
Foundations and Tools for the Static Analysis
of Ethereum smart contracts

Ilya Grishchenko, Matteo Maffei, and Clara Schneidewind

TU Wien
{ilya.grishchenko,matteo.maffei,clara.schneidewind}@tuwien.ac.at

Abstract. The recent growth of the blockchain technology market puts its main
cryptocurrencies in the spotlight. Among them, Ethereum stands out due to its
virtual machine (EVM) supporting smart contracts, i.e., distributed programs that
control the flow of the digital currency Ether. Being written in a Turing complete
language, Ethereum smart contracts allow for expressing a broad spectrum of fi-
nancial applications. The price for this expressiveness, however, is a significant
semantic complexity, which increases the risk of programming errors. Recent at-
tacks exploiting bugs in smart contract implementations call for the design of for-
mal verification techniques for smart contracts. This, however, requires rigorous
semantic foundations, a formal characterization of the expected security proper-
ties, and dedicated abstraction techniques tailored to the specific EVM semantics.
This work will overview the state-of-the-art in smart contract verification, cover-
ing formal semantics, security definitions, and verification tools. We will then
focus on EtherTrust [1], a framework for the static analysis of Ethereum smart
contracts which includes the first complete small-step semantics of EVM byte-
code, the first formal characterization of a large class of security properties for
smart contracts, and the first static analysis for EVM bytecode that comes with a
proof of soundness.

1 Introduction

Blockchain technologies promise secure distributed computations even in absence of
trusted third parties. The core of this technology is a distributed ledger that keeps track
of previous transactions and the state of each account, and whose functionality and se-
curity is ensured by a careful combination of incentives and cryptography. Within this
framework, software developers can implement sophisticated distributed, transaction-
based computations by leveraging the scripting language offered by the underlying
cryptocurrency. While many of these cryptocurrencies have an intentionally limited
scripting language (e.g., Bitcoin [2]), Ethereum was designed from the ground up with
a quasi Turing-complete language1. Ethereum programs, called smart contracts, have
thus found a variety of appealing use cases, such as auctions [3], data management
systems [4], financial contracts [5], elections [6], trading platforms [7,8], permission
management [9] and verifiable cloud computing [10], just to mention a few. Given

1 While the language itself is Turing complete, computations are associated with a bounded
computational budget (called gas), which gets consumed by each instruction thereby enforcing
termination.

their financial nature, bugs and vulnerabilities in smart contracts may lead to catas-
trophic consequences. For instance, the infamous DAO vulnerability [11] recently led
to a 60M$ financial loss and similar vulnerabilities occur on a regular basis [12,13]. Fur-
thermore, many smart contracts in the wild are intentionally fraudulent, as highlighted
in a recent survey [14].

A rigorous security analysis of smart contracts is thus crucial for the trust of the so-
ciety in blockchain technologies and their widespread deployment. Unfortunately, this
task is quite challenging for various reasons. First, Ethereum smart contracts are devel-
oped in an ad-hoc language, called Solidity, which resembles JavaScript but features
specific transaction-oriented mechanisms and a number of non-standard semantic be-
haviours, as further described in this paper. Second, smart contracts are uploaded on the
blockchain in the form of Ethereum Virtual Machine (EVM) bytecode, a stack-based
low-level code featuring dynamic code creation and invocation and, in general, very
little static information, which makes it extremely difficult to analyze.

Our Contributions This work overviews the existing approaches taken towards formal
verification of Ethereum smart contracts and discusses EtherTrust, the first sound static
analysis tool for EVM bytecode. Specifically, our contributions are

– A survey on recent theories and tools for formal verification of Ethereum smart
contracts including a systematization of existing work with an overview of the open
problems and future challenges in the smart contract realm.

– An illustrative presentation of the small-step semantics presented by [15] with spe-
cial focus on the semantics of the bytecode instructions that allow for the initiation
of internal transactions. The subtleties in the semantics of these transactions have
shown to form an integral part of the attack surface in the context of Ethereum
smart contracts.

– A review of an abstraction based on Horn clauses for soundly over-approximating
the small-step executions of Ethereum bytecode [1].

– A demonstration of how relevant security properties can be over-approximated and
automatically verified using the static analyzer EtherTrust [1] by the example of the
single-entrancy property defined in [15].

Outline The remainder of this paper is organized as follows. § 2 briefly overviews the
Ethereum architecture, § 3 reviews the state of the art in formal verification of Ethereum
smart contracts, § 4 revisits the Ethereum small-step semantics introduced by [15], § 5
presents the single-entrancy property for smart contracts as defined by [15], § 6 dis-
cusses the key ideas of the first sound static analysis for Ethereum bytecode as imple-
mented in EtherTrust [1], § 7 shows how reachability properties can automatically be
checked using EtherTrust, and § 8 concludes summarizing the key points of the paper.

2 Background on Ethereum

In the following we will shortly overview the mechanics of the cryptocurrency Ethereum
and its built-in scripting language EVM bytecode.

2.1 Ethereum

Ethereum is a cryptographic currency system built on top of a blockchain. Similar to
Bitcoin, network participants publish transactions to the network that are then grouped
into blocks by distinct nodes (the so called miners) and appended to the blockchain
using a proof of work (PoW) consensus mechanism. The state of the system – that
we will also refer to as global state – consists of the state of the different accounts
populating it. An account can either be an external account (belonging to a user of the
system) that carries information on its current balance or it can be a contract account that
additionally obtains persistent storage and the contract’s code. The account’s balances
are given in the subunit wei of the virtual currency Ether.2

Transactions can alter the state of the system by either creating new contract ac-
counts or by calling an existing account. Calls to external accounts can only transfer
Ether to this account, but calls to contract accounts additionally execute the code asso-
ciated to the contract. The contract execution might alter the storage of the account or
might again perform transactions – in this case we talk about internal transactions.

The execution model underlying the execution of contract code is described by a
virtual state machine, the Ethereum Virtual Machine (EVM). This is quasi Turing com-
plete as the otherwise Turing complete execution is restricted by the upfront defined
resource gas that effectively limits the number of execution steps. The originator of the
transaction can specify the maximal gas that should be spent for the contract execution
and also determines the gas price (the amount of wei to pay for a unit of gas). Upfront,
the originator pays for the gas limit according to the gas price and in case of successful
contract execution that did not spend the whole amount of gas dedicated to it, the orig-
inator gets reimbursed with gas that is left. The remaining wei paid for the used gas are
given as a fee to a beneficiary address specified by the miner.

2.2 EVM bytecode

Contracts are delivered and executed in EVM bytecode format – an Assembler like byte-
code language. As the core of the EVM is a stack-based machine, the set of instructions
in EVM bytecode consists mainly of standard instructions for stack operations, arith-
metics, jumps and local memory access. The classical set of instructions is enriched
with an opcode for the SHA3 hash and several opcodes for accessing the environment
that the contract was called in. In addition, there are opcodes for accessing and mod-
ifying the storage of the account currently running the code and distinct opcodes for
performing internal call and create transactions. Another instruction particular to the
blockchain setting is the SELFDESTRUCT code that deletes the currently executed
contract - but only after the successful execution of the external transaction.

