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ABSTRACT
Modern operating systems are equipped with defenses that
render legacy code injection attacks inoperable. However,
attackers can bypass these defenses by crafting attacks that
reuse existing code in a program’s memory. One of the most
common classes of attacks manipulates memory data used
indirectly to execute code, such as function pointers. This is
especially prevalent in C++ programs, since tables of func-
tion pointers (vtables) are used by all major compilers to
support polymorphism. In this paper, we propose VCI, a
binary rewriting system that secures C++ binaries against
vtable attacks. VCI works directly on stripped binary files.
It identifies and reconstructs various C++ semantics from
the binary, and constructs a strict CFI policy by resolving
and pairing virtual function calls (vcalls) with precise sets
of target classes. The policy is enforced by instrumenting
checks into the binary at vcall sites. Experimental results
on SPEC CPU2006 and Firefox show that VCI is signifi-
cantly more precise than state-of-the-art binary solutions.
Testing against the ground truth from the source-based de-
fense GCC VTV, VCI achieved greater than 60% precision
in most cases, accounting for at least 48% to 99% additional
reduction in the attack surface compared to the state-of-
the-art binary defenses. VCI incurs a 7.79% average run-
time overhead which is comparable to the state-of-the-art.
In addition, we discuss how VCI defends against real-world
attacks, and how it impacts advanced vtable reuse attacks
such as COOP.
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1. INTRODUCTION
Presently, memory subversion remains an unsolved secu-

rity threat. By manipulating control data, such as func-
tion pointers and return addresses, attackers can hijack the
control flow of programs and execute arbitrary code. Even
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though modern systems are equipped with W⊕X and Data
Execution Prevention (DEP), attackers can still achieve ar-
bitrary code execution by repurposing existing code from the
program memory, in what is known as code-reuse attacks.
This can range from reusing blocks of instructions, such
as Return Oriented Programming (ROP), to even reusing
whole functions in a Function Reuse Attack (FRA).

The use of Control Flow Integrity (CFI) [1], which is a crit-
ical program security property, can assure the program does
not execute unintended code. Unfortunately, constructing
a sound and complete CFI policy has proven to be a chal-
lenging task [9]. Enforcing CFI is especially hard due to
indirect control flow transfer, such as indirect calls through
function pointers. The problem becomes even harder if the
source code is not available. This makes binary-only solu-
tions very desirable, since, in practice, the source code of
many programs is not always available, and that includes
many commercial products, 3rd party libraries, legacy soft-
ware and firmware to name a few. Even if the source code is
available, compiling in new protections is not always feasible
or desirable, for instance, due to the presence of legacy code
and compiler dependencies.

Indirect calls are prevalent in OOP languages in order
to enable polymorphism. Of particular interest to us is
C++, where all major compilers, including GCC, LLVM, and
MSVC, support C++ polymorphism via tables of function
pointers. This is also the case for compilers of closely related
languages, such as C# and D. C++ supports class and func-
tion polymorphs by allowing derived classes to redefine base
functions that are declared virtual. Each object of a class
that (re)defines virtual functions stores a pointer (vptr) to
a read-only table of pointers to virtual function definitions
(called vtable for short). To invoke a virtual function, the
compiler generates code that indirectly executes the corre-
sponding function in the object’s vtable (see Section 2). We
refer to such code sites in the binary as virtual call (vcall)
sites.

In an unprotected binary, an attacker with control over
an object’s memory or vtable can call any function within
the program whenever the program uses the object’s vtable
to make a vcall. This is typically achieved by exploiting
a memory access bug that enables overwriting the vptr in
an object’s memory, in what is known as a “vtable attack”.
Perhaps the most common class of enabler bugs in this cat-
egory is the infamous use-after-free [2]. Here, a pointer to a
freed object is used in a later program statement (a dangling
pointer) to invoke one of the object’s virtual functions. This
dangling pointer can allow an attacker to execute arbitrary
code if she can control the contents of the object’s freed
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memory, e.g., using heap overflows or heap spraying [12].
Such bugs are very prevalent in commodity desktop appli-
cations, such as office suites and browsers, since they are
typically written in C++. Recent studies (e.g., [7, 22, 25])
suggested use-after-free vulnerabilities account for at least
69% of all vulnerabilities in browsers, about 50% of Win-
dows 7 exploits, and 21% of all vulnerabilities in all operat-
ing systems.

In this paper, we present VCI, a static binary CFI system
that retrofits C++ binaries with defenses against vtable at-
tacks. VCI protects the binaries by enforcing a strict CFI
policy that limits the number of callable function from vcall
sites (see Section 3). VCI works on stripped binaries, with-
out needing debug, symbol or type information. To deter-
mine valid function targets we developed algorithms to re-
construct several C++ semantics from binaries, namely: vta-
bles, constructors, class layouts, class hierarchies, and vcalls
(see Section 4). VCI exploits patterns in the assembly, and
uses backward slicing and inter-procedural analysis to sym-
bolically trace the this pointer expressions of objects across
function boundaries. It builds a mapping between vcall sites
and their target class types. It then instruments the binary
by generating and injecting the integrity policy to enforce
the mapping at runtime.

We implemented a prototype of VCI in C++ on Linux, us-
ing Dyninst [15] for binary parsing and rewriting. The pro-
totype consists of ∼3500 SLOC for the analysis in addition
to a ∼500 SLOC dynamic library where the integrity pol-
icy procedures reside. Experimental results (see Section 5)
on the C++ SPEC CPU2006 benchmarks and Mozilla Fire-
fox show that VCI significantly reduces the attack surface
compared to the state-of-the-art binary vtable defenses. For
instance, in comparison with VTint [43] and vfGuard [30],
VCI achieved at least 96% and 48% additional reduction
in the number of allowable vcall targets, respectively. In
comparison to GCC VTV (source-based ground truth), VCI
achieved the highest precision amongst other binary solu-
tions, with 100% precision in some cases and greater than
60% precision for the majority of the test programs. Our
experiments show that VCI incurs a low runtime overhead
(∼7.79%), and can defend against real-world exploits includ-
ing the recent COOP attacks [10, 34]. In summary, we make
the following contributions:

• We present VCI, a binary analysis and rewriting tool
that automatically analyzes and retrofits stripped C++

binaries with a strict defense against vtable attacks.
• We introduce multiple algorithms to reconstruct C++

semantics from binaries, without the need for source
code, debug symbols, or symbol and type informa-
tion. VCI employs these algorithms along with inter-
procedural type propagation to resolve vcall targets.
• We introduce a strict and precise integrity policy that

covers all three cases of fully, partially and unresolved
vcall targets. VCI constructs and enforces the policy
via static binary rewriting.
• We quantify the precision of VCI’s policy on various

C++ programs, and compare it to the precision of the
state-of-the-art binary vtable defenses as well as to
GCC VTV [37], the de facto standard source-based
vtable defense of GCC. We show that VCI has signifi-
cantly higher precision than the state-of-the-art binary
solutions.
• We empirically quantify the effectiveness of VCI, dis-

cuss how it impacts COOP attacks, and benchmark

its runtime overhead. We show that VCI can mitigate
real-world attacks, and incurs a comparable overhead
to existing solutions.

The rest of the paper is organized as follows: Section 2
provides an overview of relevant C++ primitives. In Sec-
tion 3 we define the threat model, discuss vtable attacks
and give an overview of our solution. Section 4 lays out the
details of VCI. We evaluate VCI in Section 5, and discuss
limitations and improvements in Section 6. We present re-
lated work in Section 7 and conclude in Section 8. In the
Appendix, we provide additional technical details and dis-
cuss complementary policies.

2. BACKGROUND
Commodity applications, such as office suites and web

browsers, are built with performance in mind. Given the
sophisticated functionalities they provide, it is standard to
use languages that provide sufficient levels of abstraction
with a minimal performance penalty. Therefore, low-level
object-oriented languages, such as C++, are typically the
choice for their implementation. To enable polymorphism,
C++ uses virtual functions. A function is declared virtual
if its behavior (implementation) can be changed by derived
classes. The exact function body to be called is determined
at runtime depending on the invoking object’s class.

2.1 Polymorphism and Virtual Tables
All major C++ compilers, including GCC, Clang/LLVM,

MSVC, Linux versions of HP and Intel compilers, use vta-
bles to dispatch virtual functions. A vtable is a reserved
read-only table in the binary that contains function point-
ers to the definitions of virtual functions accessible through
a polymorphic class. A polymorphic class is a class that
declares, defines or inherits virtual functions.1 Each virtual
function in a class has a corresponding offset in the class’
vtable which stores the address of the implementation body
of the function in the code section. Whenever an object of
some class type invokes a virtual function, the class’ vtable
is accessed, and the address at the corresponding function
offset is loaded and indirectly called. If a class implements
virtual functions, when an object of that class type is cre-
ated, the compiler adds a hidden pointer to the class’ vtable
(the vptr). The compiler also generates code in the class’
constructor to set the vptr to the address (effective begin-
ning) of its corresponding vtable.

2.2 Virtual Call Dispatch
Since a vcall is always invoked on some object, the com-

piler has to decide how to pass the pointer of the object,
i.e., the this pointer, to the callee. There are two widely
adopted argument passing conventions for vcalls: thiscall,
which is the default convention used by the MSVC compiler
on Windows, and stdcall adopted by GCC, LLVM and
other Linux compilers. In the thiscall, the this pointer
is passed in the ecx register to the callee, while the remain-
ing arguments are passed on the stack. In the stdcall, the
this pointer is passed as an implicit argument on the stack
(top of stack). The argument is implicit in the sense that
it is not part of the callee function signature as seen by the
developer.

