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Abstract. We present a categorical logic formulation of induction
and coinduction principles for reasoning about inductively and coin-
ductively defined types. Our main results provide sufficient criteria
for the validity of such principles: in the presence of comprehension,
the induction principle for initial algebras is admissible, and dually,
in the presence of quotient types, the coinduction principle for termi-
nal coalgebras is admissible. After giving an alternative formulation
of induction in terms of binary relations, we combine both principles
and obtain a mixed induction/coinduction principle which allows us
to reason about minimal solutions X = o(X) where X may occur
both positively and negatively in the type constructor o. We fur-
ther strengthen these logical principles to deal with contexts and
prove that such strengthening is valid when the (abstract) logic we
consider is contextually/functionally complete. All the main results
follow from a basic result about adjunctions between ‘categories of
algebras’ (inserters).

Introduction

A well-stablished approach to the semantics of data types is to regard them as
(Lambek) algebras for endofunctors 7:B — B on a category B with suitable
structure. Inductive data types correspond to initial algebras (D,TD = D),
in which case T specifies the signature of constructors of the type and ¢ gives
the interpretation of such constructors in D. Dually, coinductive data types

correspond to terminal coalgebras (C,C < TC), where T specifies the signa-
ture of destructors of the data type and d maps an element of the type C to
its components. Of course, many other mathematical structures can be under-
stood as initial algebras or terminal coalgebras, among the extensive relevant
bibliography see e.g. [27, 43, 31, 45, 1, 19, 41, 15, 38, 16, 17, 21]. See also [9, 10]
for an experimential programming language CHARITY, which essentially only
contains algebras and coalgebras (and iterated combinations of these, which we



do not consider here in detail, but see the comments before §§3.1).

Once the object of study has been singled out by a universal property (such
as initiality /terminality of algebras/coalgebras), this property becomes the main
tool to infer properties about the object. In fact, a main point of this paper is to
formulate, in a canonical fashion, an induction principle for initial algebras and
a coinduction principle for terminal coalgebras, considering polynomial functors
T:B — B, built up from the (universal) structure of the category B. More
specifically, we concentrate on bicartesian (closed) categories, together with the
associated class of endofunctors determined by such structure.

We wish to consider logical propositions over (co-)algebras. Such proposi-
tions will be the formulas ¢(z) of a predicate logic, possibly containing free
variables x ranging over types A. Categorically we capture such a logic by a

P
fibration %p (with suitable structure) over the category B, where we think of
the objects of the total category P as formulas (or propositions) in context and
those of the base category B as types. The functor p sends a proposition to its
underlying context, containing the types of its free variables. A typical case is
Sub(B

the ‘internal logic’ fibration ]%: ) , where Sub(B) is the category of subobjects:
objects are subobjects (X » I), and morphisms (X — I) — (Y ~— J) are
maps between the underlying objects I — J which commute with the given
subobjects. The analysis we present will show that logical principles such as
(co-)induction arise from the relationship between the (universally determined)
structure of the total category IP and the structure of the base category B. The
logical interpretation of this relationship hinges on the fact that the structure
of P can be inferred from suitable structure of the fibration p. The structure
of p that interests us here corresponds to (the interpretation) of connectives
and quantifiers (among other logical operations) of the predicate logic which it
represents.

Within this setting, we make a fundamental conceptual identification: an
inductive predicate P € Py (in the total category P) for an algebra ¢: TD — D
(in the base category) amounts to an algebra f:Pred(T')P — P in the total
category, over the given algebra (D, ¢). The functor Pred(7T'): P — P is defined
via the polynomial structure of T'; that is, Pred(7T') is built with the same type
constructors (products, coproducts and exponentials) as T in the category P.
A dual observation applies to coinductive relations—sometimes called (strong)
bisimulations [43]—and coalgebras.

Once such analysis is carried out, we will be in position to give sufficient
criteria for the validity of the induction and coinduction principles, which con-
stitute the main results of the paper. Given the nature of the conditions we
impose, we can present these results (Theorem 5.1) as admissibility proper-
ties of constructive predicate logic (taking proofs into account):

e if the logic admits comprehension, it satisfies the induction principle for
initial algebras of (polynomial) endofunctors;

o if the logic admits quotients of relations, it satisfies the coinduction prin-
ciple for terminal coalgebras of (polynomial) endofunctors.

The second result is essentially the dual of the first. To make this duality
explicit, we give a reformulation of induction, originally stated for predicates, in



terms of binary relations. We further prove these two formulations of induction
to be equivalent under mild exactness conditions (Theorem 3.4).

We are then able to combine induction and coinduction to give a reasoning
principle for recursive data types, involving mixed variance functors, typically
the exponential functor =:B°® x B — B, based on Freyd’s analysis of such
recursive types in terms of initial/terminal algebras on self-dual categories, cf.
[16, 38]. The validity of this principle in the presence of comprehension and
quotients seems to be the major novelty of this work from the point of view of
(constructive) logic (see Theorem 6.4).

We finally analyse another intrinsic property of first-order predicate logic
with respect to induction/coinduction, namely the ‘stability’ of such principles
under the addition of indeterminates. Such stability property is necessary if we
wish to use these principles in arbitrary contexts (of data and propositions).
This is the case when we define functions of several arguments by induction on
one of them (e.g. addition of natural numbers); the remaining arguments are
considered fixed (but arbitrary) constants and play the role of a context. At
the logical level we may have assumptions about such arguments, which form
a propositional context. It is in the presence of these ‘data with propositional
hypotheses’ context that we wish to apply the induction/coinduction principles.
The logical properties involved to guarantee such stability are contextual and
functional completeness as formulated in [22]. They amount to representability
conditions with respect to the addition of indeterminates. Functional complete-
ness guarantees the stability of initial algebras (and hence of their associated
induction principle), while contextual completeness does the same with respect
to terminal coalgebras (and coinduction), see Theorem 7.6.

Applications of coinduction principles occur prominently in [15] (internal full
abstraction for the lazy lambda calculus) and in [38] (adequacy and strong ex-
tensionality for operational semantics). Both references are primarily concerned
with (abstract) domain theory. Here we give an abstract analysis of induction
and coinduction principles in the spirit of categorical logic, which achieves the
right level of abstraction required to combine the salient features of the above
approaches: we use an abstract notion of predicate (and of relation) as embod-
ied by the notion of fibration similar to [38], but unlike this latter, we use the
polynomial structure of the functor to define its ‘relational lifting’ (via logical
predicates). Hence the functor defining the data type canonically determines
its lifting, a desideratum of the approach in [15].

It is worthy to emphasise the conceptual simplicity and technical economy
of the present work: all the admissibility and stability results are immediate
consequences of a basic result about adjunctions between categories of alge-
bras (Theorem A.5). Although the result could be proved by direct calculation
for ordinary categories, the 2-categorical version is equally simple to prove via
universality of inserters, and makes the result applicable to the stability of the
induction/coinduction principles in §§7, where we work in the 2-category Cat ™.
Since this purely 2-categorical excursion about the functoriality of inserters may
be distracting in the main text, we relegate it to the Appendix.

The paper is organised as follows: in the next section we discuss some con-
crete examples of induction and coinduction principles to motivate their sub-
sequent formal treatment. We continue with another preliminary section con-
taining background material. In §§3 we start with the actual content of the



paper: the formulation of the induction principle for T-algebras as an exactness
condition. This is further elaborated in §§3.1, where the principle is reformu-
lated for binary relations in terms of equality, in order to exhibit patently the
duality of induction and coinduction for coalgebras. We briefly touch upon
the relationship between induction principles for algebras of different functors
in §83.2. In §84 we formulate the coinduction principle for coalgebras, while
in §85 we give sufficient criteria for the validity of the induction and coinduction
principles; the criteria consist of effectively guaranteeing the relevant exactness
conditions via the existence of adjoint functors. In §§6 we combine our previous
formulations of induction and coinduction into a mixed principle suitable for
minimal invariants of mixed variance polynomial functors 7: B°® x B — B. We
conclude in §§7 by strengthtening our formulations of logical principles to make
them stable under weakening of context, so that the principles can be applied in
arbitrary contexts, rather than the empty one (which was the case considered
up to this point). We also extend our criteria of validity to incorporate this
stable version, by recourse to contextual and functional completeness.

1 Examples of induction and coinduction

This section analyses examples of induction and coinduction, providing moti-
vation for their formal treatment in §§3 and §§4. We consider both definition
and reasoning by induction. For example, on an (initial) algebra of lists (of
some fixed type A) with constructors nil:1 — list(A) for the empty list and
cons: A X list(A) — list(A) for adding an element to a list, we can inductively
define a length map len:list(4) — N by the two clauses

len(nil) = 0, len(cons(a, £)) = S(len(¥)),

where 0 and S are the zero and successor constructors of the natural numbers
N. Formally we define len:list(4) — N as the unique algebra map from the
initial algebra of lists to the set of natural numbers, suitably equipped with a
list-algebra structure 1 - N, A x N — N as in

list(A) — — — — — — len _ _ _ _ _ o N
[nil,cons]T [O,S ° 71"]
1+ Axlist(d)— — — — — — — —
A list(4) 1+ A Xxlen 1+ AxN

This is definition by induction. Reasoning by induction involves predicates
(or relations): for a predicate P C list(A), assuming that P(nil) and P(¢) =
P(cons(a,?)) hold (for each a € A and ¢ € list(A)), we conclude that P must
be the whole of list(A). That is, every predicate (on the initial algebra) which
is closed under the operations of the algebra must be the whole set (or must
contain the truth predicate, as we shall say later). This requirement that P
is closed under the operations of the algebra is expressed abstractly by the
condition that P itself carries an algebra structure, in a category of predicates.
In our analysis, validity of this induction principle follows from comprehension:
the algebra structure on P in a category of predicates can be transferred to an
algebra structure on the associated set { P} = {£ € list(A) | P(¢)} in the category



of sets. Initiality of list(4) then yields a unique algebra map list(4) --» {P}.
From this it follows that P(£) holds for all £ € list(A), because comprehension
{—1} is right adjoint to ‘truth’.

Alternatively we may express induction in terms of (binary) relations: if
R C list(A) x list(A) is a relation on lists satisfying R(nil,nil) and R(¢,¢') =
R(cons(a, ), cons(a, ")) for all @ € A, then R must be reflexive. That is, the
induction principle for relations says that relations which are suitably closed un-
der the operations (congruences) must contain the equality relation. Thus truth
predicates and equality relations play a fundamental role in the formulation of
induction (as a reasoning principle).

We turn to coinduction, which is a less familiar notion. Coinduction is as-
sociated with (terminal) coalgebras like induction is to (initial) algebras. Coal-
gebras X — TX of a functor T may be understood as abstract dynamical
systems, consisting of a state space X together with a transition map, or ‘dy-
namics’, X — T X, acting on X. We also consider both definition and reason-
ing by coinduction. For example, consider a (deterministic, partial) automaton
consisting of a state space X, an attribute or output map at: X — O and a
procedure pr: X x ¥ — 1+ X. For every state s € X and every symbol a
in the input alphabet ¥ we get a result pr(s,a) € 1+ X. If pr(s,a) € X the
computation is succesful and yields a new state, but in case pr(s,a) = * € 1,
the computation is unsuccesful (and the automaton halts). Such an automaton
may be identified with a coalgebra X — O x (1 + X)*. The behaviour of the
automaton in a specific state s € X tells us what we can observe externally, by
considering the possible output value in O resulting from a sequence of inputs
in ¥* =[], X" Such observations form a set

C={p:X* =>1+0]| () # * and Yo € £*.Va € X.
plo) =% = ¢(a o) =x*}.

