering defined by the algorithm above. If this is not necessary we will not make a distinction
betweerK () or any symmetric permutation of the matrix.

3. Properties invariant under Gaussian elimination

In this section, we will show that Algorithrd.2 gives an ordering with the nice property that during
elimination much of the structure of the original matrix is preserved. If we perform Gaussian elimination
on the matrixK, we get a sequence of Schur complemdﬁf@ forl = 1,...,n. If we separate the

V- and P-nodes, the structure of all these matrices is

NUMERICALLY STABLE LDLT-FACTORIZATION OF .Z-TYPE SADDLE POINT MATRICES 217

0 A BO
“\BOT c0)

The firstimportant property is that Gaussian elimination subject to Rlen a saddle point matrix
(1.2 with C = 0 always gives a saddle point matrix with the very same structure as Schur complement.
In other words, the nodes i are not coupled ik and will never become coupled k(.

THEOREM3.1 1f C© = 0 then for alll we haveC) = 0.

Proof. The proof is by induction. By assumption, we hav®) = 0. Now, suppose that!) = 0. Let

us computek +D by eliminating the first row irk ©. Now, we have to distinguish two cases that can
occur.

Case 1The first possibility is that thith node is not connected to a nodeRnWe can make this more
explicit by splitting A1) andB®:

a a o0
KO=laT A B
0 BT o

According to Rule2.1, this node can be eliminated singly. The Schur complemeniséqual tok (+1
and easy to compute:

Al+D gl+D)
1+ _
K - (B(I+l),T 0 (3.1)
with
Al+D = A—aa'/a (3.2)
and
B!+ = B. (3.3)

Clearly,c+D = 0.
Case 2The other possibility is that tHeh nodeis connected to a node iR. Then, the structure is

To satisfy Rule2.1, the first two rows are eliminated together, using & 2 pivot. Elimination gives
again a matrix with structure3(1), but now we have

AD — A—aTb/p) — /8 Ta+ad/p)"(b/B) (3.4)
and
gl+D) — B — (b/ﬂ)TE) (3.5)

Also, in this case, we have!*+D = 0. O

218 A. C.DENIET AND F. W. WUBS

In the proof of the theorem, we see that in both ca8&sV is determined by the elements Bf!)
only. No elements oA are involved.

COROLLARY 3.2 For alll the matrixB® is independent of the sparsity pattern and the size of the
entries inA. It depends only on the ordering of thenodes.

An immediate consequence of this corollary is that we can compute the sequeBssafithout
using the size of the entries &. We can exploit this during the insertion of thenodes into the
ordering of theV-nodes in Sectios. Note that on the other hand the fill structure and the size of the
entries of Al*D do depend o1B, as is clear from3.4).

The following theorem is important for stability.

THEOREM3.3 If Ais symmetric positive definiteA!) is symmetric positive definite for alll

Proof. This is easy to prove by induction. We hat’) = A is symmetric positive definite by assump-
tion. Now, assume thaA®) is symmetric positive definite. Elimination of the next node will give us
K(+D andAl*+D . As in the proof of Theorers.1, we have to distinguish two cases.

Case 1lf thelth node is not coupled to a nodef Al+D is given by 8.2). Itis the Schur complement
of a symmetric positive definite matrix; which is again symmetric positive definite.

Case 2If the Ith node is coupled to a node i, Al+D is given by 8.4). We can rewrite it as

A*D = A—aa' /o +a(aja —b/p) (a/a — b/p). (3.6)

Itis the Schur complement of a positive definite matﬁx—(aaT/a) plus the ternu(a/o — B/ﬂ)T(a/a —
b/p), which is obviously symmetric and positive definitexif> 0. BecauseA!) is symmetric positive
definite, all its diagonal elements are positive, so we indeed havé. O

THEOREM3.4 If K is an.Z-matrix, all K are.Z-matrices.

Proof. By assumption, we know that @ = K is an.#-matrix. According to Definitioril.2, it holds
thatC© = 0, A© is symmetric positive definite anB© is a gradient matrix. Theoren®1and3.3,
respectively, ensure th&t!) = 0 andA") is symmetric positive definite, so we have only to prove that
B is a gradient matrix.

Once more we use induction. So let us assumeBifatis a gradient matrix. Again, we distinguish
the two cases that occur during Gaussian elimination.
Case 1If the Ith node is not coupled to a pressure noB&;D is given by B8.3). The only difference
with B() is the omission of the first (empty) row. So properties like the number of entries per row and
row sum are certainly preserved aBd 1 is a gradient matrix.
Case 2lf the Ith node is coupled to a pressure noB&;tD is given by 8.5). The gradient matrix3()
has at most two entries per row; when a row has precisely two entries, they have zero sum. The first
row of B" is (8 b). Becauses is nonzero, the row vectdr has either one entry with value or no
entries at all. Henceyb/g is either a vector with one entry with value 1 or a zero vector3L5)(bT
(i.e. the first column oB®) is multiplied with this vector and added . This leads to the following
simple procedure to construBf' ™. We getB(+D from B(") by removing its first row and first column
(b")—which givesB—and addb” to the column that had an entry on the first rdv). (Obviously,
the rows with no entry in the first column do not change at all, so the number of entries and the row
sum are preserved. Of interest are the rows that have an erﬁ?y Mow, there are two possibilities.
If b = 0, the only change is that the number of entries on the row decreases by one and the row sum
does not matter anymore because there is either one or no entry left. In thaB€askjs a gradient
matrix. Otherwise (ib has precisely one entry), the row sum is preserved because we multiply the first

NUMERICALLY STABLE LDLT-FACTORIZATION OF .Z-TYPE SADDLE POINT MATRICES 219

column by 1 and add it to one of the other columns of the mairiso nowB(+1 is a gradient matrix
as well. O

REMARK 3.5 Exact cancellation can occurli + during Gaussian elimination. Fortunately, we know
precisely when this happens, namely, if there is a row (not the first orig{’ithat is a multiple of the

first row. As shown in the last proof, the entries on that row are summed B and cancel each

other out because their sum is zero. It is advantageous to know when cancellation happens because this
allows us to insert the nodes beforehand in the ordering in the symbolic factoring phase, as we will see
in Sectionb.

REMARK 3.6 ForB®"), the size of the entries does not change. Each roB{ihcan be traced back to
arowinB = BO. If the row in BY) is not empty, the size of the entries (at most two) on both rows is
exactly the same. This is an immediate consequence of the proof of the last theorem. Entries on a row
can move and possibly coincide, in which case they annihilate, but the size never changes. So we have

maw; |bi(})| < max;j |bi(j0)|. This simplifies the study of the numerical stability of the elimination.