The execution of each instruction consumes a positive amount of gas. The sender
of the transaction specifies a gas limit and exceeding it results in an exception that
reverts the effects of the current transaction on the global state. In the case of nested
transactions, the occurrence of an exception only reverts its own effects, but not those
of the calling transaction. Instead, the failure of an internal transaction is only indicated
by writing zero to the caller’s stack.

2 One Ether is equivalent to 1018 wei.

3 Overview on formal verification approaches

In the following we give an overview on the approaches taken so far in the direc-
tion of securing (Ethereum) smart contracts. We distinguish between verification ap-
proaches and design approaches. According to our terminology, the goal of verification
approaches is to check smart contracts written in existing languages (such as Solid-
ity) for their compliance with a security policy or specification. In contrast, design ap-
proaches aim at facilitating the creation of secure smart contracts by providing frame-
works for their development: These approaches encompass new languages which are
more amenable to verification, provide a clear and simple semantics that is understand-
able by smart contract developers or allow for a direct encoding of desired security
policies. In addition, we count works that aim at providing design patterns for secure
smart contracts to this category.

3.1 Verification

In the field of smart contract verification we categorize the existing approaches along
the following dimensions: target language (bytecode vs high level language), point of
verification (static vs. dynamic analysis methods), provided guarantees (bug-finding
vs. formal soundness guarantees), checked properties (generic contract properties vs.
contract specific properties), degree of automation (automated verification vs. assisted
analysis vs. manual inspection). From the current spectrum of analysis tools, we can
find solutions in the following clusters:

Static analysis tools for automated bug-finding. Oyente [16] is a state-of-the-art static
analysis tool for EVM bytecode that relies on symbolic execution. Oyente supports a
variety of pre-defined security properties, such as transaction order dependency, time-
stamp dependency, and reentrancy that can be checked automatically. However, Oyente
is not striving for soundness nor completeness. This is on the one hand due to the
simplified semantics that serves as foundation of the analysis [15]. On the other hand,
the security properties are rather syntactic or pattern based and are lacking a semantic
characterization. Recently, Zhou et al. proposed the static analysis tool SASC [17] that
extends Oyente by additional patterns and provides a visualization of detected risks in
the topology diagram of the original Solidity code.

Majan [18] extends the approach taken in Oyente to trace properties that consider
multiple invocations of one smart contract. As Oyente, it relies on symbolic execution
that follows a simplified version of the semantics used in Oyente and uses a pattern-
based approach for defining the concrete properties to be checked. The tool covers
safety properties (such as prodigality and suicidality) and liveness properties (greedi-
ness). As for Oyente, the authors do not make any security claims, but consider their
tool a ’bug catching approach’.

Static analysis tools for automated verification of generic properties. In contrast
to the aforementioned class of tools, this line of research aims at providing formal
guarantees for the analysis results.

A recently published work is the static analysis tool ZEUS [19] that analyzes smart
contracts written in Solidity using symbolic model checking. The analysis proceeds by

translating Solidity code to an abstract intermediate language that again is translated
to LLVM bitcode. Finally, existing symbolic model checking tools for LLVM bitcode
are leveraged for checking generic security properties. ZEUS consequently only allows
for analyzing contracts whose Solidity source code is made available. In addition, the
semantics of the intermediate language cannot easily be reconciled with the actual So-
lidity semantics that is determined by its translation to EVM bytecode. This is as the
semantics of the intermediate language by design does not allow for the revocation of
the global system state in the case of a failed call – which however is fundamental
feature of Ethereum smart contract execution.

Other tools proposed in the realm of automated static analysis for generic proper-
ties are Securify [20], Mythril [21] and Manticore [22] (for analysing bytecode) and
SmartCheck [23] and Solgraph [24] (for analyzing Solidity code). These tools however
are not accompanied by any academic paper so that the concrete analysis goals stay
unspecified.

Frameworks for semi-automated proofs for contract specific properties. Hirai [25]
formalizes the EVM semantics in the proof assistant Isabelle/HOL and uses it for man-
ually proving safety properties for concrete contracts. This semantics, however, consti-
tutes a sound over-approximation of the original semantics [26]. Building on top of this
work, Amani et al. propose a sound program logic for EVM bytecode based on separa-
tion logics [27]. This logic allows for semi-automatically reasoning about correctness
properties of EVM bytecode using the proof assistant Isabelle/HOL.

Hildebrandt et al. [28] define the EVM semantics in the K framework [29] – a
language independent verification framework based on reachability logics. The authors
leverage the power of the K framework in order to automatically derive analysis tools
for the specified semantics, presenting as an example a gas analysis tool, a semantic
debugger, and a program verifier based on reachability logics. The derived program
verifier still requires the user to manually specify loop invariants on the bytecode level.

Bhargavan et al. [30] introduce a framework to analyze Ethereum contracts by trans-
lation into F*, a functional programming language aimed at program verification and
equipped with an interactive proof assistant. The translation supports only a fragment
of the EVM bytecode and does not come with a justifying semantic argument.

Dynamic monitoring for predefined security properties. Grossman et al. [31] pro-
pose the notion of effectively callback free executions and identify the absence of this
property in smart contract executions as the source of common bugs such as reentrancy.
They propose an efficient online algorithm for discovering executions violating effec-
tively callback freeness. Implementing a corresponding monitor in the EVM would
guarantee the absence of the potentially dangerous smart contract executions, but is not
compatible with the current Ethereum version and would require a hard fork.

A dynamic monitoring solution compatible with Ethereum is offered by the tool
DappGuard [32]. The tool actively monitors the incoming transactions to a smart con-
tract and leverages the tool Oyente [16], an own analysis engine and a simulation of the
transaction on the testnet for judging whether the incoming transaction might cause a
(generic) security violation (such as transaction order dependency). If a transaction is
considered harmful, a counter transaction (killing the contract or performing some other
fixes) is made. The authors claim that this transaction will be mined with high probabil-

ity before the problematic one. Due to this uncertainty and the bug-finding tools used
for evaluation of incoming transactions, this approach does not provide any guarantees.

3.2 Design

The current research on secure smart contract design focuses on the following four
areas: high-level programming languages, intermediate languages (for verification), se-
curity patterns for existing languages and visual tools for designing smart contracts.
High-level languages. One line of research on high-level smart contract languages
concentrates on the facilitation of secure smart contract design by limiting the lan-
guage expressiveness and enforcing strong static typing discipline. Simplicity [33] is
a typed functional programming language for smart contracts that disallows loops and
recursion. It is a general purpose language for smart contracts and not tailored to the
Ethereum setting. Simplicity comes with a denotional semantics specified in Coq that
allows for reasoning formally about Simplicity contracts. As there is no (verified) com-
piler to EVM bytecode so far, such results don’t carry over to Etherum smart contracts.
In the same realm, Pettersson and Edström [34], propose a library for the programming
language Idris that allows for the development of secure smart contracts using depen-
dent and polymorphic types. They extend the existing Idris compiler with a generator
for Serpent code (a Python-like high-level language for Ethereum smart contracts). This
compiler is a proof of concept and fails in compiling more advanced contracts (as it
cannot handle recursion). In a preliminary work, Coblenz et al. [35] propose Obsidian,
an object-oriented programming language that pursues the goal of preventing common
bugs in smart contracts such as reentrancy. To this end, Obsidian makes states explicit
and uses a linear type system for quantities of money.