For this set C, we have attribute and procedure operations

cC — O CxY — 1+C
o l0) ) = { i aeo)

and thus forms the state space of an automaton. The induced map C — O x
(14 C)* is the terminal coalgebra: for an arbitrary automaton on X as above,
we get a unique mediating map f in a situation:

o r .

<at,pr>l J{

Ox(1+X)®— O >0 x (14 C)*
X

This map f sends a state s € X to the function f(s):¥* — 14 O in C given by

Fe0) =2t 1600 ={ e an(o) i

otherwise.



An (applicative) bisimulation relation on such a coalgebra automaton of the
form (at, pr): X — O x (1+X)¥ is a relation R C X x X on the states satisfying:

at(z) = at(y), and
R(z,y) = ¢ for each a € X: pr(z,a) € X iff pr(y,a) € X,
and in that case R(pr(z,a),pr(y,a)).

We call two states z,y € X bisimilar, and write z < y, if there is an applica-
tive bisimulation R C X x X with R(z,y). This is equivalent to saying that
bisimilarity is the union of all bisimulation relations.

The coinduction principle says that bisimilar elements z,y have the same
behaviour: f(z) = f(y) in C. More abstractly, it says that every bisimulation
is contained in the kernel relation of the unique map to the terminal coalgebra.
The task of showing that states have the same behaviour is thus reduced to
showing that they are contained in some relation R which is suitably closed
under the coalgebra operations. Such a relation R carries a coalgebra structure
in a category of relations. In our analysis the coinduction principle holds in the
presence of quotients: the coalgebra structure on R in the category of relations
can be transferred to a coalgebra structure on the quotient set X/R in the
category of sets. We get a unique coalgebra map X/R --» C, and thus a map
of relations R — Eq(C), since quotients are left adjoint to equality. Hence
elements related by R are equal when mapped to C.

2 Preliminaries

In this section we explain the relevant technical notions that will be used in
our abstract treatment of induction and coinduction from §§3 onwards. These
are: algebras and coalgebras for polynomial endofunctors on bicartesian (closed)
categories (2.1), logic interpreted in (bicartesian) fibrations (2.2), including com-
prehension and quotients (2.3), lifting of polynomial functors to fibred categories
(2.4) and transfer of adjunctions to categories of (co)algebras (2.5).

2.1 Algebras and coalgebras of polynomial functors

Let B be a category and T:B — B an endofunctor on B. An algebra (or,
a T-algebra, to be explicit) is an object X € B together with a morphism
a:TX — X. The object X is called the carrier, and the map a is the structure.
As an example, the lists list(A) of type A in the previous section are algebras
1+ A x list(A) — list(A) of the functor T'(X) = 1+ A x X on B = Sets.
A morphism of algebras (or an algebra map, for short) from (a:7X — X)
to (:TY — Y) is a morphism f: X — Y in B between the carriers which
commutes with the structures: f o a = b o Tf. We write Alg(T) for the
category of algebras of the functor T'. Initial algebras—i.e. initial objects in the
category Alg(T") play a special role in data type theory, see e.g. [18, 49]. A
standard result, due to Lambek, is that for an initial algebra a:TX — X, a is
an isomorphism.

Dually a T-coalgebra is a morphism of the form ¢: X — T'X. The object X
is called the carrier or the state space, and the map b is called the structure,
the transition map, or the dynamics of the coalgebra. A morphism of coalge-
bras from (¢: X — TX) to (d:Y — TY) is a morphism f: X — Y in B with



do f=Tfoc. Wewrite CoAlg(T) for this category of coalgebras. Note that
CoAlg(T) is (Alg(T°P))°P, where T°P is the induced functor B°P — B°P. Termi-
nal coalgebras will be of most interest; their structure maps (or dynamics) are
isomorphisms, dualizing the above observation for initial algebras. Both these
categories of algebras and coalgebras can be characterised as inserters (see the
Appendix for the relevant technical details).

We shall be especially interested in so-called polynomial functors T'. They
are built up from the identity, constants, and finite products and coproducts.
Formally, call B a bicartesian category if it has finite products (1, x) and co-
products (0,+). We do not require any distributivity at this stage. The class of
polynomial functors B — B is inductively defined by the following clauses.

(i) The identity functor is polynomial, and for each object A € B, the con-
stant functor X — A is polynomial; this includes the special cases A = 1,
A=0.

(ii) If 7,5:B = B are polynomial functors, then so are the product and
coproduct (in the category Cat(B, B) of endofunctors on B):

X T(X)xS(X) and X T(X)+ S(X).

For example, the functor X — 14 A x X used for lists in the previous section
is polynomial. And the automaton functor X +— O x (1 4+ X)* is polynomial
if the input alphabet ¥ is finite: if it has n elements, then we can write this
functor as

X—Ox(14+X)x---x(1+X).

~~
n times

2.2 Bicartesian fibrations

In the previous subsection we have considered a functor T on a category B,
where we think of the objects of B as sets or types, and regard T' as a signature
of type constructors. In order to reason about such a situation we need a
logic, comnsisting of a category P of predicates on types. This is formalised
by requiring a functor P — B, which is a fibration (see [32, 33, 35, 23] for
an exposition of this point of view). For an object A € B, we write P4 for
the subcategory of objects and maps of PP that get sent to A. This is the
category of predicates on A. The fibration gives us (using the Axiom of Choice)
for every morphism u: A — B in B a substitution functor u*:Pg — Py. A

P Q
morphism from a fibration ]ﬁp to another fibration kq consists of a

pair of functors K: B — A between the base categories and H:P — Q between
the total categories, which commutes with the fibrations: K o p = g o H, and
with substitution: H(u*(X)) = K(u)*(HX), canonically. We then call H a
fibred functor. A 2-cell (K,H) = (K',H') between two such morphisms of
fibrations consists of two natural transformations a: K = K', 8: H = H' with
qpB = ap. This sets up the 2-category Fib of fibrations.

Just like we have used bicartesian categories above, we consider bicartesian

fibrations, meaning that we have bicartesian structure both in the base category

P
B and in the total category P of a fibration ép in such a way that the func-



tor p (strictly)! preserves this structure. The following result shows how this
(global) bicartesian structure can be obtained from fibrewise (local) bicartesian
structure. The formulations of the induced global products and coproducts are
sometimes referred to as the “logical predicate” formulas, cf. [20].

P

2.1. Lemma. (i) Consider a fibration 1P with fibred cartesian structure (i.e.
cartesian structure in every fibre, which is preserved by substitution functors
u*). Assume that the base category B also has bicartesian structure, the fibres
have finite coproducts and the substitution functors k*:Parp — P4 (along co-
projections) have left adjoints 1] _. Then the total category P has bicartesian
structure, which is strictly preserved by the functor p.

(ii) If additionally the substitution functors preserve finite coproducts and the
following diagrams are pullback squares in B

u

A A

A+B——— A"+ B
u+v

and the coproducts ||, satisfy the Beck-Chevalley condition with respect to these
pullback squares, then the induced functor +:P x P — P from (i) is a fibred
functor, so that p becomes a bicartesian object in the 2-category of fibrations.

Proof. The terminal object 1 € P; in the fibre over 1 € B is terminal object in
P, and similarly the initial object 0 € Py over O € B is initial in P. The product
and coproduct in P of X € P4 and Y € P are respectively

W*(X)XW’*(Y)GPAxB and H;{(X)+H[{’(Y)€]PA+B

where X, + refer to the product and coproduct in the fibre. The Beck-Chevalley
condition in (ii) is used to show that the coproduct functor is fibred. O

The additional conditions in the second point of the lemma do not hold in
all of our examples. They are not needed for the theory below.

2.2. Examples. (i) The (classical) logic of predicates over sets is captured
Sub(Sets)
by the fibration Slt of subobjects of sets. It satisfies the conditions of
ets
the lemma, and hence is a bicartesian fibration. For instance, the product of
predicates X C A and Y C B is the predicate {(z,y) |z € XAy e Y} C Ax B.

More generally, for every regular category B, the associated subobject fibra-
Sub(B

tion é( ) is bicartesian. Furthermore, if B has disjoint and universal finite
coproducts (0,+), e.g. if B is a topos, the fibration satisfies the additional hy-
pothesis of Lemma 2.1.(ii).

(ii) Let w-Cpo, be the category of pointed w-cpos and strict continuous
functions. Objects are posets with a bottom element — and least upper bounds
(lub’s) of w-chains (z,)nen (where z,, < x,,41). The morphisms are monotone

1Tt is an easy coherence result that we can assume such structure to be preserved on-the-
nose.



functions which preserve bottoms and lubs of chains. Call a subset X C A of

A € w-Cpo, admissible if it contains — and is closed under lubs of chains. Let
ASub(w-Cpo )

1 be the fibration of these admissible subsets over w-cpos. This
w-Cpo

fibration is bicartesian by Lemma 2.1.(i), since the coprojections k: A — A+ B
are themselves admissible, so that we have coproducts [], by composition and
Beck-Chevalley holds.

The category w-Cpo, has finite products in the usual way. However, it is
not cartesian closed, but monoidal closed. The relevant tensor ® is the “smash
product” (or “wedge product” as it is called for pointed topological spaces) in
which elements of the form (z,—) and (—,y) are identified with (—,—). This
tensor classifies bi-strict morphisms, that is, morphisms strict in each argument
separately. The associated internal hom is the w-cpo of strict continuous func-
tions (with pointwise order).

(iii) We consider metric spaces (M,d) where the distance function d is re-
stricted to take values in the unit interval [0,1]. (This can always be en-
forced without changing the topology.) An ultrametric space is one in which
the triangular inequality is strengthened to: d(z,z) < max{d(z,y),d(y,z)}
(with ‘max’ instead of ‘+’ as for ordinary metric spaces). As morphisms be-
tween (ultra)metric spaces we take the non-expansive functions: those f with
d(f(z), f(y)) < d(z,y). An (ultra)metric space is complete if every Cauchy
sequence has a limit. We write Cms and Cums for the categories of complete

ClSub(Cms)
(ultra)metric spaces. We consider these with the fibrations 1 and
CISub(Cums) me
o 1 of closed subsets (i.e. those subsets which are closed under limits
ums

of Cauchy sequences). These satisfy the hypothesis of Lemma 2.1.(i) and of
(ii) as well and hence are bicartesian fibrations. For more background infor-
mation see [4, 44], and [6] for applications to the semantics of programming
languages.

For completeness we recall that the cartesian product of two metric spaces
(M,,d;) and (Mas, dy) has the product M; x My as underlying set, with distance

du ((z1,22), (y1,y0)) = max{di(z1,91), da(z2,92) }.