1Unless explicitly stated, we use the term “class” to refer to
“polymorphic class” in the rest of this document.
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1 class Base {
2 public:
3 virtual void foo() = 0;
4 };
5
6 class A: public Base {
7 public:
8 virtual void foo() {...}
9 virtual void bar() {...}
10 };
11
12 class B: public Base {
13 public:
14 virtual void foo() {...}
15 void baz() {...}
16 };
17
18 class C: public A, public B {
19 public:
20 virtual void foo() {...}
21 virtual void qux() {...}
22 };

(a) (b)

1 mov 0x1c(%esp), %eax ; this of A
2 mov (%eax), %eax ; eax = vptr_A
3 add $0x4, %eax ; add offset
4 mov (%eax), %eax ; eax = vptr_A[4]
5 mov 0x1c(%esp), %edx
6 mov %edx, (%esp) ; push this of A
7 call *%eax ; call A::bar()

(c)

1 ; ebx = this of C
2 lea 0x8(%ebx), %eax ; adjust to C::B
3 mov %eax, 18(%esp) ; store ptr to C::B
4 mov (%eax), %eax ; eax = vptr_C_B
5 mov (%eax), %eax ; eax = vptr_C_B[0]
6 mov 0x18(%esp), %edx
7 mov %edx, (%esp) ; push this of C::B
8 call *%eax ; call vptr_C_B[0]
9
10 thunk<C::foo()>:
11 subl 0x8, (%esp) ; point this to C
12 jmp <C::foo>

(d)

Figure 1: (a) Sample C++ classes. (b) Corresponding layouts of instances of classes A, B, C, and their vtables.
(c) Assembly snippets for invoking A::bar(). (d) Assembly snippet for invoking C::foo() using a base pointer
of type B (e.g., B *ptr = new C(); ptr->foo();). Note that B::Baz() is not virtual and therefore is not in the
vtables.

Figure 1(c) shows the steps taken to dispatch a vcall based
on the Itanium ABI, which comprises the following steps:

1) The this pointer of the target object is loaded and
dereferenced.

2) An offset is added to the vptr to point to the vtable
entry with the address of the target virtual function.

3) The adjusted vptr is dereferenced to load the address
of the target virtual function (the vcall address).

4) The this pointer is pushed on the stack.
5) The virtual function is invoked by indirectly calling the

vcall address.

Note that step 2 is optional, depending on the index of the
target virtual function in the vtable. If it is the first function
in the vtable, the offset is 0 and step 2 is omitted. If the
virtual function takes arguments, they are all pushed before
the this pointer at step 4. While steps 1 – 3 have to occur in
that specific order due to data dependency, the ABI does not
guarantee the order of steps 1 – 4. For example, pushing the
this pointer and the arguments (step 4) can occur before
step 1, or even in a different (predecessor) basic block.

In later sections we use this pattern as part of the algo-
rithm to locate virtual call sites in the binary.

2.3 Inheritance
C++ supports single, multiple, and virtual inheritance.

When a derived class inherits from base classes, the con-
structor of the derived class calls the constructor of each
base class, in the order of inheritance. The derived class
passes its this pointer to each base constructor. In the case
of multiple inheritance, the this pointer is adjusted to point
to the beginning of the base subobject in the derived object’s
memory layout. According to the Itanium ABI, inheritance
of virtual functions is implemented using multiple vtables,
one for each base class. When a derived class C inherits from
base classes A and B, an object of type C would contain two
subobjects of types A and B, each with its own vtable and
vptr. The effective vtable of the derived class consists of a

table of vtables (called VTT), one for each subobject type,
in the order of inheritance, with the only exception that the
derived class and the first subobject share the same vptr.
Figure 1(b) illustrates the layout of vtables in memory for
single and multiple inheritance.

This leads to the need for this pointer adjustments when
using a base pointer to a derived class. For example, Fig-
ure 1(d) shows the assembly generated for invoking ptr->
foo(), where B *ptr = new C(), i.e., ptr is of base class
type besides the first base (first base is A, second is B). The
compiler adjusts the pointer before the vcall to point to the
subobject B in C (line 2). It then calls (indirectly) a thunk
that re-points this to C then jumps to the actual (derived)
function body. Similarly, this adjustments are used to ac-
cess and invoke virtual functions of member class objects
(more on this in Section 4.3). In VCI, we keep track of any
adjustments done on identified this pointers, and recon-
struct the inheritance hierarchy among polymorphic classes.

3. PROBLEM DEFINITION
Given a C++ program binary, VCI aims to protect the

program against vtable attacks by enforcing a strict CFI
policy at vcall sites. Specifically, VCI guarantees that for
each vcall site, the vcall target is one of the class types that
can be legitimately used by that particular vcall site, as
statically inferred. If the condition is violated, VCI raises
an alarm and terminates the program.

In the following, we discuss our assumptions and give a
quick overview of vtable attacks in C++ binaries and how
VCI operates.

3.1 Assumptions and Threat Model
We assume that: 1) attackers can read arbitrary read-

able memory, therefore bypassing any secret-based solution
where the secret is stored in readable memory. 2) They can
write arbitrary writable memory, including injecting vtables
and modifying objects’ layouts and contents. 3) They cannot
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control the memory protection flags without injecting and
executing foreign code. In other words, legitimate control
flow transfers in the target program cannot allow the at-
tacker to alter the memory protection of a specific memory
region. Those assumptions cover most practical scenarios
of attacks, without any unrealistic limits. We also assume
that traditional arbitrary code execution defenses are live
on the OS, such as ASLR and DEP. This work focuses on
vcall protection, which is pertinent to forward-edge control
transfers. We assume that other control flow transfers, in-
cluding non-control-data attacks, are protected and cannot
be used to redirect the flow of vcalls.

We assume that the binaries adhere to the Itanium ABI
(see Appendix C); analyzing non-compliant or obfuscated
binaries is outside the scope of this work. We assume the bi-
naries are stripped from auxiliary information, such as debug
and symbol information, including the C++ RTTI (see Ap-
pendix D), and we do not assume any particular optimiza-
tion level. While these assumptions complicate our analysis,
we believe it is unreasonable to assume the presence of side
information when dealing with stripped binaries. The anal-
ysis performed in this paper assumes knowledge of function
entry points in the binaries. We depend on Dyninst [15] in
this regard, which has shown outstanding identification ac-
curacy of function entry points in stripped binaries [20, 40],
outperforming various well-established static analysis tools.

Finally, various constructs presented in this paper require
instruction-level analysis that depends on the semantics of
the instruction set being parsed. Therefore, we tailor our
discussion in this paper to x86 32 (e.g., call parameters
passed on stack instead of in registers as in x86 64). Nev-
ertheless, the approach itself does not put any assumptions
on the underlying architecture and can be implemented for
other instruction sets without an issue.

3.2 Vtable Attacks
By exploiting a memory access bug (e.g., use-after-free[2]),

an attacker can launch vtable attacks and achieve arbitrary
code execution by overwriting a C++ object’s memory with
contents of his or her choice (e.g., via heap spraying [12]).
The attacker can inject a fake vtable or perhaps redirect
the object’s vptr to an existing vtable. Without loss of
generality, vtable attacks in C++ can be divided into three
categories [17, 22, 27, 30, 43]:

1) Vtable corruption. This is a legacy attack, where legit-
imate vtable contents are overwritten. The attack is
prevented by all major compilers by storing the vtables
in a read-only memory region.

2) Vtable injection. Here, the attacker first injects a fake
vtable into memory, then points the vtable pointer of
a hijacked object to the injected vtable. The injected
vtable can therefore point to arbitrary functions or
gadgets in the executable memory of the process.

3) Vtable reuse. This attack operates the same way as a
vtable injection attack, except that the attacker does
not inject any counterfeit vtables in memory. Instead,
the attacker reuses already existing vtables in the pro-
cess memory.

While the state-of-the-art binary vtable defenses reduce
the vtable attack surface, they do not extract sufficient se-
mantics from the binaries, and therefore enforce imprecise
policies that allow a very liberal number of target functions
per vcall site. To address this limitation, we introduce VCI,
a binary rewriting system that fully protects against vtable

corruption, injection, and significantly reduces the attack
surface of vtable reuse in C++ binaries. In the following, we
give an overview of how VCI operates and give a simplified
example of a retrofitted program and the integrity policy
enforced by VCI.

3.3 Overview of VCI

Figure 2: Overview of VCI. The input to VCI is a
binary file (executable or library), and the output
is a binary file retrofitted with integrity checks and
the VCI integrity enforcement library (libvci).

Figure 2 outlines the workflow of VCI. It operates as fol-
lows: first, it statically analyzes the binary and extracts all
vtables and constructors. It then reconstructs (partially)
class layouts and hierarchies. Then, it identifies all vcalls in
the binary. VCI then propagates the identified class types
to all vcall sites, using backward slicing and inter-procedural
data flow analysis. This produces a set of legitimate target
class types and their corresponding vtables for each vcall.
When VCI fails to resolve all target class types of a vcall,
it utilizes the inferred hierarchies and any known targets for
the vcall to construct a set of class types that the vcall may
be invoked on. As our experiments show, this is significantly
more precise than prior works which either liberally permit-
ted any class type to be used at any vcall site, or any class
type where the vcall offset is valid. Specifically, VCI con-
structs and enforces the mapping: F : vcall×class→ vtable
by instrumenting checks at each vcall site to test if the vcall
target class is one of the valid target class types for that
vcall.

