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An encryption/decryption approach is proposed dedicated to one-way communication between a transmitter which is a
computationally powerful party and a receiver with limited computational capabilities. The proposed encryption technique
combines traditional stream ciphering and simulation of a binary channel which degrades channel input by inserting random bits.
A statistical model of the proposed encryption is analyzed from the information-theoretic point of view. In the addressed model an
attacker faces the problem implied by observing the messages through a channel with random bits insertion. The paper points out
a number of security related implications of the considered channel. These implications have been addressed by estimation of the
mutual information between the channel input and output and estimation of the number of candidate channel inputs for a given
channel output. It is shown that deliberate and secret key controlled insertion of random bits into the basic ciphertext provides
security enhancement of the resulting encryption scheme.

1. Introduction

It is well recognized that communications should be secure
and accordingly encrypted in order to avoid misuse of the
transmitted information. Consequently, contemporary cryp-
tographic algorithms for encryption play a very important
role in data communication systems for various areas of
applications. A particular challenge is related to addressing
the resource constrained environments, where the require-
ments include lightweight algorithms and hardware designs.
To select a suitable encryption algorithm for an application
or an environment, the algorithmic requirements as well as
the implementation constraints have to be taken into account.
This is also in line with a discussion recently reported in [1].

On the other hand, in a number of scenarios the com-
munication parties are with very different capabilities: one
party could be with a tiny capability and the other with much
higher ones. As an illustration, we point to a communication
scenario over the Internet of Things (IoT) where a tiny
machine (a tiny sensor, e.g.) should communicate with a
more powerful one (sink of a sensor network or a gate,

e.g.). According to the current state of the art, the following
two problems appear as the still open ones: (i) developing
encryption/decryption techniques which take into account
asymmetric capabilities of the entities involved in encryp-
tion/decryption and (ii) enhancing cryptographic security of
encryption in a lightweight and provable manner.

Consequently, in this paper we consider the problem
of designing a dedicated encryption/decryption algorithm
which fits into the communications scenarios which include
the following: (i) a high performance computing party should
deliver encrypted messagesin a one-way communication
scenario to a number of parties which have tiny compu-
tational capabilities; (ii) implementation limitations at the
tiny entity imply employment of a lightweight keystream
generator (from certain reported lightweight stream ciphers);
(iii) developed encryption scheme should have enhanced
security in comparison with the one offered by the employed
keystream generator.

A certain number of reported encryption approaches
jointly employ elements of traditional stream ciphers and
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elements of coding theory as well as features of certain com-
munication channels (see, e.g., [2–8]), and this paper follows
the same track. We consider an encryption approach which
involves a communication channel with the synchronization
errors which appear in the form of inserted bits. In this
approach, the transmitting/encrypting side requires a source
of randombits and capability to insert thembetweenmessage
bits. Under the assumption that the transmitter has a method
to inform the intended receiver about the locations (and
not necessarily the values) of the inserted random bits, the
intended receiver can perform decimation (i.e., discard the
inserted bits) of the obtained sequence so that it can be a
subject of simple traditional decryption.

Summary of the Results. This paper focuses on the following
two issues which have not been addressed in the literature:
(i) developing of an encryption/decryption technique which
has asymmetric implementation complexity and provides
lightweight decryption and (ii) security enhancement of
the involved keystream generator employing paradigm of
the binary channels with random insertions. An encryp-
tion/decryption technique for data transfer between a com-
putationally powerful party and a party with limited com-
putational capabilities is proposed which provides a trade-
off between implementation complexities at the involved
parties: the implementation overhead is reduced at the low-
capability party at the expense of a higher (but still moderate)
one at the party with high capabilities. In order to achieve
security enhancement of the employed traditional keystream
generator the proposed encryption technique at the trans-
mitting side involves a simulator of the binary channel with
synchronization errors. Security enhancement of encryption
archived by the proposed scheme in comparison with the
security of the employed keystream generator is based on
the design paradigm and results on the mutual informa-
tion between inputs and outputs of the channels with bit
insertion.

Organization. The paper is organized as follows. In Section 2,
we give the underlying ideas for the design and proposal of an
encryption/decryption framework. In Section 3, we provide
some information-theoretic results for the proposed scheme;
that is, we mostly derive various mutual information rates of
interest for the security evaluation. In Section 4, we provide
the cryptographic security evaluation based on implications
which link the information-theoretic quantities to computa-
tional complexity based ones. Accordingly, Sections 5 and 6
provide evaluation of the computational complexity security
enhancement employing numerical estimation of the mutual
information and enumeration of input candidates for the
given output after a binary channel with insertion of random
bits, respectively. (Also note that this paper is a significantly
revised and expanded version of [8].)

2. A Proposal of a Dedicated
Encryption Technique

This section proposes an encryption/decryption technique
which provides asymmetric implementation complexity at

the communicating parties and provably enhanced cryp-
tographic security. Both asymmetric implementation com-
plexity and enhanced security appear as a consequence of
the design based on employment of a simulator for binary
channels with insertion errors.

2.1. Underlying Ideas. Our main design goals/approaches
could be summarized as follows:

(i) Enhance security based on information-theoretic and
coding results over channels with synchronization
errors.

(ii) Assuming that Party I is more powerful than Party
II move the more complex operations to the side of
Party I without implications on the cryptographic
security.

This paper proposes a stream cipher developed based
on the following two construction principles: (i) adjustment
of the construction to the asymmetric capabilities of the
involved parties; (ii) employment of the results regarding
binary channels with insertion errors for enhancing security.
Thegoals are that the partywithmore powerful resources per-
forms more complex operations and that the entire scheme
provides a highly and provably secure level of cryptographic
security resulting from the employment of the insertion
communications channel paradigm.