Another line of research focuses on designing languages that allow for encoding
security policies that are dynamically enforced at runtime. A first step in this direc-
tion is sketched in the preliminary work on Flint [36], a type-safe, capabilities-secure,
contract-oriented programming language for smart contracts that gets compiled to EVM
bytecode. Flint allows for defining caller capabilities restricting the access to security
sensitive functions. These capabilities shall be enforced by the EVM bytecode created
during compilation. But so far, there is only an extended abstract available.

In addition to these approaches from academia, the Ethereum foundation currently
develops the high-level languages Viper [37] and Bamboo [38]. Furthermore, the Solid-
ity compiler used to support a limited export functionality to the intermediate language
WhyML [39] allowing for a pre/post condition style reasoning on Solidity code by
leveraging the deductive program verification platform Why3 [40].
Intermediate languages. The intermediate language Scilla [41] comes with a seman-
tics formalized in the proof assistant Coq and therefore allows for a mechanized verifi-
cation of Scilla contracts. In addition, Scilla makes some interesting design choices that
might inspire the development of future high level languages for smart contracts: Scilla
provides a strict separation not only between computation and communication, but also
between pure and effectful computations.
Security patterns. Wöhrer [42] describes programming patterns in Solidity that should
be adapted by smart contract programmers for avoiding common bugs. These patterns

encompass best coding practices such as performing calls at the end of a function,
but also off-the-self solutions for common security bugs such as locking a contract for
avoiding reentrancy or the integration of a mechanism that allows the contract owner to
disable sensitive functionalities in the case of a bug.
Tools. Mavridou and Laszka [43] introduce a framework for designing smart contracts
in terms of finite state machines. They provide a tool with a graphical editor for defining
contract specifications as automata and give a translation of the constructed finite state
machines to Solidity. In addition, they present some security extensions and patterns
that can be used as off-the-shelf solutions for preventing reentrancy and implementing
common security challenges such as time constraints and authorization. The approach
however is lacking formal foundations as neither the correctness of the translation is
proven correct, nor are the security patterns shown to meet the desired security goals.

3.3 Open challenges

Even though the previous section highlights the wide range of steps taken towards the
analysis of Ethereum smart contracts, there are still a lot of open challenges left.
Secure compilation of high-level languages. Even though there are several proposals
made for new high-level languages that facilitate the design of secure smart contracts
and that are more amenable to verification, none of them comes so far with a verified
compiler to EVM bytecode. Such a secure compilation however is the requirement for
the results shown on high-level language programs to carry over to the actual smart
contracts published on the blockchain.
Specification languages for smart contracts. So far, all approaches to verifying con-
tract specific properties focus on either ad-hoc specifications in the used verification
framework [25,28,30,27] or the insertion of assertions into existing contract code [39].
For leveraging the power of existing model checking techniques for program verifica-
tion, the design of a general-purpose contract specification language would be needed.
Study of security policies. There has been no fundamental research made so far on the
classes of security policies that might be interesting to enforce in the setting of smart
contracts. In particular, it would be compelling to characterize the class of security
policies that can be enforced by smart contracts within the existing EVM.
Compositional reasoning about smart contracts. Most research on smart contract
verification focuses on reasoning about individual contracts or at most a bunch of con-
tracts whose bytecode is fully available. Even though there has been work observing
the similarities between smart contracts and concurrent programs [44], there has been
no rigorous study on compositional reasoning for smart contracts so far.

4 Semantics

Recently, Grishchenko et al. [15] introduced the first complete small-step semantics for
EVM bytecode. As this semantics serves as a basis for the static analyzer EtherTrust, we
will in the following shortly review the general layout and the most important features
of the semantics.

4.1 Execution configurations

Before discussing the small-step rules of the semantics, we first introduce the general
shape of execution configurations.
Global state. The global state of the Ethereum blockchain is represented as a (partial)
mapping from account addresses to accounts. In the case that an account does not exist,
we assume it to map to⊥. Accounts are composed of a nonce n that is incremented with
every other account that the account creates, a balance b, a persistent unbounded storage
stor and the account’s code. External accounts carry an empty code which makes their
storage inaccessible and hence irrelevant.
Small-step relation. The semantics is formalized by a small-step relation Γ � S → S′

that specifies how a call stack S representing the state of the execution evolves within
one step under the transaction environment Γ . We call the pair (Γ, S) a configuration.
Transaction environments. The transaction environment represents the static informa-
tion of the block that the transaction is executed in and the immutable parameters given
to the transaction as the gas prize or the gas limit. These parameters can be accessed by
distinct bytecode instructions and consequently influence the transaction execution.
Call stacks. A call stack S is a stack of execution states which represents the state of
the overall execution of the initial external transaction. The individual execution states
of the stack represent the states of the uncompleted internal transactions performed
during the execution. Formally, a call stack is a stack of regular execution states of
the form (µ, ι, σ) that can optionally be topped with a halting state HALT(σ, gas, d)
or an exception state EXC. Semantically, halting states indicate regular halting of an
internal transaction, exception states indicate exceptional halting, and regular execution
states describe the state of internal transactions in progress. Halting and exception states
can only occur as top elements of the call stack as they represent terminated internal
transactions. Halting states carry the information affecting the callee state such as the
global state σ that the internal execution halted in, the unspent gas gas from the internal
transaction execution and the return data d.

The state of a non-terminated internal transaction is described by a regular execu-
tion state of the form (µ, ι, σ). The state is determined by the current global state σ of
the system as well as the execution environment ι that specifies the parameters of the
current transaction (including inputs and the code to be executed) and the local state µ
of the stack machine.
Execution environment. The execution environment ι of an internal transaction is a
tuple of static parameters (actor, input, sender, value, code) to the transaction that, i.a.,
determine the code to be executed and the account in whose context the code will be
executed. The execution environment incorporates the following components: the active
account actor that is the account that is currently executing and whose account will be
affected when instructions for storage modification or money transfer are performed;
the input data input given to the transaction; the address sender of the account that
initiated the transaction; the amount of wei value transferred with the transaction; the
code code that is executed by the transaction. The execution environment is determined
upon initialization of an internal transaction execution, and it can be accessed, but not
altered during the execution.