Summarizing, we can say that with R@& much of the structure of the original saddle point matrix
is preserved during Gaussian elimination. In particular, all Schur complemegismétrices are again
Z-matrices. This is advantageous for the study of the stability of the method, which we consider next.

4. Numerical stability

For the numerical stability of the factorization, we need to show that both the growth fadifined
in (1.5 and the elements df are bounded (sddigham 2002 Chapter 9Duff et al, 1986 Chapters 4
and 5; andAshcraftet al, 1999 for more details).

The pivoting strategies of Bunch—Parlett and Bunch—Kaufman guarantee the hourd
(2.57)™M-D This bound is very weak because it grows exponentially with the problem size.
Fortunately, in many cases, the growth factor stays far away from the bound, but it appears to be hard to
find a substantially smaller upper bound. We found such a smaller boursé-foatrices. In this section,
we present a bound gnthat depends only linearly am, i.e. the number oP-nodes. A similar bound
will be given for the elements df.

In this section, we assume that all entriesRBrhave a value i{—1, 0, 1}. This is not a restriction
because ifB does not satisfy this property it can be forced to do so by a simple row scaling. Note,
however, that such a scaling influences the condition numbi€r, é6r better or worse.

Before we give the theorem, we introduce the numbeh) that denotes the maximum number of
entries per row in the matriA. Moreover, we introduce a number for the largest entry in the matrix
the formal definition being

u(A) = max|aij .
This can be used to define the growth fagi@arof A during the elimination
pa =maxu(AD)/u(A).

THEOREM4.1 LetK be anZ-matrix with an ordering given by Algorithrd.2and letm be the number
of columns inB; then for thel. DL T-factorization ofK it holds that: (i) the growth factor is bounded by
o Mmax(pau(A), 1)
max(u(A), 1)
and (i) the elements ih are bounded by

with pa < 2+ m)z(A) — 1,

220 A. C.DENIET AND F. W. WUBS

u(L) < max([(1+ m)y (A) —1]u(A), 1).
Hence, the factorization is numerically stable.

The bound on the growth factor is much smaller than the general one for indefinite matrices. It
grows, in the worst case that A) ~ 1, only linearly withm instead of exponentially.

REMARK 4.2 Another intriguing issue of the theorem is that in the case wheregnad+m) y (A)—1]

#(A) < 1 both the growth factor oK and the elements df are bounded by 1. Indeed(A) can be

made arbitrarily small by scaling, but as mentioned before, this influences its condition number.
However, if we do so the bounds tell us that the scaling should be more severe if the computational grid
for the problem, in the case of a Stokes problem, is refined. We would rather like to have found bounds
independent of the grid resolution. This is precisely what we saw for an example that is presented at the
end of this section. However, we were not able to prove it. Hence, we conjecture that there is a class
of problems, the Stokes problem, for which (if combined with an appropriate ordering) the bounds are
independent of the grid resolution and hence a bounded scaling exists such that the growth féctor of

is bounded by 1. This is similar to the Cholesky factorization of a symmetric positive definite matrix, of
which the growth factor is also bounded by 1.

We give the proof of Theorem.1 later in this section, after introducing a few useful lemmas on
gradient matrices. For these general lemmfaand B are arbitrary, as ane, m andl.

LEMMA 4.3 LetG be an invertible gradient matrix with entriesfin1, 0, 1}. Then all entries of5~1
arein{—1, 0, 1} as well.

Proof. The matrixG is a so-called totally unimodular matrix (see Theorem 6.27 ffoook et al.,

1997. A totally unimodular matrix is a matrix with elements §r-1, 0, 1} for which the determinant

of every square submatrix has also a valu¢-ii, 0, 1}. Hence, if the gradient matrix is nonsingular,

then its determinant has magnitude 1. The inverse of a nonsingular totally unimodular, matrix is also
totally unimodular, since one can express every subdeterminant of the inverse in a subdeterminant of the
original, divided by the determinant of the whole matrix times a factor of unit magnitude (see Section
0.8.4 inHorn & Johnson1985. This completes the proof. O

LEMMA 4.4 LetG be an invertible gradient matrix with values{in1, 0, 1}. There exist permutation
matricesQ1 and Q2 and a diagonal matrio with entriest1 such that! = DQ1G Q2 is a unit upper
triangular gradient matrix. Moreover, the mattixis an M-matrix.

Proof. The mostimportant concern is to get it in upper triangular form. We will prove that by induction.
First, we show that it is possible to bring a general nonsingular gradient n&atrbordern to the form

G u
0 d)’
whered is a scalar. For that, note th@must contain at least one row with a single element, otherwise
the sum of all columns would be zero and hence the matrix would be singular. By column and row
permutations, this element can be brought to the last position, giving a matrix of the above form.
Now, assume we have the above form whetie a square upper triangular matrix of ordeiSince
the determinant of the whole matrix is the product of the determinathiaoid that ofG’, the latter must

be nonsingular. Henc&' is also a nonsingular gradient matrix and we can repeat the process described
above. After thatd is extended to an upper triangular matrix of order 1 andG’ is shrunk to a matrix

NUMERICALLY STABLE LDLT-FACTORIZATION OF .Z-TYPE SADDLE POINT MATRICES 221

of ordern — k — 1. Hence, by induction, we see that the matixcan be brought to upper triangular
form by permuting rows and columns.

This gives us an upper triangular matkix= Q1G Q> with entries+1 on the diagonal. Chood®
equal to the diagonal d§ andU = DU = DQ1G Q> is a unit upper triangular gradient matrix.

According to Example 6.5b iAxelsson(1994), all upper and lower triangular matrices with positive
diagonal elements and nonpositive off-diagonal elementManeatricesU is of this form. O

By definition, M-matrices have non-negative inverse; hence, together with LefrBvee immedi-
ately have the following.

COROLLARY 4.5 The elements of the inverseldfdefined in Lemma.4are in{0, 1}.
In the following lemmas, we derive some properties:of
LEMMA 4.6 LetA e R™™M andB e R™!; then

u(AB) < x (A u(A)u(B),
1(AB) < x (BN u(A)u(B),
p#(AB) < mu(A)u(B).