Our design is based on employment of the following
building blocks:

(i) a lightweight binary keystream generator;
(ii) a block for insertion (embedding) 𝑡 random bits into

a given 𝑛-dimensional binary vector;
(iii) a block for decimation of a given (𝑛 + 𝑡)-dimensional

binary vector which selects certain 𝑛-bits.

Accordingly, we assume that the employed keystream
generator outputs certain pseudo-random sequences denoted
as 𝐶𝑛 and 𝐺

󸀠𝑛. Also, we assume that a deterministic mapping
exists which maps a given 𝐺

󸀠𝑛 into 𝐺
𝑛. We assume that the

message𝑀
𝑛 is additively combined (i.e., encrypted) with the

shared pseudo-randomness 𝐶𝑛 to obtain𝑋
𝑛, that is,

𝑋
𝑛

= 𝑀
𝑛

⊕ 𝐶
𝑛

, (1)

and 𝑋
𝑛 is subject of further mapping by a simulated binary

channel with random insertions where positions of random
bits embedding are specified by𝐺𝑛 so that the channel outputs
𝑌
(𝑛). The intended receiver (Bob), knowing both 𝐶

𝑛 and 𝐺
𝑛,

can easily decimate 𝑌
(𝑛) to obtain 𝑋

𝑛 and further perform
𝑀
𝑛

= 𝑋
𝑛

⊕ 𝐶
𝑛, to obtain the message 𝑀

𝑛.
Since Bob can easily recover the transmitted message

using a simple decimation technique, the system requires no
special hardware overhead for decryption. This is especially
useful if the intended receiver is a low-power device. On
the transmitter’s side encryption requires simulation of a
binary channel with insertion errors and the transmitter
needs to send (1 − 𝑖)

−1 times more symbols than it other-
wise would, which means that the power consumption of
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the transmitter goes up by a factor of (1 − 𝑖)
−1. Hence, it may

be reasonable to use this scheme when the transmitter is a
high computational/power device and the receiver is a low
computation/power device. In essence, a properly adjusted
synchronization error scheme (an insertion scheme) seems
to be well suited for a resources-asymmetric communication
scenario in which a base station has ample resources while
each of the numerous distributed nodes has severely con-
strained resources.

2.2. Framework for Encryption and Decryption. This section
proposes an encryption/decryption technique for one-way
communication from a transmitting party with high compu-
tational and other resources towards a receiving party with
limited computational capabilities. Accordingly, the design
follows the asymmetric implementation and execution con-
straints and the requirement regarding provable security.

As usual, it is assumed that encryption and decryption
parties share a secret key and that before a transmission
session, based on the common secret key and the public data,
both parties (encryption and decryption ones) establish a
session key to be used for the transmission session.

The encryption/decryption technique is designed em-
ploying the following components:

(a) Encryption side:

(i) a lightweight stream cipher (keystream genera-
tor);

(ii) a block which provides deterministic mapping
(see Figure 1) of a given keystream segment of
dimension 𝑛+𝑡 into a vectorwith predetermined
weight equal to 𝑡, that is, with a number of ones
equal to 𝑡 which determines positions of the
embedded bits;

(iii) a simulator of a binary channel with randombits
insertions controlled by keystream generator
which performs mapping {0, 1}

𝑛

→ {0, 1}
𝑛+𝑡.

(b) Decryption side:

(i) a lightweight stream cipher (keystream genera-
tor);

(ii) a block for deterministic mapping of a given
keystream segment into a vector with predeter-
mined weight, that is, the number of ones, the
same as that at the encryption side;

(iii) a block for decimation controlled by keystream
generator which performs mapping {0, 1}

𝑛+𝑡

→

{0, 1}
𝑛.

We assume that implementation and execution complex-
ity of a keystream controlled simulator of a binary channel
with random insertions is highly dominant in the considered
encryption/decryption scheme.

Assuming that 𝑛 and 𝑡 are the parameters, for specifi-
cation of the proposed encryption/decryption, the following
notation is employed:

(i) M is 𝑛-dimensional binary vector of data which
should be encrypted;

(ii) C is 𝑛-dimensional binary vector of keystream for
stream ciphering;

(iii) G󸀠 is (𝑛 + 𝑡)-dimensional binary vector of keystream
nonoverlapping with C;

(iv) G is (𝑛 + 𝑡)-dimensional binary vector of the weight
exactly 𝑡 obtained by a deterministic mapping of G󸀠;

(v) X is 𝑛-dimensional binary vector defined as X = M ⊕

C;
(vi) Y is (𝑛 + 𝑡)-dimensional binary vector which is equal

to X with 𝑡 inserted random bits.

The proposed encryption/decryption is displayed in Fig-
ure 1.

3. Information-Theoretic Analysis

This section yields an information-theoretic analysis of a
(statistical) model of the considered encryption displayed in
Figure 1.

A random variable is denoted by an uppercase letter
(e.g., 𝑋) and its realization is denoted by a lowercase letter
(e.g., 𝑥). An index (subscript) denotes discrete time. A
discrete-time sequence of 𝑛 random variables, for example,
𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑛
, is shortly denoted by 𝑋

𝑛

= (𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑛
).

Since our channel has synchronization errors, we have a need
to distinguish strings from sequences. We denote a random
string (indexed by discrete-time 𝑘) as𝑌

(𝑘)
.The string𝑌

(𝑘)
may

not have a fixed length, and we denote its length (which is a
random variable if the string itself is a random variable) as
L(𝑌
(𝑘)

). A concatenation of two strings 𝑎 and 𝑏 is denoted by
𝑎 ‖ 𝑏. As short notation, we denote the concatenation of 𝑛
strings 𝑌

(1)
through 𝑌

(𝑛)
as 𝑌(𝑛) = 𝑌

(1)
‖ 𝑌
(2)

‖ ⋅ ⋅ ⋅ ‖ 𝑌
(𝑛)
. The

entropy of a random object 𝑋 is denoted by 𝐻(𝑋), and the
mutual information between two random objects 𝑋 and 𝑌 is
denoted by 𝐼(𝑋; 𝑌). The binary entropy function is denoted
by ℎ(𝑝) = −𝑝 log

2
𝑝 − (1 − 𝑝)log

2
(1 − 𝑝).