We will additionally consider a tensor product ® of metric spaces, which also
has the cartesian product as underlying set. Its distance is given by ‘+’ instead
of ‘max’, whereby we take care to stay within the [0, 1] interval:

d®(<m1,$2>, <y1>y2>) = min{]-: d1($1,y1) + d2($2;y2)}-

This tensor classifies bi-non-expansive maps. The category Cms is monoidal
closed? and the category Cums is cartesian closed. In both cases the exponential
(or internal hom) M; = Ms is the set of non-expansive functions My — My
with distance between f, g: M7 = M given by supremum:

d=(f,g9) = sup d(f(z),g(z)).

re M,

(iv) Finally we sketch a syntactic example. Assume we have a predicate logic
over some (simple) type theory. This involves a category 7 of types. Objects

2Interestingly, the monoidal structure on w-Cpo | admits contraction (via diagonals) and
the monoidal structure on Cms admits weakening (via projections), see [24].



are types A, and morphisms A — B are equivalence classes (with respect to
conversion) of terms z: A + M: B. We shall assume finite product types (1, x)
and coproduct types (0, +) in this calculus (see e.g. [26] for details).

On top of this category 7 of types there is a category L of predicates on
types, which gives us the logic. Objects of £ are propositions (z: A + ¢: Prop)
in context (or predicates); and morphisms (z: A + ¢: Prop) — (y: B F 1: Prop)
in £ are morphisms A — B in 7, say given by a term z: A F M: B, together
with (a derivation of) the entailment z: A | ¢ + ¥[M/y]. There is an obvious

projection functor ,]f, which sends a predicate (z: A F ¢:Prop) on A to its
underlying type A. It is a (split) fibration, with substitution functors given by
syntactic substitution of terms in predicate formulas.

Let us assume that we have “coherent” logic, with propositional connec-
tives T, A, —,V for finite conjunctions and disjunctions, existential quantifiers
dx: A. — and equality predicate =4 for each type A. Then the category L of
predicates has finite products and coproducts. For example, the coproduct of
predicates (z: A + ¢:Prop) and (y: B F 1:Prop) is the predicate ¢ + 1 on
z: A+ B given by

(p+9)(z) = (Ba: Az =ayp ke Ap(z)) vV (3y: B.z =a15 'y Ad(y)).

Some additional logical assumptions are needed to make this + a fibred functor

LXxL— L.

In all of these examples the fibre categories are pre-orders. This means that
the fibrations model provability (that is, they account only for the existence of
proofs or derivations). The theory that we develop applies to the more general
situation with proper fibre categories, and hence to a logic with explict proofs.
Universality takes care of the commutativity conditions inductive proofs must
satisfy.

Besides categories of predicates we shall be using categories of (binary) re-

P

lations. They can be obtained as follows. For a fibration %Bp with cartesian
Rel(P)
products X in its base category B, form the fibration ]% of relations by

change-of-base (pullback):
Rel(P) — > P
-
p
B B

A— Ax A

Thus the fibre category Rel(IP) 4 over A € B is the fibre category P4« 4 of binary
relations on A. We have the following elementary result.

P
2.3. Lemma. Let %p be a fibration as in Lemma 2.1.(1) with distributive
coproducts in its base category. Then the associated category of relations Rel(IP)
is also bicartesian, and the functor Rel(P) — B strictly preserves this structure.

If the fibration p additionally satisfies the assumptions in (ii), then the induced
coproduct functor +: Rel(P) x Rel(P) — Rel(P) is a fibred functor.

10



Proof. If coproducts + in B are distributive, then we have left adjoints to
substitution functors (k x k)*: P44 Byx(ar4+B) — Paxar, namely via adjoints of
the composite

AxA s Ax A+ AxB—L>(Ax A +AxB)+(Bx A +BxB')

[
\\\\\\\\\~\ﬁ__9m+3pqy+3q 0

K XK

In all of the examples listed above the base category has distributive coprod-
ucts, so the result applies.

2.3 Comprehension and quotients
P

Assume every fibre category P4 of a fibration %Bp has a terminal object, call
it 1(A), or 14, and such objects are stable under substitution, i.e. they are
preserved by substitution functors: for any u: A — B, u*1p = 1 4. Such (fibred)
terminal objects amount to a functor 1: B — P, (fibred) right adjoint to the
functor p. In the logical view of (bicartesian) fibrations, these fibred terminal
objects correspond to the (constantly) truth predicates over types.

B
2.4. Definition (After [30, 13]). A fibration %p with terminal object functor
1: B — P is said to admit comprehension if this functor 1 has a right adjoint.
We usually write it as {—}: P — B.

As for the examples in §§2.2, subobject fibrations always admit comprehen-
sion, by choosing for a subobject (X — I) a domain object X in the base
category. The same applies to the fibrations of admissible subsets over w-cpos,

L
and of closed subsets over (ultra-)metric spaces. For the syntactic example 71_
comprehension amounts to forming the extent of a predicate, that is, the type
of all values where it (provably) holds:

(m:a F o: Prop) — ( F{z:o| Lp}:Type).

The adjunction 1 4 {—} gives us appropriate introduction and elimination rules
for such ‘comprehension types’.

We turn to quotients. Here the situation is that quotients are left adjoints to
equality. So we first have to say what it means for a fibration to have equality.
This in turn involves left adjoints to contraction functors.

P
2.5. Definition (From [30]). Let %}p be a fibration with cartesian products x
in B. The fibration p is said to admit equality if for each object A € B the “con-
traction” functor 6%:Paxa — P4, induced by the diagonal é4 = (id,id): A —
A x A on A, has a left adjoint H6A'
In case the fibration has fibred terminal objects 1(A) € P4 for A € B, we

write
def

Eq(A) = [I;,(1(A)) € Paxa = Rel(P)4
for the equality relation on A. The assignment A — Eq(A) extends to a functor

Eq: B — Rel(P); the morphism part of this functor expresses that morphisms
(in the base B) map ‘equal arguments to equal results’.
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2.6. Remarks. (i) The substitution functors 6%:Psxa — P4 give rise to a
global functor 6*:IP — Rel(I’). The adjunctions [[; - 6% between the fibres
induce a global left adjoint [[,: Rel(I’) — IP to 6*. The equality functor is then
the composite

(B =, Rel(F)) = (B——> P e, Rel(P))

Hence, if a fibration has comprehension, the equality functor has a right adjoint
{=} o 6* by composition. The converse also holds: if K:Rel(P) — B is right
adjoint to Eq, then K7* is right adjoint to 1.
(ii) The functor Eq: B — Rel(P) is characterised by the following univer-
B Rel(P)
sal property: regarded as a morphism of fibrations, Eq: < é‘d> — ( é )
it is the absolute lifting (in the sense of [48]) of the terminal object functor

B P Rel(P) P
1:< %Bld) — ( %p) along 6*:( ]é ) — < %;I))' The 2-cell p:1 = §*Eq

is (pointwise) the proof of reflexivity; universality renders Eq(A) as the least
reflexive relation on A.

P
2.7. Definition (From [25]). A fibration %p with equality as above admits
quotients if the equality functor Eq: B — Rel(IP) has a left adjoint.

In all of the examples of 2.2 we have equality. It is usually given by the
diagonal relation A — A x A (which is admissible over w-cpos, and closed over
metric spaces).

Sub(B)

It is not hard to show that the subobject fibration ]é of a regular cate-
gory B has quotients if and only if B has coequalisers. Similarly for admissible
subsets over w-cpos and closed subsets of metric spaces quotients are given by
coequalisers. (For coequalisers in w-cpos, see [14, 34] and in metric spaces,
see [4, 44].) In the predicate logic example quotients are an extra feature of the
logic, given by a mapping

(ac: o,2':0 F R(z,z'): Prop) — ( F U/R:Type)

with suitable introduction and elimination rules provided by this adjunction
(see [25]).

2.8. Remark. What we have defined above is the quotient of an arbitrary
relation. Set theoretically, it is the quotient by the least equivalence relation
generated by the given relation. In a diagram:

ER(P)

l@meL@
NeRENe)

Rel(P)

12



where ER(P) is the full subcategory of Rel(IP) of equivalence relations, Q is
the quotient functor as defined above, and Q' is the quotient on equivalence
relations only (as they are usually presented). Suppose that we can freely form
the equivalence relation generated by a relation, i.e. that the inclusion ER(P) —
Rel(P) has a (fibred) left adjoint F', then having an adjoint Q is the same as
having an adjoint Q’.

(For this observation it is simpler to consider a pre-ordered fibration, so
that it is unambiguous what the category ER(PP) of equivalence relations is.
See [36, 37] for further details about categories of relations on non-pre-ordered
fibrations.)

Below we are interested in situations where the truth and equality functors
preserve finite products and coproducts. We list a few easy observations.

2.9. Lemma. (i) A terminal object functor 1 always preserves products, since
it is a Tight adjoint.

(ii) If a fibration admits comprehension, 1 preserves coproducts.

(iii) If 1 preserves coproducts, then so does the equality functor Eq, by Re-
mark 2.6.(i).

(iv) If a fibration has quotients, then Eq preserves products. O

P
Having a terminal object functor 1: B — P of a fibration %gp preserve finite

coproducts (0, +) means that:

e the terminal object 1(0) € Py in the fibre over the initial object 0 € B
is initial in P. Equivalently, 1(0) is initial in Py, see Lemma 3.5 below.
But this means that the initial and terminal object in the fibre Py over 0
coincide, and thus that Py is (equivalent to) the terminal category (one
object, one arrow).

e for each pair of objects A, B € B there is a canonical isomorphism
I1.(1A) +415 1. (1B) = 1(4 + B).

This last condition essentially means that the union of the images of the
coproduct coprojections k, k' cover the coproduct object A + B € B, in the
sense that every element of A + B must come from either A or B. We note
that these conditions are satisfied for instance, when we consider internal logic
fibrations, i.e. fibrations in which the predicates are the subobjects of the base
category, provided coproduct coprojections &, k' are monic, or more generally,
when we consider fibrations with comprehension, as in (ii) of the above lemma.

The requirement that the equality functor Eq preserve products and co-
products amounts to an extensionality condition, expressing that equality is
structurally determined. This means that equality of elements on a product
object is given componentwise, while equality on a coproduct object holds if the
elements are both in the same component and equal therein.

2.4 Lifting functors to predicates and relations

In this subsection we show how a polynomial functor 7" acting on a category of
types can be lifted (by induction on the structure) to a functor Pred(T) acting

13



on predicates, and to a functor Rel(T") acting on relations. We shall use such
lifted functors Pred(T") to capture inductive predicates on algebras in §§3, and
Rel(T') for congruences in §§3.1 and coinductive relations on coalgebras in §§4.

P
2.10. Definition. Let %p be a fibration where IP is bicartesian over B, with
terminal object functor 1: B — P.

(i) A polynomial functor T: B — B on the base category is lifted to a poly-
nomial functor Pred(T):P — P, called the logical predicate lifting of T, by
induction on the structure of 7. The bicartesian structure of B used in T is
replaced by the bicartesian structure in P. Every constant A € B occurring in
T is replaced by the “truth” constant 1(A4) € P in Pred(T).