4. DESIGN AND IMPLEMENTATION

4.1 Identifying Virtual Tables
To extract vtables, VCI scans the binary for assembly

sites that store an address (immediate value) into memory,
where the address resides in a read-only memory region, and
the words (pointer-size sequence of bytes) at positive offsets
of the address are pointers to functions in the code section
(see Algorithm A.1). For each such assembly site, VCI starts
with an empty vtable, and scans the corresponding memory
region, starting at the stored address, one word at a time.
Each word is matched against a set of all function addresses
in the binary. If a match is found, the word is added to
the vtable, otherwise, the algorithm proceeds on to the next
assembly site. According to the Itanium ABI, the vtable
address referenced by an object’s vptr (i.e., the entry point
of the vtable as seen by the object) is 1) pointer aligned,
and 2) points to the beginning of the virtual function point-
ers array in the vtable. Finally, the algorithm returns the
extracted vtable. Note that the algorithm identifies vtables
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separately. For example, it will identify two separate vtables
for class C in Figure 1; the VTT of C is populated when VCI
reconstructs the class layout.

While VCI may identify false vtables, such as C-style ar-
rays of function pointers (jump tables) stored in a read-only
region, the proposed algorithm is sound. It does not miss
any real vtable in the binary (no false negatives). This is an
important property as missing a legitimate vtable can result
in an incorrect policy or misdetection of attacks. Note that
C-style jump tables that are misidentified as vtables do not
satisfy later stages of the analysis (e.g., no corresponding
constructors), and their calling convention does not gener-
ally match that of virtual functions (see Sections 4.2 and 4.4).
Overall, overestimation of vtables affects only the precision
of VCI rather than its soundness, by increasing the number
of potential targets of a vcall.

4.2 Identifying Constructors
Each extracted vtable corresponds to one class that de-

clares virtual functions. Each such class will have at least
one constructor and one virtual function declaration. To ex-
tract constructors, VCI applies Algorithm A.2. It searches
the code section for functions that store a pointer to a vtable
at the memory location pointed at by this, i.e., the first en-
try in an object’s memory. This is done by searching for
a function that contains an assembly site that stores an
immediate value in memory, where 1) the immediate value
matches the address of one of the extracted vtables; 2) the
destination expression has zero displacement; and 3) the des-
tination expression is a memory location pointed at by the
first argument to the function, e.g., mov 0x8(%ebp),%eax;
movl $0x9b0,(%eax). Once identified, the vtable is scanned
for occurrence of a pointer to that same function. If a pointer
to the function is not found in the vtable, the function is
deemed a constructor. Note that C++ does not allow virtual
constructors, therefore constructors cannot have entries in
the vtable. Similarly, inlined constructors are identified by
relaxing the first argument condition. In this case, the store
instruction that writes the vtable address in the object’s
memory is marked as a construction point.

4.3 Inferring Class Layouts and Hierarchies
When a derived class inherits from a base class, the con-

structor of the derived class calls the base constructor, pass-
ing in the this pointer of the derived class after applying
any necessary pointer adjustments (in case of multiple in-
heritance). The same semantics are also applied when con-
structing member objects.

VCI infers class layouts that consist of offsets to polymor-
phic member objects and base subobjects, and offsets to vta-
bles (the VTT in case of multiple inheritance). The offsets
are computed relative to the class this ptr. We collectively
refer to member objects and base subobjects as subelements.
We define each subelement by the tuple: 〈cls, offset,
dst, deref〉, where cls is the containing class, offset is
the subelement’s offset from the this pointer of cls, and
dst is the corresponding subelement’s class. deref is a flag
indicating whether the subelement has to be dereferenced
before accessing, e.g., if a member is a pointer to an object,
where in this case the class stores only the subelement’s this
pointer instead of the subelement itself.

Algorithm A.3 outlines the steps taken to infer the layout.
For each class, VCI infers the class layout by, first, search-
ing the instructions of the class constructor for assembly call

sites that invoke a constructor. Then, for each identified call
site, it extracts and analyzes the arguments to the call site to
identify the this pointer of the subelement’s constructor. It
then computes the offset of the subelement’s this pointer to
the class this pointer. Recall that the this pointer points
to the address at which the vtable pointer is stored in an ob-
ject’s memory. VCI computes the offset by analyzing the ad-
justments performed on the this pointer before calling the
subelement’s constructor. For example, mov 0x8(%ebp),%
eax; add 0x4,%eax; mov %eax,(%esp); call sub_ctor()
; constructs a subelement at offset 0x4 from the this pointer
of the class. This results in an expression of the form this
+ offset, where this is the class this pointer, and offset
is the distance to the subelement’s this pointer. Finally,
VCI checks if the subelement needs to be dereferenced be-
fore accessing by checking if the this pointer passed to the
subelement’s constructor is stored in memory after the call
to the subelement’s constructor.

Similarly, VCI populates the class VTT by identifying the
assembly site that stores pointers to vtables, relative to the
this pointer of the class. For example, mov 0x8($ebp),%eax
; mov $0x848,(%eax); add $0x8,%eax; mov $0x88c,(%eax
); corresponds to a VTT of two entries 0x848 at offset 0 and
0x88c at offset 0x8. Note that the first entry of the VTT is
the class’ vtable itself.

To reconstruct inheritance relationships between polymor-
phic classes, VCI needs to differentiate between calls to a
base constructor and calls to construct member objects. Ac-
cording to the ABI, in a derived class, its virtual base class’
subobjects are constructed before its member objects. In
addition, the compiler has to populate the VTT of the class
before constructing its member objects. In other words, all
calls to constructors that 1) take the derived class’ this
pointer (adjusted) as the top argument on the stack, and
2) occur before storing the vtable address at a zero offset
from the this pointer in the object’s memory, are calls to
base constructors. By identifying this pattern in the assem-
bly of constructors, VCI constructs the “is-a” relationship
among the identified polymorphic classes. Note that the ac-
tual offsets in the VTT in the binary must match the offsets
VCI extracted for inherited classes. Additionally, the sound-
ness of the inferred hierarchy follows from the soundness of
VCI’s vtable identification (no FNs). We do not attempt
to construct the full class hierarchy that includes polymor-
phic and non-polymorphic classes, which is a known hard
problem [16, 23, 26]. VCI uses the identified inheritance
hierarchy to augment its policy when semantic gaps hinder
the identification of all class types that a vcall operates on
(see Section 4.6).

4.4 Identifying Virtual Calls
To extract call sites that invoke virtual functions, i.e., vcall

sites, VCI scans the binary for indirect call sites that reflect
the behavior of virtual function dispatches. That is, the in-
direct call target is computed by first dereferencing a pointer
(the vtable pointer), then adjusting the resulting address to
pick an entry of the vtable by adding a non-negative con-
stant offset to it, and finally dereferencing the final adjusted
address to retrieve the address of the target function. In
addition, the same expression used to dereference the vtable
(the this pointer) is passed as the first argument (top of
stack) to the indirect call. Note that the offset used in a vcall
site is not a target of attacks as it is always hardcoded in the
assembly as an immediate value or a displacement. However,
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attackers can effectively change the offset by modifying the
vtable address (vptr) referenced by the this pointer.

Though a vtable and a jump table (an array of function
pointers) share common structure, the semantics for invok-
ing virtual functions are different from those for dispatching
functions from a jump table. To dispatch a function pointer
from a jump table, the jump table is directly indexed rather
than offset and dereferenced. For example, given an index in
%ecx and a jump table stored at address 0xa034, the target
function from the jump table is invoked by: call 0xa034(,%
ecx,4).2 This dissimilarity in how the indirect call target
is computed enables VCI to filter out any spurious jump
tables that might have been mislabeled as vtables by Algo-
rithm A.1.

This approach in itself does not yield FPs (false posi-
tives, i.e., incorrectly identifying a call as a vcall) for ABI-
compliant binaries. However, it might incorrectly identify
some specific C constructs as vcalls in mixed C/C++ bina-
ries. Besides that, special compiler rearrangements and non-
standard calling conventions that may not be handled by the
implementation can result in FNs (false negatives, i.e., miss-
ing valid vcalls). We evaluate the identification accuracy of
VCI in Section 5.1 and discuss vcall-like C constructs in Sec-
tion 6.3.

4.5 Class Type Propagation and Pairing

4.5.1 Intra-Procedural Analysis
VCI implements a custom, slicing-based, intra-procedural

analysis algorithm (illustrated in Algorithm A.4) to con-
struct intra-procedural bindings between classes and (v)calls.
It starts by analyzing the assembly sites at which calls are
invoked. For each call site, it extracts a backward slice,
starting at the assembly store point of each argument to the
call site and ending at the entry point to the procedure. VCI
analyzes the slice and decides whether and what classes the
argument depends on, i.e., there is data dependence between
the call parameter and one or more this pointers defined
within the same procedure.

Each backward slice is a Program Dependency Graph
(PDG) constructed via Value-Set Analysis (VSA) [4]. Nodes
in the PDG correspond to program constructs (assignment
expressions) and edges correspond to data and control de-
pendencies between the assignments. Since there is no no-
tion of variables at the binary level, VSA extracts variable-
like abstractions using the semantics of the instructions.
Due to the multi-assignment (multi-source, multi-destination)
nature of assembly instructions, the produced slices are of-
ten cluttered with irrelevant expressions and dependency
paths [36]. To overcome this, VCI analyzes the slice by
traversing backwards all paths in the PDG from the exit
node (i.e., the call argument) to each entry node. For each
path, VCI traces (backwards) the data flow of the argument
through memory and registers, till it reaches a construction
site (the defining constructor) or an entry node. During
this, VCI also maintains a list of all encountered adjust-
ments (via offsets and displacements) that were performed
on the parameter expression, in their order of execution. See
Figure B.2 for a example snippet and its corresponding PDG
generated by VCI.

