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ABSTRACT 
Exploratory data analysis is challenging given the complexity of 
data. Models find structure in the data lessening the complexity 
for users. These models have parameters that can be adjusted to 
explore the data from many different angles providing more ways 
to learn about the data. “Human in the loop” means users can 
interact with the parameters to explore alternative structures. This 
exploration allows for discovery. This paper examines usability 
issues of Human-Model Interaction (HMI) for data analytics. In 
particular, we bridge the gaps between a user’s intention and the 
parameters of a WMDS model during HMI communication. 

CCS Concepts 
• Human-centered computing → Human computer interaction 
(HCI) → HCI design and evaluation methods → User studies. 

Keywords 
Visual analytics; object-level interaction; usability. 

1. INTRODUCTION 
Mathematical models are only useful to a user if they can 
correctly communicate with them. Learning how to use models 
can be difficult because of their complexity. It is particularly 
problematic for non-experts who are not as familiar with the 
details of the model and the meanings of the parameters. 
However, supplying model parameters and interpreting model 
feedback is a challenging task for a non-expert of the model. This 
challenge presents an interaction design problem. This paper’s 
contributions are as follows: 

1. Explore these issues in context of Weighted 
Multidimensional Scaling (WMDS) for high-dimensional 
data analytics. 

2. Identify usability problems in interacting with WMDS. 
3. Create and evaluate interaction design solutions for these 

problems. 

The interaction design solutions seek to enhance Human-Model 
Interaction (HMI). Our research abstracts the model parameters 
and transforms them into the space of a visual metaphor. Users 
interact with the visual space while indirectly adjusting the 
parameters. Object-level interaction (OLI) provides an intuitive 
means to communicate with a model to analyze data. We have 

designed interactions that bridge the intent of the cognitive model 
to the parameters of the math model, specifically Weighted 
Multidimensional Scaling (WMDS). We emphasize the visual 
metaphor of mapping similarity to proximity, which is intuitive 
for non-expert users. Despite the metaphor familiarity, there are 
still disconnects between user intention and the model parameters. 
This paper discusses issues users had and the designed interaction 
solutions and algorithmic modifications needed to alleviate these 
issues. We present a usability study that tested the new interaction 
designs. 

2. OBJECT-LEVEL INTERACTION 
When analyzing data, users want to ask questions about and find 
similarities between the data points. With parametric interaction 
(PI), users have to answer these questions indirectly by trial and 
error adjusting individual parameters. This is a HMI gap. Object-
level interaction provides a solution [2]. With OLI, users directly 
manipulate the data points injecting their own knowledge and 
questions. This requires a redesign of the dimension reduction 
algorithm to calculate the reverse optimization. 

Object-level interaction (OLI) happens within a visualization 
displaying a projection generated by a dimension reduction 
algorithm. Specifically, Weighted Multidimensional Scaling 
(WMDS) [6] reduces a dataset from high-dimensional space to 
low-dimensional space while mostly preserving the high-
dimensional pairwise distances in the low-dimensional projection. 
WMDS takes a weight for each dimension representing 
importance to the user as input parameters. The model outputs a 
visualization of objects in low-dimensional space (i.e., 2D) where 
the relative distance between objects represents similarity. A user 
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Figure 1. Screenshot of Andromeda interface. (a) The object 
view visualizes the 2D projection (dark gray points) 
calculated by WMDS. Ghost preview points (light gray) are 
visible based on the user moving the Polar Bear (blue) away 
from the Gorilla (maroon) and toward the Horse and Beaver 
(green). (b) The parameter view displays the weights 
associated with the object visualization. 



can directly manipulate the objects within the visual space instead 
of adjusting the weight parameters. OLI provides a means of 
communication between a user and a model that bridges the gap. 

To study OLI, we designed and developed an interactive interface, 
Andromeda (Figure 1), that visualizes high-dimensional data 
using WMDS [8]. Andromeda’s object view (Figure 1a) 
visualizes the WMDS projection and the parameter view (Figure 
1b) displays the weights as horizontal lines. For parametric 
interaction, a user adjusts the weights by dragging the handle on 
the line to the right or left to increase or decrease the weight 
respectively. A user can perform OLI by dragging the objects and 
the system recalculates new weights to explain the new positions 
of the objects [4, 5, 7]. This paper focuses on the specific 
interactions we designed to support communication between a 
user and the WMDS model. 