(ii) Similarly, if the fibration has an equality functor Eq: B — Rel(I?), then
such a polynomial functor T' can be lifted to a functor Rel(T"): Rel(P) — Rel(P),
called the logical relation lifting of T', by induction on the structure of 7. Now
we replace a constant A € B occurring in T by the “equality” contant Eq(A4) €
Rel(P) in Rel(T).

For the functor T'=1+ A x (_), whose initial algebra is the type of lists of
elements of A, the logical predicate lifting is Pred(7') = 1 + 1(A) x (), as an
endofunctor on P. And for the functor T'= A x (_), whose terminal coalgebra is
the type of streams (or infinite lists) of elements of A, the logical relation lifting
is Rel(T") = Eq(A) x (1).

P Rel(P)
Notice that because functors é and é strictly preserve the bicartesian

structure we have by construction commuting diagrams

pLred@ . Rel(P) Rel(T) Rel(P)
l foomd l
B ? B B T B

The following will be used later.

P
2.11. Lemma. Consider %}p and T:B — B as above.

(i) If 1: B — P preserves finite coproducts, then predicate lifting commutes
with truth: there is a (canonical) natural isomorphism Pred(T) o1 => 10T
as on the left diagram below.

(ii) If Eq: B — Rel(IP) preserves both products and coproducts, then relation
lifting commutes with equality: Eq o T = Rel(T') o Eq, canonically, as in the
right diagram:

Pred(T) Rel(T)
P P Rel(P) Rel(P)
N BN (m
B T B B T B
Proof. By induction on the structure of T. O

14



2.5 Transfer of adjunctions

In this section we mention the main technical result about transfer of adjunc-
tions to categories of algebras and coalgebras. Part of this result occurs (inde-
pendently) in [5]. An abstract proof using the characterization of categories of
(co)algebras as interters is given in the Appendix.

2.12. Theorem. Consider a natural transformation o: SF = FT in a situa-

tion
A—2 > Alg(S)
FT \a TF then it induces a functor TAlg(F)
B—7>B Alg(T)

given by (TX LX) (SFX 23 FTx X FXx).
And if « is an isomorphism, then a right adjoint G to F

A Alg(S)
F <—|> G  induces a right adjoint  Alg(F) C . > Alg(G)
B Alg(T)

where the functor Alg(G) arises from B: TG = GS, the adjoint transpose of
FTG=SFG =5 3. 0

We shall not prove this result here, because it is an instance of Theorem A.5
in the Appendix, which describes the construction 7' — Alg(T") as a special case
of a 2-functorial inserter construction Ins(_,_), namely as 7' — Ins(7,id).

There is a dual version of the previous theorem, by applying the above in
Cat*°.

2.13. Corollary. For functors B x, B, B 9, A, A s, A, a natural trans-
formation a:GS = TG induces a functor CoAlg(G): CoAlg(S) — CoAlg(T).
Furthermore, if a is an isomorphism, then, a left adjoint F' 4 G induces a left

adjoint CoAlg(F') 4 CoAlg(G). |

3 Induction principle for T-algebras

Having laid down the technical prerequisites in the previous section, we are
now ready to tackle the main topic of the paper, namely the formalisation
of induction (and later on, coinduction) principles for T-algebras (T: B — B)

relative to a logic embodied by a bicartesian fibration over the base category B.
P

Consider a bicartesian fibration ép and a polynomial endofunctor T: B —
B, toghether with its logical predicate lifting Pred(T):P — P. The crucial
observation for the formulation of the induction principle for T-algebras, moti-
vated by the analysis of the examples in §§1, is that inductive predicates (those
predicates which are closed under the operations of the underlying T-algebra)
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correspond precisely to Pred(T')-algebras (over the given T-algebra). That is,
inductive predicates are the objects of the total category of the fibration

Alg(Pred(T')) (Pred(T)P -L5 P)
Alg(p)l I
Alg(T) (p(Pred(1')P) = T'(pP) —>pP)

obtained by Theorem 2.12 (or by the functoriality of inserters, examined in
the Appendix). The induction principle asserts that an inductive predicate is
provably true in the image of the unique map from the initial algebra to its
underlying T-algebra. In other words, the predicate holds on the “reachable
part” (see [49]) of the underlying algebra. In categorical terms this can be

expressed as follows: given an initial T-algebra a: TX — X, the Pred(T)-algebra
Pred(T)(1x) — 1rx e 1x is an initial Pred(7T)-algebra; this guarantees the

existence of an appropriate morphism into a given inductive predicate, which
corresponds to the proof of the property abovementioned. Finally notice that
this initial Pred(7")-algebra is the image of the given initial T-algebra under
the functor Alg(1): Alg(T) — Alg(Pred(T)), induced by the adjunction p 4 1
(Theorem 2.12):

pred®) Qp Alg(Pred(T))
pl—> 1 yielding Alg(p l >Alg
- OB Alg(T)

We thus arrive at the following formulation.

P
3.1. Definition (Induction principle in a fibration). Let ép be a bicartesian
fibration, and let T:B — B be a polynomial functor. The fibration p satis-
fies the induction principle w.r.t. T if the induced functor Alg(1): Alg(T) —
Alg(Pred(T')) preserves initial objects.

Logically, the principle can be formulated as follows. Let I: D — X be the
unique algebra map from the initial T-algebra ¢:TD 5 D to the T-algebra
s:TX — X, and let P € Px be a predicate on X. We then have the following
inference rule.

z: X | Pred(T)(P)(z) F P(sx)
d:D |0 F P(ld)

(where we have written the empty proposition context §} for the truth predicate
1p on D.) The antecedent of the rule says that P has a Pred(T')-algebra
structure over s: T X — X, while the conclusion says that P holds in the image
of the algebra map I: D — X (i.e. in the ‘reachable part’ of X).

In the example involving lists in §§1 we have D = A* = list(A) as initial
algebra. For an arbitrary algebra s = [u,h]: 1+ A x X — X and predicate
P C X, the premise Pred(T)(P)(x) + P(sz) of the rule amounts to - P(u) and
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P(z) F P(h(a,z)). The conclusion is that P(!a) holds for all @ € A*, where
I: A* — X is the unique map of lists given by !{) = u and !(a - 8) = h(a,!8). In
particular, for P C D, we get the standard ‘list induction’ principle: if P(nil)
and P(¢) + P(cons(a,f)) (for arbitrary a: A) then P({) holds (for arbitrary
L: D).

Notice that for the functor 7(X) = 1+ X an initial algebra is a natural num-
bers object (NNO) 14+ N = N. If induction holds, then the truth predicate
1(N) on N is initial algebra of the lifted functor Pred(T)(P) = 1 + P. Hence
it is a NNO in the category of predicates. In this way, our formulation of the
induction principle admits iterated use of initial algebra definitions, meaning
that we can use initial algebras of polynomial endofunctors as constant objects
involved in the definition of other such functors consistently. Similar consider-
ations apply to our treatment of coinduction for coalgebras in §§4 below.

3.1 Induction and equality

In order to make explicit the duality between the induction principle for algebras
above and the coinduction principle for coalgebras in §§4 below (whose formu-
lation involves equality relations), we establish an equivalent formulation of
induction in terms of binary relations and equality. This reformulation involves
additional exactness and completeness conditions in a bicartesian fibration.

P

When a bicartesian fibration %p admits equality, in the sense of Defi-
nition 2.5 we can perform the logical relation lifting of a polynomial functor
T:B — B to the functor Rel(7T'): Rel(P) — Rel(IP) on the total category of bi-
nary relations (by choosing Eq(A) as a constant relation for an object A € B
occuring in T'), see Definition 2.10.(ii). A Rel(T')-algebra is a binary relation
R on a given T-algebra, closed under the algebra operations, that is R is a
congruence.

The following lemma summarises the conditions we need to relate Pred(7')-
algebras and Rel(T")-algebras.

3.2. Lemma. Assume B is a distributive category, T:B — B is a polynomial

P
functor and ]ﬁp is a bicartesian bifibration, with direct images (I], 4 u*),
satisfying Beck-Chevalley and Frobenius conditions.
(i) There is a (canonical) natural isomorphism

L5 o Pred(T) —> Rel(T) o [I;

(ii) If furthermore substitution functors preserve finite coproducts, then

=

Pred(T) o 6* = 6" o Rel(T)

~

canonically.

Proof. By induction on the structure of the polynomial functor T". We indicate
the argument for the two non-trivial cases:

(i) The only case that requires proof is that of products: for P,Q € P over
A, B € B respectively, we must show

s, (P x Q) =115, (P) x [Is,(Q)
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Consider the following diagram

A " AxB T B
’ L
(5Al léAXid
™
Ax A< (4w A)xB B

J 71-j4><A,B
id x 6Bl 6B
TAxA,Bx

(AxA)x(BxB)——>BxB
7TA><A,B><B

the above isomorphism is obtained by applying Beck-Chevalley to both (pull-
back) squares and using the Frobenius condition on the middle vertical arrows
(recall the description of products in a bicartesian fibration from the proof of
Lemma 2.1.(i)).

(ii) The only case requiring proof is that of coproducts. Given relations
RePsy s and S € Pgyp, we must show

Sarp(R+S5)=64(R) +6p(S)

for which we use the fact that coproduct injections are monics in B, which is a
distributive category, as shown in [8, Lemma 2.1]. Hence the following diagram

is a pullback:

A r A+ B

5Al l6A+B

AxA—— > (A+B)x (A+B)
K X K

so that we can apply Beck-Chevalley to it. The remaining details are routine
(using the description of coproducts in a bicartesian fibration in the proof of
Lemma 2.1.(i)). |

From a logical point of view, the first item in the above lemma means that an
inductive predicate can be extended to a congruence relation by diagonalisation:
if P carries a Pred(T)-algebra structure, then the relation R(z,y) = (z =
y) A P(z) has a Rel(T)-algebra structure. The second item expresses the fact
that the reflexive part of a congruence is an inductive predicate: if R has a
Rel(T)-algebra structure, the predicate P(z) = R(z,z) has a Pred(T)-algebra
structure.

3.3. Remark. We should point out that the condition that direct images sat-
isfy Beck-Chevalley may fail. It fails for example in the fibration of admissible
subsets in w-cpos (see Pitts’ counter example in [11, Chapter 1, Exercise (7)])
and similarly in the fibration of closed subsets of metric spaces. But it does hold
in subobject fibrations of regular categories. Nevertheless, all the examples in

2.2 validate the isomorphisms stated in the above lemma. For the fibration
ASub(w-Cpo,)

of admissible subsets Cl , the main technical point in this respect is
w-Cpo |
Sub’ (w-Cpo.)
that there is a reflection ASub & Sub’(w-Cpo, ), where < is the
w-Upo |
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Sub(Sets)
fibration obtained from the classical logic fibration 1 by change of base

Sets
along the forgetful functor w-Cpo,; — Sets (see [20, §4.3.2] for related consid-
Sub’(w-CpOJ_)
erations and details). The fibration Cl clearly satisfies the hypothesis
w-Cpo
of the above lemma. It is then routine to verify that the reflection preserves
ASub(w-Cpo )

the relevant constructions as to transfer the isomorphisms to Cl . An
w-Cpo
ClSub(Cms) *
entirely analogous argument applies to the fibration Cl
ms

If the equality functor Eq: B — Rel(IP) commutes with lifting, then we get
by Theorem 2.12 a functor Alg(Eq) in a situation:

Alg(Rel(T)) (Rel(T)Eq(X) 2 Eq(TX) "2 Eq(X))
Alg(Eq)T I
Alg(T) (TX > X)

We can now express the induction principle for algebras in terms of equality, as
follows.