Let the channel input 𝑋
𝑘
be a binary random variable

drawn from the alphabetX = {0, 1}.The vector of all channel
inputs up to time 𝑛 is denoted by𝑋

𝑛

≜ (𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑛
). The

transmitter (Alice) observes the pseudo-random sequence
𝐺
𝑛

≜ (𝐺
1
, 𝐺
2
, . . . , 𝐺

𝑛
) provided by a shared source of ran-

domness (shared with Bob) and uses it to create a chan-
nel output (ciphertext) 𝑌

(𝑛). Even though 𝐺
𝑛 is a pseudo-

random sequence, we assume that the variables 𝐺
𝑘
are sta-

tistically indistinguishable from independent and identically
distributed (iid) geometric random variables with parameter
𝑖; that is, for any integer ℓ ≥ 0, we have

Pr {𝐺
𝑘
= ℓ} = (1 − 𝑖) 𝑖

ℓ

. (2)

Here, the parameter 𝑖 denotes the insertion probability.
Namely, between any two symbols𝑋

𝑘
and𝑋

𝑘+1
, Alice inserts

a string 𝐵
(𝑘)

that consists of Bernoulli-1/2 random variables,
such that the length of 𝐵

(𝑘)
equalsL(𝐵

(𝑘)
) = 𝐺

𝑘
. Since 𝐺

𝑛 is
a sequence of iid geometric random variables with parameter
𝑖, it is clear that Alice’s transmission scheme is equivalent to
randomly inserting a Bernoulli-1/2 random variable at any
point of time during the communication. Formally, we state
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A framework for encryption and decryption with
asymmetric implementation complexity
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Deterministic mapping

+

+

Lightweight
keystream generator

Deterministic mapping

Transmitting entity

Simulator of a
binary channel
with insertions

Random bits
embedding

Source of
randomness

Decryption
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Figure 1: Encryption/decryption technique for scenarios with one-way communications between the entities with high performance
computing capabilities and the very tiny ones.

that Alice creates a string 𝑌
(𝑛) obtained as a concatenation of

individual strings 𝑌
(1)

, 𝑌
(2)

, . . . , 𝑌
(𝑛)
, that is,

𝑌
(𝑛)

= 𝑌
(1)

‖ 𝑌
(2)

‖ ⋅ ⋅ ⋅ ‖ 𝑌
(𝑛)

, (3)

where each individual string 𝑌
(𝑘)

is obtained as

𝑌
(𝑘)

= 𝑋
𝑘
‖ 𝐵
(𝑘)

. (4)

The length of the string 𝑌
(𝑛) equals

L (𝑌
(𝑛)

) = 𝑛 +

𝑛

∑

𝑘=1

𝐺
𝑘
,

𝐸 [L (𝑌
(𝑛)

)] =
𝑛

1 − 𝑖
;

(5)

that is, on average, Alice inserts 𝑖/(1−𝑖)Bernoulli-1/2 random
variables between any two symbols𝑋

𝑘
and𝑋

𝑘+1
.

Eve (the eavesdropper) and Bob (the intended receiver)
both receive the string 𝑌

(𝑛) containing the randomly inserted
symbols. The eavesdropper, not having access to the shared
source of randomness 𝐺𝑛, cannot easily parse the string 𝑌

(𝑛)

to recover 𝑋
𝑛. The intended receiver, on the other hand,

has access to 𝐺
𝑛, and since 𝐺

𝑘
represents the length of

the inserted string between any two symbols 𝑋
𝑘
and 𝑋

𝑘+1
,

the intended receiver (Bob) can easily remove the inserted

symbols 𝐵
𝑘
from 𝑌

(𝑛) (i.e., decimate 𝑌
(𝑛)) to recover 𝑋

𝑛. In
other words, by sharing the source of randomness 𝐺

𝑛, Bob
can resynchronize himself with Alice; see Figure 1.

The sequence 𝐶
𝑛 is a pseudo-random sequence, but for

the purpose of computing information-theoretic quantities,
we assume that𝐶𝑛 ismodeled to be statistically indistinguish-
able from a sequence of iid Bernoulli-1/2 random variables.
(It should not be understood that 𝐶

𝑛 implements a one-
time pad. The variables 𝐶

𝑘
are only statistically modeled as

Bernoulli-1/2 for the purposes of deriving (and computing)
some information-theoretic quantities that we later use to
derive a cryptographic security measure.)

Here, no assumptions are made on the statistical prop-
erties of the message 𝑀

𝑛, but because 𝐶
𝑛 is iid Bernoulli-

1/2, we have that 𝑋
𝑛 is also iid Bernoulli-1/2. Hence, the

information-theoretic quantity of interest is the iud informa-
tion rate defined as the information rate between 𝑋

𝑛 and
𝑌
(𝑛) when the symbols 𝑋

𝑘
are independent and uniformly

distributed (iud):

Iiud (𝑋; 𝑌) ≜ lim
𝑛→∞

1

𝑛
𝐼 (𝑋
𝑛

; 𝑌
(𝑛)

)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑝(𝑥𝑛)=2−𝑛
. (6)

The information rate Iiud(𝑋; 𝑌) represents the amount of
information that the eavesdropper can “learn,” on average,
about𝑋 after observing𝑌.The information rateIiud(𝑋; 𝑌) is
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Figure 2: Information rate Iiud(𝑋; 𝑌) as a function of insertion
probability 𝑖.

not computable in closed-form but is attainable usingMonde
Carlo techniques. For example, known bounds are [10]