Proof. The second bound follows from the first if we note thetAB) = u((AB)") = u(BTAT).
Becausey (A) < mand y(BT) < m, the third bound is easily obtained as well, so we have only to
prove the first bound. This follows from

Zalkbkj

u(AB) = max max2|ak||bkj| #(B)maXZ|a|k| u(B)x (Au(A). (4.1)

O
If we deal with a diagonally dominant matrix, we have a sharper bound.

LEMMA 4.7 LetA € R"™*™M be diagonally dominant anf € R™*!: then

u(AB) < 2u(A)u(B).

Proof. The matrixA is diagonally dominant, SEK 1 laik] < 2lai | < 2u(A). If we use this in the last
step in @.1) in the proof of Lemmat.6, we get the desired expression. O
If at least one of the two matrices in a matrix product is a gradient matrix, we can say more about
the size of the elements of the product. In the following lemma, weAuse 0 (or A > 0) to express
that all elements oA are nonpositive (or non-negative).

LEMMA 4.8 LetG e R™™ be a gradient matrix with entries {r-1, 0, 1} and letA e R™! If A< 0
or A > Othen
u(GA) < u(A).

Proof. This inequality follows immediately from the properties of a gradient matrix as given in Defini-
tion 1.1 An entry of G Ais either equal to an entry & or equal to the difference of two entries Afof
equal sign, s (G A) < u(A). O

222 A. C.DENIET AND F. W. WUBS

LEMMA 4.9 LetG1 € R™™M andG, e R™™ be gradient matrices with entries #l. Let G, be
invertible; then

1(GGhH <1

Proof. The matrixG; is an invertible gradient matrix with entriesdfl, so we can apply Lemn¥a3and
obtain a factorizatimﬁsg1 =Q,U —1DQ1, whereQ1 and Q2 are permutationd) is a diagonal matrix
with +£1 on the diagonal and is a unit upper triangular gradient matrix. If we insert the expression for
Gy tin u, we get

#(Gngl) = #(Gleu _lDQl) = ﬂ(Gleu _1),

where the last equality holds becauysés independent of permutations and diagonal scaling with
(This follows from the definition, but can be derived from Lem#é as well.) Note thaGG,; Q, is a
gradient matrix and that & U ~1 because of Corollarg.5. This allows us to apply Lemm&8and we
obtain

#(G1G3h) = u(G QU™ <u(U™ =1
O

LEMMA 4.10 LetG; € R™M andG, € R™*" be gradient matrices with entries il such that the
matrix [G1G>] is a gradient matrix as well. L&b; be invertible; then

u(GI'Gy) < L.

Proof. We extend the composite matrig{ G»] with a zero block and a minus identity matrix such that
we get the invertible gradient matrix

G, G Gt Grle
G= (Ol |2) with inverseG 1 :(é 1 I 2).

Lemma4.3 applies toG, so we immediately see that the matfbi‘le, which is a submatrix 061,
has entries int1. O
We now have all the tools to prove the theorem.

Proof of Theorem#t.1 For part (i), the goal is to obtain a bound on the size of the entri¢s‘hin
terms of the largest entry ¢ ©. We start with the following considerations.

(1) The size of the entries ik) is not influenced by a change of ordering within the firgtnodes
and the corresponding-nodes.

(2) K© is an.Z-matrix, so Remarld.6 implies thatu (B") < x(B©) < 1 for alll. The critical
part is the growth of the entries i), so we will try to bound the growth factgra of A during
the elimination.

(3) Theorem3.3 states that for all the matrix A is positive definite. Gaussian elimination on
symmetric positive definite matrices is unconditionally stable with growth faeter 1 (see
Problem 10.4 irHigham 2002. Hence, we can ignore the elimination of sin§lenodes in the
computation of the growth factor. Consequently, we can focus on the effect of the elimination of
the coupledv- and P-nodes.

Suppose that at a certain stage of Gaussian elimination wekusge® pivots. Then, we can reorder
and split the original matrices

NUMERICALLY STABLE LDLT-FACTORIZATION OF .Z-TYPE SADDLE POINT MATRICES 223

Air A Bi1 B
AP A and B = (P P
A1 Axp Boi1 B2z
such that thé& 2 x 2 pivots are in the first block&;1 and B11. Note that with this choic®; 1 is square.
If we insert the splitting of the matrice& andB in K, we get, after a little rearrangement,

A1 Bu
B, O
A21 B
B, O

A2 Br2
B, O
A2z Bp2
B, O

(4.2)

The matrixBj1 is square and invertible, so

-1 _
A1 Bu 0 By
T i = -1 -T) (4.3)
By O Bj1 —Big AuBygy

Hence, the Schur complement of the first two block rows becomes
(2 Boz — Bo1B Blz)
T TR-TRT
B2 — BioBi1 By 0

“TRT -1 -1 —TRT
S22 = Agp = A1Bry By — By Biy A+ By Byg AgiBry By

with

Because of Theored.4, we know thatB,o — 82181_11 B2 is a gradient matrix (with a bound of 1);
hence, to compute the growth factor we have to focus on the 8gck

1(S2) < 1Ay + :L‘(A21B:I._1T Bj) + /‘(leBl_llAlz) + #(leBl_llAllBl_lT BJy). (4.4)
We now apply Lemmd.6in order to get
1(S22) < 1(Agp) + 21 (A (A (Bpy B + ky (A (A1 u(ByBiH?. (4.5)

The matricesB,1 and By1 are gradient matrices arigh4 is invertible, so we can apply Lemnda9 and
that gives

£ (By B < 1. (4.6)

This simplifies the bound to

1(S2) < 1(Agp) + 2y (Ao i (Agp) + Ky (A e (Ada). 4.7)

It is obvious that for all four subblocks oA, we haveu (Aij) < u(A). Furthermore A is positive
definite, so it has strictly positive diagonal entries and the off-diagonal bigeksatisfiesy (A12) <
x (A) — 1. Usingy (A11) < y(A) andk < m, we finally get

1(Sp) < A+ 2(x(A) =1 + my (A)u(A).

224 A. C.DENIET AND F. W. WUBS

Division by x(A) gives the bound for the growth factpp of A. Next, we have to combine this result
with the fact that there is no growth in the element$38f during the elimination (see Remask) in
order to obtain a growth factor fd¢. The maximum oK is just the maximum of:(A) and 1, and the
maximum over allK ® is just the maximum over alh!) and 1, where the maximum over &) is
preciselypau (A), which leads to the bound given in part (i).