Table 1: Semantic Rules for ADD

ADD
ι.code [µ.pc] = ADD

µ.s = a :: b :: s µ.gas ≥ 3 µ′ = µ[s→ (a+ b) :: s][pc += 1][gas −= 3]

Γ � (µ, ι, σ) :: S → (µ′, ι, σ) :: S

ADD-FAIL
ι.code [µ.pc] = ADD (|µ.s| < 2 ∨ µ.gas < 3)

Γ � (µ, ι, σ) :: S → EXC :: S

Machine state. The local machine state µ represents the state of the underlying stack
machine used for execution. Formally it is represented by a tuple (gas, pc,m, aw, s)
holding the amount of gas gas available for execution, the program counter pc, the
local memory m, the number of active words in memory aw, and the machine stack s.

The execution of each internal transaction starts in a fresh machine state, with an
empty stack, memory initialized to all zeros, and program counter and active words in
memory set to zero. Only the gas is instantiated with the gas value available for the
execution. We call execution states with machine states of this form initial.

4.2 Small-step rules

In the following, we will present a selection of interesting small-step rules in order to
illustrate the most important features of the semantics.
Local instructions. For demonstrating the overall design of the semantics, we start
with the example of the arithmetic expression ADD performing addition of two values
on the machine stack. The small-step rules for ADD are shown in Table 1. We use a
dot notation, in order to access components of the different state parameters. We name
the components with the variable names introduced for these components in the last
section written in sans-serif-style. In addition, we use the usual notation for updating
components: t[c → v] denotes that the component c of tuple t is updated with value v.
For expressing incremental updates in a simpler way, we additionally use the notation
t[c += v] to denote that the (numerical) component of c is incremented by v and
similarly t[c −= v] for decrementing a component c of t.

The execution of the arithmetic instruction ADD only performs local changes in
the machine state affecting the local stack, the program counter, and the gas budget. For
deciding upon the correct instruction to execute, the currently executed code (that is part
of the execution environment) is accessed at the position of the current program counter.
The cost of an ADD instruction consists always of three units of gas that get subtracted
from the gas budget in the machine state. As every other instruction, ADD can fail due
to lacking gas or due to underflows on the machine stack. In this case, the exception
state is entered and the execution of the current internal transaction is terminated. For
better readability, we use here the slightly sloppy ∨ notation for combining the two
error cases in one inference rule.

Transaction initiating instructions. A class of instructions with a more involved se-
mantics are those instructions initiating internal transactions. This class incorporates
instructions for calling another contract (CALL, CALLCODE and DELEGATECALL)
and for creating a new contract (CREATE). We will explain the semantics of those
instructions in an intuitive way omitting technical details.

caller calleecallercallee

Γ ⊨ (μ, ι, σ) :: S (, ,) :: (μ, ι, σ) :: Sμ
′
ι
′
σ

′

 (inp)����

old caller: caller:

caller calleecallercallee

Γ ⊨ (μ, ι, σ) :: S (, ,) :: (μ, ι, σ) :: Sμ
′
ι
′
σ

′

 (inp)��������

old caller: caller:

caller calleecallercallee

Γ ⊨ (μ, ι, σ) :: S (, ,) :: (μ, ι, σ) :: Sμ
′
ι
′
σ

′

 (inp)

������������

old caller: old caller:

Fig. 1: Illustration of of the semantics of different call types

The call instructions initiate a new internal call transaction whose parameters are
specified on the machine stack – including the recipient (callee) and the amount of
money to be transferred (in the case of CALL and CALLCODE). In addition, the in-
put to the call is specified by providing the corresponding local memory fragment and
analogously a memory fragment for the return value.

When executing a call instruction, the specified amount of wei is transferred to
the callee and the code of the callee is executed. The different call types diverge in the

environment that the callee code is executed in. In the case of a CALL instruction, while
executing the callee code (only) the account of the callee can be accessed and modified.
So intuitively, the control is completely handed to the callee as its code is executed in
its own context. In contrast, in the case of CALLCODE, the executed callee code can
(only) access and modify the account of the caller. So the callee’s code is executed in
the caller’s context which might be useful for using library functionalities implemented
in a separate library contract that e.g., transfer money on behalf of the caller.

This idea is pushed even further in the DELEGATECALL instruction. This call
type does not allow for transferring money and executes the callee’s code not only in
the caller’s context, but even preserves part of the execution environment of the previous
call (in particular the call value and the sender information). Intuitively, this instruction
resembles adding the callee’s code to the caller as an internal function so that calling it
does not cause a new internal transaction (even though it formally does).

Figure 1 summarizes the behavior of the different call instructions in EVM byte-
code. The executed code of the respective account is highlighted in orange while the
accessible account state is depicted in green. The remaining internal transaction infor-
mation (as specified in the execution environment) on the sender of the internal trans-
action and the transferred value are marked in violet. In addition, the picture relates
the corresponding changes to the small-step semantics: the execution of a call transac-
tion adds a new execution state to the call stack while preserving the old one. The new
global state σ′ records the changes in the accounts’ balances, while the new execution
environment ι′ determines the accessible account (by setting the actor of the internal
transaction correspondingly), the code to be executed (by setting code) and further
accessible transaction information as the sender, value and input (by setting sender,
value and input respectively).

caller
?

newcaller

Γ ⊨ (μ, ι, σ) :: S (, ,) :: (μ, ι, σ) :: Sμ
′
ι
′
σ

′

 ()������

old caller: caller: ()eval

⇝

Fig. 2: Illustration of the semantics of the CREATE instruction

The CREATE instruction initiates an internal transaction that creates a new account.
The semantics of this instruction is similar to the one of CALL, with the exception that
a fresh account is created, which gets the specified value transferred, and that the input
provided to this internal transaction, which is again specified in the local memory, is
interpreted as the initialization code to be executed in order to produce the newly created

account’s code as output. Figure 2 depicts the semantics of the CREATE instruction in
a similar fashion as it is done for the call instructions before. It is notable that the input
to the CREATE instruction is interpreted as code and executed (therefore highlighted in
orange) in the context of the newly created contract (highlighted in green). During this
execution the newly created contract does not have any contract code itself (therefore
depicted in gray), but only after completing the internal transaction the return value of
the transaction will be set as code for the freshly created contract.

5 Security properties

Grishchenko et al. [15] propose generic security definitions for smart contracts that rule
out certain classes of potentially harmful contract behavior. These properties consti-
tute trace properties (more precisely, safety properties) as well as hyper properties (in
particular, value independence properties). In this work, we revisit one of these safety
properties called single-entrancy and use this property as a case study for showing how
safety properties of smart contracts (that can be over-approximated by pure reachability
properties) can be automatically checked by static analysis. For checking value inde-
pendence properties, in [1] the reviewed analysis technique is extended with a simple
dependency analysis that we will not discuss further in this work.

5.1 Preliminary Notations

Formally, contracts are represented as tuples of the form (a, code) where a denotes the
address of the contract and code denotes the contract’s code.

In order to give concise security definitions, we further introduce, and assume all
through the paper, an annotation to the small step semantics in order to highlight the
contract c that is currently executed. In the case of initialization code being executed,
we use ⊥. We write S + +S′ for the concatenation of call stacks S and S′. Finally,
for arguing about EVM bytecode executions, we are only interested in those initial
configurations that might result from a valid external transaction in a valid block. In the
following, we will call these configurations reachable and refer to [15] for a detailed
definition.

