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Abstract. In today’s computing environments, the concurrent execu-
tion of multiple applications/threads is common and multi-cores are very
well-suited to handle such workloads. However, they suffer from the fact
that any mismatch between the application’s inherent instruction-level
parallelism (ILP) and the core’s parallelism leads to unused resources or
loss in performance. An accepted solution is to include several types of
cores and match them dynamically depending on the performance needs
of the application. This approach becomes less efficient when the num-
ber of cores does not match the number of parallel threads. Furthermore,
the heterogeneity of (fixed) cores cannot be increased indefinitely as it
would result in even higher degrees of mismatching and increased move-
ment of instruction and data streams. In this paper, we are proposing
a polymorphic processor, based on VLIW architectures, that can adapt
its issue-width during runtime. By design, the processor can be per-
ceived as a single wide core (8-issue VLIW) or two medium-wide cores
(4-issue) or four small cores (2-issue) that can run high-ILP/low DLP,
medium-ILP/medium DLP, and low-ILP/high-DLP applications, respec-
tively. Furthermore, we are executing one single generic binary while per-
forming these reconfigurations. In order to show the effectiveness of our
approach, we synthesized different versions of the core to represent fixed
heterogeneous cores and compared them to the dynamic implementation
of the core. Our experiments show that the dynamically adaptive solu-
tion performs on average 7% faster and uses 5% less area than a platform
which consists of fixed cores with 1.5× as many datapaths.

1 Introduction

Modern embedded systems (including smartphone SoCs and other low-power,
high-performance systems) are faced with dynamic workloads [1]. Workloads can
be dynamic in several characteristics, e.g., performance requirements of tasks,
instruction-level parallelism (ILP), data-level parallelism (DLP), or task-level
parallelism (TLP). The state-of-the-art in technology in the embedded low-power
high-performance domain addresses these workloads using heterogeneous multi-
core processing systems, e.g., Exynos that adopts the big.LITTLE approach
[2]. These allow different types of tasks to be mapped to a processing unit that
most closely matches their characteristics and/or requirements. As the processing
elements of a heterogeneous system are fixed, the performance of the system
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depends on the extent to which the workload can be mapped to the hardware
(called performance fragility by [3]). Previous research [3], [4], [5], [6], [7], and [8]
presented polymorphic architectures as a way to address this problem. A dynamic
hardware platform, that is able to change its characteristics at runtime, can
provide high performance for single-threaded applications by exploiting ILP and
high throughput for multi-threaded applications by exploiting TLP [9].

Until now, no-one has quantified the potential benefits of a dynamic hardware
platform over fixed platforms. We pose the following question: given the same
number of transistors, what is the best possible use of them to provide maximum
performance under workloads with varying amounts of ILP and TLP exhibited
by modern multi-threaded programs?

In this paper, we introduce and evaluate our proof-of-concept for a dynamic
approach to run these dynamic workloads in the high-performance embedded
domain. We apply polymorphism, that has been applied previously to high-
performance general-purpose designs, to a Very Long Instruction Word (VLIW)
processor that is more suitable for low-power systems. The result is a dynamic
system that can adapt its processor and cache to the running applications. Note
that our “dynamic” approach does not rely on (partial) FPGA reconfiguration.
Our designs are written in synthesizable VHDL and prototyped on FPGAs, but
are also suitable for implementation on ASIC.

We show that our dynamic approach is able to achieve a more efficient uti-
lization of the available hardware resources. We are able to achieve on average
7% better performance using a dynamically reconfigurable processor when com-
pared to a static system that is roughly 10% larger in area and has 1.5× as many
datapaths.

2 Related Work

There are several existing attempts at making reconfigurable processors in or-
der to exploit both TLP and ILP. Some, such as Core Fusion [5], Trips [3],
and MorphCore [4] combine multiple small cores into large superscalar (possibly
Out-of-Order) cores to exploit the parallelism available at runtime. While these
approaches have binary compatibility between the different configurations, they
require expensive and power-hungry hardware to extract ILP from the (sequen-
tial) code at runtime. Moreover, most of these approaches were only simulated,
whereas we have a working prototype on an FPGA.