P
3.4. Theorem. Let ép be a fibration as in Lemma 3.2.(i). Then: the func-
tor Alg(1): Alg(T') — Alg(Pred(T)) preserves initial objects if and only if the
functor Alg(Eq): Alg(T) — Alg(Rel(T")) does.
Informally: the induction principle holds in unary form for predicates if and
only if it holds in binary form for relations.

Proof. In one direction, if the functor Alg(1) preserves initial objects, then so
does Alg(Eq) = Alg([,) o Alg(1), since Alg([],) is a left adjoint, namely to
Alg(6*). Notice that Alg(]],) exists and has an adjoint because the natural
transformation « in the mentioned lemma is invertible.

In the other direction, assume a:T'D 5 D is an initial T-algebra in B. By
Beck-Chevalley we get an isomorphism 6* o J[, = [],; o id* 2 id, so that
Alg(6*) o Alg(]1,) = id. For an arbitrary Pred(T')-algebra g: Pred(T)(P) — P

in P we get adjoint correspondences

Alg(1)(a) — g = Alg(8*)( Alg(I1,)(9))

Alg(I1,)(Alg(1)(a)) = Alg(Eq)(a) — Alg(I15)(9)

By assumption, Alg(Eq)(a) is initial object in the category Alg(Rel(T")), and so
we may conclude that Alg(1)(a) is initial object in Alg(Pred(T")). O

The equivalence in the above theorem means that a fibration satisfies the

induction principle if and only if the canonical congruence Rel(T)(Eq(D)) =

Eq(T(D)) Pale) Eq(D) over an initial algebra a:TD = D is initial in the cat-

egory Alg(Rel(T')) of congruences. On the logical side, this amounts to saying
that every congruence f:Rel(T)R — R over a T-algebra b:TY — Y is reflexive
when restricted along the unique morphism !: D — Y (induced by initiality),
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i.e. that the relation !*(R) is provably reflexive. In particular, every congruence
over an initial algebra is reflexive. This alternative formulation of the induction
principle for T-algebras appears in [43] for the case of natural numbers. It also
shows up in the derivations of induction and coinduction principles in [40] in
the context of a formal logic for parametric polymorphism.

Our formulation of the induction principle is such that it can be used to
prove certain properties about any 7T-algebra, and not just above the initial
one. A more standard formulation would require that the canononically induced
Pred(T)-algebra over an initial T-algebra be initial among Pred(T')-algebras
over the same initial T-algebra. That is, for an initial algebra a:TD = D, the

algebra Pred(7)(1D) = 1(T D) Y 1D should be initial in the fibre category

Alg(Pred(T'))a.7p—p of inductive predicates over the initial algebraa: TD = D.
Since the functor Alg(p): Alg(Pred(T)) — Alg(T') is a fibration, both formula-
tions are equivalent, as the following result shows.

P
3.5. Lemma. Given a fibration ép with 0 € B an wnitial object, an object
X € Py is initial in the fibre Py over 0 if and only if it is (globally) initial in the
total category IP. O

3.2 Relating induction principles of different data types

It is well-known that for many familiar inductive data types such as lists and
trees, we can carry out inductive proofs about their elements by associating some
‘measure’ of them into the natural numbers N and using induction over N. For
instance, binary trees with leaves of (some fixed) type A are the elements of the
initial algebra A+ Tree(A) x Tree(A) = Tree(A) of the functor TX = A+ X x X.
The height of a tree is given by the tree-morphism h: Tree(A) --+ N, induced
by the following T-algebra on N.

More generally, in any category B which has colimits of w-chains, that is
colimits of diagrams of the form Cat(w,B) (w being the preordered category
of natural numbers) and an initial object 0, every endofunctor 7: B — B which
preserves such w-colimits has an initial algebra obtained as the colimit D of the
following w-chain

T T?
0 L T0 L T20 L i ——=D

where ¢:0 — T'0 is the unique morphism out of the initial object, ¢f. [31, 45]. If
B has a natural numbers object N, we have the following cocone over the above
diagram:

2
00—t oLl oLt > D
hl ///
hy - -
h(] /// h
NA
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where the h,,’s are defined as the composites

def

C S S S )

(T"O—!>1LN—>N—>---—>N

>

n times

This definition yields a cocone with vertex N, which induces a ‘height’ map
h:D —» N, from the carrier D of the initial algebra 7D = D to N. Via this
map we can reason by induction on the height (or ‘depth’) of the ‘elements’ of
the initial algebra, as we now explain.

Given a predicate on the type Tree(A), say t: Tree(A) + P(t): Prop, we know
we can assert ¢: Tree(A) | O F P(t) if we can show for every n € N

Q(n) =Vt € Tree(A). h(t) = n = P(t).

And of course, this proposition can be established by ordinary induction on N.
The formula @ is the expression in the internal language of the fibration of the
predicate [],(P), where ], is right adjoint to A* in:

I1x

S
I[DTree(A) - Pn

h*

Tree(A) ——— N

h

Logically, [, ‘universal quantification along h’. Then, the adjunction laws set
up a bijective correspondence

t: Tree(A) | 0 F P(t)
N0 FT], .(Pt)=Q

which gives the formal counterpart to the abovementioned reduction of induction
on trees to induction on natural numbers via their associated ‘height’.

4 Coinduction principle for T-coalgebras

We now turn to consider a logical principle for terminal coalgebras. Unlike the
situation with algebras, for which the induction principle gives a method to
prove any proposition over them, the coinduction principle gives only a way of
proving equality of elements of the coalgebra. In the context of data types, this
principle is still quite useful, since elements of terminal coalgebras are generally
infinite objects, and a method to show two of them equal is therefore necessary.

The formulation of coinduction is entirely dual to that of induction (in terms
of binary relations as in §§3.1). Given a polynomial endofunctor T:B — B

P
and a bicartesian fibration %Bp admitting equality, if the equality functor
Eq:B — Rel(P) preserves products and coproducts, then we obtain a func-

tor CoAlg(Eq): CoAlg(T') — CoAlg(Rel(T)), as in the algebraic case. That
is, given a coalgebra d: C — T'C, the equality relation Eq(C) has a canonical
Rel(T')-coalgebra structure Eq(C) — Eq(T'C) = Rel(T")(Eq(C)) over d.
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It follows from the analysis in §§1 that Rel(7")-coalgebras can be regarded
as (applicative) bisimulations or coinductive relations. This means that a given
Rel(T)-coalgebra f: R — Rel(T)(R) over a coalgebra ¢: X — TX is a relation
R on X which is preserved by the destructor operation ¢. The coinduction
principle asserts that elements z,y of X which are R-related are equal when
mapped to the terminal coalgebra.

Logically, if I:(X,¢) --+ (D,d) denotes the unique coalgebra map to the
terminal coalgebra d: D = T'D, we have the following rule

vy X | Ray) - Rel(T)(R)(cx, )
z,y: X | R(z,y) Fla=ply

where the premise expresses that R has a Rel(T')-coalgebra structure over ¢: X —
TX. Furthermore, from a constructive point of view, it is natural to require
that different proofs of the entailment in the premise of the rule yield differ-
ent proofs of the entailment in the conclusion. These considerations lead us to
require that the canonical Rel(T')-coalgebra on Eq(D) be terminal.

This principle is formally captured by the following definition.

P
4.1. Definition (Coinduction principle in a fibration). Let ﬁ%p be a bicarte-

sian fibration with equality (preserving bicartesian structure), and let 7: B — B
be a polynomial functor. The fibration p satisfies the coinduction principle with
respect to T if the induced functor CoAlg(Eq): CoAlg(T') — CoAlg(Rel(T")) pre-
serves terminal objects.

4.2. Example. For a given set A, consider the polynomial functor T(X) =
A x X. Tts terminal coalgebra in Sets has as carrier the set L = AN of infinite
sequences of A’s. The structure (h,t): L = A x L consists of the head h and
Sub(Sets

tail ¢ functions. The fibration S(elts : of subsets satisfies the coinduction
principle with respect to this functor 7', i.e. that the equality relation Eq(L) =
{(¢,£) | £ € L} C L x L is the terminal coalgebra of the induced lifted functor
Rel(T)(R) = Eq(A) x R on the total category Rel(Sub(Sets)) of relations.
Indeed, a relation R C X x X carrying a Rel(T")-coalgebra structure consists of
a T-coalgebra structure (f, g): X — A x X on its underlying set, such that

F(2) = F)A
B(z,y) = { R(g(x). 9(s))

for all z,y € X. The induced T-coalgebra map k: X --» L = AN given by
k(z) = An € N. f(g\™) (z)) is the unique map of Rel(T)-coalgebras k: R —»
Eq(L), since R(z,y) = k(z) = k(y).

We illustrate the use of the coinduction principle for such infinite lists. We
can define maps even,odd: . = L, which take out the evenly and oddly listed
elements. These are obtained by terminality of (h,t): L = A x L in

;. een . odd
(h,tot)l El(h,t) l(h,t) ot
AXL——-—-——-- >AXL<——-—-—- AXL



Also we can define a merge operation in

LxL————~=—~ L
(hom, (W’,tow))l El(h,t)
Ax(LxL)————— >AxL

that is, merge(a - a, 3) = a - merge(B3, a). Showing that even(merge(a, 8)) = «
and odd(merge(a, 3)) = B (in Sets) amounts to showing (by coinduction) that
the relations on L

R = {({a,even(merge(a,p))) | a,8 € L}
S = {(B,odd(merge(a,))) | a,8 € L}.

are bisimulations (i.e. carry Rel(T")-coalgebra structures).

We can further show that merge(even(a),odd(a)) = a, by first showing that
odd(a) = even(#()). We thus get an isomorphism L = L x L.

The same argument may be carried out in the fibration of admissible subsets
over w-cpo’s, since the relations involved are admissible.

5 Validity of the induction and coinduction principles

Having formalised induction and coinduction principles in a fibration, we pro-
ceed to give sufficient criteria for their validity. We will show that, like in
ordinary set theory, if the logic admits comprehension, the induction principle
for algebras is valid in it. And dually, if the logic admits quotients of relations,
it satisfies the coinduction principle for coalgebras.

The validity of induction and coinduction principles which have been for-
malised as exactness conditions for certain functors will be guaranteed to hold
in presence of suitable adjoints. The existence of these latter is inferred from
comprehension and quotients, as appropriate, as the following theorem shows.

5.1. Theorem. Consider a polynomial functor T:B — B and a bicartesian

P
fibration %;p .
(i) If the fibration admits comprehension, it satisfies the induction principle
with respect to T'.
(ii) If the fibration admits finite-product-preserving equality and quotients, it
satisfies the coinduction principle with respect to T'.