5.2 Single-entrancy

For motivating the definition of single-entrancy, we introduce a class of bugs in Ethereum
smart contracts called reentrancy bugs [16,14].

The most famous representative of this class is the so-called DAO bug that led to
a loss of 60 million dollars in June 2016 [11]. In an attack exploiting this bug, the af-
fected contract was drained out of money by subsequently reentering it and performing
transactions to the attacker on behalf of the contract.

The cause of such bugs mostly roots in the developer’s misunderstanding of the
semantics of Solidity’s call primitives. In general, calling a contract can invoke two
kinds of actions: Transferring Ether to the contract’s account or Executing (parts of)
a contracts code. In particular, Solidity’s call construct (being translated to a CALL

1 contract Bob{
2 bool sent = false;
3 function ping(address c){
4 if (!sent) { c.call.value(2)();
5 sent = true; }}}

(a) Smart contract with reentrancy bug

1 contract Mallory{
2 function(){
3 Bob(msg.sender).ping(this);}}

(b) Smart contract exploiting reentrancy bug

Fig. 3: Reentrancy Attack

instruction in EVM bytecode) invokes the execution of a fraction of the callee’s code –
specified in the so called fallback function. A contract’s fallback function is written as
a function without names or argument as depicted in the Mallory contract in Figure 3b.

Consequently, when using the call construct the developer may expect an atomic
value transfer where potentially another contract’s code is executed. For illustrating how
to exploit this sort of bug, we consider the contracts in Figure 3.

The function ping of contract Bob sends an amount of 2 wei to the address specified in
the argument. However, this should only be possible once, which is potentially ensured
by the sent variable that is set after the successful money transfer. Instead, it turns
out that invoking the call.value function on a contract’s address invokes the contract’s
fallback function as well.

Given a second contract Mallory, it is possible to transfer more money than the in-
tended 2 wei to the account of Mallory. By invoking Bob’s function ping with the address
of Mallory’s account, 2 wei are transferred to Mallory’s account and additionally the
fallback function of Mallory is invoked. As the fallback function again calls the ping

function with Mallory’s address another 2 wei are transferred before the variable sent of
contract Bob was set. This looping goes on until all gas of the initial call is consumed
or the callstack limit is reached. In this case, only the last transfer of wei is reverted
and the effects of all former calls stay in place. Consequently the intended restriction
on contract Bob’s ping function (namely to only transfer 2 wei once) is circumvented.

Motivated by these kinds of attacks, the notion of single-entrancy was introduced.
Intuitively, a contract is single-entrant if it cannot perform any more calls once it has
been reentered. Formally this property can be expressed in terms of the small-steps
semantics as follows:

Definition 1 (Single-entrancy [15]). A contract c is single-entrant if for all reachable
configurations (Γ, sc :: S), it holds for all s′, s′′, S′ that

Γ � sc :: S →∗ s′c :: S′ + +sc :: S

=⇒ ¬∃s′′ ∈ S, c′ ∈ C⊥. Γ � s′c :: S′ + +sc :: S →∗ s′′c′ :: s′c :: S′ + +sc :: S

This property constitutes a safety property. We will show in § 7 how it can be ap-
propriately abstracted for being expressed in the EtherTrust analysis framework.

ΠS
′

→
∗

+ +SS
′

⊢∪ :>Π

Γ, :: Ssc∗

Πs

c
∗

Δ

Fig. 4: Simplified soundness statement

6 Verification

Grishchenko et al. [1] developed a static analysis framework for analyzing reachability
properties of EVM smart contracts. This framwork relies on an abstract semantics for
EVM bytecode soundly over-approximating the semantics presented in § 4.

In the following we will review the abstractions performed on the small-step con-
figurations and execution rules using the example of the abstract execution rule for the
ADD instruction. Afterwards, we will discuss shortly how call instructions are over-
approximated.

6.1 Abstract semantics

Figure 4 gives an overview on the relation between the small-step and the abstract se-
mantics. For the analysis, we will consider a particular contract c∗ under analysis whose
code is known. An over-approximation of the behavior of this smart contract will be en-
coded in Horn clauses(∆). These describe how an abstract configuration (represented
by a set of abstract state predicates) evolves within the execution of the contract’s in-
structions. Abstract configurations are obtained by translating small-step configurations
to a set Π of facts over state predicates that characterize (an over-approximation of) the
original configuration. This transformation is performed with respect to the contract
c∗ as only all local behavior of this particular contract will be over-approximated and
consequently only those elements on the callstack representing executions of c∗ are
translated. Finally, we will show that no matter how the contract c∗ is called (so for
every arbitrary reachable configuration Γ, sc∗ :: S), every sequence of execution steps
that is performed while executing it can be mimicked by a derivation of the abstract con-
figuration Πs (obtained from translating the execution state s) using the horn clauses
∆ (that model the abstract semantics of the contract c∗). More precisely, this means
that from the set of facts Πs ∪ ∆ a set Π can be derived that is a coarser abstraction
(<:) than ΠS′ which is the translation of the execution’s intermediate call stack S′. A
corresponding formal soundness statement is proven in [1].

6.2 Abstract configurations

Table 2 shows the analysis facts used for describing the abstract semantics. These con-
sist of (instances of) state predicates that represent partial abstract configurations. Ac-
cordingly, abstract configurations are sets of facts not containing any variables as argu-
ments. We will refer to such facts as closed facts. Finally, abstract contracts are char-
acterized as sets of Horn clauses over the state predicates (facts) that describe the state

Table 2: Analysis Facts. All arguments in the analysis facts marked with a hat (̂·) range over
D̂ ∪ Vars where D̂ is the abstract domain and Vars is the set of variables. All other arguments of
analysis facts range over N with exception of sa that ranges over (N → D̂) ∪ Vars. Closed facts
cf are assumed to be facts with arguments not coming from Vars.

Facts f :=
Abs. machine state | MStatepp ((size, sa), âw, ˆgas, cd)
Abs. memory | Mempp (ˆpos, v̂a, cd)
Abs. exception state | Excid∗ (cd)
. . . | . . .
Abs. configurations Π := {cf1, . . . , cfn}
Horn clauses H := ∀x∗.

∧
i fi =⇒ f

Abs. contracts ∆ := {H1, . . . , Hn}

changes induced by the instructions at the different program positions. Here only those
state predicates are depicted that are needed for describing the abstract semantics of the
ADD instruction.

The state predicates are parametrized by a program point pp that is a tuple of the
form (id∗, pc) with id∗ being a contract identifier for contract c∗ and pc being the pro-
gram counter at which the abstract state holds.3 The parametrization by the contract
identifier helps to make the analysis consider a set of contracts whose code is known
(such as e.g., library code that is known to be used by the contract). In this work however
we focus on the case where c∗ represented by identifier id∗ is the only known contract.
In addition, the predicates carry the relative call depth cd as argument. The relative call
depth is the size of the call stack built up on the execution of c∗ (Cf. call stack S′ in Fig-
ure 4) and serves as abstraction for the (relative) call stack that contract c∗ is currently
executed on. The relative call depth helps to distinguish different recursive executions
of c∗ and thereby improves the precision of the analysis.