Iiud (𝑋; 𝑌) ≥
1

𝑛
𝐼 (𝑋
𝑛

; 𝑌
(𝑛)

)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑝(𝑥𝑛)=2−𝑛

−
1

𝑛
𝐻(L (𝑌

(𝑛)

)) ,

(7)

Iiud (𝑋; 𝑌) ≤
1

𝑛
𝐼 (𝑋
𝑛

; 𝑌
(𝑛)

)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑝(𝑥𝑛)=2−𝑛
. (8)

For large 𝑛, the correction term (1/𝑛)𝐻(L(𝑌
(𝑛)

)) in (7) equals

1

𝑛
𝐻 (L (𝑌

(𝑛)

)) =
1

2𝑛
log
2
(
2𝜋𝑒 ⋅ 𝑖 ⋅ 𝑛

(1 − 𝑖)
2

) + 𝑂 (𝑛
−2

) . (9)

If our desired accuracy of computing (bounding)Iiud(𝑋; 𝑌)

is 10−4 and if 𝑖 = 0.95, considerations of (7)–(9) dictate that
𝑛 ≥ 1.5 ⋅ 10

5. For details on how to computeIiud(𝑋; 𝑌) using
“rhomboidal” trellis techniques such that both the desired
correction term (9) and the confidence interval are kept
under a predetermined accuracy (e.g., 10−4), see [10]. Here,
we only give numerical results in Figure 2, which reveal that
the information rateIiud(𝑋; 𝑌) is only a small fraction of the
entropy rate𝐻(𝑋

𝑘
) = 1, especially when 𝑖 > 0.5.These results

are very favorable for secret communication because only a
small fraction of the uncertainty in 𝑋

𝑛 can be learned from
observing 𝑌

(𝑛), as the next section demonstrates.
We already established that learning 𝑋 after observing

𝑌 is extremely unfavorable for the eavesdropper because
the information rate Iiud(𝑋; 𝑌) is low for large insertion
probabilities 𝑖. However, the eavesdropper may adopt a
strategy in which she first attempts to learn the sequence 𝐺

𝑛

and then attempt to crack 𝑋
𝑛. To study the effects of this

strategy, let us define the following quantities:

Iiud (𝐺; 𝑌) ≜ lim
𝑛→∞

1

𝑛
𝐼 (𝐺
𝑛

; 𝑌
(𝑛)

)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑝(𝑥𝑛)=2−𝑛
,

Iiud (𝑋, 𝐺; 𝑌) ≜ lim
𝑛→∞

1

𝑛
𝐼 (𝑋
𝑛

, 𝐺
𝑛

; 𝑌
(𝑛)

)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑝(𝑥𝑛)=2−𝑛
,

Iiud (𝑋; 𝑌 | 𝐺) ≜ lim
𝑛→∞

1

𝑛
𝐼 (𝑋
𝑛

; 𝑌
(𝑛)

| 𝐺
𝑛

)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑝(𝑥𝑛)=2−𝑛
,

Iiud (𝐺; 𝑌 | 𝑋) ≜ lim
𝑛→∞

1

𝑛
𝐼 (𝐺
𝑛

; 𝑌
(𝑛)

| 𝑋
𝑛

)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑝(𝑥𝑛)=2−𝑛
.

(10)

Proposition 1. Consider

I
𝑖𝑢𝑑

(𝐺; 𝑌) = 0, (11)

I
𝑖𝑢𝑑

(𝑋; 𝑌 | 𝐺) = 1, (12)

I
𝑖𝑢𝑑

(𝑋, 𝐺; 𝑌) = 1, (13)

I
𝑖𝑢𝑑

(𝐺; 𝑌 | 𝑋) = 1 −I
𝑖𝑢𝑑

(𝑋; 𝑌) . (14)

Proof. First, notice that

lim
𝑛→∞

𝐻(𝑌
(𝑛)

)

𝑛
=

1

1 − 𝑖

(15)

because 𝑌
(𝑛) is a string of Bernoulli-1/2 random variables

whose length isL(𝑌
(𝑛)

), and as 𝑛 → ∞, we have

lim
𝑛→∞

L (𝑌
(𝑛)

)

𝑛

wp 1
=

E [L (𝑌
(𝑛)

)]

𝑛
=

1

1 − 𝑖
. (16)

Next, we also have

lim
𝑛→∞

𝐻(𝑌
(𝑛)

| 𝐺
𝑛

)

𝑛
=

𝑛 + E (∑
𝑛

𝑘=1
𝐺
𝑘
)

𝑛
=

1

1 − 𝑖
, (17)

and (11) is now a direct consequence of (15) and (17). Equality
(12) follows from the fact that 𝑋

𝑛 is uniquely determined
(by decimation) if 𝐺𝑛 and 𝑌

(𝑛) are known; that is, 𝐻(𝑋
𝑛

|

𝐺
𝑛

, 𝑌
(𝑛)

) = 0. Finally, (13) follows by adding (11) to (12)
and applying the chain rule for mutual information, and (14)
follows from (13) also using the chain rule.

By equality (11) of Proposition 1, it is clear that the
eavesdropper cannot learn 𝐺

𝑛 simply by observing 𝑌
(𝑛).