Proof. Both statements are consequences of Theorem 2.12 and Corollary 2.13
respectively: the comprehension and quotient adjunctions

Pred(T)QI/D pele Rel(T)
1T4>{—} and Q<;|TEq
() IbT
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induce adjunctions between associated categories of algebras and coalgebras:

Alg(Pred(T CoAlg(Rel(T))
Alg(1 T >Alg {-} and CoAlg(Q) <—|TCoAlg(Eq)
Alg(T) CoAlg(T)

Hence the functor Alg(1) preserves initial objects, and the functor CoAlg(Eq)
preserves terminal objects. O

The above formal argument is an abstract counterpart of the concrete set
theoretic arguments presented in §§1: the functor Alg({_}): Alg(Pred(T")) —
Alg(T) extracts the subalgebra® of a given algebra determined by an inductive
predicate on it. And the functor CoAlg(Q): CoAlg(Rel(T')) — CoAlg(T') takes a
T-coalgebra with an applicative bisimulation on it and produces a T-coalgebra,
by quotienting the given one by the bisimulation.

5.2. Example. We shall illustrate the details of the argument in the coinduc-
tive case for the terminal coalgebra (h,t): L = A x L of infinite lists of the
functor T(X) = A x X from Example 4.2. There we already saw that the coin-
duction principle holds with respect to T' via a direct argument. Here we spell
out the argument used in Theorem 5.1 above.

Assume therefore that we have an arbitrary T-coalgebra (f,g): X — A x
X, with a relation R C X x X on X carrying a Rel(T')-coalgebra structure
over {f,g). We write X/R for the result of quotienting X by the equivalence
relation generated by R C X x X. This quotient X/R may be described as the
coequaliser in Sets:

To
R=—___—>X—%=X/R
T1

where rg,71: R = X are the composites of R — X x X with the projections
X x X = X. Consider the diagram

To
- —=>X—S»X/R
1 |
¥
(ficog) ¥
A x (X/R)

By the coinduction assumption, R(z,y) implies f(z) = f(y) and R(g(z), g(y)).
This means that

(fieog)oro=(fcog)om
as in the diagram above. The resulting mediating map ¢: X/R --» A x (X/R)
is then a T-coalgebra in Sets on the quotient X/R. Hence there is a unique

3Notice that our formalisation gives a precise description of the notion of subalgebra as
an algebra in the category of subobjects (here generalised to a fibration), rather than a mere
subobject in the category of algebras.
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coalgebra map £: X/R —» L = AY. We then get a diagram

k

X /c/)ﬁ* I = AN
. 9) le el<h,t>

Axx_dxe | Ax(X/R)4>1dX£ AxL
k//
id x k

that shows that £ o ¢ is the unique coalgebra map k: X --» AN, This yields
koryg==Fkor:R — AV so that k becomes a map of relations R — Eq(L).
This is the conclusion we seek: R(z,y) = k(z) = k(y).

6 Mixed induction/coinduction for recursive types

In this section we show how to combine the induction and coinduction principles
of §§3 and §84 in order to extend our reasoning principles to structures involving
the mixed variance exponent functor =:B°? x B — B on a bicartesian closed
category B.

We thus adopt the following setting: let B be a bicartesian closed category,
i.e. a bicartesian category in which the functor (_) x A:B — B has a right
adjoint, for every object A € B, and let T: B°? x B — B be a polynomial functor,
i.e. a functor in the smallest class of functors Cat(B°P x B,B) containing the
second projection and constant functors, which is closed under products and
coproducts (given pointwise) and exponentials, in the sense that if F, G:B°P x
B = B are in the class, so is the functor

x id) o A op
BOPXIBu)(IBXEOP)X(IBOP xIB%)F—XG>IB°P><IB%i>IB

where 7:B°P x B = B x B°P is the evident ‘twist’ isomorphism, which makes
B°P x B a self-dual category.

We are interested in minimal invariants of such a polynomial functor T, i.e. in
objects D such that D = T(D, D), with a universal property. After Freyd’s
work on algebraically compact categories [16, 17], it is standard to reduce the
analysis of such objects D to the case of initial algebras/terminal coalgebras of
an associated functor 7. This is possible because any functor T:B°® x B — B
uniquely determines a ‘symmetric’ functor T:B— IB where B = B°P x B is the
cofree self-dual category on B, and T(X,Y) = (T(Y,X),T(X,Y)). It follows
from ibid. that

minimal invariant of T' = initial T\—algebra = terminal f—coalgebra.

Explicitly, this goes as follows. A category B is called algebraically com-
pact, according to Freyd, if every functor T:B — B of a suitable kind has an
initial algebra a: T(D) = D such that its inverse a'': D = T(D) is a terminal
coalgebra. As examples, the category w-Cpo, is algebraically compact when
we consider locally continuous functors, see [45, 2]. And the category Cms of
complete metric spaces is algebraically compact for locally contractive functors,
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see [3, 42]. (The identity functor is not locally contractive, but the functor id%
is; it maps a metric space (X, d) to the space (X, %d), with (pointwise) half the
original distance. Neither w-Cpo | nor Cms is cartesian closed, but these cate-
gories are monoidal closed. The category Cums of complete ultra metric spaces
is cartesian closed, and algebraically compact for locally contractive functors.
(In [7] these functors (instead of the category) would be called algebraically
compact.)

A basic result of [17] is that if B is algebraically compact, then so is B=
B°P x B, the cofree self-dual category on B. This will be useful in the following
way. If we have a functor T:B°? x B — B, it induces a functor T:B — B with

(X,Y) — (T(Y,X),T(X,Y))
(frg) = (T(g,f),T(f 9))

Then we can determine by algebraic compactness an initial algebra in B°P x B,

~ <a17a2>
T(Dy,Dy) ——=> (D1, D2)

such that the inverse (afl,aﬁ‘l) is a terminal colgebra*. It is not hard to verify

that swapping components yields a new map

which is also an initial algebra, and the inverse of which is also a terminal
coalgebra. This yields a unique mediating isomorphism (D1, Dy) = (Dg, D)
between these algebras and coalgebras. We then get D; = D,. Rephrasing
things with this new insight, we have a single isomorphism a:7'(D,D) = D
with the following universal property: for each pair of maps ¢: X — T(Y, X),
d:T(X,Y) — Y there is a unique pair of maps f: X --+ D, g: D --+ Y making

the following diagram commute.

T(Y, X) e h) | T(D, D) T | T(X,Y)

|

X 7 D g Y

1
-
=y

In order to get a suitable induction/coinduction principle for such invariant
objects T(D, D) = D, we must extend our logical relation lifting of polynomial
functors to encompass the exponential functor. In order to do so, we assume a

P
fibration ép such that the total category P is bicartesian closed and p (strictly)
preserves such structure. One way to guarantee cartesian closure of P out of

logical operations is given in the following proposition (for a complete proof
see [20, Corollary 3.3.11]).

4This procedure can also be followed for locally contractive functors on complete (ultra)
metric spaces, even though the identity functor is not locally contractive.
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P
6.1. Proposition. Let ép be a fibration satisfying the following three condi-
tions.
(i) B is cartesian closed;

(ii) p is a fibred-ccc, i.e. every fibre category is cartesian closed and reindezing
functors preserve such structure;

(iii) p admits ‘simple’ products, i.e. for every cartesian projection': A x B —
B, the ‘weakening’ functor (n')*:Pp — P4y p has a right adjoint [] ,, and these
right adjoints satisfy the Beck-Chevalley condition.

The total category P is then cartesian closed and p (strictly) preserves this
structure.

Proof. Finite products of P have been spelled out in Lemma 2.1. As for ex-
ponentials, given objects P € P4 and @ € Pp, their exponential P = @ in P
(over A = B in B) is given by the formula

P= Q=TI (v(X) = ev ()
where = on the right-hand-side is the exponential in the fibre over Ax (A = B),

AL Ax (A= B) L A = Bis aproduct diagram in B and ev: A x (A = B) —
B is the evaluation morphism (an instance of the counit of the exponential
adjunction (1) x A4 A= (). |

The above expression for the exponential object in IP is the traditional ‘logical
predicate’ formula for higher types in lambda calculus [20].
P

Assume a fibration 1P is given with P bicartesian closed, and with an

equality functor Eq: B — Rel(IP) preserving cartesian closed structure. This
means in particular that equality is given extensionally (pointwise) for elements
of the internal hom (or ‘function space’): for f,g: A = B

f:A:>Bg = Vm,yAm =AY = f$ =B gy
= Vz: A fz =p gr.

We can define for such p a logical relation lifting of any polynomial functor as
in Definition 2.10.(ii) obtaining the following diagram

Rel(T)
Rel(P)°P x Rel(IP) Rel(P)
Eq°P x Eq g\ Eq
BP x B
X T B

and hence a functor Alg(Eq°P x Eq): Alg(T') — Alg(Rel(T)).
When the fibration admits quotients, there is an equivalent condition for
pointwise equality involving a Frobenius condition for these quotients.

P
6.2. Proposition. If a fibration ép admits quotients via an adjunction Q -

Eq:B 2 Rel(P), then the functor Eq preserves exponentials if and only if the
adjunction Q 4 Eq satisfies the Frobenius condition: the canonical 2-cell

Qo ((-) x Eq(4)) = (1) x A) 0 Q
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is an isomorphism (This « exists because Eq preserves products, as it is a right
adjoint.)

Proof. Clearly, for any R € Rel(IP), we have canonical natural isomorphisms

o~

Q(RxEq(A)) = Q(R)x A if and only if Eq(A = B) = Eq(A) = Eq(B)
since we have (composite) adjunctions

(l)xA)oQ 4 Eqo(4d=())
Qo ((-) x Eq(4)) + (Eq(4) = (.)) o Eq. O
The following formulation of a logical principle for a mixed variance polyno-

mial functor is the evident generalization of Definitions 3.1 and 4.1 for covariant
polynomial functors.

6.3. Definition. Consider a bicartesian closed category B, a polynomial func-

P
tor T:B°? x B — B and a fibration %;p with P bicartesian closed, with both
p and Eq structure-preserving. The fibration p satisfies the mized induction
/ coinduction principle with respect to T' if the induced functor Alg(Eq°P x

~ —

Eq): Alg(T) — Alg(Rel(T')) preserves initial objects.

Logically, the above principle can be expressed as follows: let

e (X,Y) be a T-algebra, with structure c: X — T'(Y, X) and d: T(X,Y) —
Y

)

e a:T(D,D) = D be the minimal invariant, with unique f—algebra map
(Ix,!y):(D,D) —» (X,Y) in B = B°® x B,

e R and S be relations over X and Y respectively,

then we have the following rule.

z,a" X | R(w,a') y,y':Y | Rel(T)(R, S)(y, ') +
Rel(T)(S, R)(cx, cx') S(9y,9y')

z,2": X | R(z,2') b lxz =p !xa' v,y D]y=py FS(vy, vy

The premise of the rule asserts that the pair of relations (R, S) carries a ]_:a(\T)—
algebra structure over (X,Y). The conclusion tells that we have a coinduction
principle on the contravariant side and an induction principle on the covariant
one.

We can then combine our criteria of validity of induction and coinduction to
give the following criterion of validity for the mixed principle.