For part (i), the bound on the size of the elementd jrit is sufficient to look at a general lower
diagonal block because for each entryLofve can define a block that includes that entry. If we use the
splitting in (4.2 and the inverse as i®(3), a lower diagonal block of is given by

(A21 321)(A11 Bll)_l (32151_11 Alel_lT - BZlBl_llAllBl_lT) 4.8)
B, 0/\Bj O 0 B,B1y

Now, we have to find the bounds for the subblocks. WAtIGY, we already have a bound for the heading
block. For the(2, 2) block, we can use Lemm&1Q which gives

#(BLBL) = u(Bi'Bp) < 1. (4.9)
The right upper block is a bit more difficult, but once more usih@)(and Lemmat.6, we get

1(A21BL — Ba1B A1BL) < x (A2n) i (Aon) (B
+ku(B21BrH) x (Arn) (A1) (B
<A = Du(A) + Ky (A u(A)
<((M+ Dy (A) — Du(A). (4.10)

Combining the bounds finishes the proof. O
Compared to the general boupd< (2.57)"*™-1, this bound is very sharp. In practice, even this
bound for.#-matrices is hardly attained, first of all because the bounds in LerdrBasid4.7 are quite
pessimistic. Especially, if we choose fill-reducing orderingsF¢A) U F(BBT), the matrix821Bl‘ll
will not be a matrix full of 1s, but sparse, and therech;lBl_llAllBl_lT Ble will have a maximum
element much smaller thdqgy (A)u (A). Even if BZlBl_ll would be a matrix full of 1s, it is likely that
the product will have a smaller maximum value because in general summation of entries on a row in
A1 will be much smaller thany (A)u (A).
For one special case, we can give slightly better bounds, i.e. Whgiagonally dominant.

THEOREM 4.11 LetK be an.%#-matrix with an ordering given by Algorithr2.2 and letm be the

number of columns ifB. Furthermore, lefA be a diagonally dominant; then for theD L "-factorization
of K it holds that: (i) the growth factor is bounded by

< maxu(A)pa, 1)

max(u(A), 1) ’

and (ii) the elements ih are bounded by

with pa < 2m+ 3,

u(L) < maxq(Zm+ 1)u(A), 1.

Hence, the factorization is numerically stable.

NUMERICALLY STABLE LDLT-FACTORIZATION OF .Z-TYPE SADDLE POINT MATRICES 225

Proof. We can give sharper bounds on the terms4m)(BecauseA is symmetric and diagonally
dominant, we have
n
> laijl < lail < u(A).
j=1j#i

It immediately follows that the off-diagonal block; > and Az; have row sums smaller than(A). If
we use that in4.1), we can derive a sharper bound fo(rA2181_lT Ble), ie.

1(Ag1Br BY)) = (B B At2) < pt(Byy B u(A) < u(A).
We can apply Lemm@4.6in combination with Lemmd.7to the last term in4.4):
#(Bpy B Ay By BJ)) < kia(Byy B i (Byy By Agy) < 2ku(Byy By u(Arn) < 2mu(A),

where we again used the fact the(lBZlBl‘l1 < 1, u(Aij) < u(A) andk < m. Combining all estimates
gives

1(S2) < (2m+3)u(A).

Division by x(A) provides the bound for the growth factox.
With respect to the bound on the elementd ofif A is diagonally dominant, we have instead of
(4.10 the bound

#(A21BL" — B21Br AuBL) < u(A) + 2k (A) < 2m+ Du(A). 0

REMARK 4.12 The proofs of Theorends1 and4.11can be extended to a wider class of saddle point
matrices. The only relevance of-matrices lies in the bounds(B,,B;;") < 1 andu(Bi'B;,) < 1.

If B is not a gradient matrix, it might have other properties such that the entries of both matrices are
bounded. That would be enough to compute much better bounds for the growth factor and for the size
of the elements i than the general ones for indefinite matrices.

EXAMPLE 4.13 Atthe end of this section, we show as an example the growth factér-foatrices from
a Stokes problem on a square staggered grid. We will describe the problem in more detail in Gection
We compute an ordering for the matrix with Algorithtn2 based on three different initial orderings
for F(A) U F(BBT) [natural, reverse Cuthill-McKe&gorge & Liy 1981) and approximate minimum
degree Amestoyet al., 1996 2004)]. We perform Gaussian elimination on the reordered matrix, mean-
while monitoring the growth of the entries in the Schur complement. The results can be foundsn Fig.
and Tablel.

In Fig. 5, we plotp) = u(AD)/u(A©) for each Schur complemehtor a square grid of size99.

The actual growth factor is the maximum of aﬂ)s. For all three orderings, the growth factor is rather
small. The theoretical bound can be computed using Thedrétbecause the matrix is diagonally
dominant. Here, the bound jig < 2m + 3 = 163, which is still quite far from the computed values of

pa. Itis of course much better than the general bous@22 ~ 2.60 x 10°L. Of interest is the effect

of the different ordering algorithms on the growth of the elements. In the case of the natural ordering,
the maximum growth is realized almost immediately after elimination of the first row in the grid. After
that, the growth remains constant except for a tiny peak halfway. The best results in terms of a small

226

A. C.DENIET AND F. W. WUBS

15

10

0

FIG. 5. /4(A('))//¢(A(0)) during Gaussian elimination for the natural (dash-dot), approximate minimum degree (dash) and reverse
Cuthill-McKee (solid) for the Stokes problem on a square grid ef®cells,n = 144, m = 80.

TABLE 1 Growth factorp 5 for several Stokes matrices for the natural ordering{, reverse
Cuthill-McKee fcm), approximate minimum degrearid and the theoretical upper bound

given by Theorem.11 (Bound. The column n contains the number of V-nodes and m the
number of Pnodes

Matrix n m nat rcm amd Bound
Stokes 3x 3 12 8 6.0 5.6 6.5 19
Stokes 5x 5 40 24 9.0 5.0 7.5 51
Stokes 9x 9 144 80 15.0 5.0 8.5 163
Stokes 17x 17 544 288 27.0 5.0 14.0 579
Stokes 33x 33 2,112 1,088 51.0 5.0 15.0 2,179
Stokes 63x 63 8,320 4,224 99.0 5.0 15.0 8,451

growth factor are obtained for the reverse Cuthill-McKee ordering. This is in agreement with a theorem
in Bohte(1975. Apparently, a small bandwidth is a good guarantee for a small growth factor.