2Code generated by both GCC and Clang with -O1, -O2, and
-O3. For -O0, GCC and Clang emitted: mov %ecx,%eax;
mov 0xa034(,%eax,4),%eax; call *%eax, which also does
not satisfy the semantics of a vcall.

If such flow exists, then a data dependency is present be-
tween the call parameter and that construction site (and its
corresponding class). In this case the parameter type is re-
solved by pairing it with the effective class resulting from
the corresponding construction site class after applying any
this pointer adjustments. If the resolved parameter is the
first parameter of the vcall (i.e., the this pointer), VCI re-
solves the vcall target using the resolved parameter’s vtable
and the vcall offset. It then adds an edge to the CFG be-
tween the vcall and the resolved virtual function address.

If there is no data flow, then the path is ignored. Finally,
if a flow exists but the defining constructor was not found,
that could mean either the definition point is in a different
procedure or there is a semantics gap, which we discuss in
the following sections.

4.5.2 Inter-Procedural Analysis
VCI performs inter-procedural analysis by recursively prop-

agating the this definitions and parameter type informa-
tion of each procedure down the CFG, through returns and
successor call sites. The analysis traces the this point-
ers of both class objects and members as identified in Sec-
tion 4.3. Specifically, class types are propagated across func-
tion boundaries by checking the equivalence of the expres-
sions of the arguments pushed on the stack at the call site
(in the caller function) with those loaded from the stack in
the preamble of the callee. For example, %edx and 0x8(%ebp
) in the following snippet are equivalent: foo: push %edx
; call bar; and bar: mov 0x8(%ebp),%eax. For returns,
class types are recursively propagated across all procedures
exit points (function returns) if there is a data dependency
between the exit point and the this pointers of the objects
referenced in the function body.

Vcall Target Resolution. For vcalls, VCI attempts to re-
solve the vcall target by identifying data flows from the in-
coming this pointer expressions on the stack of the enclosing
(parent) procedure, to the arguments of the vcall. Similar
to Section 4.5.1, this is done by pairing arguments to in-
coming (adjusted) class types via reachability analysis over
a backward slice starting at each argument to the vcall and
ending at the entry of the enclosing procedure. If the first
argument (i.e., the this pointer the vcall is invoked on) type
is successfully resolved, VCI finds the corresponding virtual
function address in the corresponding class’ vtable, at the
offset that appears in the vcall site, and adds an edge to
the CFG between the vcall and the virtual function address.
The algorithm stops when the CFG stops changing.

Due to semantic gaps (see Section 6), it is possible that
VCI fails to resolve all definition points of a vcall’s this
pointer, resulting in potentially missing some valid vcall
targets. This divides vcalls into three categories: 1) fully
resolved vcalls, where all definition points were success-
fully paired; 2) partially resolved vcalls, where some but
not all definition points were resolved; and 3) unresolved
vcalls where all definition points were not paired with any
type. In the following section, we discuss how VCI generates
and enforces its policy such that it covers all the three cases,
yet be as strict as possible.

4.6 Policy Generation and Enforcement
VCI generates the following policy, based on vcall target

resolution results:

1) For fully resolved vcalls, all legit targets were success-
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fully identified, and only those targets are considered
valid.

2) For partially resolved vcalls, find the common base
classes among the identified targets and all child classes
that inherit from those common bases (including the
identified targets). Assume that all vtable functions
at the vcall offset in those classes are valid targets.

3) For unresolved vcalls, i.e., no targets were identified
for the vcall, assume that all vtable functions at the
same vcall offset are valid targets (the same integrity
policy applied by Prakash et al. [30]).

The policy is implemented by constructing the mapping
F : vcall× class→ vtable. VCI stores in the binary a read-
only set C of the extracted class types and their inferred
layouts, one class for each nonempty vtable. Each class is
assigned a unique ID. Then, before each vcall site v, VCI
aggregates a set of IDs Lv of all the class types that v can
be invoked on, based on the three aforementioned policy
cases (for fully, partially, and unresolved vcalls). It then
injects code in the binary that enforces F by checking for
the following:

1) There is a class c in C with the same vtable address of
the class c′ accessed by the vcall.

2) The ID of c belongs to the valid IDs Lv, i.e., cID ∈ Lv.
3) The class layout of c′ matches the layout of c.

If any of the conditions is not met, the execution is aborted
and an alarm is raised. Otherwise, the vcall is dispatched.
Note that no policy is enforced for static (direct) call sites,
e.g., call 660, since they do not pose a threat under our
threat model. In addition, checking the class layout is im-
portant in order to detect reuse attacks that modify the vptr
of an object to point to a different vtable than the actual
object’s vtable, where both vtables are valid for the vcall
site. The layout checks validate the information extracted
in Section 4.3, i.e., the contents of all involved vtables and
offsets of subobjects from each this pointer.

In our prototype implementation, the definitions of the
policy enforcement procedures are exported in a dynamic
library (libvci) that VCI injects into the binary. At run-
time, libvci linearly checks the policy conditions on the valid
classes set of v, i.e., {C [Lv[i]] | i ∈ 1 . . . |Lv|}, where |Lv| ≤
|C|. A potential performance improvement is to add a sublin-
ear index, such as using binary search over vtable addresses
whenever lg |C| < |Lv|, or a read-only hash table that maps
vtable addresses to classes. We decided to go with linear
constant arrays for simplicity and to avoid unintentionally
introducing writable memory or more attack points.

5. EVALUATION
In our evaluation of VCI, we answer the following:

1) How accurately can VCI identify vtables and vcalls? Sec-
tion 5.1.

2) How precise and effective is the policy enforced by VCI,
compared to both binary and source-based state-of-
the-art C++ defenses? Section 5.2.

3) How much runtime overhead do binaries protected by
VCI incur? Section 5.3.

All experiments were conducted with GCC 4.8.2 on Ubuntu
14.04.1, running on 2.5GHz Intel Core i7 with 16GB RAM.
The results are reported for -m32 and -O2 optimization, but
we observed similar results at other optimization levels.

5.1 Identification Accuracy
We compiled the C++ SPEC CPU2006 benchmarks and

the C++ Firefox modules3 with debug and symbol infor-
mation, then counted the number of nonempty vtables by
parsing the output of the `objdump -Ct` command, which
demangles and dumps the symbol table entries of a binary.
That count is used as the ground truth. We then compiled
the same programs without debug and symbol information,
processed them by VCI, counted the number of extracted
vtables and compared to the ground truth. Here, FNs (miss-
ing a vtable) are not desired, while FPs are acceptable since
the policy is enforced at vcall sites rather than the vtables
themselves. In other words, falsely identified vtables will
not result in FPs at runtime, but in lower precision during
the identification of vcall targets.

We also report the count of vcalls in each binary, and
compare that to the ground truth from GCC VTV. VTV
inserts checks at each vcall site in the binary to validate its
vtable. We compiled each of the test programs with and
without VTV, and matched the call sites that contained
VTV checks against the vcall sites identified by VCI. Note
that, unlike vtables, falsely identified vcalls may result in
runtime crashes. Thus, FPs in terms of vcalls are undesired,
or else the enforced policy would be unsound. On the other
hand, FNs (missed vcalls) do not sway the soundness of the
policy, rather they reduce its precision.

Table 1 shows the breakdown of our analysis. VCI did
not miss any legitimate vtable in the binaries, achieving zero
FNs. It incorrectly identified some memory blocks as vtables
in five out of the 13 binaries, resulting in FPs between 0.04%
and 3.33%. In terms of vcalls, VCI did not report any FPs,
but it had some FNs (missed vcalls) between 0.32% and
2.18%. These results indicate that VCI shall be sound, but
not perfectly precise (not complete) due to the missed vcalls
and the overestimated vtables. We quantify the precision of
VCI in the following section.

5.2 Security Effectiveness

5.2.1 Policy Precision
Quantifying the effectiveness of a defense system is a dif-

ficult task. Recent work by Zhang et al. [45] introduced the
Average Indirect-Target Reduction (AIR) metric as a quan-
titative measure of the security introduced by a defense.
We understand that the AIR metric has been questioned
by the community [8], primarily since it does not quantify
the usefulness of the remaining targets from the attacker’s
perspective. However, for the sake of comparison with sim-
ilar defenses, we use an AIR-based metric to evaluate VCI.
We concede that a better evaluation metric is needed, al-
beit outside the scope of this work. Developing a conclusive
security metric is a very challenging task, especially when
dealing with whole functions as in the case of VCI. To give
conclusive results, we also compare the precision of VCI to
that of GCC VTV, the state-of-the-art source-based vtable
defense.

In the context of VCI, we are only interested in defending
vcalls, which are forward-edge control transfers. Therefore,
we only compute the average number of vcall targets over all
vcalls. We protected the C++ SPEC CPU2006 benchmarks
and the C++ Firefox modules, and computed the average

3For the non-C++ FireFox modules, VCI did not identify
any vtables in the binaries and aborted the analysis without
modification to the binaries.
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Table 1: Analysis result of the C++ SPEC CPU2006 benchmarks (top) and the C++ Firefox modules (bottom),
including the analysis time in seconds, number of identified vtables and vcalls, and the identification accuracy.

Program #Insns
Analysis

Time
(sec.)