Other attempts such as Voltron [6] and Smart Memories [7] are based on
VLIW architectures, where smaller cores are combined to form a wide issue
VLIW. MT-ADRES [10] is a Course Grain Reconfigurable Array (CGRA) which
is similar to a VLIW, which can also be configured as either a single wide issue
core, or multiple smaller cores. This is similar to our approach, however these do
not have binary compatibility between the different configurations. This means
that it is determined at compile time which parts of the program will operate in
which configuration, giving less flexibility at runtime. Our approach does have
this flexibility, which allows the core to be interrupted at any point in time,
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reconfigure to a different issue-width (in only several clock cycles), and resume
execution. Our design also achieves this without any need for state saving and/or
context switching.

VLIW processors are an alternative to superscalar processors[11] with the
goal of reducing power consumption by moving dependency checking to the com-
piler, thus simplifying the hardware (and in turn consuming much less power).
One downside of fixed issue-width VLIW processors is that resources will go
unused if the issue-width is greater than the ILP available in the program. On
the other hand, if the issue-width is too low, potential performance gains are
lost. Making the issue-width runtime reconfigurable addresses this problem.

The processor we target in this paper is a reconfigurable issue-width VLIW
processor [12] based on ρ-VEX [13], a parameterized VLIW processor. The pro-
cessor can be configured at design time to have an issue-width of 2, 4, or 8 and
can be reconfigured at runtime to split into smaller processors with issue-widths
of 2 or 4. We explore the platform’s performance under different workloads with
varying amounts of TLP in order to quantify the benefits of reconfigurability.

3 Approach

Our approach to increase the utilization of execution datapaths in a processor al-
lows for on-the-fly composition of cores — the reconfiguration time is expressed
in clock cycles as demonstrated in our FPGA prototype (see Section 4). Cores
can be merged to “construct” wider cores for applications needing performance
(with enough available parallelism). When this is not required, multiple appli-
cations can be executed in parallel. In addition, (low-priority) applications can
be “forced” to execute on a smaller core allowing other applications to execute
in parallel. Such a scenario is impossible for fixed processors when a second free
processor is not available, or would require costly context-switching, effectively
stalling the first application. Our approach is also different from reorganizing
datapaths from RISC cores into multiple cores as such approaches would still
require (several) power-hungry instruction decoders. Starting from a VLIW ar-
chitecture, the need for such decoders can be omitted and the reconfiguration
can be achieved by simply reassigning the datapaths and register file ports.

The versatility of our core design is achieved by separating the program con-
texts and the execution datapaths (pipelanes) and controlling their connections
via a reconfiguration controller (as depicted in Figure 1):

– Pipelanes & lane-groups: functional units, instruction fetch and decode, etc.
– Contexts: the register file, and all state related registers, such as program

counter, control registers, etc.

The VLIW core comprises multiple execution pipelines, also called pipelanes.
For instance, an 8-issue ρ-VEX has 8 pipelanes. Subsequently, we divide these
pipelanes into lane-groups. For instance pipelanes 0 and 1 form lane-group 0,
and pipelanes 2 and 3 form lane-group 1, and so on. When two lane-groups are
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joined, the processor functions as a 4-issue VLIW. When they are separate, they
function as two independent 2-issue VLIWs.

The contexts contain the state of programs and since we can execute 4 pro-
grams in parallel at least 4 contexts are needed. Each lane-group can access each
context and which context it accesses depends on the current configuration of
the core. In this way, we can reconfigure the core by assigning contexts to lane-
groups. The contexts are connected to lane-groups through a switch network
which allows each lane to access each context. The register file is described in
more detail in [14]. When combining lane-groups, wider-issue VLIW cores can
be composed and they benefit from the same flexibility in choosing which con-
text to execute. The added benefit of this approach is that multiple contexts
are maintained and context switching among them can be achieved in just a
few cycles — basically, flushing the associated pipelanes. In addition, “moving”
a context to be executed on a differently-sized core (similar to moving a pro-
gram from a low-performance core to a high-performance core or vice versa)
requires only a reconfiguration of our core. Moreover, the I-caches in our design
follow the reconfiguration of the core; therefore, their content is also maintained,
thereby removing the need for code movement or a cold start of the I-cache when
physically moving a program to another core.