Previous research involving a controlled user study found the 
interactions within Andromeda allowed users to perform 
successful data analyses [8]. OLI and parametric interaction 
provide the user with two analysis angles: object-centric and 
dimension-centric. OLI enabled new insights about clustering and 
outliers which focus on relationships between objects. 

Despite the positive results of the study, usability issues arose 
proving there are still disconnects between user intentions when 
performing and perceiving the interactions and the model 
parameters. When performing an interaction, users are injecting 
information to the model through the system. The system has to 
glean model parameters from the interactions. 

One problem already encountered was that users intent was to 
express relationships between a subset of the points and the users 
were not interested in all of the points in the dataset. However, the 
algorithm assumed all points were intended. This is a mismatch 
between the cognitive model of the user and mathematical model. 
Thus, Hu et al. [5] introduced the idea of highlighting where the 
user specifies all points that are relevant to the interaction and the 
algorithm only calculates based on this subset of points. 

This solution produced yet more HMI problems. In this paper, we 
outline these usability issues and provide new design choices we 
developed to combat the issues. 

3. USABILITY PROBLEMS, SOLUTIONS, 
RESULTS 
To test the solutions, we performed a quasi-empirical usability 
study [3]. Seven graduate students explored a high-dimensional 
dataset about 49 animals and 36 dimensions. Most participants 
had never heard of Multidimensional Scaling and no participant 
had ever used it. Each participant answered a series of questions 
aimed at answering whether the usability problems had been 
rectified with our new interactions. Participants also rated 
Andromeda using the System Usability Scale (SUS) [1]. 

3.1 With Respect to What? 
Problem. When dragging points around within a visualization, a 
user probably has a goal in mind. A common goal we have seen 
during analyses of high-dimensional data is to figure out how 
outlier(s) fit into a cluster of points. To achieve this answer, users 
drag the outlier into the cluster of points and click to update the 
algorithm. Figure 2a shows the original Andromeda interface 
where a user tried to drag two outliers into a cluster. The resulting 
layout (Figure 2b) shows the outliers in their original location 
because the relative distances between the two user-moved points 
(the outliers) did not change.  

The particular user tried the next best option and moved the entire 
cluster of points toward the outliers. The resulting layout shows 
the same phenomenon where the cluster returns to its original 
location away from the outliers. The user moved the outliers with 
respect to the cluster of points; however, the algorithm did not 
receive that input. The interaction did not work because it is 
important for the algorithm to consider what points the user was 
dragging the outliers away from and what points she was dragging 
the outliers toward. 

The algorithm only considers points that have been explicitly 
highlighted by the user to increase efficiency and speed; therefore, 
in this scenario the algorithm only considers the outliers and not 
the points in the cluster. This mismatch causes a usability problem 
where the user is assuming the points near to the moved point will 
be considered, however this is not the case. We had to design a 
visual cue to help the user recognize the need to be explicit to help 
the algorithm know what points are important. The visual cue 
clarifies the communication between the user and model. 

Solution. To resolve this problem, the interface automatically 
highlights reference points near the point being moved by the 
user; specifically, points being moved away from and points being 
moved towards. We implemented a radius that surrounds the data 
point the user is dragging (Figure 3). When a user clicks to move 
a data point, all points within the radius of this original location 
are automatically highlighted (maroon points) and considered by 
the algorithm. Once the user drops the data point she is moving, 
radial (green) points within this new location are also 
automatically highlighted and considered by the algorithm. The 
interface is automatically eliciting algorithm input from the user 
which improves the result. These automatic highlights also satify 
the need to move at least three points to specify a change in 

Figure 2. Andromeda interface depicting usability issue. (a) 
User drags two outliers into cluster to find out what makes the 
outliers similar to the cluster. (b) Result of interaction where 
outliers return to original location since no points in cluster 
were moved. (c) User tries opposite interaction and drags all 
data points in cluster toward outliers. (d) Same result as 
before where cluster returns to original location. 



relative distances. Away from and towards points make sure the 
relative distances change and visually notate to the user which 
points are away from (maroon) and which are toward (green). If 
there are no points within the radius, the closest point is 
highlighted. It is a visual cue for users that they can highlight 
other points.  