To illustrate how the growth factosa of A depends on the size of the grid and the number of
P-nodes we show Table As one can see, the growth factor remains very small in the case of reverse
Cuthill-McKee. It seems to be more or less independent of the grid size. This is in contrast to the
natural ordering, which gives a growth factor that increases with the grid size, by approximately a factor
of 1.5 if the number of nodes is doubled in two directions; more precisely the data are fitted exactly by
3(1+ +/m+ 1)/2. Note that it still grows less than linearly with. The growth factor of approximate
minimum degree is somewhere in between those two and appears to flatten for bigger problems. By
inspection of the factorization, we saw that also the elements afe bounded for reverse Cuthill-
McKee and approximate minimum degree. In all cases, the bpungrovided by Theorend.11is
quite pessimistic. In the experiments, it was easy to find a scaling that bounded the elerhenyoie

for all resolutions, independent of the mesh size. These two observations led to the conjecture posted in
Remark4.2

We can conclude that for Gaussian elimination®rmatrices both the growth factprand the size
of the elements il. are bounded by a number that grows linearly withi.e. the number of indefinite

nodes. So Gaussian elimination is numerically stableZfematrices and iterative refinement is hardly
needed to compute accurate solutions.

NUMERICALLY STABLE LDLT-FACTORIZATION OF .Z-TYPE SADDLE POINT MATRICES 227

5. Fast insertion of P-nodes

The application of Algorithn2.2requires the insertion of the-nodes into the ordering for thé-nodes.
In this section, we show that this can be done very efficiently.

In Corollary3.2, we expressed that the sequenc®bfs is independent oA; it only depends on the
ordering of theV -nodes. We can exploit this for the insertion®nodes in the ordering for thé-nodes.
The insertion can be done before the actual elimination based on the entBembf. Especially, if we
deal with an% -matrix, an efficient algorithm exists. We only need to know the sparsity patteBn of

The P-nodes are inserted by Algorith1l The basic idea is that we track the elimination of
P-nodes in an ancestor array At the beginning, all nodes are their own ancestors;[gb =i for all
i =1,..., m. We add one extra element to this vectefm + 1] = m + 1. If a noden in V is coupled
to two nodesj andk in P, it has to be eliminated together with one of them. Say we eliminated
j together. As we saw in the proof of Theor@, all V-nodes that were coupled foget coupled to
k instead. We reflect this by a change in the ancestor asrf)j: = k; k becomes the ancestor pfin
the ancestor array, we can easily check what happened ®-tiedes by iteration on the array until a
fixed point is found. All fixed points are not yet eliminatBdnodes. There is freedom to chogser k.

It is beneficial and in agreement with the minimum degree idea to pick the one with the least fill in the
corresponding column d8(). We will use an arrayinzto store an estimate of the number of nonzeros

in the columns oB"). The array is used to make the decision as to wheghark is to be eliminated.

We will explain this in more detail in Remagk5.

ALGORITHM 5.1 Insert theP-nodes in the ordering fov .
Assume that we have a permutatign= {q, (1), q,(2), ..., g, (n)} for the nodes irV.

1. Initialize the ancestor arrayfi] =i fori = 1,...,n.

2. InitializennZi]—the number of nonzeros on theh column inB—fori =1,...,n.
3. Initialize final orderingys = 4.

4. Fori =1ton

(a) Findj andk, the row numbers of the entries on i)-th row of B.
(b) If there is only one entry assidgn:= (m + 1).

(c) If the row is empty assigf ;= (m+ 1) andk := (m + 1).

(d) Trace back ancestors pfandk until fixed points are found:

- Repeatj ;= z[jluntil j == z[]]

- Repeak := 7 [K] until k == z[K]
(e) Ifj ==Kk

- Expand the orderings := {qf, 9, (i)}
(f) Else

- If (j == (m+ 1)) or (nn4K] < nnZj]), swapj andk,

- Expand the orderings := {qr,q,(i), j + n},

- Changer to reflect eliminationz[j] := k.

- Estimatennzafter eliminationnnZk] := nnZj] + nn4k] — 2.

(g9) Endif
5. Returngs.

We add a few remarks on this algorithm.

228 A. C.DENIET AND F. W. WUBS

REMARK 5.2 One might fear cycles in the ancestor artzaguch that the algorithm never terminates
Step 4(d). Fortunately, the only cycles that can appear are the fixed points. This can be simply
explained as follows. Initially, all points are fixed points. The vector is changed only at Step 4(f) where
one fixed point of the ancestor array is replaced by a reference to another fixed point. So during the
algorithm all paths inc will always end in a fixed point; hence, the algorithm will certainly terminate.

REMARK 5.3 The length of the iterations at Step 4(d)risn the worst-case scenario. The number of
iterations is related to the depth of the elimination tree with respect to the nodedfimve use a fill-
reducing ordering for a 2D problem, it will hardly ever be bigger tham. In any case, the time used
by the algorithm was always a fraction of the time used to compute the orderifig f&yrU F(BBT).

REMARK 5.4 If we trace back the ancestors of two noglesdk in Step 4(d), the fixed point ancestors

that we finally get might very well be equal. If they are, the two entries have the same magnitude but
opposite sign at the same position, so summing up gives zero: they annihilate. Hence, in that case, the
nodew is no longer coupled to a pressure node, so we cannot insert any. This conforms with Step 4(e).
Only if we have anZ-matrix, do we know exactly when this exact cancellation happens.

REMARK 5.5 If there are two entries in a row, say at positigrendk, we have a choice in Step 4(f) as

to which of the two we will eliminate and insert in the ordering. Remember that the goal is to reduce the
fill in the factorization. In 8.1), we see that the amount of (new) fill in the Schur compler#éht? is
determined by the number of nonzeros in the vethgp)T, i.e. the column irB® that belongs to the
P-node that is eliminated. So to reduce the number of nonzera81®, we should eliminate the node

with the fewest entries in its column. However, it is too expensive to compute the number of nonzeros
in the columns ofB") precisely; therefore, we estimate this number in the amag At Step 2, the
numbernnZi] is computed as the number of nonzeros onitiecolumn inB. At that step it is still

exact. However, if at Step 4(f) is eliminated we estimate that the number of nonzeros in the column
of k in B!*D is equal to the sum of the number of entries in the two columns minus 2. We subtract 2
because we delete the first rowB{). This number is an overestimate because it does not take account
of exact cancellation. Nevertheless, the approximation is good enough to make the right decision in Step
4(f). If the decision leads to an elimination kinstead ofj, we swap both entries in order to simplify

the notation in the algorithm.