As the ADD instruction only operates on the local machine state, we focus on the
abstract representation of the machine state µ: The state predicates representing µ are
MStatepp and Mempp. The fact MStatepp ((size, sa), âw, ˆgas, cd) says that at program
point pp and relative call depth cd the machine stack is of size size and its current
configuration is described by the mapping sa which maps stack positions to abstract
values, âw represents the number of active words in memory, and ˆgas is the remaining
gas. Similarly, the fact Mempp (ˆpos, v̂, cd) states that at program point pp and relative
call depth cd at memory address ˆpos there is the (abstract) value v̂. The values on the
stack and in local memory range over an abstract domain. Concretely, we define the
abstract domain D̂ to be the set {⊥,>, a∗} ∪ N which constitutes a bounded lattice
(D̂,v,t,u,>,⊥) satisfying ⊥ @ a∗ @ > and ⊥ @ n @ > for all n ∈ N. Intuitively,
in our analysis > will represent unknown (symbolic) values and a∗ will represent the
unknown (symbolic) address of contract c∗.

3 Making the program counter a parameter instead of an argument is a design choice made in
order to minimize the number of recursive horn clauses simplifying automated verification.

Treating the address of the contract under analysis in a symbolic fashion is crucial
for obtaining a meaningful analysis, as the address of this account on the blockchain
can not easily be assumed to be known upfront. Although discussing this peculiarity is
beyond the scope of this paper, a broader presentation of the symbolic address paradigm
can be found in the technical report [1].

For performing operations and comparisons on values from the abstract domain,
we will assume versions of the unary, binary and comparison operators on the values
from D̂. We will mark abstract operators with a hat (·̂) and e.g., write +̂ for abstract
addition or =̂ for abstract equality. The operators will treat> and a∗ as arbitrary values
so that e.g., > +̂ n evaluates to > and > =̂ n evaluates to true and false for all n ∈ N.

Formally, we establish the relation between a concrete machine state µ and its ab-
straction by an abstraction function that translates machine states to a set of closed anal-
ysis facts. Figure 3 shows the abstraction function αµ that maps a local machine state
into an abstract state consisting of a set of analysis facts. The abstraction is defined with
respect to the relative call depth cd of the execution and a value abstraction function ·̊
that maps concrete values into values from the abstract domain. The function ·̊ thereby
maps all concrete values to the corresponding (concrete) values in the abstract domain,
but those values that can potentially represent the address of contract c∗, hence, they
are translated to a∗ and therefore over-approximated. This treatment might introduce
spurious counterexamples with respect to the concrete execution of the real contract on
the blockchain (where it is assigned a concrete address). On the one hand, this is due to
the fact that by this abstraction the concrete value of the address is assumed to be arbi-
trary. On the other hand, abstract computations with α always result in> and therefore
possible constraints on these results are lost. However, the first source of imprecision
should not be considered an imprecision per se, as the c∗’s address is not assumed to be
known statically, thus, the goal of the abstraction is to over-approximate the executions
with all possible addresses.

The translation proceeds by creating a set of instances of the machine state pred-
icates. For creating instances of the MStatepp predicate, the concrete values aw and
gas are over-approximated by åw and g̊as respectively, and the stack is translated to
an abstract array representation using the function stackToArray. The instances of the
memory predicate are created by translating the memory mapping m to a relational
representation with abstract locations and values. 4

6.3 Abstract execution rules

As all state predicates are parametrized by their program points, the abstract semantics
needs to be formulated with respect to program points as well. More precisely this
means that for each program counter of contract c∗ a set of Horn clauses is created that
describes the semantics of the instruction at this program counter. Formally, a function

4 The reason for using a separate predicate for representing local memory instead of encoding it
as an argument of array type in the main machine state predicate is purely technical: for mod-
eling memory usage correctly we would need a rich set of array operations that are however
not supported by the fixedpoint engines of modern SMT solvers.

Table 3: Abstraction function for the local machine state µ

αµ ((gas, pc,m, aw, s), cd) := {MState(id*, pc) (stackToArray (s), åw, g̊as, cd)}

∪ {Mem(id*, pc) (p̊os, v̊, cd) | m [pos] = v ∧ pos ≤ 2256}

stackToArray (ε) := (0, λx. 0)

stackToArray (x :: s) := let (size, sa) = stackToArray (s) in (size + 1, sasize
x̊)

L·M{c
∗}

pp is defined that creates the required set of rules given that the instruction inst is
at position pc of contract c∗’s code.

Table 4 shows parts of the the definition of L·M{c
∗}

pp for the ADD instruction. The
main functionality of the rule is described by the Horn clause 1 that describes how
the machine stack and the gas evolve when executing ADD. First the precondition is
checked whether the sufficient amount of gas and stack elements are available. Then
the two (abstract) top elements x̂ and ŷ are extracted from the stack and their sum is
written to the top of the stack while reducing the overall stack size by 1. In addition,
the local gas value is reduced by 3 in an abstract fashion. In the memory rule (Horn
clause 2), again the preconditions are checked and then (as memory is not affected by
the ADD instruction) the memory is propagated. This propagation is needed due to the
memory predicate’s parametrization with the program counter: For making the memory
accessible in the next execution step, its values need to be written into the corresponding
predicate for the next program counter. Finally, Horn clauses 3 and 4 characterize the
exception cases: an exception while executing the ADD instruction can occur either
because of a stack underflow or as the execution runs out of gas. In both cases the
exception state is entered which is indicated by recording the relative call depth of the
exception in the predicate Excid∗ (cd).

By allowing gas values to come from the abstract domain, we enable symbolic
treatment of gas. In particular this means that when starting the analysis with gas value
>, all gas calculations will directly result in > again (and could therefore be omitted)
and in particular all checks on the gas will result in true and false and consequently
always both paths (regular execution via Horn clauses 1 and 2 and exception via Horn
clause 4) will be triggered in the analysis.

For over-approximating the semantics of call instructions, more involved abstrac-
tions are needed. We will illustrate these abstractions in the following in an intuitive
way and refer to [1] for the technical details. Note that in the following we will assume
CALL instructions to be the only kind of transaction initiating instructions that are con-
tained in the contracts that we consider for analysis. A generalization of the analysis
that allows for incorporating also other call types is presented in [1].