Identified Vtables Identified Vcalls

Ground
Truth

VCI %FP %FN Ground
Truth

VCI %FP %FN

444.namd 91k 22.8 4 4 0.00% 0 2 2 0 0.00%
447.dealII 789k 193.2 732 736 0.55% 0 936 916 0 2.18%
450.soplex 110k 128.4 30 30 0.00% 0 522 511 0 2.15%
453.povray 256k 143.4 30 31 3.33% 0 129 127 0 1.57%
471.omnetpp 166k 207.5 114 114 0.00% 0 710 706 0 0.57%
473.astar* 12k 0.2 1 1 0.00% 0 0 0 - -
483.xalancbmk 1m 329.6 962 971 0.94% 0 9201 9134 0 0.73%

liblgbllibs.so 9k 12.3 8 8 0.00% 0 63 63 0 0.00%
libmozgnome.so 53k 134.7 24 24 0.00% 0 209 206 0 1.46%
libmozjs.so 2m 510.4 1230 1244 1.14% 0 3796 3784 0 0.32%
libxul.so 27m 2973.6 14465 14471 0.04% 0 79703 79315 0 0.49%
libzmq.so 122k 108.2 67 67 0.00% 0 135 133 0 1.50%
updater 31k 15.3 8 8 0.00% 0 8 8 0 0.00%
* We manually inspected 473.astar and found that it contained 4 indirect calls, none of which were vcalls.

number of targets per vcall. Then, we computed the pre-
cision of the policy as the percent reduction in the average
number of vcall targets, compared to the source-based de-
fense GCC VTV (perceived as the ground truth) as well as
the two policies that appeared in prior studies:

1) “AnyV,” permit the vcall target to be any function in
any vtable (e.g., [27, 43]); and

2) “SameOff,” permit only functions at the same vtable
offset as the vcall site, in any vtable (e.g., [17, 30]).

The higher the reduction the more precise the enforced
policy. We further assumed that the solutions that enforced
any of those two policies had perfect knowledge of the vta-
bles in the binaries. Since exploits do not only target vcalls,
and for the sake of completeness, we also report the reduc-
tion in attack surface on indirect calls (icalls). This is com-
puted as the percentage of vcalls (protected by VCI) to the
total number of icalls in the analyzed binaries.

Table 2 shows the breakdown of the results per program.
The results show that VCI achieved significantly higher pre-
cision that prior solutions. For some programs, it limited
the vcall target to one or two functions on average (e.g.,
444.namd, Firefox liblgllibs.so and updater). In comparison
to the source-based VTV, VCI achieved the highest precision
amongst other policies, with 100% precision in some cases,
and greater than 60% precision for the majority of the pro-
grams. Compared to solutions that apply the AnyV policy,
VCI achieved 87% to 99% reduction in the vcall targets.
This is more pronounced in programs with large numbers of
vcalls. For example, in Firefox libxul.so, VCI limited each
vcall to only 1035 targets on average, while AnyV allowed
71069 targets per vcall. Compared to SameOff policies, VCI
achieved 48% to 89% reduction. For the same libxul.so, a
SameOff policy would permit 9692 targets per vcall, while
VCI reduced that by more than 89%.

5.2.2 Real-World Exploits
We experimented with three publicly-available use-after-

free vtable exploits for Mozilla Firefox: CVE-2011-0065,
CVE-2013-0753, and CVE-2013-1690. All three vulnerabili-
ties reside in libxul. CVE-2011-0065 exploits a use-after-free
vulnerability in Firefox 3.6.16 where the mChannel pointer
associated with an Element object can be used after being
freed, via the OnChannelRedirect function of the nsIChan-

nelEventSink class. CVE-2013-0753 exploits a vulnerability
in Firefox verions prior to 17.0.2, where an object of type
Element is used after being freed inside the the serialize-
ToStream function of the nsDocumentEncoder class. CVE-
2013-1690 exploits a vulnerability in Firefox 17.0.6 where a
DocumentViewerImpl object is used after being freed, when
triggered via a specially crafted web page using the on-
ReadyStateChange event and the Window.stop API. This
was the vulnerability exploited in the wild in 2013 to target
Tor Browser users.

We downloaded vulnerable Firefox versions, protected the
relevant C++ modules with VCI and tested the protected
browser against exploits from Metasploit. Though some
Metasploit modules for the aforementioned vulnerabilities
supported only Windows, the HTML payloads that trigger
the vulnerabilities are cross-platform. The only platform-
specific part is the actual payload (ROP in all 3 exploits)
that is executed after the vulnerability is exploited.

VCI identified and protected the vcalls targetted by the
exploits, rendering the three exploits inoperable. All three
exploits resembled a vtable injection attack. We could not
find any publicly-available vtable reuse attacks. In the fol-
lowing, we discuss how VCI mitigates and hardens binaries
against COOP attacks.

5.2.3 Impact of VCI on COOP
Schuster et al. [11, 34] introduced Counterfeit Object-

Oriented Programming (COOP), a novel vtable reuse attack
against C++ programs. In a COOP attack, the attacker in-
jects a counterfeit (attacker controlled) object that repur-
poses existing virtual functions in the binary. The coun-
terfeit object is specially crafted such that benign vulnera-
ble constructs in the binary execute attacker picked virtual
functions. The gadgets in a COOP attack are calls to vir-
tual functions (vfgadgets). By chaining multiple vfgadgets
via counterfeit objects, the attacker can achieve arbitrary
code execution.

A COOP attack requires a memory corruption bug that
enables injection of attacker-controlled objects. Besides that,
it has two key requirements for a successful exploit: 1) the
ability to target unrelated virtual functions from the same
vcall site; and 2) the ability to flow data between the vfgad-
gets. The vfgadgets are dispatched via two types of initial
vfgadgets: the main-loop gadget (ML-G), and the recursive
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Table 2: VCI policy coverage and average target reduction in the analyzed programs. AnyV refers to solutions
that allow any target as long as it is in a valid (read-only) vtable. SameOff refers to solutions that allow
targets that are in a valid vtable and at the same offset of the vcall site. VTV represents the source-based
ground truth.

Program
Avg. #targets per vcall %Precision w.r.t VTV %Reduction

AnyV SameOff VCI VTV AnyV SameOff VCI vs. AnyV vs. SameOff
444.namd 8 4 1 1 12.50% 25.00% 100.00% 87.50% 75.00%
447.dealII 3775 289 49 18 0.48% 6.23% 36.73% 98.70% 83.04%
450.soplex 725 17 8 7 0.97% 41.18% 87.50% 98.90% 52.94%
453.povray 384 41 13 8 2.08% 19.51% 61.54% 96.61% 68.29%
471.omnetpp 2361 72 37 21 0.89% 29.17% 56.76% 98.43% 48.61%
483.xalancbmk 11345 515 85 33 0.29% 6.41% 38.82% 99.25% 83.50%

liblgbllibs.so 61 5 2 2 3.28% 40.00% 100.00% 96.72% 60.00%
libmozgnome.so 149 20 9 6 4.03% 30.00% 66.67% 93.96% 55.00%
libmozjs.so 23840 657 91 27 0.11% 4.11% 29.67% 99.62% 86.15%
libxul.so 71069 9692 1035 63 0.09% 0.65% 6.09% 98.54% 89.32%
libzmq.so 979 42 13 9 0.92% 21.43% 69.23% 98.67% 69.05%
updater 44 7 2 2 4.55% 28.57% 100.00% 95.45% 71.43%

gadget (REC-G). The ML-G gadget represents a linear dis-
patch using a loop that iterates over a list of objects (coun-
terfeit) and calls some virtual function of each object. The
REC-G gadget corresponds to a recursive dispatch using two
consecutive vcalls on different objects, where the first vcall
dispatches one vfgadget and the second vcall recurses back
into a REC-G.

In a COOP attack, data is passed between vfgadgets ei-
ther explicitly or implicitly. In explicit data flows, the at-
tacker picks vfgadgets that pass data via object fields or vcall
arguments. In implicit data flows, data is passed via unused
argument registers by chaining vfgadgets that take different
numbers of arguments. Note that this is specific to archi-
tectures that pass arguments in registers by default, such
as x86 64. Explicit data flow via object fields is achieved
by overlapping objects, in memory, of different classes such
that one vfgadget writes to some object field, then another
vfgadget reads from the same field. On x86 32, this also
requires an initial vfgadget that passes the same field to the
dispatched vfgadgets, so that they can read or write to it. In
the following, we discuss how VCI abrogates the attacker’s
ability to satisfy the COOP requirements.

Table 3 shows VCI’s vcall target resolution coverage re-
sults (summary statistic are in Table G.1). VCI fully and
partially resolved 58% plus 26% of all vcall targets, on aver-
age (geometric). Unresolved targets ranged from 0% to 29%,
with an average of 14%. While the percentage of unresolved
calls is not particularly low for some of the test programs,
the percentage of fully and partially resolved targets out-
weighed that of unresolved targets in all programs.

For both fully and partially resolved vcalls, VCI guaran-
tees that all targets of a vcall are at the same vtable offset
and under the same class hierarchy. The targets in this
case correspond to function polymorphs (redefinitions) of
some virtual function in the hierarchy, therefore, all taking
the same number of arguments. This prevents implicit data
flows in COOP. This also means that the targets are func-
tionally related, since they are part of the same hierarchy,
and unlikely to exhibit useful semantics for the attacker.

For explicit data flows, VCI checks the layout of a vcall in-
voking object and all its polymorphic subobjects against the
statically inferred layouts. The checks assert that the con-
tents of all involved vtables and offsets of subobjects from
each this pointer are valid. This means that the attackers
cannot overlap objects unless the objects classes have a suf-

Table 3: Percentage of fully, partially, and unre-
solved vcalls of the C++ SPEC CPU2006 bench-
marks (top) and the C++ Firefox modules (bottom).