Context 0

Pipelane 0

Pipelane 1

Reconfiguration

Controller

Lane-group 0

Pipelane 2

Pipelane 3

Lane-group 1

Pipelane 4

Pipelane 5

Lane-group 2

Pipelane 6

Pipelane 7

Lane-group 3

Context 1 Context 2 Context 3

Fig. 1. Interconnect between register contexts and processor pipelines controlled by
Reconfiguration Controller.

Because we are dynamically reconfiguring the core, we have to deal in more
detail with control flow and interrupts. Each lane-group has its own branch
unit and after merging all but one of them is disabled in order to simplify the
instruction fetch hardware. When handling interrupts (including exceptions and
traps), they must be handled differently depending on the configuration as they
are tied to contexts. We designed the core to correctly stall the right context,
invalidate any remaining load/store operations in case of a bus-fault, and flush
the associated pipelanes before jumping to the trap handler.
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Another important aspect of our approach is to maintain binary compati-
bility of the VLIW instructions when executing them on different issue-width
cores. For this purpose, we use generic binaries [15] (reporting a performance hit
between 10% and 30%) and employed techniques described in [16] to reduce the
performance hit to on average around 5%.

Fetch

PC+1 Br. tgt.

Stop

bit

Decode Read br/l

Read gp.

Op.
mux ALU

Memory

Multiplier

Write gp.

Write br/l

WBEX1EX0IF

General purpose forwarding

Branch/link forwarding

Branch unit

(WB+1)

Breakpt.

Fig. 2. Schematic of a single datapath of the processor.

4 Implementation

In Section 3, we described the requirements of the reconfigurable processor. In
this section we explain how we implemented the reconfigurability in hardware.
The design is implemented in VHDL and is completely parameterized using
generics, so that it is possible to statically change the number and size of lane-
groups that will be available at runtime. For example, instead of having an 8-
issue ρ-VEX that can split into four 2-issue, or two 4-issue cores, we could have
a 4-issue core that can split into two 2-issue cores. The number of contexts is
also parameterized, making it possible to have more contexts than the maximum
number of cores.

In Figure 2, we depict the pipeline stages of a single datapath of the pro-
cessor. The processor consists of a (design time) configurable number of these
datapaths, which are connected through the forwarding logic and the register
files as depicted in Figure 1. Each datapath can be configured to have an ALU,
branch unit, load/store unit, and multiplier.

As described in the previous section, the ρ-VEX can be reconfigured at run-
time by assigning lane-groups to contexts. This is done by writing to the con-
figuration control register. The control registers are part of a memory mapped
address space, so this can be accomplished through a standard store instruction
to the right address. Once a new value has been written to the context control
register, the reconfiguration controller will check that the requested configura-
tion is valid. For instance, in an 8-issue reconfigurable ρ-VEX, it is not possible



6 Authors Suppressed Due to Excessive Length

for the center two lane-groups to be merged into a single core. Similarly, it is
impossible to assign multiple non-adjacent lane-groups to the same context.

Once the requested configuration has been determined to be valid by the
reconfiguration controller, the ρ-VEX will stop fetching new instructions and
will finish executing any in-flight instructions. Once the pipelanes are empty,
the actual configuration takes place and each context continues execution where
it was last stopped. Note that because all instructions in the pipeline must finish
execution before reconfiguration completes, reconfiguration can take a variable
number of cycles depending on the exact instructions being executed. The min-
imum number of cycles for a reconfiguration to take place is five cycles, while
the maximum is the same as for a load instruction that causes a cache miss.

5 Experimental Results

In order to demonstrate the benefits of our approach we wanted to show its
performance when executing multiple tasks with different performance charac-
teristics on different configurations of the core. By reconfiguring the core at run-
time we can adapt to the current workload and in doing so utilize our hardware
resources more efficiently.
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Fig. 3. The speedup for each benchmark from two to four issue, and from four to eight
issue.