Also, from Figure 2, it is clear that, from the eavesdropper’s
perspective, learning 𝑋

𝑛 from 𝑌
(𝑛) is extremely unfavorable

because she can only learn a small fraction Iiud(𝑋; 𝑌) of
𝐻(𝑋) ≜ 𝐻(𝑋

𝑘
) = 1 by observing 𝑌

(𝑛). However, equality
(12) of Proposition 1 reveals a potential vulnerability in that
if the eavesdropper were to somehow learn 𝐺

𝑛, then secrecy
would be lost because Iiud(𝑋; 𝑌 | 𝐺) = 𝐻(𝑋) = 1. Since
learning either 𝐺

𝑛 or 𝑋
𝑛 individually is not favorable to the

eavesdropper, the eavesdropper’s strategy could be to go after
the pair (𝑋, 𝐺). Indeed, equality (13) of Proposition 1 reveals
that, theoretically, the eavesdropper could gain substantial
knowledge of the pair (𝑋, 𝐺) by observing𝑌

(𝑛). Even for large
𝑖, this posterior knowledge of the pair (𝑋, 𝐺), quantified as
Iiud(𝑋, 𝐺; 𝑌), is not a negligible fraction of the entropy

𝐻(𝑋,𝐺) ≜ 𝐻 (𝑋
𝑘
) + 𝐻 (𝐺

𝑘
) = 1 +

ℎ (𝑖)

1 − 𝑖
. (18)

In the next section, we further explore the cryptographic
implications by studying the connection between computa-
tional complexity and the information-theoretic quantities.
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4. Generic Framework for
the Security Evaluation

Note that the above information-theoretic analysis is based
on modeling the pseudo-random sequence 𝐶

𝑛 as a random
sequence. In this section, we now take into account the fact
that the sequence is indeed pseudo-random. We show that
the considered encryption (see Figure 1) based on employing
the binary insertion channel [𝑋𝑛 → 𝑌

(𝑛)

] provides enhanced
security compared to the basic scheme that outputs only
𝑋
𝑛.

4.1. Preliminaries: Security Notation. A definition of security
consists of two distinct components: a specification of the
assumed power of the adversary and a description of what
constitutes a “break” of the scheme. Generally speaking, a
cryptographic scheme is secure in a computational sense, if,
for every probabilistic polynomial-time adversaryA carrying
out an attack of some specified type and for every polynomial
𝑝(𝑛), there exists an integer𝑁 such that the probability thatA
succeeds in this attack (where success is also well defined) is
less than 1/𝑝(𝑛) for every 𝑛 > 𝑁. Accordingly, the following
two definitions specify a security evaluation scenario and a
security statement.

Definition 2. The adversarial indistinguishability experiment
consists of the following steps:

(1) The adversaryA chooses a pair of messages (m
0
;m
1
)

of the same length 𝑛 and passes them onto the
encryption system for encrypting.

(2) A bit 𝑏 ∈ {0, 1} is chosen uniformly at random, and
only one of the two messages (m

0
;m
1
), preciselym

𝑏
,

is encrypted into ciphertext Enc(m
𝑏
) and returned to

A.

(3) Upon observing Enc(m
𝑏
), and without knowledge of

𝑏, the adversaryA outputs a bit 𝑏
0
.

(4) The experiment output is defined to be 1 if 𝑏
0
= 𝑏, and

0 otherwise; if the experiment output is 1, denoted
shortly as the event (A → 1), one says that A has
succeeded.

Definition 3. An encryption scheme provides indistinguish-
able encryptions in the presence of an eavesdropper, if for all
probabilistic polynomial-time adversariesA

Pr [A 󳨀→ 1 | Enc (m
𝑏
)] ≤

1

2
+ 𝜖, (19)

where 𝜖 = negl(𝑛) is a negligibly small function.

Definitions 2 and 3 are more precisely discussed in [11].

4.2. Evaluation of the Security Gain Based on the Mutual
Information. Weconsider the encryption systemdisplayed in
Figure 1 taking into account the fact that the legitimate parties
share pseudo-random secret sequences instead of random
ones. Our goal is to estimate the advantage of A in the
indistinguishability game specified by Definition 2 when y ←

Enc(m
𝑏
), where y is a particular realization of 𝑌(𝑛), assuming

that the advantage of A is known when m
0
and m

1
are two

chosen realizations of 𝑀𝑛 and the corresponding realization
of𝑋𝑛 is known.

Proposition 4. Let the encrypted mapping of 𝑀𝑛 into 𝑋
𝑛 be

such that 1/2 + 𝜖 equals the advantage of the adversary A
(specified by Definition 3) to win the indistinguishability game
(specified by Definition 2), and let the mutual information
I
𝑖𝑢𝑑

(𝑋; 𝑌) be known. Under these assumptions, for large
𝑛,

Pr [A 󳨀→ 1 | 𝑌
(𝑛)

= y] =
1

2
+ 𝜖 ⋅ 𝛿, 𝑤ℎ𝑒𝑟𝑒 𝛿 ≜ Pr (𝑋𝑛 = x

𝑏
| 𝑌
(𝑛)

= y) <
1

𝑛
+

1

𝑛
𝐼 (𝑋
𝑛

, 𝑌
(𝑛)

)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑝(𝑥𝑛)=2−𝑛
.

(20)

Proof. Note that, for simplicity of the proof, Proposition 4
addresses a restricted case where it is assumed that 1/2 +

𝜖 equals the advantage of the adversary A (specified by
Definition 3) to win the indistinguishability game. Let the
index 𝑏 of the selected message be realization of the random
variable 𝐵 whose distribution reflects that of the output of
adversary A. The probability Pr(𝐵 = 𝑏 | 𝑌

(𝑛)

= y) that A
wins the game is determined by the following:

Pr (𝐵 = 𝑏 | 𝑌
(𝑛)

= y) =

Pr (𝐵 = 𝑏, 𝑌
(𝑛)

= y)
Pr (𝑌(𝑛) = y)

=

∑x Pr (𝐵 = 𝑏, 𝑌
(𝑛)

= y, 𝑋𝑛 = x)
Pr (𝑌(𝑛) = y)

=

∑x Pr (𝐵 = 𝑏 | 𝑌
(𝑛)

= y, 𝑋𝑛 = x)Pr (𝑌(𝑛) = y, 𝑋𝑛 = x)
Pr (𝑌(𝑛) = y)

=

∑x Pr (𝐵 = 𝑏 | 𝑋
𝑛

= x)Pr (𝑌(𝑛) = y, 𝑋𝑛 = x)
Pr (𝑌(𝑛) = y)

.