Table 1. Number of Participants who Performed Each Type of 
Interaction to Answer Outlier Questions 

 Q1 Q2 Q3 
Viewed raw data 3 2 2 

OLI 4 1 1 
PI 0 0 0 

Raw data & OLI 0 2 2 
Raw data & PI 0 2 2 

Results. To test this new interaction, we asked users to find 
similarities between an outlier and a cluster of points far from the 
outlier. Users answered two such questions: (Q1) “How is the 
killer whale similar to the cluster with the German shepherd, 
chimpanzee, spider monkey, and weasel” and (Q2) “How is the 
tiger similar to the cluster with the blue whale, elephant, 
hippopotamus, and rhinoceros”. Users answered both questions 
using one of two interactions. Table 1 shows how many users 
performed each interaction for the two questions. Users either 
selected the data points in the visualization and browsed the raw 
data on the weight lines looking for tight clusters depicting similar 
values or users performed object-level interaction dragging the 
outlier toward the cluster and looking at the upweighted 
dimensions. Four participants used a combination of these 
interactions along with parametric interaction. Some users 
manually unhighlighted automatically highlighted points 
indicating that they understand this visual cue. 

3.2 Creating a New Cluster 
Problem. Users often want to make a new cluster out of disparate 
points by dragging them together into an empty area. However, 
they typically do not think to specify the points they are moving 
away from. This is a communication problem because inverse 
WMDS requires changes in relative distances, meaning that some 
points must move closer while other points move further apart. If 
the relative distances between pairs of points in the visualization 
has not changed, then the weight vector calculated by the 
optimization will also not be changed. Imagine there is a cluster of 
three points that are all equidistant from each other in the 
visualization (see Figure 4a). A user then drags each of these three 
points even closer together. The three points are still equidistant to 

each other despite the actual distance being smaller; the ratio of 
the pairwise distances has remained the same (see Figure 4b). 

Understanding the relative distances is challenging for users 
especially since the points within the visualization have actual 
distances. It looks like the user has modified the points enough to 
get new information from the algorithm if the user is thinking 
about actual distance. The algorithm calculating on relative 
distances does not match the user’s expectation which is actual 
distances. The visualization and interactions must convey the 
notion of relative distances to the user. 

Solution. The radius we designed helps alleviate this issue. By 
automatically highlighting other points that are near the original 
location of the points being moved, the relative distances are 
changing. The more points the algorithm considers, the less 
probability for unchanged relative distances. However, there are 
some cases that are not solved by this solution. If users manually 
unhighlight the nearby points, the solution fails. 

A further solution involves modifying the model to consider the 
relative distances between the moved points with respect to all 
other points. The current WMDS scheme first finds weights based 
on user OLI and then projects the high dimensional coordinates 
into 2-dimensions using the calculated weights. An improved 
optimization will perform both steps simultaneously by utilizing 
several constraints that will alleviate the issue with unchanged 
relative distances. Consider the following equations (1)-(4).

 
We will let x denote a high dimensional point, z a 2-dimensional 
point, z* a 2-dimensional point that the user has moved, and w an 
attribute weight. Equations (1) and (4) are of the familiar form 
used in the current WMDS optimization, except that we will find 
weights and low dimensional coordinates together. Equations (2) 
and (3), however, will account for interactions with unchanged 
relative distances. Each projection will always be such that the 
sum of all pairwise distances between zi and zj is 1. This provides 
an upper bound for the scale of the projection. After the user 
interacts with points zi

*, we will calculate π - the ratio of the sum 
of pairwise distances between the moved points to the sum of 

Figure 3. Visualization of user interaction dragging the Spider 
Monkey away from the maroon data point and toward the 
cluster of green data points. Andromeda automatically 
highlights the maroon and green points to distinguish the data 
points the user is dragging away from and toward. 

Figure 4. This figure visualizes how dragging three points does 
not change the relative distances between the points. (a) Three 
points are visualized and the red arrows indicate a user 
moving the points closer within the space. (b) The new 
visualization displays the three points closer to each other, 
however the relative distances have not changed from (a). 



pairwise distances for all points. If this ratio is small, it implies 
that the moved points should be close in comparison to the overall 
layout. Now, assume user drags points together such that the 
relative distances between each pair is unchanged. The algorithm 
now knows that the sum of distances between these points should 
be small relative to the sum of all pairwise distances. Enforcing 
this constraint for the updated visualization will preserve the 
information about OLI even with unchanged relative distances. 

Results. To answer whether this issue has been fixed, we asked 
users to find similarities between three data points, the beaver, 
German shepherd and polar bear. These three points are 
equidistant from each other in the initial layout. If you drag the 
three together without considering other data points, then the 
relative distances do not change. 