5.1 Workload definition

For our experiments we use workloads consisting of Mibench applications [17].
First, we characterized the individual applications in terms of available ILP
and execution time. Figure 3 shows the speedup between executions on 2-issue
and 4-issue, and between executions on 4-issue and 8-issue. From this figure we
can observe that most applications have relatively little ILP, while a handful
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have high ILP. The reason that FFT can achieve a greater speedup than 2, is
because the cache of the 4-issue processor is larger. We also notice that none of
the benchmarks have a very large speedup when switching to 8-issue. For this
reason, we decided to focus on 4-issue and 2-issue configurations of the ρ-VEX
in the remainder of this paper. We do this because implementing a large 8-issue
VLIW incurs a large overhead in terms of area, which cannot be justified for
these applications.
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Fig. 4. Execution time for each benchmark.

In Figure 4, we depict the execution time of each benchmark in cycles. From
this figure we can observe that two of the benchmarks are especially long com-
pared to the others. Since we are interested in the performance of multiple
threads running on the cores simultaneously, this is undesirable. If we select
one of these extremely long benchmarks to run together with shorter bench-
marks, the results will be dominated by the performance of a single application
running most of the time. In order to mitigate this effect we normalized the
execution times for each benchmark to the execution time. This means that we
are only comparing the relative improvement from 2-, to 4-, to 8-issue.

In modern embedded devices it is usually not possible to know at design
time the exact characteristics of the workload it will be running. For example,
a smartphone might be running a single or multiple applications depending on
what the user is doing. In order to understand how platforms consisting of vari-
ous numbers of processor cores will perform under these different conditions we
must construct workloads of varying numbers of applications to run simulta-
neously. Therefore, we randomly choose 1 to 22 different applications from the
list of all our Mibench applications and run these simultaneously on all of the
platforms. We then measure the time required to finish the entire workload. For
each workload size (1 – 22) we created 100 random workloads (2200 total).

In addition to using these real world benchmarks, we also estimated the
performance of each platform for a set of idealized synthetic benchmarks which
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allows us to analyze the performance of the platforms under simplified conditions.
These benchmarks exhibit ideal ILP which makes it easier to reason about how
the system will perform.

5.2 Resource Utilization

We used Synopsis Design Vision to obtain area results for ρ-VEX on a 65 nm
library, and CACTI [18] to obtain area estimates for caches for the different
cores. Table 1 shows the parameters used to estimate area for the instruction
caches. In this table, we have assumed that for a 4-issue core we will use a cache
twice as large as for a 2-issue core. In order to represent the reconfigurability of
the cache for the reconfigurable core we estimate the area as twice the size of
a cache with a wider line size. Table 2 shows the area of the 2-, 4- and 4-issue
reconfigurable cores, along with instruction and data caches. This table shows
that the caches make up a significant amount of the area. Using these numbers
we determine several multi-core platforms that fit in similar area.

Table 1. Instruction cache parameters

4r 2 4

Cache Size (KiB) 8 8 16
Line Size (B) 16 8 16
Nr. of Banks 1 1 1
Associativity 1 1 1
Size (mm2) 0.215× 2 0.146 0.242

Table 2. Area results on 65 nm (mm2).

4r 2 4

Core 0.263 0.114 0.175
I-Cache 0.432 0.146 0.242
D-Cache 0.292 0.146 0.270
Total 0.987 0.407 0.688

5.3 Experimental Setup

In order to evaluate our approach, we compared our platform consisting of 2
reconfigurable 4-issue processors to other platforms consisting of multiple static
processors of equivalent total area. This resulted in the following platforms:

– 44r (1.974mm2): The dynamic platform consists of two 4-issue reconfigurable
cores. This means that this platform can execute two tasks in parallel on the
4-issue cores, or three tasks in parallel with one on a 4-issue, and two on
2-issue cores, or it can execute four tasks in parallel on 2-issue cores.