(21)

According to the proposition assumption we have

Pr (𝐵 = 𝑏 | 𝑋
𝑛

= x
𝑏
) =

1

2
+ 𝜖, (22)

where x
𝑏
corresponds to the selectedm

𝑏
, and

Pr (𝐵 = 𝑏 | 𝑋
𝑛

= x) =
1

2
for any x ̸= x

𝑏
. (23)
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Consequently,

Pr (𝐵 = 𝑏 | 𝑌
(𝑛)

= y) =

Pr (𝐵 = 𝑏 | 𝑋
𝑛

= x
𝑏
)Pr (𝑌(𝑛) = y, 𝑋𝑛 = x

𝑏
)

Pr (𝑌(𝑛) = y)

+

∑x:x ̸=x
𝑏

Pr (𝐵 = 𝑏 | 𝑋
𝑛

= x)Pr (𝑌(𝑛) = y, 𝑋𝑛 = x)
Pr (𝑌(𝑛) = y)

,

Pr (𝐵 = 𝑏 | 𝑌
(𝑛)

= y) =

(1/2 + 𝜖)Pr (𝑌(𝑛) = y, 𝑋𝑛 = x
𝑏
) − (1/2)Pr (𝑌(𝑛) = y, 𝑋𝑛 = x

𝑏
)

Pr (𝑌(𝑛) = y)

+

(1/2)∑x Pr (𝑌
(𝑛)

= y, 𝑋𝑛 = x)
Pr (𝑌(𝑛) = y)

=
1

2
+ 𝜖 ⋅ Pr (𝑋𝑛 = x

𝑏
| 𝑌
(𝑛)

= y) .

(24)

Next, we have the following general upper bound on the
entropy (see [12] or [13], e.g.):

𝐻(𝑋
𝑛

| 𝑌
(𝑛)

) ≤ ℎ (𝑃err) + 𝑃errlog2 (2
𝑛

− 1) , (25)

where ℎ(⋅) ≤ 1 is the binary entropy function and 𝑃err = 1 −

Pr(x
𝑏
| y), implying

𝛿 ≜ Pr (𝑋𝑛 = x
𝑏
| 𝑌
(𝑛)

= y)

<
1

𝑛
+ 1 −

1

𝑛
𝐻(𝑋
𝑛

| 𝑌
(𝑛)

)

=
1

𝑛
+

1

𝑛
𝐼 (𝑋
𝑛

, 𝑌
(𝑛)

)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑝(𝑥𝑛)=2−𝑛
.

(26)

5. Evaluation of the Security Gain
Based on Numerical Estimation of
the Mutual Information

Theorem 5. Let the encrypted mapping of𝑀𝑛 into𝑋
𝑛 be such

that 1/2 + 𝜖 equals the advantage of the adversaryA (specified
by Definition 3) to win the indistinguishability game (specified
by Definition 2), and let the mutual informationI

𝑖𝑢𝑑
(𝑋; 𝑌) be

known (see Figure 2, e.g.). Under these assumptions, for large
𝑛,

Pr [A 󳨀→ 1 | 𝑌
(𝑛)

= y] =
1

2
+ 𝜖 ⋅ 𝛿,

𝑤ℎ𝑒𝑟𝑒 𝛿 < I
𝑖𝑢𝑑

(𝑋; 𝑌) +

log
2
[(8𝜋𝑒 ⋅ 𝑖 ⋅ 𝑛) / (1 − 𝑖)

2

]

2𝑛
+ 𝑂 (𝑛

−2

) .

(27)

Proof. Consider

𝛿 ≜ Pr (x
𝑏
| y) <

1

𝑛
+ 1 −

1

𝑛
𝐻(𝑋
𝑛

| 𝑌
(𝑛)

)

=
1

𝑛
+

1

𝑛
𝐼 (𝑋
𝑛

, 𝑌
(𝑛)

)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑝(𝑥𝑛)=2−𝑛
.

(28)

Substitution of (7) and (9) into (28) finalizes the proof.

Accordingly, the encryption mapping 𝑀
𝑛

→ 𝑌
(𝑛)

enhances security by a factor 𝛿 in comparison to the encryp-
tion mapping 𝑀

𝑛

→ 𝑋
𝑛 because the probability that A

wins the game becomes closer to 1/2, which corresponds to
random guessing.

6. Evaluation of the Security Enhancement
Employing Enumeration of Channel Input
Candidates for the Given Output

6.1. Preliminaries. Let Z ∈ {0, 1}
ℓ be a binary string of

length ℓ, and let 𝑡 ≤ ℓ be a parameter. Recently, in [9],
improved bounds on the number of subsequences obtained
from a binary string Z of length ℓ under 𝑡 deletions have
been reported. It is known that the number of subsequences
in this setting strongly depends on the number of runs in
the string Z, where a run is a maximal substring of the
same character. The improved bounds are obtained by a
structural analysis of the family of 𝑟-run stringsZ, an analysis
in which the extremal strings with respect to the number of
subsequences have been identified. Specifically, for every 𝑟,
𝑟-run strings with the minimum (resp., maximum) number
of subsequences under any 𝑡 deletions have been considered,
an exact analysis of the number of subsequences of these
extremal strings has been presented, and it has been shown
that this number can be calculated in polynomial time.