Program Identified
Vcalls

%Resolved Vcalls
Fully Partially Unres.

444.namd 2 100% 0% 0%
447.dealII 916 37% 54% 09%
450.soplex 511 63% 12% 25%
453.povray 127 51% 23% 26%
471.omnetpp 706 47% 29% 24%
483.xalancbmk 9134 56% 28% 16%

liblgbllibs.so 63 79% 21% 0%
libmozgnome.so 206 72% 22% 06%
libmozjs.so 3784 60% 28% 12%
libxul.so 79315 32% 39% 29%
libzmq.so 133 32% 52% 16%
updater 8 75% 13% 12%

geomean: 58% 26% 14%

ficient number of non-polymorphic subobjects arranged in
a way that allows overlapping without disrupting the lay-
out checks. We argue that this significantly complicates
the attacks. Additionally, even if such classes were avail-
able, VCI guarantees the integrity of vtable contents which
consequently prevents the invocation of desired system calls
via counterfeit vtables. This limits the attackers to only
invoking system calls via vfgadgets that invoke an attacker-
controlled indirect call (C-style function pointer), which are
“rare in practice” [34] and outside the scope of this work.

If VCI fails to resolve the targets of some vcall (14% of all
vcalls in Table 3, on average), it resorts to the SameOff pol-
icy for that particular vcall. This might enable an attacker
to deploy a COOP attack by attacking and utilizing only
the unresolved vcalls. Note that the same policy against
counterfeit object overlapping is still in effect for unresolved
vcalls. While attackers might be able to workaround those
constraints, at least in theory, this setup is still significantly
constrained compared to unprotected binaries. The reduc-
tion in attack surface is essential to heighten the cost of
building a functional exploit. Complementary solutions that
depend on reference and argument counts (e.g., [39, 42, 45])
can be selectively applied at unresolved vcalls sites to further
shrink the possibility of data flows (see Section 6).
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5.3 Performance Overhead
We benchmarked the runtime overhead of binaries pro-

tected by VCI using 1) the C++ SPEC CPU2006 bench-
marks, and 2) the three industry standard browser speed
benchmarks: JetStream, Kraken and Octane. The results
are tabulated in Table 4. Overall, VCI incurred low overhead
ranging from 2.01% to 10.69% on namd, dealII, soplex, and
povray. omnetpp and xalancbmk incurred higher overhead
(21.11% and 34.80%), which we believe is a side effect of
alignment changes in the modified binary, as witnessed by
other studies [17, 22, 37]. On browser benchmarks, VCI
incurred very low overhead, ranging from 1% to 7%. Over-
all, VCI incurred a total average (geometric) of 7.79%. The
time it took VCI to analyze each binary is tabulated sepa-
rately in Table 1. We emphasize that we made no attempts
to optimize the performance of VCI’s analysis or policy en-
forcement (see Section 4.6). The overhead incurred by VCI
aligns with the state-of-the-art vtable defenses (10%−18.7%
[30], 0.6%− 103%[17], 2%− 30%[22], 8%− 19.2% [37]).

Table 4: Performance overhead of VCI on the C++

SPEC CPU2006 benchmarks and three industry
standard browser speed benchmarks on Firefox (me-
dian of 3 runs).

Benchmark orig. new overhead
444.namd 739 s 818 s 10.69%
447.dealII 1813 s 1994 s 9.98%
450.soplex 565 s 613 s 8.50%
453.povray 399 s 407 s 2.01%
471.omnetpp 612 s 825 s 34.80%
483.xalancbmk 1047 s 1268 s 21.11%

JetStream 146.64 pt 135.81 pt 7.34%
Kraken 1332.7 ms 1358.5 ms 1.94%
Octance 27328 pt 25819 pt 5.52%

geomean: 7.79%

6. DISCUSSION AND IMPROVEMENTS
In this section, we discuss some limitations and improve-

ments of VCI. More technical aspects and complementary
policies are discussed in Appendices E, F and H.

6.1 Position-Independent Code (PIC)
VCI supports position-independent code (PIC), including

executable and shared libraries. For instance, the Firefox
modules used in our experiments were all PIC. To sup-
port PIC, VCI first analyzes the binary by searching for a
memory section with a data.rel prefix, which is the prefix
used to denote relocatable data regions in binaries. If any
such section is identified, VCI extracts all program counter
thunks (PC thunks) in the binary. A PC thunk is a func-
tion generated by the compiler to load the current PC into
a specific register when called, which allows memory ac-
cesses as an offset from the PC. VCI identifies PC thunks by
searching for two-instruction functions that move the stack
pointer to a register and immediately return, e.g., the func-
tion get_pc_thunk.cx: mov (%esp),ecx; ret; returns the
PC into the ecx register when called. Recall that the call
instruction pushes the address of the immediately proceed-
ing instruction on the stack, and global data is accessed via
an offset relative to the PC in PIC. Once PC thunks are
identified, the analysis proceeds as normal, with the only
exception that the PC value returned by PC thunks, and

the PC offset, are taken into consideration when comput-
ing vtable addresses during the extraction of vtables and
constructors.

6.2 Heterogeneous Containers
VCI, like any static analysis solution, has limited visibil-

ity into the semantics of the analyzed programs. Despite
that VCI extracts significantly more semantics than prior
solutions, there are cases where the analysis fails to iden-
tify all the class types used by a vcall. The most common
case is objects stored in a heterogeneous container, e.g., a
container of base pointers. Even though VCI performs alias
analysis to some extent during type propagation, the analy-
sis is conservative and cannot trace through containers logic.
For example, without function names, it is not possible to
determine whether a call adds or perhaps removes elements
from some C++ container.

One possible approach to narrow this gap is to learn and
cluster patterns of generated assembly code for common con-
tainers (e.g., the standard C++ containers). Then, iden-
tify those patterns in the assembly of analyzed programs
to map out the semantics of the containers and their func-
tions. Identifying the functions is only the first step. In ad-
dition to that, the reference to the container must be traced
through procedures in order to maintain the class types that
the container stores. This becomes even more complicated
with nested containers. Overall, precisely bridging such se-
mantic gaps using only static analysis remains an open, very
challenging, problem.

6.3 Virtual-dispatch-like C Calls
While we have not faced any false positives during our

evaluation of VCI, it is possible that some non-virtual calls
resemble the behavior of a C++ vcall dispatch. For example,
VCI will incorrectly idenfity the following call as a vcall: a
->b->foo(a), where a and b are pointers to plain C structs,
and foo is a function pointer. It will also fail to find any
constructor that defines the this pointer since the C struct
types a and b will not have vtables. As a result, VCI will
err in favor of security by limiting the target of foo(.) to
any virtual function at the same offset of foo in b.

In vfGuard [30], the authors proposed a potential solution
to this problem by looking for compiler-specific patterns in
the assembly code. The authors argued that compilers tend
to dispatch vcalls and nested C struct function pointers dif-
ferently. However, based on our experimentation with the
GCC compiler, there is no specific pattern that is used over
the other. The authors of T-VIP [17] suggested recording
the actual indirect call targets using a dynamic profiling pass
that executes benign test cases that (optimally) cover all in-
direct calls. Then, filter out misidentified vcalls if a recorded
target is not in a vtable.4 However, the main challenge is
in coming up with a conclusive benign input set that does
not result in erroneous elimination and PFs at runtime. To
the best of our knowledge, this remains an open research
problem.

7. RELATED WORK

ASLR. Address Space Layout Randomization (ASLR) [3]
is perhaps the most deployed defense against code-reuse at-
4The same approach could be utilized in augmenting the
SameOff and AnyV policies by filtering out vcall targets that
are never called by the benign inputs.
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tacks. Actual deployments, however, are far from perfect,
and it has been shown that various ASLR deployments can
be bypassed (e.g., [31, 35]). Crane et al. [10, 11], proposed
randomization based defenses resilient to memory disclosure
attacks. The two approaches utilized the newly introduced
execute-only memory pages via the Extended Page Tables
(EPT) virtualization technology in Intel processors since the
Nehalem microarchitecture. Both solutions require hard-
ware support, kernel and compiler changes, and source re-
compilation. While randomization increases the attack cost
by increasing the attacker’s uncertainty, it only provides
probabilistic guarantees.

Control Flow Integrity. Abadi et al. [1] introduced Con-
trol Flow Integrity (CFI), which prevents control flows not
intended by the original program. The idea is to extract
a Control Flow Graph (CFG) from the program and en-
force the CFG at runtime. Unfortunately, CFI is not widely
adopted in practice, because of two main hurdles: 1) build-
ing a complete CFG is a very challenging task, especially
without access to source code or debug symbols; and 2) the
overhead incurred by ideal CFI is rather large. Recent ap-
proaches [42, 45] attempted to address those issues by en-
forcing coarse-grained CFI. However, it has been shown [8,
9, 11, 13, 18, 34] that code reuse is still possible with such
loose notions of CFI in place. Recently, PathArmor [38]
showed that context-sensitive CFI can be enforced with lit-
tle overhead using recent hardware features. However, it
lacked forward-edge context sensitivity which made COOP
attacks still possible. TypeArmor [39] enforced a generic
binary-level policy based on the number of produced and
consumed function arguments. As demonstrated by our
analysis in Appendix H, such policy is imprecise compared
to semantic-aware policies. Nevertheless, generic CFI solu-
tions are complementary to our work, where we only focus
on protecting the integrity of vcalls.