If we do not have ar¥-matrix, a similar algorithm can be used. Coroll&2 holds for general sad-
dle point matrices, so still onl3 and an ordering fo¥ are needed to insert tHe-nodes. Nevertheless,
it will be less efficient because we cannot benefit from a simple structuBe efirthermore, we need to
monitor the size of the entries B() as well and it will be more difficult to detect exact cancellation.

6. Numerical results

In this section, we will show the results of our algorithm for two sets of matrices. We implemented
Algorithms 2.2 and5.1in MATLAB 7.1.0.183 (R14) Service Pack 3. The first ordering is computed
with MATLAB'’s symmetric approximate minimum degree ordering SYMAMBNnGestoyet al., 1996
2004.

We compare the results of Algorithia2 to those of PARDISO version 3.1 (serialpghenk &
Gartner 2004 2006 Schenket al., 2000, which is able to factorize indefinite symmetric matrices.
It uses either AMD (approximate minimum degree) or METIS (nested dissedtamypis & Kumar,
1998 as the basic ordering. We use the standard parameter settings except that we follow the advice of
the manual to use scaling (IPARM(11) = 1) and weighted matchings (IPARM(13) = 1) in the case of

NUMERICALLY STABLE LDLT-FACTORIZATION OF .Z-TYPE SADDLE POINT MATRICES 229

highly indefinite matrices like saddle point problems. If we choose to switch off weighted matchings,
PARDISO is still able to build a factorization, but the error in the solution without using iterative refine-
ment rises from(10-13) to ¢/(1075). So we really need weighted matchings to compute an accurate
factorization.

The package PARDISO offers the possibility of ignoring its ordering algorithms and instead per-
forms factorization based on an ordering provided by the user. We use this facility with the ordering of
Algorithm 2.2 as input. In the tables in this section, we will use ‘PARDISO(amd/metis/uo)’ to denote
the PARDISO factorization based on amd, metis and the user ordering, respectively. The MATLAB
factorization is calledl: DL T(amd)'.

All numerical experiments were done on a PC with two 2.4-GHz AMD Opteron processors and
7.6-GB memory.

6.1 Stokes flow in a driven cavity

The first problem is a 2D Stokes equation in a driven cavity. Here, the following set of equations has to
be solved on the unit square:

—vA4u+Vp=0
(6.1)

V.u=0

whereu(x, y) is the velocity field andp(x, y) the pressure field; the parametecontrols the amount
of viscosity. The nontrivial solution is determined by the boundary conditions, which are zero on three
sides of the unit square. At the upper boundary=(1), we prescribe a horizontal velocityx, 1) = 1.

We can get rid of the parameteiby defining a new pressure varialjje= p/v. If the first equation
is divided byv, we can substitut@ by p and the parameteris gone. So we may assume that 1.

If the equations are discretized on a uniform staggered grid (a C-grid) with mesh, sizeget an
Z-matrix. It is singular because the pressure field is determined up to a constant. We get rid of this
problem by fixing one pressure node in the domain. So the number of pressure nodes is reduced by one.
Table2 shows the size and the number of nonzeros in the upper triangular part of the Stokes matrices.

The results of factorization of these matrices with different ordering algorithms can be found in
Table3. Obviously, Algorithm?2.2is able to produce an ordering that gives a factorization with low fill.
For all grid sizes, it results in a factorization that is sparser than the factorizations of PARDISO. The
large gap between the numbers of nonzeros for PARDISO(uo).dnd" (amd) is remarkable since

TABLE 2 The set of Stokes matrices. n is the number of V -nodes, m the number of P-nodes
andnnzthe number of nonzeros in the upper triangular part of metrix

Matrix n m n+m nnz
Stokes 3x 3 12 8 20 48
Stokes 5x 5 40 24 64 180
Stokes 9x 9 144 80 224 684
Stokes 17x 17 544 288 832 2,652
Stokes 33x 33 2,112 1,088 3,200 10,428
Stokes 65x 65 8,320 4,224 12,544 41,340
Stokes 12% 129 33,024 16,640 49,664 164,604
Stokes 257% 257 131,584 66,048 197,733 656,892

Stokes 513« 513 525,312 263,168 788,480 2,624,508

230 A. C.DENIET AND F. W. WUBS

TABLE 3 Number of nonzeros for various factorizations of the Stokassices

Matrix PARDISO(amd) PARDISO(nd) PARDISO(uo)LD LT(amd) Estimate
Stokes 3x 3 146 129 114 82 49
Stokes 5x 5 646 743 555 403 279
Stokes 9x 9 3,203 3,668 2,829 2,134 1,705
Stokes 17x 17 18,060 20,731 15,296 11,415 9,700
Stokes 33x 33 98,936 114,307 79,131 63,304 56,926
Stokes 65x 65 529,368 594,132 448,320 365,311 345,310
Stokes 12% 129 2,761,774 3,014,234 2,444,302 2,039,458 1,995,350
Stokes 25% 257 13,999,517 14,615,960 12,682,925 10,877,966 10,838,918
Stokes 513« 513 69,350,006 69,354,497 63,766,827 55,900,336,276,468

the same orderings are used. The only explanation we have is that probahhfabwr of PARDISO
contains a lot of entries close to machine precision because it cannot detect exact cancellation, as we
could in our algorithm.

The last column in Tabl& contains the number of nonzeros in th® L T-factorization of the re-
ordered fill matrixF (A) U F(BBT). We used MATLAB’s symbfact function to compute this number.
If we compare the last two columns, we can conclude that the number of nonzeros in the symbolic
factorization ofF (A) U F(BBT) based on the first orderirgy, provides a reasonable estimate for the
number of nonzeros that we get in the factorization of #enatrix K after extension of the ordering
to the whole matrix with Algorithn2.2. The estimate becomes even better for larger matrices.

6.2 Matrices of Tima

The second set of test matrices consists of seven matrices provided by Mirdste; ®f which four
can be found inflima(2002. The matrices arise in mixed-hybrid finite-element discretizations of 3D
potential fluid flow problemsNlarySkaet al., 2000. In Table4, we show the size and number of nonze-
ros of the matrices. ITima(2002), the matrices have a slightly larger number of nonzeros because the
sparse matrix format contains some ‘zero nonzeros’ that we renmapeidri. We have to remark that
the Tima matrices do not satisfy the assumption that the number of nonzeros in a Bois smaller
than the number of nonzeros & All As in the Tuma set have at most three nonzeros per row, while
at least a quarter of the rows Bihave more than three nonzeros. Maybe Rulds not the best in that
case. Possibly, a weakening of the rule could provide a further improvement of the performance.