P
6.4. Theorem. If a fibration %;p satisfying the conditions of Definition 6.3,
admits both comprehension and quotients then it satisfies the mized induc-
tion/coinduction principle for any mized variance polynomial functor on B.
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Proof. Quotients and comprehension yield left and right adjoints to equality:

Rel(P)
0 Qﬁf ) Yor
B

By combining these adjoints we get a right adjoint Q x ({—} o 6*): Rel(P)°P x
Rel(P) — B°P x B to the functor Eq°P x Eq in

—

Rel(T)\_ Rel(p)p x Rel(P) Alg(Rel(T))
Eq°P x EqT—Q yielding Alg(Eq°P x Eq)T—|
B xB Alg(T
7 g(T)
Therefore Alg(Eq°P x Eq) preserves initial objects. O

The previous theorem describes validity for our mixed variance principle in
pure (cartesian) form. As it stands, it does not apply to our main examples

ASub(w-Cpo_) CISub(Cms) CISub(Cums)
1 , 1 and ! , see Examples 2.2.(ii) and (iii):
w-Cpo Cms Cums

the category Cums is cartesian closed, but the categories w-Cpo; and Cms
are only monoidal closed. And the metric categories Cms and Cums are alge-
braically compact with respect to a class of functors (namely the locally contrac-
tive functors) which does not include the identity functor. This second problem
is not so serious, as it only requires a minor adaptation of the main result,
specifying the appropriate class of polynomial functors with id% replacing® id.

The first problem involves replacing the cartesian closed structure (1, x,=)
in mixed variance polynomial functors by monoidal closed structure (I, ®, —o).
There are canonical liftings of this structure (I, ®, —) on w-Cpo, to (I,®, —o)
on ASub(w-Cpo,) and of (I,®,—) on Cms to (I,8,—) on ClSub(Cms),
determined by the universal property of ® in both these categories (bistrict
morphism classifier in w-Cpo; and bi-non-expansive map classifier in Cms),
namely:

e The tensor product (P C A) ® (Q C B) of two admissible subsets P C
A,Q C B of w-cpo’s A, B is the subset (P ® ) C A® B). The associated
unit is 1(I) = (I C I), where I = {—, T} is the neutral element for ® on
w-Cpo, .

e The associated internal hom (P C A) — (Q C B) on ASub(w-Cpo,) is
the subset ({f | f(P) CQ} C A — B).

The lifting for metric spaces is similar:

5With the further addition that the functor id: : Cms — Cms has a logical relation lifting
2
Pred(id1 ): CISub(Cms) — ClSub(Cms) given by (P C A) +— (id1(P) C idi(A)). And
2 2 2

similarly for Cums instead of Cms.
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e The tensor product (P C A)® (Q C B) of two closed subsets P C A, Q C
B of complete metric spaces A, Bis (P®Q C A® B), with neutral element
1(1) = (1 € 1), where 1 = {x} is the neutral element for ® on Cms.

e The internal hom on ClSub(Cms) is given by (P C A) — (@) C B) =
{f1f(P)C QS A—B).

In the same way we have canonical liftings to total categories of relations
(on w-cpo’s and on complete metric spaces). With these modifications, we can
apply our previous setup (i.e. formulation of (co)induction principles and the
criteria for their admissibility) to polynomial functors determined by the above
monoidal closed structures.

7 Stability of initial algebras and terminal coalgebras un-
der weakening of context

So far we have considered (co)inductive data types and their associated (co)in-
duction principles in terms of initiality in the empty context. For instance,
the initiality of N allows us to define functions out of it, eg. h:N --» A, by
endowing the set A with a 1 + (_)-algebra structure. But we also want to use
this method when the inductive data type occurs in an arbitrary context, eg.
to define addition add: N x N — N by induction on the second argument. This
requires that the initiality of N be preserved when we move from the empty
context to the context n:N (for the first argument of add). This operation is
called context weakening. Technically, we say initiality is stable under addition
of indeterminates, the indeterminate being n:N. This is also called initiality
with parameters, see [26, 9, 10].

A similar extension is needed then for the associated induction principle,
since when we perform context weakening I' — (I, z: A), the element z may be
subject to some (propositional) hypothesis. That is, we are generally interested
in proving relative entailments P F ) rather than ‘absolute’ assertions @ F Q.
For instance, we may want to prove n:N,m:N | p: Even(m) + ¢: Even(add(2 x
n, m)) for some g, in which case we use induction on n with m: N and p: Even(m)
as parameters. The stable version of the induction principle for N is formulated
in [29, 12] in logical terms. We will give a categorical account in §§7.2 below,
extended to the mixed variance case, as well as a criterion for its admissibility
(Theorem 7.6).

Abstractly, both extensions (with type and proposition parameters) are in-
stances of the same phenomenon: let K be a 2-category with finite products
and inserters and let C be an object of K with a terminal object 1, given by an
adjunction ! 41:1 — C in K. For a global element A:1 — C (or C-object), we
can consider the ‘object C' with an indeterminate element z:1 = A’, written
Clz: A]. This object is equipped with a 1-cell n4:C — Clz: A] and a 2-cell
az:nal = N4 A, and is universal among objects with such data. Given an en-
domorphism (1-cell) T:C — C in K, we can consider the object of T-algebras
Alg(T), namely the inserter of T" and the identity on C (in K). Similarly, since
any polynomial functor T:C — C induces® T[z: A]: C[z: A] — C[z: A] with
Tlz: Alna = naT, we can consider the object Alg(T'[z: A]) and the induced

6Tn general, a functor T lifts to a functor T[z: A]: C[z: A] — C[xz: A] if it admits a strength.
Any polynomial functor admits a strength [26, 9].

30



morphism Alg(na): Alg(T) — Alg(T'[z: A]). Stability means that Alg(na) pre-
serves initial objects, for every C-object A:1 — C.

With the above formalisation of stability, it follows from Theorem A.5 that
stability is guaranteed whenever the object A is functionally complete, i.e. when
14 has a right adjoint. Similarly, stability of terminal coalgebras is guaranteed
whenever B is contextually complete, i.e. when n4 has a left adjoint. We spell
this out in more detail for categories and fibrations in the following subsections.
Further details on indeterminates and on contextual and functional complete-
ness can be found in [22]. We refer to [46] for the relevant definitions of comon-
ads and their associated morphisms, as well as of Kleisli objects for them, in
a 2-category. In any case, these concepts are not essential to understand what
follows.

7.1 Stability of initial algebras and terminal coalgebras in a distribu-
tive bicategory

The material in this subsection is based on [26], although the formulations
and proofs are different. It is a preliminary to the treatment of stability of
(co)induction principles in §§7.2.

Given a bicartesian category B and an object A € B, we let B[z: A] denote
the universal bicartesian category na: B — B[x: A] which has a global element of
type A, i.e. a morphism z: 1 — 54(A). Universality means (at the 1-dimensional
level) that given a bicartesian category C, a functor F: B — C preserving finite
products and coproducts, and a morphism a: F'1 — F'A in C, there is a unique
functor F: B[z: A] —» C preserving finite products and coproducts such that

Fna=F and F(z) = a.

The category B[z: A] can be characterised as the Kleisli category of the comonad
(1) x A, written BJ/A, when B is distributive, i.e. when (_) X A preserves finite
coproducts.

From a logical point of view, we think of B[z: A] as the theory with the same
types of B, whose terms have a parameter of type A, i.e. whose terms are of
the form I', z: A F t: B in B. This interpretation is obtained by considering the
internal language of the Kleisli category of the comonad () x A on B.

A functor T: B — B lifts to a functor T JA:BJJA — B//A such that (T JA) o
na = na o T, whenever it is endowed with appropriate additional structure.
Technically, this structure is exactly what makes T' a morphism of comonads;
it is essentially the same as requiring T to have a strength. More specifically,
we require a natural transformation 0: (x o (T' xid)) = (T o x):Bx B — B
satisfying the following coherence conditions:

IX<— " X xA— L (TXxA)xA4
J{Gxid
6 T(X xA)x A

|6

TX(TT(XXA)W)T((XXA)XA)

™
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Every polynomial functor T" admits such structure in a canonical way and hence

can be lifted to B/ A.

7.1. Definition. Consider a bicartesian category B and a polynomial functor
T:B— B on B.

(i) We say that B admits stable initial T-algebras if it admits an initial
T-algebra and for every object A € B, the induced functor

Alg(na): Alg(T) — Alg(TJA)

preserves initial objects.
(ii) Dually, B admits stable terminal T-coalgebras if it admits a terminal
T-coalgebra and for every object A, the functor

CoAlg(na): CoAlg(T) — CoAlg(TJA)
preserves terminal objects.

We recall from [22] that a category B is functionally complete if for every
object A € B, the induced functor n4: B — B[z: A] has a right adjoint, and that
it is contextually complete when every such 74 has a left adjoint. A bicarte-
sian category B is contextually complete if it is distributive, and is functionally
complete if it is additionally cartesian closed. As an immediate consequence of
Theorem 2.12 we have the following result.

7.2. Proposition. Let B be a bicartesian category and T:B — B a polynomial
functor.

(i) If B is contextually complete, then terminal T'-coalgebras are stable.

(ii) If B is functionally complete, then initial T-algebras are stable. O

7.2 Stability of initial algebras and terminal coalgebras in a bicarte-
sian fibration

Just as we require inductive data types to be stable under addition of inde-
terminates to use the initial algebra property in an arbitrary context, we must
require an analogous stability of their associated induction principles. Similar
considerations apply to coalgebras and coinduction. In order to express such
stability, we consider, for a given fibration (logic), an associated fibration with
indeterminates both on the base and total categories.

7.3. Remark. Although the treatment of indeterminates for fibrations to fol-
low parallels that for categories in §§7.1, there is a subtle technical difference.
All the concepts previously defined by universal properties in Cat, should be
considered in their bicategorical variants in Fib, i.e. up-to-equivalence rather
than up-to-isomorphism. This is because the pseudo-functorial nature of the
cleavages of fibrations allows only the existence of the bicategorical cocomplete-
ness properties required (Kleisli objects), rather than the 2-categorical versions
previously mentioned. The strict 2-categorical version does apply if we restrict
attention to split fibrations and splitting-preserving morphisms.
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P
Given a bicartesian fibration %p and an object P of P, say over A € B, the
fibration with an indeterminate of P, written p[(z, h): P]: PJ/(P) — B[z: A] is the

universal fibration (np,n4): p — p[{z, h): P] with a global element z: 1 — n4(A)
in B[z: A] and a global element h:1y, — z*(np(P)) in (P//(P))1. Universal-

Q
ity means that given a bicartesian fibration (qu’ a morphism of fibrations

(H,K):p — ¢ preserving finite products and coproducts, and global elements
a: K1 — K(A) and b: H1; — a*(HP), there is a unique (up to isomorphism)
morphism (H', K'): p[(z, h): P] --+ ¢ preserving finite products and coproducts
such that

(H’:KI)O(TIPanA)E(HaK)a K’$:aa ¢OH’h:b

where ¢: H'(z*(np(P))) = (K'z)*(HP) is the canonical comparison isomor-
phism in the fibration gq.