As we are considering c∗ the only contract to be known, whenever a call is per-
formed that is not a self-call, we need to assume that an arbitrary contract c? gets ex-

Table 4: Exerpt of the abstract rules for ADD

LADDM{c
∗}

(id∗,pc) = {MState(id*, pc) ((size, sa), âw, ˆgas, cd) ∧ size > 1 ∧ ˆgas ≥̂ 3

∧ x̂ = sa[size− 1] ∧ ŷ = sa[size− 2]

⇒ MState(id*, pc+1) ((size− 1, sasize−2

x̂ +̂ ŷ
), âw, ˆgas −̂ 3, cd), (1)

Mem(id*, pc) (ˆpos, v̂a, cd) ∧MState(id*, pc) ((size, sa), ˆgas, âw, cd)

∧ size > 1 ∧ ˆgas ≥̂ 3⇒ Mem(id*, pc+1) (ˆpos, v̂a, cd), (2)

MState(id*, pc) ((size, sa), ˆgas, âw, cd) ∧ size < 2⇒ Excid∗ (cd), (3)

MState(id*, pc) ((size, sa), ˆgas, âw, cd) ∧ ˆgas <̂ 3⇒ Excid∗ (cd) . . . } (4)

����

c
∗

?

?

cd = 0 cd > 0

?

?

...

...

?

?

...c
∗

...

...

...

...

:: Ss′
c
∗

:: Ssc∗

:: Ss″
c
∗

:: :: St
c
∗ S

′

≽

≽

≽
≽

c
∗

Fig. 5: Illustration of the abstraction of the semantics for the CALL instruction.

ecuted. The general idea for over-approximating calls to an unknown contract c? is
that only those execution states that represent executions of contract c∗ will be over-
approximated. Consequently, when a call is performed, all possible effects on future
executions of c∗ that might be caused by the execution of c? (including the initiation
of further initial transactions that might cause reentering c∗) need to be captured. For
doing this as accurate as possible, we use the following observations:

1. Given that c∗ only executes plain CALL instructions the persistent storage of con-
tract c∗ can only be altered during executions of c∗.

2. Contracts have a single entry point: their execution always starts in a fresh machine
state at program counter zero.

In general, we can soundly capture the possibility of contract c∗ being reentered during
the execution of c? by assuming to reenter c∗ at every higher call level. For keeping

the desired precision, we can use the previously made observations for imposing re-
strictions on the reenterings of c∗: First, we assume the persistent storage of c∗ to be the
same as at the point of calling (observation 1.). Second, we know that execution starts at
program counter 0 in a fresh machine state (observation 2.). This allows us to initialize
the machine state predicates presented in Table 2 accordingly at program counter zero.
All other parts of the global state and the execution environment need to be considered
unknown at the point of reentering as they might have potentially been changed during
the execution of c?. This in particular also applies to the balance of contract c∗.

Figure 5 illustrates how the abstract configurations over-approximating the concrete
execution states of c∗ evolve within the execution of the abstract semantics. We write
Π < S for denoting that an abstract configuration Π (here graphically depicted in
gray frames) is an over-approximation of call stack S. The depicted execution starts
in the initial execution state sc∗ of c∗. This is state is over-approximated by assuming
the storage and balance of c∗ as well as all other information on the global state to
be unknown and therefore initialized to > in the corresponding state predicates of the
abstract configuration (denoted in the picture by marking the corresponding state com-
ponents in red). The execution steps representing the executions of local instructions
are mimicked step-wise by corresponding abstract execution steps. During these steps
a more refined knowledge about the state of c∗ and its environment might be gained
(e.g., the value of some storage cells where information is written, or some restric-
tions on the account’s balances, marked in green or blue, respectively). When finally a
CALL instruction is executed, every potential reentering of contract c∗ (here exempli-
fied by execution state tc∗) is over-approximated by abstract configurations for every
call depths cd > 0 that consider all global state and environmental information to be
arbitrary, but the parts modeling the persistent storage of c∗ to be as at the point of
calling. In § 7 we will show how this abstraction will help us to automatically check
smart contracts for single-entrancy in a sound and precise manner. In addition to these
over-approximations that capture the effects on c∗ during the execution of an unknown
contract, for over-approximating CALL instructions some other abstractions need to be
performed that model the semantics of returning:

– For returning it is always assumed that potentially the call failed or returned with
arbitrary return values.

– After returning the global state is assumed to be altered arbitrarily by the call and
therefore its components are set to >.

For a complete account and formal description of the abstractions, we refer to the full
specification of the abstract semantics spelled out in the technical report [1].

7 Verifying security properties

In this section, we will show how the previously presented analysis can be used for
proving reachability properties of Ethereum smart contracts in an automated fashion.

To this end, we review EtherTrust [1], the first sound static analyzer for EVM byte-
code. EtherTrust proceeds by translating contract code provided in the bytecode format
into an internal Horn clause representation. This Horn clause representation, together

with facts over-approximating all potential initial configurations are handed to the SMT
solver Z3 [45] via an API. For showing that the analyzed contract satisfies a reachability
property, the unsatisfiability of the corresponding analysis queries needs to be verified
using Z3’s fixedpoint engine SPACER [46]. If all analysis queries are deemed unsatis-
fiable then the contract under analysis is guaranteed to satisfy the original reachability
query due to the soundness of the underlying analysis.

In the following we will discuss the analysis queries used for verifying single-
entrancy and illustrate how these queries allow for capturing contracts that are vul-
nerable to reentrancy such as the example presented in § 5.

7.1 Over-approximating Single-entrancy

For being able to automatically check for single-entrancy, we need to simplify the orig-
inal property in order to obtain a description that is expressible in terms of the anal-
ysis framework described in § 6. To this end, a strictly stronger property named call
unreachability is presented that is proven to imply single-entrancy:

Definition 2 (Call unreachability [1]). A contract c is call unreachable if for all ini-
tial execution states (µ, ι, σ) such that (µ, ι, σ)c is well formed, it holds that for all
transaction environments Γ and all call stacks S

¬∃s, S′. Γ � (µ, ι, σ)c :: S →∗ sc :: S′ + +S

∧ |S′| > 0 ∧ code (c) [s.µ.pc] ∈ Instcall

With Instcall = {CALL,CALLCODE,DELEGATECALL,CREATE}

Intuitively, this property states that it should not be possible to reach a call instruction of
c∗ after reentering. As we are excluding all transaction initiating instructions but CALL
from the analysis, it is sufficient to query for the reachability of a CALL instruction of
c∗ on a higher call depth. More precisely, we end up with the following set of queries:

{MState(id, pc) ((size, sa), aw, gas, cd) ∧ cd > 0 | code (c∗) [pc] = CALL} (5)

As the MStatepp predicate tracks the state of the machine state at all program points, it
can be used as indicator for reachability of the program point as such. Consequently, by
querying the MState(id*, pc) for all program counters pc where c∗ has a CALL instruc-
tion and along with that requiring a call depth exceeding zero, we can check whether a
call instruction is reachable in some reentering execution.

7.2 Examples

We will use examples for showing how the analysis detects, and proves the absence of
reentrancy bugs, respectively. To this end, we revisit the contract Bob presented in § 5,
and introduce a contract Alice that fixes the reentrancy bug that is present in Bob. The
two contracts are shown in Figure 6.
Detecting reentrancy bugs. We illustrate how the analysis detects reentrancy bugs
using the example in Figure 6a. To this end we give a graphical description of the over-
approximations performed when analyzing contract Bob which is depicted in Figure 7.