Let 𝐷
𝑡
(Z) be a set of subsequences of Z that can be

obtained from Z after 𝑡 deletions. The analysis of 𝐷
𝑡
(Z) and

its size are challenging as the number of subsequences of a
string Z obtained by deletions not only depends on its length
ℓ and the number 𝑡 of deletions, but also strongly depends
on its structure. For example, 𝐷

𝑡
(0
ℓ

) is of size 1 and equals
the single string 0

ℓ−𝑡. Clearly, |𝐷
𝑡
(Z)| is at most 2ℓ−𝑡 (as after

𝑡 deletions we remain with a binary string of length ℓ − 𝑡).
It has been shown that the number of subsequences |𝐷

𝑡
(Z)|

strongly depends on the number of runs 𝑟 in the string. Here,
a run is a maximal substring of the same character, and
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the number of runs 𝑟 = 𝜌(⋅) in a given string Z is denoted
by 𝜌(Z). It has been proven that

(

𝜌 (Z) − 𝑡 + 1

𝑡

) ≤
󵄨󵄨󵄨󵄨
𝐷
𝑡
(Z)󵄨󵄨󵄨󵄨 ≤ (

𝜌 (Z) + 𝑡 − 1

𝑡

) . (29)

Also, it has been shown that the maximal number of subse-
quences is obtained from certain strings Z, known as cyclic
strings Z𝐶

ℓ
, in which |Z| = 𝜌(Z), and it has been shown that

(

𝜌 (Z) − 𝑡 + 1

𝑡

) ≤
󵄨󵄨󵄨󵄨
𝐷
𝑡
(Z)󵄨󵄨󵄨󵄨 ≤

󵄨󵄨󵄨󵄨󵄨
𝐷
𝑡
(Z𝐶
ℓ
)
󵄨󵄨󵄨󵄨󵄨
, (30)

which has been further improved so that the following has
been shown:

𝑡

∑

𝑖=1

(

𝜌 (Z) − 𝑡

𝑖

) =
󵄨󵄨󵄨󵄨󵄨
𝐷
𝑡
(Z𝐶
𝑟
)
󵄨󵄨󵄨󵄨󵄨
≤

󵄨󵄨󵄨󵄨
𝐷
𝑡
(Z)󵄨󵄨󵄨󵄨 ,

󵄨󵄨󵄨󵄨
𝐷
𝑡
(Z)󵄨󵄨󵄨󵄨 ≤

󵄨󵄨󵄨󵄨󵄨
𝐷
𝑡
(Z𝐶
ℓ
)
󵄨󵄨󵄨󵄨󵄨
=

𝑡

∑

𝑖=1

(

ℓ − 𝑡

𝑖

) ,

(31)

where Z𝐶
𝑟
is a string of length 𝑟 with 𝑟 runs.

In [9], also a family of strings, named unbalanced strings,
has been defined. A string is called unbalanced, if all of the
runs of symbols in the string are of length 1, except for one
run. Let 𝑈

(𝑖)

ℓ,𝑟
be a binary string of length ℓ with 𝑟 runs, in

which all runs are of length 1, except for the 𝑖th run which is
of length ℓ − 𝑟 + 1. Due to symmetry |𝐷

𝑡
(𝑈
(1)

ℓ,𝑟
)| = |𝐷

𝑡
(𝑈
(𝑟)

ℓ,𝑟
)|,

and consequently define

𝑢 (ℓ, 𝑟, 𝑡) =
󵄨󵄨󵄨󵄨󵄨
𝐷
𝑡
(𝑈
(1)

ℓ,𝑟
)
󵄨󵄨󵄨󵄨󵄨
=

󵄨󵄨󵄨󵄨󵄨
𝐷
𝑡
(𝑈
(𝑟)

ℓ,𝑟
)
󵄨󵄨󵄨󵄨󵄨
. (32)

It has been shown in [9] that these extreme cases have the least
number of subsequences among the unbalanced strings and
also that they have the least number of subsequences among
all strings. The following theorem has been proven in [9].

Theorem 6 (Theorem 3 [9]: closed-form formula for
𝑢(ℓ, 𝑟, 𝑡)). For all 𝑡 < ℓ, 2 < 𝑟 ≤ ℓ,

(i) when 𝑟 > 𝑡,

𝑢 (ℓ, 𝑟, 𝑡) = 𝑑 (𝑟, 𝑡) +

𝑡−2

∑

𝑖=𝑡+𝑟−ℓ−1

𝑑 (𝑟 − 2, 𝑖) , (33)

(ii) when 𝑟 ≤ 𝑡,

𝑢 (ℓ, 𝑟, 𝑡) = 2 +

𝑟−3

∑

𝑖=𝑡+𝑟−ℓ−1

𝑑 (𝑟 − 2, 𝑖) , (34)

where

𝑑 (𝑟, 𝑖) =
󵄨󵄨󵄨󵄨󵄨
𝐷
𝑖
(Z𝐶
𝑟
)
󵄨󵄨󵄨󵄨󵄨
=

𝑖

∑

𝑗=0

(

𝑟 − 𝑖

𝑗

) (35)
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Figure 3: Number (No) of different subsequence of length ℓ which
can be obtained from a binary sequence of length ℓ + 𝑡: a numerical
illustration of the statement of Theorem 3 [9].

assuming that 𝑑(𝑟, 0) = 1 and, for 𝑖 < 0, 𝑑(𝑟, 𝑖) = 0 and that
the following conventions are employed:

𝑘

∑

𝑖=𝑗

𝑎
𝑖
= 0 𝑤ℎ𝑒𝑛 𝑗 > 𝑘,

(

ℓ

𝑖

) = 0 𝑤ℎ𝑒𝑛 𝑖 < 0 𝑜𝑟 𝑖 > ℓ.

(36)

A numerical illustration of Theorem 6 is displayed in
Figure 3.

6.2. Estimation of the Security Enhancement. Traditionally, as
introduced in [14], the main information-theoretic security
metric is the average information leaked, that is, the mutual
information 𝐼(M;Y) between the messageM and the related
sample Y, or, equivalently, the uncertainty, that is, the equiv-
ocation 𝐻(M | Y). Recently, certain information-theoretic
securitymeasures have been considered in [15] implying that,
in our case, as a strong security metric the average mutual
information 𝐼(M,Y) should be addressed and (1/𝑛)𝐼(M,Y)

as a corresponding weak one.