Compiler Solutions. Recent versions of the GCC compiler
support a new vtable verification (VTV) [37] feature, which
inserts checks before each vcall that asserts that the vtable
pointer is valid for the invoker object type. Shrinkwrap [19]
enhanced this by enforcing object-call pairing for each vcall
in the program, as well as fixing a number of corner cases
that were discovered in the implementation of VTV. Sim-
ilary, SafeDispatch [22] extended LLVM to support a sim-
ilar policy to VTV. Also for LLVM, VTrust [44] proposed
a hash-based technique to verify the integrity of vcalls. For
the MSVC compiler, VT-Guard [27] proposed a defense that
inserted a secret cookie into each vtable and checked if the
cookie is valid before each vcall. While this makes it harder
for an attacker to inject a valid vtable, it falls short against
memory disclosure attacks that can leak the cookie value.

Recently, Bounov et al. [6] proposed an LLVM exten-
sion that reorders vtables such that integrity policies can
test for vtable membership in constant time. In general,
compiler-based solutions have the maximum visibility into
the source code, allowing them to enforce stronger policies
than ours. Nevertheless, they require access to the source
code and recompilation of all linked modules, which may not
be feasible in practice. Other solutions, such as CETS [28]
and Dangnull [25], attempted to eliminate dangling point-
ers altogether by tracing object pointers and nullifying them
upon deletion. Unfortunately, sound and complete tracing
of pointers is NP-Hard [24], especially with pointer aliasing

and multithreading constructs available in all modern pro-
gramming languages. Additionally, there are various ways
to mount vtable attacks besides using a dangling pointer,
such as buffer overflow, format string, and type confusion
attacks. That said, eliminating dangling pointers is comple-
mentary to our work and resembles a strong layer of defense
against various memory corruption attacks.

Binary Solutions. Multiple binary solutions were proposed
to defend against vtable attacks. T-VIP [17] used static
analysis to identify and extract vtables and vcall sites. At
runtime, it checked at each vcall site that the referenced
vtable is read-only and the vcall offset is in the vtable. Sim-
ilarly, RECALL [14] identified unsafe casting in MSVC bina-
ries by matching the layouts of objects that reach vcall sites.
Both solutions worked on an intermediate binary represen-
tation obtained by lifting the x86 assembly to a static single
assignment (SSA) form. However, as the authors explained,
this is not error-free.

VTint [43] relocated vtables to a read-only memory sec-
tion, and checked before every vcall that the referenced vtable
is read-only. VTint incurred low overhead, but at the same
time it suffered from poor identification accuracy. For in-
stance, VTint identified only 115 vtables and 200 vcalls for
447.dealII, whereas VCI identified about 7 times as many.
Similarly, vfGuard [30] used static analysis to reconstruct
the set of all possible targets for each vcall site, given the
vcall offset, and instrumented the binary to check for mem-
bership. Unfortunately, it was assessed that such policies are
not precise enough to stand against COOP attacks [11, 34].

On a different defense front, solutions were proposed to
detect memory corruption and access bugs. Valgrind [29],
AddressSanitizer [32], and Undangle [7] are a few examples
of dynamic memory monitoring systems that help detect
memory access errors, including use-after-free. However, the
overhead is prohibitive for practical deployment as a secu-
rity solution (25x runtime overhead). DieHard [5] provided
a probabilistic memory integrity guarantee by randomizing
and expanding the heap. While it incurred much less over-
head than full-blown dynamic memory monitoring, it re-
quired at least double the heap size for each program it pro-
tects, which is not feasible in practice. More recently, VT-
Pin [33] introduced a simple and novel solution by directly
managing deallocations, and preventing reuse of deleted ob-
jects by repointing their vtptr to a safe vtable. For that
purpose, however, it required hooking the free and malloc
calls, the presence of RTTI in the binary, as well as catching
segfaults that may result from probing unmapped memory.

Complementary to our work is C++ reverse engineering
efforts. In Smartdec [16], the authors proposed a system
to reconstruct C++ class hierarchies from RTTI. Similarly,
Objdigger [23] extracted objects and member functions of
classes from compiled MSVC binaries. While decompilation
is very valuable for many security problems, VCI is more
tuned for vcall integrity as it focuses on only recovering the
C++ semantics that impose restrictions on vcall targets.

8. CONCLUSION
This paper presented VCI, a system to generate and en-

force a strict CFI policy against vtable attacks in COTS
C++ binaries. VCI statically reconstructs various C++ se-
mantics from the binaries, without needing debug symbols
or type information, making it applicable to any C++ ap-
plication. VCI defeats vtable injection attacks and signif-
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icantly reduces the attack surface for vtable reuse attacks.
As demonstrated by our experiments, VCI significantly im-
proves upon the state-of-the-art, defeats real-world exploits,
and incurs low overhead.
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APPENDIX
A. MAIN ALGORITHMS USED BY VCI

Algorithms A.1 to A.4 summarize the main algorithms
used by VCI.

Algorithm A.1: Scan and Extract Vtables

input : Rgns: set of memory regions from the binary
Funcs: set of functions from the binary

output: Vtables: set of virtual function tables

1 foreach func ∈ Funcs do
2 foreach insn ∈ getInstructions(func) do
3 if writesMemory(insn) then
4 src ← getSrcExpr(insn)
5 dst ← getDstExpr(insn)
6 if isDefined(src) then
7 rgn ← getRegion(src)
8 if readonly(rgn) then
9 vt ← extractVtable(rgn, src)

10 Vtables ← Vtables ∪ vt

11 return Vtables

12 Procedure extractVtable(Funcs, rgn, offset)
13 vt ← ∅
14 i← 0
15 foreach wd ∈ rgn starting at offset do
16 if wd ∈ Funcs then
17 vt ← vt ∪〈i,wd〉
18 i← i + 1

19 else
20 break

21 return vt

Algorithm A.2: Identify and Extract Constructors

input : Funcs: set of functions from the binary
Vtables: set of virtual function tables

output: Ctors: set of constructors

1 foreach func ∈ Funcs do
2 foreach insn ∈ getInstructions(func) do
3 if writesMemory(insn) then
4 src ← getSrcExpr(insn)
5 dst ← getDstExpr(insn)
6 if isDefined(src) and getDisp(dst) = 0 and

firstArg(dst) then
7 vt ← Vtables[src]
8 if vt 6= ∅ then
9 if getOffset(func) /∈ vt then

10 // ctor cannot be in vt
11 Ctors ← Ctors ∪ func

B. EXAMPLE SNIPPET AND POLICY
Figure B.1 shows an example C++ program, its corre-

sponding assembly dump, and the policy semantics injected
by VCI at the vcall site. The corresponding filtered PDG
generated by VCI is shown in Figure B.2.

Algorithm A.3: Reconstruct Class Layout

input : cls: initial class layout
Ctors: set of constructors

output: cls: populated class layout

1 offset ← 0
2 foreach insn ∈ getInstructions(cls.ctor) do
3 if isCall(insn) then
4 dst ← getCallTarget(insn)
5 if dst ∈ Ctors then
6 mThis ← findThis(dst)
7 offset ← calcOffset(cls.this, mThis)
8 deref ← storesThis(cls, mThis)
9 addToLayout(cls, offset, dst, deref)

10 return cls

Algorithm A.4: Intra-procedural Type-Vcall Pairing

input : Ctors: set of constructors
Funcs: set of functions from the binary

result : Pairing information between classes and vcalls

1 foreach func ∈ Funcs do
2 foreach call ∈ func do
3 foreach param ∈ findParams(call) do
4 slice ← backwardSlice(param)
5 foreach entryNode ∈ slice do
6 def, Adjs ← reaches(entryNode, exitNode)
7 if def 6= ∅ then
8 cls ← resolve(def, Adjs, func, Ctors)
9 pair(cls, param, call, Adjs)

10 else
11 pair(∅, param, call, Adjs)

C. ABI DEPENDENCY
The C++ Application Binary Interface (ABI) sets the in-

terface between program modules and the execution envi-
ronment at the assembly level. It defines things such as the
memory layout of objects, details of how virtual functions
are invoked, and the behavior of the linking stage. The most
adopted C++ ABI is the Itanium ABI [21], which is the fo-
cus of this work. The Itanium ABI is used by all Linux
compilers. Alternatively, the MSVC compiler on Windows
uses the MSVC ABI which was internally developed by Mi-
crosoft. The two ABIs mainly differ in their choice of calling
conventions and the layouts of vtables in memory. Never-
theless, the approach discussed in this paper can also be
applied to MSVC C++ binaries by adjusting the algorithms
to accommodate the rules of MSVC.

D. WHY NOT DEPEND ON RTTI?
C++ supports dynamic type reporting, i.e., identifying and

checking the actual type of an object at runtime (as op-
posed to at compile-time). This is enabled by what the
ABI calls “Runtime Type Information” (RTTI). RTTI en-
ables the program to dynamically identify and cast objects
at runtime, via the typeid and the dynamic_cast operators,
respectively. For each polymorphic class, an RTTI record is
added to the class layout in memory, and a pointer to that
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1 int main() {
2 int x; cin >> x;
3 Base *ptr = nullptr;
4 if (x == 1) ptr = new A();
5 else ptr = new B();
6 ptr->foo(); //vcall
7 }

(a) Example C++ program with a virtual call.