It is easy to extend Lemma 2.1 to make the total category P a distributive
category when the base and the fibres are so and when the coreindexing functors
1 satisfy Beck-Chevalley and Frobenius conditions [20, Prop. 4.5.8]. We call
such a bicartesian p, with the base and total categories distributive, a distributive
fibration. In this case, we can characterise p[{z, h): P] as a Kleisli fibration p// (P)
for the comonad ((-) x P, (_) xpP) on p (in Fib), as explained in [22]. See also [32]
for a concrete description and a different application of this construction.

From a logical perspective, we think of the fibration p[{z, h): P] as a logic
with the same types and propositions as those of p, but whose terms have a
parameter of type A = pP, i.e. whose terms are of the form I',;z: A + ¢: B,
and whose entailment relation allows an additional hypothesis P(z), i.e. the
entailments have the form

z:A|O,h:Pz) Fq:Q

That is, we are assuming the presence of an additional element z of type A, and
a predicate P on that type whose instance at x is provably true. Both these
elements represent the additional data with their associated properties forming
the context in which we are working, for instance when carrying out an inductive
proof. Semantically, such interpretation of p[(z, h): P] can be obtained via the
internal language of the Kleisli fibration p//(P).

A polynomial morphism of fibrations (Pred(T"),T): p — p as considered in
§§3, induces an endomorphism of fibrations p[(z, h): P] — p[(z, h): P] in a situ-
ation:

Pred(T)

plle, h): P Lp
- B plla, ): P)
nA
b\ N
BJA - — — — — e ~ B/ A



Hence we have an induced morphism of fibrations
Alg(np,na): Alg(Pred(T'), T) — Alg(Pred(T)[h: P], T'|z: A])

where for an endomorphism (H,K):p — p in Cat™, with p a fibration, the
fibration Alg(H, K) is obtained as the inserter of (H, K) and the identity on p;
its base category is Alg(K) and its total category is Alg(H) (see the Appendix).
Now we can formalise the stability of the (co)induction principle for (co)algebras.

7.4. Definition. Consider a polynomial functor T: B — B and a bicartesian

P
fibration %p.
(i) The fibration p satisfies the stable induction principle with respect to
T if the functor Alg(1): Alg(T') — Alg(Pred(T)) preserves initial objects, and

moreover, for every object P € P over A € B, the morphism
Alg(np,na): Alg(Pred(T'), T) — Alg(Pred(T)[h: P], T'|z: A])

preserves initial objects (both on the base and the total categories).

(ii) The fibration p, additionally admitting equality, satisfies the stable coin-
duction principle with respect to T if the functor CoAlg(Eq): CoAlg(T) —
CoAlg(Rel(T)) preserves terminal objects and moreover, for every P € Py,
the morphism

CoAlg(np,na): CoAlg(Rel(T"), T) — CoAlg(Rel(T)[h: P|, T[z: A])

preserves terminal objects.
(iii) Assuming B and P bicartesian closed, with both functors p and Eq: B —
Rel(PP) structure preserving, p satisfies the stable mixed induction/coinduction

~

principle with respect to T' if the induced functor Alg(Eq°? x Eq): Alg(T) —

—

Alg(Rel(T")) preserves initial objects and moreover, for every P € P4, the mor-
phism of fibrations

—

Alg((n3? x mp), (0 x ma)): Alg(Rel(T), T) — Alg(Rel(T)[h: P), T[a: A])
preserves initial objects.

7.5. Remark. The above definition could equivalently be expressed by re-
quiring that every fibration p[(z,h): P] with an indeterminate object P, sat-
isfy the induction principle with respect to the induced morphism of fibrations
(Pred(T")[h: P], T[z: pP)): p[{x, h): P] — p[(z, h): P], provided the base category
B admits stable initial algebras. This makes logical sense, as we want to reason
by induction in the fibration p[{z, h): P], which has an indeterminate of type pP,
satisfying the hypothesis P; this is exactly what the above formulation means.
Similar considerations apply to coalgebras and coinduction.

P
In analogy with ordinary categories, we say that the fibration ]%%p is func-

tionally complete when, for every object P € P4, the morphism (gp,na):p —
pl[{z, h): P] has a right adjoint (in Fib). This holds for instance when p admits
(or models) universal quantifiers V and implication = (as a model of first-order
logic). And we call p conteztually complete when the above morphisms (np,74)
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admit left adjoints. Contextual completeness holds for distributive fibrations be-
cause the corresponding fibration with an indeterminate p[(z, h): P] is a Kleisli
object; the left adjoint is part of the resolution of the comonad ((-) x P, () x A)
(again we refer to [22] for details). Then, we can apply Theorem A.5 (in the
2-category Cat™) to show the following.

P
7.6. Theorem. Let ép be a distributive fibration.
(i) If p satisfies the coinduction principle with respect to a polynomial functor
T, then it also satisfies the corresponding stable coinduction principle.
(ii) If p is functionally complete and satisfies the induction principle with re-
spect to to a polynomial endofunctor T, then it also satisfies the stable induction
principle with respect to T.

P
7.7. Corollary. If the fibration ép 1s contextually and functionally complete,

and satifies the mized induction/coinduction principle for T:B°P x B — B, then
it also satisfies the stable induction/coinduction principle for T

Sub(Sets)
The fibrations of Example 2.2 are functionally complete: Slt is so be-
ASub(w-Cpo_) o
cause it models V and =, while Cl is functionally complete although
w-Cpo .

it does not model implication (=); functional completeness holds essentially
because of the reflection mentioned in Remark 3.3. The same considerations
apply to (ultra) metric spaces and closed subsets. Thus, the above abstract for-
mulation seems to capture better this kind of example than a purely syntactic
approach would. As for the syntactic example, we must assume our logic has
implication and universal quantification Vz: A.(_), as explained in [22]. Func-
tional completeness (in this syntactic setting) is implicitly used in [29, § I1.4] to
show validity of the stable induction principle over the natural numbers object
in a topos.
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2-functoriality of inserters

The notion of inserter in a 2-category is taken from [47, 28].

A.1. Definition (Inserter). Given parallel morphisms f,g:A = C in a 2-
category K, their inserter consists of a morphism p: Ins(f, g) — A together with
a 2-cell A: fp = gp which is universal among such data: given a 1-cell h: X — A
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and a 2-cell o: fh = gh, there is a unique morphism h': X --» Ins(f,g) such
that
ph' = h and M =0

and, furthermore, given a pair of such data (h: X — A, o:fh = gh) and
(k: X — A, p: fk = gk), and a 2-cell a: h = k, such that

groo =po fa
there is a unique 2-cell @’: h' = k' such that pa’ = a.

In Cat, the inserter of a pair of parallel functors F,G: A = B is given by
the category Ins(F, G) with

objects pairs (A,a: FA — GA), where A is an object in A and a is
a morphism FA — GA in B.

morphisms  f:(A4,a) — (B,b) are morphisms f: A — B in A such that
Gfoa=boFf.

In order to exhibit the 2-functoriality of the assignment (f,¢9: A = B) —

Ins(f, g), we need appropriate notions of morphisms and 2-cells between parallel
morphisms.

A.2. Definition. Given a 2-category K, the 2-category K= has

objects pairs of parallel morphisms (f,g: A = B).

morphisms (f,g:A = B) — (f',¢g: A’ = B') are 4-tuples (a, p,b,6) of
l-cells a:A — A', b: B — B’ and 2-cells p: f'a = bf and
6:bg = g'a in K, as displayed in:

A B A
o 7o N e
AI f’ BI g’ AI
2-cells (a,p,b,6) = (a',p',b', ') are given by two 2-cells a:a = da’

and B:b = b’ in K satisfying

Bfop=p'ofa and gaobs=48opy.

Identities and composition in K= are inherited from K. Horizontal compo-
sition of 2-cells is well-defined by the interchange law in K.

Now we can state the desired 2-functoriality of inserters.

A.3. Proposition. The assignment (f,g: A = B) +— Ins(f,g) extends to a
2-functor

Ins(_, ): K& — K.
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Proof. We define Ins(_,_) on 1-cells and on 2-cells in £=.

Given a morphism (a, p,b,6):(f,9: A = B) — (f',¢9": A’ = B'), the univer-
sality of Ins(f’, g') gives us a morphism h:Ins(f, g) — Ins(f’,¢') induced by the
1-cell ap:Ins(f,g) — A’ together with the 2-cell ép o bA o pp: flap = ¢'cp as
shown below.

On 2-cells, given (a, 8): (a, p,b,8) = (a’,p',b',8') in K=, the universality of
Ins(f’,g') also gives us a 2-cell o:h = h' induced by the 2-cell ap:ap = d'p,
since it satisfies

g'abo (6pobXopp) = (6'pob'Aop'p)o flap
by definition of 2-cells in K= and the interchange law. O

Recall that an adjunction in a 2-category K is given by the following data:
two 1-cells f: A —» B and g: B — A and two 2-celssn:id4 = gf and e: fg = idp,
satisfying the triangular laws

efofn=idy and ge o ng = id,.

We write this data as n,e: f 4 g: A 2 B and say that g is right adjoint to f.
The equational nature of adjunctions in a 2-category implies that adjunctions
are preserved by 2-functors (just like ordinary functors preserve isomorphisms).
Thus, we have the following easy corollary about Ins(_, ).

A.4. Corollary. An adjunction in K= induces an adjunction between the cor-
responding inserters in K. O

Notice that an adjunction in K=
! ! ! ! f ! f’ !
(Nasms), (2are8): (a,0,0,8) F (', 0, 8,8"): (A= B) = (4 = B')
g g
consists of adjunctions n4,e4:a b a’: A 2 A’ and n,p:b F b': B 2 B'. By the
definition of 2-cells in K™, it follows that the adjoint mate of p’, i.e. e5f'a o

bp'a o bfn, is inverse to p, and similarly that the adjoint mate of § is inverse to
6'. Hence, in such an adjoint situation, both p and 8’ must be isomorphisms.

A.5. Theorem. Consider a diagram in K
4
7

S

P
S~
<
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in which « is an isomorphism and f has a right adjoint, n,e: f 4 g: A 2 B.
The adjoint mate of o', namely

B=gscogattgontg: tg=>gs

induces a morphism g:Ins(s,idg) — Ins(t,ida) which is right adjoint to the
morphism f:Ins(t,id4) — Ins(s,idg) induced by the above diagram.

Proof. The morphisms f,g arise by applying the 2-functor Ins(_, .): K= — K
of Proposition A.3 to the given data, construed as morphisms in X=. As such,

these morphisms are adjoints in X, and so the adjunction (f 4 g) follows by
Corollary A 4. O

In Cat, the inserter Ins(T,id,) of a functor T: A — A is the category Alg(T)
of T-algebras. The morphism F:Ins(T,ids) — Ins(S,idg) from the above corol-
lary has action

« F
(X, 7Xx —= X) +— (FX,S(FX) —> FTX —= FX)
and simiarly, its right adjoint G:Ins(S,idg) — Ins(T,ida) has action

(v,57 —=v) o (av,1(67) 2= a1y 2 av)

as used in Theorem 2.12, namely as F' = Alg(F) and G = Alg(G).
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