Table5 contains the number of nonzeros of the factors with different fill-reducing ordering algo-
rithms. We compare the results of Algoritt@2 with the results of ima and PARDISO. The ordering
of Tlima is better than the two orderings of PARDISO. However, in all cases our ordering gives the
sparsest factors. The big difference between the approximate minimum degree and nested dissection
ordering in PARDISO is quite remarkable. It must be due to the structure ofttiTa Thatrices because
for the Stokes matrices the results for both orderings are similar. The qualitative difference between the
two sets of matrices is noticed as well in the effect of the choice we made in Ré&atkwe do not
eliminate the node that has the least nonzeros in its colunB pbut simply pick the first node, the
results ofL DLT(amd) in Table3 hardly change, whereas the results in Tab&eriously deteriorate.

Also, here we added in the last column the estimate of the number of nonzetd3lof(amd),
which is in this case slightly worse than that for the Stokes matrices.

NUMERICALLY STABLE LDLT-FACTORIZATION OF .Z-TYPE SADDLE POINT MATRICES 231

TABLE 4 The set of Tima’s matrices. n is the number of V-nodes, m the number of
P-nodes and nnz the number of nonzeros in the upper triangular part ofiditex

Matrix n m n+m nnz

S3P 270 207 477 1,008
M3P 2,160 1,584 3,744 8,136
DORT2 7,515 5,477 12,992 28,440
DORT 13,360 9,607 22,967 50,560
L3P 17,280 12,384 29,664 65,376
dan2 63,750 46,661 110,411 318,304
novak 152,645 114,113 266,758 744,912

TABLE 5 Number of nonzeros in various factorizations of tieriB matrices. The column
Ttima contains results fromima(2002

Matrix PARDISO(amd) PARDISO(nd) PARDISO(ud)DLT(amd) Toma Estimate

S3P 3,154 3,290 2,754 2,195 2,957 1,729
M3P 60,305 61,144 45,248 35,553 44,002 31,469
DORT2 558,522 276,376 243,088 208,393 231,312 188,697
DORT 1,278,505 641,788 598,130 527,602 551,215 491,736
L3P 1,445,900 1,000,789 785,689 690,932 — 643,277
dan2 4,465,051 3,040,497 2,686,839 2,240,202 — 1,973,721

novak 15,453,022 9,785,185 9,351,503 8,217,979 —,577,723

7. Discussion

In this paper, we proposed a new algorithm to compute a stable fill-reducing orderiggfioatrices,

a special class of symmetric saddle point matrices. The algorithm is based on a simple idea: compute
an ordering for thev-nodes first and then add the-nodes. The ordering for th&-nodes is a fill-
reducing ordering foF (A) U F(BBT). The P-nodes are added under the rule ‘elimin&aodes as

soon as possible’. The final ordering is guaranteed to be feasible and in the casmalfrices it can be
computed very fast.

In Section3, we showed that the ordering guarantees that much of the structure of the saddle point
problem is preserved in the Schur complements during Gaussian elimination; in particular the zero block
remains empty an@() is independent oA!). Positive definiteness ok and theZ-matrix properties
are also preserved. From an engineering point of view, this is a very attractive property. Moreover, it
eases the proof of the numerical stability of the method.

One of the important results is Theordn, where we give a bound for the growth factor in Gaussian
elimination onZ-matrices as well as a bound for the size of the elements in the facibthe LDL -
factorization. The general bound for the growth factor grows exponentially fast, but it is too pessimistic.
At least in the case ofF-matrices with the ordering of Algorithi®.2, the growth factor is bounded by
a number that grows linearly with the dimension. It is likely that this holds for a larger class of saddle
point matrices because it seems possible to weaken the assumptions of the @dsfntt a gradient
matrix, it might have other properties such ttﬁtlBl‘ll and Bl‘l1 B12 are bounded, as we have argued
in Remark4.12 We have to emphasize the word ‘might’ in the previous sentence, as clearly there exist
examples oBs such that entries il?»ngl‘ll become very large.

232 A. C.DENIET AND F. W. WUBS

The numerical experiments on the Stokes adh@ matrices show that the algorithm is able to
produce a good factorization with a sparser structure than the factorizations of other methods.

Another nice property is that the very same algorithm can be used for more génanalrices like
the 2D Navier—Stokes equations (with Coriolis force) on a C-grid.

There is a lot more to study. In some cases, Ruleshould be weakened to get a sparser factor-
ization. There might be better ways to compute the first ordering because we lose information in the
construction ofF (A) U F(BBT). In general, we overestimate the fill with this matrix. For example,
the matrix will even be dense B contains a single full row. One more important question: how do we
generalize the algorithm such that it is able to handle a saddle point matrix that is #étraatrix?

Clearly, there are several ways to do this, but which one is the best, and can we keep the nice properties
that we showed in Secticd?

Another interesting subject is the generalization to higher-order discretizations of the gradient in
flows. In many cases, the new gradient matrix can be written as the product of a smoothing matrix and a
gradient matrix as defined in this paper. This knowledge should be used to derive a variant of the current
algorithm and to prove the stability of the algorithm. For other generalizations, we would start over again
from a nested dissection (see Remark) of the problem. The separators surrounding a subdomain
should be such that the problem on that subdomain is well conditioned or, in partial differential equation
terminology, it should be well posed.

Finally, in this paper we showed that the simple ideas behind the algorithm make sense. The con-
struction of the ordering is straightforward and fast. It keeps nice properties of the matrix during Gaus-
sian elimination and in the experiments it appears to be powerful enough to result in a factorization with
significantly lower fill than the factorizations of existing methods.

Acknowledgements

We thank Miroslav Tima for the permission to use his set@tmatrices fromTima(2002. We also
thank the referees for their constructive remarks, which helped to improve the paper.

Funding

Technology Foundation STW; Applied Science Division of NWO; Technology Programme of the
Ministry of Economic Affairs GWI (5798).

REFERENCES

AMESTOY, P. R., Davis, T. A. & DUFF, |. S. (1996) An approximate minimum degree ordering algoritBhAM
J. Matrix Anal. Appl, 17, 886—-905.

AMESTOY, P. R., Drvis, T. A. & DUFF, I. S. (2004) Algorithm 837: AMD, an approximate minimum degree
ordering algorithmACM Trans. Math. Softw30, 381-388.