Theorem 7. Assuming that the employed keystream generator
is such that the following is valid,

𝐼 (M;C) = 0,

𝐼 (M;G) = 0,

𝐼 (C;G) = 0,

𝐼 (M;X) ≤ 𝜖,

(37)
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the simulator of binary channel with random insertions pro-
vides

1

𝑛
𝐼 (M;Y) ≤

𝛼 ⋅ 𝜖

𝑛
,

𝛼 = 1 −
1

𝑛
log
2
(𝑢 (𝑛 + 𝑡, 𝑟, 𝑡)) ,

(38)

where 𝑢(𝑛 + 𝑡, 𝑟, 𝑡) is the number of certain equally likely
subsequences.

Sketch of the Proof. Theuncertainty about the input (the argu-
ment) into a binary channel with random insertions given
its output (the image) depends on the number of equally
likely candidate arguments which can generate the given
image. A lower bound on the number of these candidates
can be obtained based on the lower bound on the number
of the subsequences which can be obtained from the given
one employing Theorem 6 (i.e., Theorem 3 from [9]). By
adapting this result to the considered particular case we have
the following. A lower bound on the number of the argument
candidates 𝑢(𝑛+𝑡, 𝑟, 𝑡), where 𝑟 is a parameter, is given by (39)
and (40):

(i) when 𝑟 > 𝑡,

𝑢 (𝑛 + 𝑡, 𝑟, 𝑡) = 𝑑 (𝑟, 𝑡) +

𝑚−2

∑

𝑖=𝑟−𝑛−1

𝑑 (𝑟 − 2, 𝑖) , (39)

(ii) when 𝑟 ≤ 𝑡:

𝑢 (𝑛 + 𝑡, 𝑟, 𝑡) = 2 +

𝑟−3

∑

𝑖=𝑟−𝑛−1

𝑑 (𝑟 − 2, 𝑖) , (40)

where

𝑑 (𝑟, 𝑖) =

𝑖

∑

𝑗=0

(

𝑟 − 𝑖

𝑗

) (41)

assuming that 𝑑(𝑟, 0) = 1 and, for 𝑖 < 0, 𝑑(𝑟, 𝑖) = 0. Par-
ticularly note that the above enumerated subsequences are
obtained from a sequence where all of the runs of symbols
are of length 1, except for one run, and that the assumed
decimation is a random one, and in addition, for simplicity
of the evaluation we assume that the subsequences appear
equally likely.

Consequently, the uncertainty 𝐻(X | Y) is lower-
bounded as follows:

𝐻(X | Y) ≥ log
2
(𝑢 (𝑛 + 𝑡, 𝑟, 𝑡)) (42)

noting that 𝑢(𝑛 + 𝑡, 𝑟, 𝑡) is at most 2
𝑛

= 𝐻(X) as after 𝑡

deletions we remain with a binary string of length 𝑛. Taking
into account that

1

𝑛
𝐼 (X;Y) =

1

𝑛
(𝐻 (X) − 𝐻 (X | Y)) (43)

we obtain
1

𝑛
𝐼 (M;Y) ≤

1

𝑛
𝐼 (M;X) [1 −

1

𝑛
log
2
(𝑢 (𝑛 + 𝑡, 𝑟, 𝑡))] (44)

and accordingly the theorem statement.
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Figure 4: Numerical examples related to Theorem 7: illustration of
the security gain implied by a binary channel with embedding of
random bits noting that smaller 𝛼 means higher security enhance-
ment.

Figure 4 yields numerical illustrations of coefficient 𝛼

which determines the security gain.
Note that, in order to achieve a desired high enhancement

of the security, the insertion rate should be high enough as
illustrated in Figure 4. When the insertion rate is low, the
security enhancement is low as well, and this is analytically
shown in the next corollary.

Corollary 8. Consider

1

𝑛
𝐼 (M;Y) ≤

1

𝑛
𝐼 (M;X) ⋅ (1 − (log

2

1 + √5

2
)

𝑟

𝑛
) (45)

when the parameters of the considered encryption fulfil the
following constraints:

𝑛 >
1 + √5

2
𝑟,

𝑡 ∈ [𝑝
∗

𝑟, 𝑛 + 𝑡 − 𝑟 (1 − 𝑝
∗

)]

𝑓𝑜𝑟 𝑝
∗

∈ [0.276, 0.278] .

(46)

Sketch of the Proof. For large values of 𝑡 and 𝑟, the following
approximation can be employed:

𝑢 (𝑛 + 𝑡, 𝑟, 𝑡) ≈

min(𝑟,𝑡)
∑

𝑖=0

𝑑 (𝑟, 𝑖) , (47)
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where 𝑥 ≈ 𝑦 means that 𝑥 is approximately 𝑦 if 𝑥/𝑦 is a
polynomial function of 𝑟 and 𝑡. Accordingly,

𝑑 (𝑟, 𝑝𝑟) =

𝑝𝑟

∑

𝑖=0

(

𝑟 − 𝑝𝑟

𝑖

) ≈

{{{{

{{{{

{

2
𝑟−𝑝𝑟 for 𝑝 ≥

1

3
,

(

𝑟 − 𝑝𝑟

𝑝𝑟

) for 𝑝 <
1

3
.

(48)

Using the fact reported in [9] we have the following. Let
𝑝
∗

= argmax
𝑝
𝑑(𝑟, 𝑝𝑟). Numerical calculations reported in

[9] show that 𝑝∗ ∈ [0.276, 0.278]. Consequently, it is shown
in [9] that for even 𝑟

𝑑 (𝑟, 𝑝
∗

𝑟) ≈ (
1 + √5

2
)

𝑟

. (49)

The above imply the corollary statement.
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