With the new interaction, users did not experience the original 
issue. As they dragged the three data points together, other points 
were automatically considered and the relative distances between 
the three data points moved by the user and the automatically 
chosen data points did change. All participants correctly identified 
the similar dimensions between the three data points. 

3.3 User Confusion after Batch Update 
Problem. The algorithm and optimization update in batch mode. 
Given a set of high-dimensional points and a weight vector, a 
dimension reduction algorithm returns a set of low-dimensional 
coordinates. Within the Andromeda interface, this update seems to 
happen abruptly to the user. A user increases the weight of one 
dimension and the visualization automatically updates the 
coordinates of the points without any transition. The same 
scenario occurs with OLI when a user modifies point locations 
and then clicks the run button to update the visualization. This 
may move the points to disparate locations, leaving the user 
confused and uncertain about what happened. 

Solution. To solve this issue, we implemented an animation that 
transitions from the current projection to the new projection. After 
the algorithm calculates new coordinate locations, each data point 
smoothly transitions from its current location to its new location 
within the visualization. Users can repeat this animation in slow 
motion using a slider provided within the interface. This short 
animation gives a visual representation to the user of how the 
projection has changed given the updated calculations. A future 
enhancement is to interpolate the weights and animate through a 
series of projections on those weights. 

Results. To test this feature, we asked the participants a series of 
guided questions which required the participant to explain the 
relative distances of particular data points in a new layout and 
why the data points transitioned to new coordinate locations. We 
asked participants to drag the dolphin close to a cluster that 
included the mouse, rabbit and hamster. All seven participants 
correctly listed the dimensions that increased in weight. Five 
participants correctly explained why the four data points relocated 
far from the seal; the cluster including the dolphin, mouse, rabbit 
and hamster is far from the seal because the clustered animals are 
similar based on activity, new world, and spots whereas the seal is 
very different. Six participants correctly identified why another 
animal of their choosing was placed far from the cluster. For 
example, one participant explained, “I can see the difference and 
similarities very clearly on the right panel. [The] Zebra is a grazer, 
bigger in size. All 5 are pretty closely active, foragers, timid 
therefore 0 [in] fierce, don't live in water. Zebra is not a new 
world animal. It is old world.” The participants recognized that 
the layout depends on the weights of all dimensions. Emphasized 
dimensions have more effect on the coordinate locations of the 
data points. 

3.4 Dynamic Exploration 
Problem. The original Andromeda interface provided a user with 
parametric and object-level interactions. By dragging individual 
weight lines, the user can visualize how increasing and decreasing 
weights affect the projection of the high-dimensional data. Once 
the user released the mouse, the algorithm would update the 
projection. To add fluidity to a user’s analysis, we modified this 
interaction and the algorithm dynamically updates the projection 
as the user is dragging the weight line. The user can explore 
increasing and decreasing one weight in a fluid motion while the 
algorithm continuously updates the projection. 

After performing object-level interaction, the user clicks a button 
to start the update. On this button click, the algorithm takes the 
user input and updates the projection. The user bears the burden of 
deciding when the algorithm should perform the update. Having 
to make this decision interrupts the exploratory nature of analysis. 
During an analysis with this original button interaction, we 
noticed users tended to try object-level interaction once or twice 
and if it did not produce an expected result, they would 
completely switch inquiries instead of exploring further. 

Solution. In order to provide an inviting exploratory environment, 
we designed dynamic updating for OLI and visual ghosted points. 
As a user drags one data point around the visualization, the 
algorithm is constantly updating the projection. Ghosted points 
appear to faintly visualize the new locations of all the points if the 
user were to drop the data point currently being dragged (see 
Figure 1). The user drags the polar bear (blue) away from the 
gorilla (maroon) and toward the horse and beaver (green). The 
line depicts the original location of the polar bear. The ghost 
points visualize the new locations of the data points if the user 
were to release the polar bear in that location. The weights are 
updated to reflect the projection of the ghost points. With dynamic 
updating, the user can continue to drag the polar bear around the 
visualization and get a preview of the projection and new weight 
vector. While a user is performing an analysis, it is inefficient and 
interrupts cognitive processes for him to wait for the model 
updates. Dynamic interaction allows for a more fluid exploratory 
process. Users interact with the progression of change. With 
dynamic interaction, the interface follows Shneiderman’s direct 
manipulation principles [9]: the algorithm updates based on small 
incremental user adjustments which allows for rapid and 

Figure 5. Two screenshots as a user moves the pig (blue) 
between the elephant and the Persian cat. Notice the weight 
changes based on the relative distances between the three 
animals and the relative distances of the raw data points on the 
emphasized weight lines. 



reversible interactions and updates. For example, Figure 5 shows 
two previews as a user moves the pig between the elephant and 
Persian cat. The user sees a range of weights chosen based on the 
relative distances between these three animals. 