ARIOLI, M. & M ANZINI, G. (2003) Null space algorithm and spanning trees in solving Darcy’s equBliof43,
839-848.

ASHCRAFT, C., GRIMES, R. G. & LEWIS, J. G. (1999) Accurate symmetric indefinite linear equation solvers.
SIAM J. Matrix Anal. App|.20, 513-561.

AXELSSON, O. (1994)lterative Solution Method<Cambridge: Cambridge University Press.

BENzI, M., GoLuB, G. H. & LIESEN, J. (2005) Numerical solution of saddle point problessta Numer. 14,
1-137.

NUMERICALLY STABLE LDLT-FACTORIZATION OF .Z-TYPE SADDLE POINT MATRICES 233

BOHTE, Z. (1975) Bounds for rounding errors in the Gaussian elimination for band sysiemst. Math. Appl.
16, 133-142.

BUNCH, J. R. & KAUFMAN, L. (1977) Some stable methods for calculating inertia and solving symmetric linear
systemsMath. Comput.31, 163-179.

BUNCH, J. R. & RARLETT, B. N. (1971) Direct methods for solving symmetric indefinite systems of linear equa-
tions.SIAM J. Numer. Anal8, 639—655.

Cook, W. J., QINNINGHAM, W. H., PULLEYBLANK , W. R. & SCHRIJVER, A. (1997)Combinatorial Optimiza-
tion. New York: Wiley.

DE NIET, A. C. & WusBs, F. W. (2007) Two saddle point preconditioners for fluid flolwg. J. Numer. Methods
Fluids, 54, 355-377.

DuFF, I. S., RRISMAN, A. M. & REID, J. K. (1986)Direct Methods for Sparse Matricedonographs on
Numerical Analysis. Oxford: Clarendon Press.

DuFF, I. S., GouLD, N. |I. M., REID, J. K., S0OTT, J. A. & TURNER, K. (1991) The factorization of sparse
symmetric indefinite matriceMA J. Numer. Anal.11, 181-204.

DuFF, |. S. & PRALET, S. (2007) Towards a stable static pivoting strategy for the sequential and parallel solution
of sparse symmetric indefinite syster8$AM J. Matrix Anal. App|.29, 1007-1024.

DuFF, I. S., REID, J. K., MUNKSGAARD, N. & NIELSEN, H. B. (1979) Direct solution of sets of linear equations
whose matrix is sparse, symmetric and indefinltdnst. Math. Appl.23, 235-250.

ELMAN, H. C., SLVESTER, D. J. & WATHEN, A. J. (2002) Performance and analysis of saddle point precondi-
tioners for the discrete steady-state Navier—Stokes equallomser. Math.90, 665—688.

GEORGE A. (1973) Nested dissection of a regular finite element m&shM J. Numer. Anal10, 345-363.

GEORGE A. & L1u, J. W. H. (1981 Computer Solution of Large Sparse Positive Definite Systerestice-Hall
Series in Computational Mathematics. Englewood Cliffs: Prentice-Hall.

HAGEMANN, M. & SCHENK, O. (2006) Weighted matchings for the preconditioning of symmetric indefinite linear
systemsSIAM J. Sci. Comput28, 403-420.

HiGHAM, N. J. (2002)Accuracy and Stability of Numerical Algorithii&nd edn. Philadelphia: SIAM.

HORN, R. A. & JOHNSON, C. R. (1985Matrix Analysis Cambridge: Cambridge University Press.

KARYPIS, G. & KUMAR, V. (1998) A fast and high quality multilevel scheme for partitioning irregular graphs.
SIAM J. Sci. Comput20, 359—-392.

KAY, D., LOGHIN, D. & WATHEN, A. J. (2002) A preconditioner for the steady-state Navier—Stokes equations.
SIAM J. Sci. Comput24, 237-256.

Liu, J. W. H. (1990) The role of elimination trees in sparse factorizat®RIAM J. Matrix Anal. Appl. 11,
134-172.

MARYSKA, J., RozLOZNIK, M. & TUMA, M. (2000) Schur complement systems in the mixed-hybrid finite ele-
ment approximation of the potential fluid flow proble81AM J. Sci. Comput22, 704—723.

MEURANT, G. (1999)Computer Solution of Large Linear SysterAamsterdam: North-Holland.

PINAR, A., CHOw, E. & POTHEN, A. (2006) Combinatorial algorithms for computing column space bases that
have sparse inverseSlectron. Trans. Numer. AnaR2, 122—-145.

PRALET, S. (2004) Constrained orderings and scheduling for parallel sparse linear aRferaT hesisSeptember
2004, CERFACS report TH/PA/04/105.

ROLLIN, S. & SCHENK, O. (2005)Maximum-Weighted Matching Strategies and the Application to Symmetric
Indefinite System&ecture Notes in Computer Science, vol. 3732, Berlin: Springer pp. 808—-817.

SCHENK, O. & GARTNER, K. (2004) Solving unsymmetric sparse systems of linear equations with PARDISO.
J. Future Gener. Comput. Sy20, 475-487.

SCHENK, O. & GARTNER, K. (2006) On fast factorization pivoting methods for symmetric indefinite systems.
Electron. Trans. Numer. AnaR3, 158-179.

SCHENK, O., GARTNER, K. & FICHTNER, W. (2000) Efficient sparseU factorization with left-right looking
strategy on shared memory multiprocessBi3, 40, 158-176.

234 A. C.DENIET AND F. W. WUBS

TUMA, M. (2002) A note on th&. DLT decomposition of matrices from saddle-point probleSIi&AM J. Matrix
Anal. Appl, 23, 903-915.

VAN DER VORST, H. A. (2003)Iterative Krylov Methods for Large Linear Systen@ambridge Monographs on
Applied and Computational Mathematics, vol. 13. Cambridge: Cambridge University Press.

VAVASIS, S. A. (1994) Stable numerical algorithms for equilibrium syste8i&M J. Matrix Anal. Appl. 15,
1108-1131.

WEBB, J. (1993) Edge elements and what they can do for felEE Trans. Magnetic29, 1460-1465.

	Introduction
	F-matrices
	Factorization of sparse indefinite matrices

	Sketch of the algorithm
	Properties invariant under Gaussian elimination
	Numerical stability
	Fast insertion of P-nodes
	Numerical results
	Stokes flow in a driven cavity
	Matrices of Tuma

	Discussion