– 444 (2.065mm2): This configuration consisting of three static 4-issue cores is
the largest in terms of computational resources that fits in roughly the same
area as two 4-issue reconfigurable cores.

– 2222 (1.623mm2): This platform can achieve the same maximum TLP as
the dynamic platform, namely four threads at once, which makes for a more
interesting comparison.
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– 442 (1.784mm2): We use this configuration to represent a heterogeneous
system similar to big.LITTLE with a mix of cores of different issue-widths.
This would allow for efficient mapping of tasks to cores when dealing with a
mix of tasks with high and low ILP.

In each of these platforms, the 2-issue cores have an instruction and data
cache size of 32 KiB while the 4-issue cores have cache sizes of 64 KiB. The
reconfigurable cores have 64 KiB caches each when operating in 4-issue mode, or
32 KiB caches for each core when operating in 2-issue mode.

In order to obtain execution times these platforms were all synthesized for the
Xilinx Virtex 6 FPGA running at 37.5 MHz. We use GRLIB [19] for peripherals
such as UART output, interfaces to DDR memory, and the interrupt controller.

Listing 1.1. Scheduler for static platforms.
# inputs :
# r ead y l i s t : l i s t o f a l l t a sks sorted by
# descending ILP
# cores : l i s t o f processor cores sorted by
# descending issue−width
while len ( r e a d y l i s t ) > 0 :

while len ( running ) < len ( co r e s ) :
running . append ( r e a d y l i s t . pop ( ) )

running . s o r t ( )
for i in len ( running ) :

c o r e s [ i ] . task = running [ i ]
wait ( )

Listing 1.2. Scheduler for reconfigurable platforms.
# inputs :
# r ead y l i s t : l i s t o f a l l t a sks sorted by
# descending ILP
while len ( r e a d y l i s t ) > 0 :

while len ( running ) < 4 :
running . append ( r e a d y l i s t . pop ( ) )

running . s o r t ( )
i f len ( running ) == 4 :

co r e s . c on f i g = [ 2 , 2 , 2 , 2 ]
e l i f len ( running ) == 3 :

co r e s . c on f i g = [ 4 , 2 , 2 ]
e l i f len ( running ) == 2 :

co r e s . c on f i g = [ 4 , 4 ]
else :

c o r e s . c on f i g = [ 4 ]
for i in len ( running ) :

c o r e s [ i ] . task = running [ i ]
wait ( )

In order to run the various workloads as defined in Section 5.1 we imple-
mented a simple task scheduler, which runs on the processor. It decides which
task to run on which core, and in the case of the dynamic core, in which con-
figuration. The scheduler for the fixed platforms, shown in Listing 1.1, uses a
greedy approach to run as many tasks in parallel as possible. The input for this
scheduler is the list of tasks which have to be executed, and the issue-width of
each available core. The list of tasks is ordered by descending ILP to ensure that
tasks with high ILP will be scheduled on the cores with the highest issue-width.
If a task is running on a 2-issue core and a 4-issue core becomes available, the
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scheduler will migrate that task to a larger core. After the tasks are assigned
to cores the scheduler waits for one of the tasks to complete, at which point it
will run again to schedule any remaining tasks. This continues until all the tasks
have finished.

The scheduler for the dynamic platform, shown in Listing 1.2, is slightly
different because it not only has to distribute the tasks to the cores, but also
determine the desired configuration. The scheduler first selects the maximum
number of tasks to run, under the assumption that it is, in most cases, more
efficient to run multiple tasks than it is to run a single task on a high issue-
with. Next, depending on the number of tasks, the scheduler chooses one of the
possible configurations. For example, if there are three tasks to run, it will choose
the 422 configuration. It then schedules the task with the highest ILP on the
largest core than can be formed.

These two schedulers assume that the average ILP of each task is known
beforehand in order to make comparisons in performance assuming the best
possible schedules. Techniques for scheduling based on measuring ILP at runtime
are out of scope, and are discussed in other work [20].