Table 2. Interaction Counts Per Participant During Open-
ended Analysis 
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4 10.7 - - 3 1 1 - 37 
5 26.3 7 5 - 9 12 4 73 
6 12.6 - - - 6 1 5 11 
7 9.0 - 1 - 2 1 8 60 

Results. During the open-ended analysis question, we asked 
participants to use any features of the interface to explore and 
learn about the data writing down insights you gain and 
appropriate rationale and evidence to back up your claims. 

Table 2 shows the number of times each participant performed an 
interaction throughout his or her analysis. All but one participant 
performed some type of object-level interaction. Four participants 
utilized dynamic interaction. Two turned on automatic update so 
that when they moved one point, the layout automatically 
updated. One participant reverted back to the original interaction 
of clicking the button once he settled on a satisfying adjusted 
layout. All participants performed parametric interaction many 
times modifying many different dimensions. 

3.5 What is the Rationale for the Layout? 
Problem. The visualization and interactions we have designed are 
meant to ease the use of and hide the dimension reduction 
algorithm. By directly interacting with the projection and weights, 
users do not have to understand the details of the algorithm. 
However, for a more in depth analysis, a user must in some way 
understand why the visualization changed when the algorithm 
updates the projection and the weights. The user needs to 
understand the rationale behind the distances in the projection and 
that they are based on the weights. When a user modifies one 
(either the projection or the weights), what is the rationale for the 
change in the other? Why did the model place the points with 
certain distances? We provide visual cues and feedback to the user 
to help bridge this gap. 

Solution. To strengthen the connection between the points in the 
projection and the dimensions, we visualize the raw data directly 
on the weight lines. When a point is selected within the 
projection, its raw data value is visualized as points on the weights 
lines. The location on the line depicts the numerical value; if the 
value is high, the point will appear toward the right and if the 
value is low, the point will appear closer to the left end of the line.  

When a weight is increased, the similarities and differences 
between the data points are visually exaggerated since there is 
more emphasis on that particular weight. Users can see this 
exaggeration because the raw data of each point is drawn on the 
weight lines. When a data point is selected in the visualization, its 
raw data is drawn on all the dimension weight lines. In Figure 6a, 

Buffalo and Pig are selected and their corresponding raw data 
values are visualized on the weight lines. In particular, the Buffalo 
is bigger in size than the Pig since the maroon point is drawn 
toward the right end of the weight line whereas the blue point is 
toward the left. Figure 6b depicts a user increasing the importance 
of the size dimension. The blue and maroon points are now farther 
apart on the line because the difference between the sizes of the 
Buffalo and the Pig are amplified. Within the visualization, the 
Buffalo and Pig are farther apart since the user emphasized the 
size dimension where the Buffalo and Pig are different. The 
relative locations of the data points in the visualization is 
described by the relative locations of the raw data value data 
points on the weight lines. 

Each visual cue we have designed further explains the dimension 
reduction process to the user. It is important for the user to 
understand the cause and effect of dragging a data point 
throughout the projection. If she drags one data point toward a 
cluster, what weights are increased and why those particular 
weights? Where do the data points move once the optimization is 
complete? To help the user understand the result, two groups of 
points are highlighted: data points being moved away from and 
data points being moved toward. Both sets of data points are 
notated in the projection as well as on the weight lines. As a user 
drags one single point, data points being dragged away from are 
colored maroon and data points being dragged toward are colored 
green. In the future, we want to design visual cues to strengthen 
the connection between the pairwise distances in the projection 
and the pairwise distances on the weight lines. 