77d: push %ebp
...
79b: movl $0x0, 0x1c(%esp) ; ptr = nullptr
...
; compare x
7a7: cmp $0x1, %eax ; x == 1 ?
7aa: jne 7ce <main+0x51>
; if x == 0:
7ac: movl $0x4, (%esp)
7b3: call 660 ; operator new()
7b8: mov %eax, %ebx
7ba: movl $0x0, (%ebx)
7c0: mov %ebx, (%esp)
7c3: call 8aa ; constructor of A
7c8: mov %ebx, 0x1c(%esp) ; this ptr of A
7cc: jmp 7ee <main+0x71>
; if x == 1:
7ce: movl $0x4, (%esp)
7d5: call 660 ; operator new()
7da: mov %eax, %ebx
7dc: movl $0x0, (%ebx)
7e2: mov %ebx, (%esp)
7e5: call 8c6 ; constructor of B
7ea: mov %ebx, 0x1c(%esp) ; this ptr of B
; vcall site
7ee: mov 0x1c(%esp), %eax ; %eax = this ptr
7f2: mov (%eax), %eax ; %eax = vptr
7f4: mov (%eax), %eax ; %eax = vptr[0]
7f6: mov 0x1c(%esp), %edx
7fa: mov %edx, (%esp) ; push this ptr
7fd: call *%eax ; invoke vptr[0]
...

(b) Assembly dump of (a).

clsz ← {A,B};
ptr ← (%esp);
assert(∃ cls ∈ clsz

∧ vtable(ptr) == cls.vtable
∧ layout(ptr) == cls.layout);

(c) Injected policy checks before the vcall at 7fd.

Figure B.1: (a) Example C++ program, (b) it’s as-
sembly dump, and (c) the policy injected by VCI.
clsz is the statically constructed set of valid classes
at the vcall site. ptr refers to the pointer at address
0x1c(%esp).

record is included at a negative offset in the vtable. The
RTTI record contains several structures that describe the
class type and its bases.

The structural details of RTTI records can be very useful
in reconstructing the polymorphic class hierarchy. However,
RTTI is not required if the program uses an RTTI operator
in a way that the compiler can infer at compile-time. For ex-
ample, a dynamic up cast to an unambiguous base can be re-
placed by a static (compile-time) cast by the compiler, hence
not requiring RTTI. All major compilers support RTTI as
an optional feature that can be enabled or disabled. Some
compilers, such as Clang/LLVM, use alternative implemen-
tations of RTTI via C++ templates (dyn_cast<>, isa<> in
Clang). Additionally, RTTI is typically stripped from COTS
binaries or is not present to begin with. For instance, the
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Figure B.2: Extracted PDG backward slice start-
ing at the this pointer argument at offset 7fa in
Figure B.1. For simplicity, nodes only show the
corresponding instruction offsets. Dashed nodes
and edges correspond to irrelevant dependences that
were filtered out by VCI.

C++ Firefox modules on Ubuntu that we used in our ex-
periments had no RTTI by default. Finally, the details of
the RTTI record are compiler-specific, and the ABI does
not mandate an implementation standard for compilers to
follow. Therefore, we opted against depending on RTTI in
VCI.

E. DESTRUCTORS CORNER CASES
The Itanium ABI defines three different types of destruc-

tors: 1) base destructor, which destroys the object itself,
data members, and non-virtual base subobjects; 2) com-
plete destructor, additionally destroys virtual base subob-
jects; and 3) deleting destructor, which in addition to per-
forming a complete destruction, calls operator delete to
free the object’s memory. Since base destructors do not
call non-virtual bases, they do not reference any vtable and
therefore are always ignored by VCI. Deleting destructors
are also ignored since they call complete destructors and do
not reference vtables. Complete destructors, on the other
hand, have to call the virtual destructors of base classes.
Therefore, they access the vtable of the object and its sub-
objects, in a somewhat similar behavior to constructors. Al-
gorithm A.2 implicitly assumes that all complete destructors
are virtual. While that is true most of the time, there are a
few exceptions to this rule.

For instance, the C++11 ABI added a final specifier that
can be applied to classes. A class that is marked final cannot
be inherited from (C++11 Clause 9.3). A final class can have
a non-virtual complete destructor even though it defines or
inherits virtual functions. This would cause VCI to incor-
rectly identify those destructors as constructors. However,
the first thing a complete destructor does is store the vtable
address of its class in the object’s memory. This is done
before calling base destructors, if any. Therefore, VCI will
not identify any base classes when analyzing the destructor
site, compared to analyzing a constructor, when extract-
ing inheritance relationships. VCI utilizes this disagreement
in the identified “is-a” relationship to filter out non-virtual
complete destructors (if any).

F. CROSS-MODULE POLYMORPHISM
A C++ binary can use or inherit a class that is defined

in a different module (shared library). In this case, space
for the vtable of the shared class is reserved in the .bss
section of the binary, but the contents of the vtable are not
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present until after the dynamic linker populates the .bss
section. Similarly, in the case of cross-module inheritance,
the derived class vtable may contain pointers to the PLT
(Procedure Linkage Table), where the actual addresses of
the base functions are to be determined at runtime by the
dynamic linker. In both cases, VCI applies the SameOff
policy since it has limited visibility into the shared vtables
and the virtual function bodies. This gap can be narrowed
via cross-module inter-procedural analysis, and a runtime
stage, similar to VTV, that adjusts the policy as modules
are loaded and the contents of the vtables become available.
We leave this extension for future work.

G. VCALL RESOLUTION STATISTICS
Table G.1 provides summary statistics of VCI’s vcall tar-

get resolution results of the programs used in our experi-
ments. The statistics represent the number of vcall targets
per vcall site for each of the three policy cases.

Table G.1: Vcall target resolution statistics.

Program
Fully Partially Unres.

Min. Max. Avg. Min. Max. Avg. Min. Max. Avg.
444.namd 1 1 1 0 0 0 0 0 0
447.deal 1 31 18 2 76 43 91 335 207
450.soplex 1 7 5 2 14 9 16 30 17
453.povray 1 11 7 4 22 13 24 30 26
471.omnetpp 1 28 19 2 51 39 49 82 68
483.xalanch 1 49 31 3 112 81 213 705 283

libgbllibs.so 1 3 1 2 5 4 0 0 0
libmozgnome.so 1 12 8 2 18 11 18 24 19
libmozjs.so 1 62 33 8 192 83 201 917 402
libxul.so 1 208 74 12 987 646 1104 10021 2619
libzmq.so 1 9 4 4 23 11 30 54 37
updater 1 1 1 3 3 3 7 7 7

H. COMPARISON TO RELATED POLICIES

H.1 Reference Counts
It is possible to further strengthen the policies enforced

by VCI via means of reference counting [41]. For instance,
a vcall can never be invoked on a class type that has zero
referenced instances. While this may result in additional
reduction in the attack surface, the reference counters are
vulnerable to memory corruption attacks since they have to
reside in writable memory. Thus, VCI does not use reference
counters.

H.2 Calling Convention
Though VCI handles the stdcall convention by default,

developers could set specific calling conventions, such as
thiscall and fastcall, for some virtual functions. This re-
sults in discrepancies in how arguments are passed to vcalls:
stdcall passes arguments on the stack, thiscall passes
only the this pointer in ecx, while fastcall passes the
first two arguments in ecx and edx. By identifying the call-
ing convention at each vcall site, it is possible to filter out
target virtual functions that do not adhere to the same call-
ing convention. Care must be taken to precisely distinguish
overlapping conventions, such as thiscall and fastcall.
This policy was applied by Prakash et al. [30], but it yielded
minimal precision improvements (<1%).

H.3 Call Arity
In C++, polymorphs of a function must have the same

parameters type list (C++14 Clause 10.3.2). This implies
that they must also have the same arity, i.e., accept the
same number of arguments. Therefore, it seems plausible
to use the number of arguments passed to a vcall site to
filter out potential target virtual functions that cannot ac-
cept that number of arguments. However, exact argument
matching will be unsound, since at the binary level, only
consumed parameters rather than accepted arguments are
present. Additionally, as per the ABI, the this pointer is
passed to class member functions regardless of whether the
functions consume the this pointer or not. This discrepancy
in the number of passed (prepared) arguments and the num-
ber of consumed parameters makes such policies unsound, as
legitimate targets may be incorrectly eliminated if function
polymorphs consume (use) a different number of arguments.

As a result, exact matching has to be relaxed by allow-
ing compatible arguments, i.e., icall sites that prepare N
arguments can target functions that consume less than or
equal to N arguments. This policy was recently applied by
TypeArmor, by van der Veen et al. [39], to protect indirect
calls in both C and C++ binaries. TypeArmor, however, does
not take the C++ semantics into consideration. Though the
compatible arguments policy is sound, it is less precise than
semantic-aware policies, as noted by the authors.

To evaluate how imprecise this policy is compared to VCI,
we parsed the assembly dump of libxul.so, and counted the
number of prepared arguments at each icall site as well as
the number of accepted arguments by each function.5 We
then computed the number of compatible target functions
per icall site, grouped by the number of prepared arguments.
Figure H.1 depicts the results. For the sake of this argument,
assume the best case scenario where any vcall site prepares
only one argument (the this pointer). That means there
are 188k compatible targets per vcall (functions that accept
one or zero arguments). This is approximately 188× more
targets per vcall than VCI. Even if, hypothetically speaking,
policy refinements applied by TypeArmor would reduce that
by 90%, there would still be 18k targets per vcall, about
18× less precise than VCI. Hence, we conclude that generic
policies based on call arity cannot replace C++ semantic-
aware policies. This, of course, does not nullify the fact that
layering multiple policies helps reduce the attack surface and
is essential for complete protection at the binary level.
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Figure H.1: Number of compatible target functions
in libxul.so for a given number of prepared argu-
ments at icall sites, under TypeArmor’s [39] policy.

5The reported counts are underestimates as we ignored un-
used and variable length arguments.
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