5.4 Performance of Synthetic Workloads

We will now examine the performance of each of the chosen platforms using
artificial workloads tailored to each specific platform. The workloads consist of
as many tasks as there are cores in the system, with the ideal ILP for that
particular mix of cores. Figure 5 shows how these synthetic workloads could be
scheduled on each platforms. Each color represents a task and the height of a
block represents execution time, while the width represents the issue-width it is
executed on. For a platform with four 2-issue cores we use four tasks, each with
an ILP of 2. On the platforms with fewer than four cores the fourth task has
to be executed after the other tasks, resulting in longer total execution time.
For the 444 platform the workload consists of three tasks with an ILP of 4.
As shown in Figure 5, when this workload is executed on the 44r platform, the
three tasks are executed in parallel, and when one is done, the remaining two are
switched to run in 4-issue mode. Our goal in using these synthetic benchmarks
was to show that while the reconfigurable platform might not be the best in
every single case, it is not bad either, and for the average case performs well.

The synthetic results in Table 3 show that the average execution time of the
444 platform is the same as for the 44r platform. The 444 platform performs well
for all cases where there are three or less threads, however when there are four
or more threads the 44r platform performs better. The 44r platform performs
worse when there are three high ILP tasks, however, since it can run three tasks
in parallel it will only run 50% longer in the worst case. Real world applications
do not exhibit this kind of difference between 2- and 4-issue, as depicted in
Figure 3, which means that usually the reconfigurable platform would take less
than 50% longer for a workload of three high ILP tasks.
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Fig. 5. Three synthetic workloads scheduled onto the four platforms being compared.
Each color represents a task, while height represents execution time and width repre-
sents the issue-width of the processor executing that task.

Table 3. Synthetic workload
execution times.

44r 442 444 2222

Workload 1 1 2 2 1
Workload 2 1.5 1 1 2
Workload 3 1.5 1.5 1 2

Table 4. Average execution times and standard devi-
ation of all Mibench workloads.

44r 442 444 2222

relative execution time (mean) 1.0 1.11 1.07 1.09
standard deviation 0.03 0.06 0.06 0.0

5.5 Performance of Mibench Workloads

We also performed experiments with actual applications as explained in Sec-
tion 5.1. The results, depicted in Figure 6, show that the reconfigurable platform
is always at least as good as the 2222 platform, as expected. Remember that the
2222 platform is larger than the reconfigurable platform. When comparing with
the 444 platform we can observe that there are some situations where the recon-
figurable platform is better, and some cases where it is worse. However, note that
there are fewer cases where the reconfigurable platform is slower, and that the
difference in performance is not as high as in the cases where the 44r platform is
faster. The 444 platform is also roughly 5% larger than the reconfigurable plat-
form. The average execution times and standard deviation in execution time are
summarized in Table 4. We can observe that the reconfigurable platform is on
average 7% faster than the static 444 platform. Additionally, we notice that the
standard deviation is smaller for the dynamic platform. This means that the dif-
ference between workloads that perform well and workloads that perform poorly
are larger on the static platform. We also observe that the 2222 platform has
barely any deviation, however this means it has consistently poor performance.
These results show that although the 444 platform has more total computational
resources, and more available total cache, it cannot always make optimal use of
the available hardware, because it cannot make the trade off between thread
level parallelism and instruction level parallelism.
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Fig. 6. Results of executing Mibench on different platforms with execution times nor-
malized to 2-issue.

6 Conclusion

In this paper, we compared the performance of heterogeneous multi-core plat-
forms to that of a dynamically reconfigurable platform. We did so using ρ-VEX,
a reconfigurable VLIW processor with a reconfigurable cache, which is capable of
reconfiguring at runtime to exploit either task-level parallelism, or instruction-
level parallelism. We demonstrated that, while for a single workload a particular
static configuration might be optimal, the reconfigurable platform can adapt to
the workload and on average can more efficiently exploit the available hardware.
Our results show that the reconfigurable platform is on average 7% faster than a
static platform with 1.5× as many datapaths, and 5% larger area. Furthermore,
in terms of performance the reconfigurable platform has more stable performance
(less deviation) than other platforms for a wide variety of workloads.
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