Results. In Figure 1, the user is dragging the polar bear away 
from the gorilla and toward the horse and beaver. We see the 
ghosted points within the projection relaying that the polar bear, 
horse and beaver will continue to be fairly close (top of 
visualization) and the gorilla will be far away (bottom of 
visualization). We can also see three dimensions were increased to 
account for this modification: Jungle, New World and Old World. 
These dimensions explain the relative distances between the four 
highlighted points. All relative distances of the data points on the 
weight lines of the increased dimensions match the relative 

Figure 6. Two Andromeda screenshots depicting before and 
after a parametric interaction increasing the weight of the 
size dimension. (a) The Buffalo and Pig are close together in 
the projection, but have different raw data values for as seen 
on the size weight line. (b) After increasing the weight of the 
size dimension, the Buffalo and Pig are farther apart in the 
projection and the difference in raw data values is 
exaggerated on the size weight line since the user increased 
the importance of the size dimension. 



distances of the data points within the projection. The polar bear 
is similar to the horse and beaver, but different from the gorilla, 
when considering Jungle, New World and Old World. The user 
can visually see that the raw data values for the polar bear, horse 
and beaver are close together on the weight lines of the highly 
weighted dimensions. However, the raw data values for the polar 
bear and gorilla are far apart explaining the larger distance 
between them in the projection. Based on interview responses, all 
participants understood the relationship between relative distances 
between the visualization and the weight lines. 

3.6 Stability 
Problem. The two-dimensional layout of the high dimensional 
data is obtained through Weighted Multidimensional Scaling 
(WMDS) projection. Every time a user performs an object-level 
interaction, the layout of the points in the projection is updated. 
Each time a new layout is calculated, it can be vastly different 
from the layout the user created while modifying the locations of 
a subset of points because WMDS is rotation invariant. When this 
happens, it causes confusion and disrupts the user’s analysis. 

Solution. To maintain the persistence of the layout, we 
implemented an alignment function, which preserves the WMDS 
projected layout as close as possible to the user layout. This is 
achieved by ensuring that the positions of the user moved points 
stay as close to the same as possible between the user layout and 
the newly calculated layout. Preserving the original rotation 
decreases the effect of the rotation invariance of WMDS. 

Results. Previous verbal feedback noted the abrupt change was 
confusing and disrupted the analysis. During the study, we did not 
receive such feedback, thus indicating the problem is fixed. 

3.7 System Usability Scale Results 
With this study, we find that our solutions to the usability 
problems worked. Participants answered the questions correctly 
and understood the new interactions. Based on the scoring of a 
SUS [1], Andromeda received an average rating of 81.78, which 
is interpreted as an A. This score means Andromeda is considered 
above average usability where the average is a score of 68. While 
using the tool, participants gave positive feedback noting it was 
easy and fun to learn, use, and interact with the interface. 

4. DISCUSSION & CONCLUSION 
This research has shed light on the existing gap between what a 
user is intending to perform with an interaction and how the 
model perceives this interaction. Through the usability study 
discussed in this paper, we find that interactions designed to 
bridge this gap can alleviate the issues cause by the gap.  

To generalize these findings, the fundamental issue is about 
placing input and output in context of the metaphor in which the 
user seeks structure in the data. When considering WMDS in 
Andromeda, the context is the metaphor where proximity 
represents similarity. User input to interact with model parameters 
should be in context of the model output. For example, the 
highlight radius is shown to contextually select nearby points as 
relevant to the interaction. Likewise, output feedback should also 
be visualized in context. For example, showing the selected points 
on the weight lines helps reinforce the concept of weighted 
distance between the points. The effect is that the inputs and 
outputs of the model are closely connected in the user mental 
model. It should be contextualized in the user space instead of 
requiring the user to adjust separate widgets, which add burden to 
the user by requiring knowledge of the model parameters. 

Through observation of users performing analyses, we compiled a 
list of frequently occurring manipulations. This list includes the 
user intentions that need to match the model parameters. 

• Dragging points to form a one or more new clusters (clusters 
sometimes based on outside knowledge, i.e., primates, 
rodents, vegetarians, etc.), to find relationships between 
some points; 

• Dragging outlier into existing cluster, to find relationships 
between outlier and cluster; 

• Maximize one dimension weight, to find extremes in 
reference to single dimension; or minimize one dim, to 
ignore it; 

• Drag multiple sliders to equally large weights, then also 
highlight points to find what dimensions are related or 
correlated or to focus on groups of related dimensions based 
on outside knowledge. 

By observing users working with the model, we learned their 
intents and designed appropriate interactions that bridge the gap 
between the user cognitive model and the mathematical model. 
Analytics by default is difficult, models are complex, and 
parameters are unintuitive. However, through good Human-Model 
Interaction research we can achieve good communication between 
humans and models, increasing model usability for human in the 
loop data analytics. 
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