1 contract Bob{
2 bool sent = false;
3 function ping(address c){
4 if (!sent) { c.call.value(2)();
5 sent = true; }}}

(a) Smart contract with reentrancy bug

1 contract Alice{
2 bool sent = false;
3 function ping(address c){
4 if (!sent) { sent = true;
5 c.call.value(2)(); }}}

(b) Smart contract with fixed reentrancy bug

Fig. 6: Examples for contracts showing and being robust against the reentrancy bug.

For the sake of presentation, we give the contract code in Solidity instead of bytecode
and argue about it on this level even though the analysis is carried out on bytecode level.

As discussed in § 6.3, the analysis considers the execution of contract Bob to start
in an unknown environment, which implies that also the value of the contract’s sent

variable is unknown and hence initialized to>. As a consequence, the equality check in
line 4 is considered to evaluate to both true and false in the abstract setting (as > needs
to be considered to potentially equal every concrete value). Accordingly, the analy-
sis needs to consider the then-branch of the conditional and consequently the call in
line 4. This call is over-approximated as discussed in § 6.3, and therefore considers
reentering contract Bob in an arbitrary call depth. In this situation, the sent variable is
still over-approximated to have value>wherefore the call at line 4 can be reached again
which satisfies the reachability query in Equation 5.

Proving single-entrancy. We consider the contract Alice shown in Figure 6b. In con-
trast to contract Bob, this contract does not have the reentrancy vulnerability, as the
guard sent that should prevent the call instruction in line 5 from being executed more
than once is set before performing the call. As a consequence, when reentering the con-
tract, the guard is already set and stops any further calls. We show that the analysis
presented in § 6 is precise enough for proving this contract to be single-entrant. Intu-
itively, the abstraction is precise as it considers that the contract’s persistent storage can
be assumed to be unchanged at the point of reentering. Consequently, the then-branch
of the conditional can be excluded from the analysis when reentering and the contract
can be proven to be single-entrant. A graphic description of this argument is provided
in Figure 8. As for contract Bob, the analysis starts in an abstract configuration that as-
signs the sent variable value >, which forces the analysis to consider the then as well
as the else-branch of the conditional in line 4. When taking the else-branch, the
contract execution terminates without reaching a state satisfying the reachability query.
Therefore, it is sufficient to only consider the then-branch for proving the impossi-
bility of re-reaching the call instruction. When executing the call in the then-branch,
according to the abstract call semantics, the analysis needs to take all abstract configu-
rations representing executions of Alice at higher call depths into account. However, in
each of these abstract configurations it can be assumed that the state of the persistent
storage (including the sent variable, highlighted in green) is the same as at the point
of calling. As at this point sent was already initialized to the concrete value true, the
then-branch of the conditional can be excluded from the analysis at any call depth
cd > 0 and consequently the unreachability of the query in Equation 5 is proven.

?.����.�����(�)();

�� ����==�����

���� = ����;

���

���� → ⊤

...

...

...

?.����.�����(�)();

���� = ����;

�� ����==�����

...

���

���� → ⊤

...

?.����.�����(�)();

���� = ����;

�� ����==�����

...

���

���� → ⊤

cd = 0 cd > 0

...

⊤ �����=̂

...

...

⊤ �����=̂

?.����.�����(�)();

���� = ����;

�� ����==�����

...���� → ⊤

���

cd > 0 ∧

Reachability query

?.����.�����(�)();

Fig. 7: Illustration of the attack detection in contract Bob by the static analysis.

7.3 Discussion

In this section, we illustrated how the static analysis underlying EtherTrust [1] in prin-
ciple is capable not only of detecting re-entrancy bugs, but also of proving smart con-
tracts single-entrant. In practice, EtherTrust manages to analyze real-world contracts
from the blockchain within several seconds, as detailed in the experimental evaluation
presented in [1]. Even though EtherTrust produces false positives due to the performed
over-approximations, it still shows better precision on a benchmark than the state-of-the
art bug-finding tool Oyente [16] – despite being sound. Similar results are shown when
using EtherTrust for checking a simple value independency property.

In general, EtherTrust could be easily extended to support more properties on con-
tract execution – given that those properties or over-approximations of them are ex-
pressible as reachability or simple value independency properties. By contrast, checking
more involved hyper properties, or properties that span more than one external transac-
tion execution is currently out of the scope for EtherTrust.

?.����.�����(�)();

�� ����==�����

���� = ����;�����

���� → ⊤

...

...

...

?.����.�����(�)();

���� = ����;

�� ����==�����

...

�����

���� → ����

...

?.����.�����(�)();

���� = ����;

�� ����==�����

...

�����

���� → ����

cd = 0 cd > 0

...

⊤ �����=̂

...

...

���� �����≠ˆ

?.����.�����(�)();

���� = ����;

�� ����==�����

...���� → ����

�����

cd > 0 ∧

Reachability query

?.����.�����(�)();

Fig. 8: Illustration of of proving single-entrancy of contract Alice by the static analysis.

8 Conclusion

We presented a systematization of the state-of-the-art in Ethereum smart contract ver-
ification and outlined the open challenges in this field. Also we discussed in detail the
foundations of EtherTrust [1], the first sound static analyzer for EVM bytecode. In par-
ticular, we reviewed how the small-step semantics presented in [15] is abstracted into a
set of Horn clauses. Also we presented how single-entrancy – a relevant smart contract
security property – is expressed in terms of queries, which can be then automatically
solved leveraging the power of an SMT solver.

References

1. : Ethertrust: Technical report Available at https://www.netidee.at/ethertrust.
2. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008) Available at http:

//bitcoin.org/bitcoin.pdf.
3. Hahn, A., Singh, R., Liu, C.C., Chen, S.: Smart contract-based campus demonstration of

decentralized transactive energy auctions. In: Power & Energy Society Innovative Smart
Grid Technologies Conference (ISGT), 2017 IEEE, IEEE (2017) 1–5

4. Adhikari, C.: Secure framework for healthcare data management using ethereum-based
blockchain technology. (2017)

https://www.netidee.at/ethertrust
http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf

5. Biryukov, A., Khovratovich, D., Tikhomirov, S.: Findel: Secure derivative contracts for
ethereum. In: International Conference on Financial Cryptography and Data Security,
Springer (2017) 453–467

6. McCorry, P., F. Shahandashti, S., Hao, F.: A smart contract for boardroom voting with max-
imum voter privacy. Proceedings of the Financial Cryptography and Data Security Confer-
ence (2017)

7. Notheisen, B., Gödde, M., Weinhardt, C.: Trading stocks on blocks-engineering decentral-
ized markets. In: International Conference on Design Science Research in Information Sys-
tems, Springer (2017) 474–478

8. Mathieu, F., Mathee, R.: Blocktix: Decentralized event hosting and ticket dis-
tribution network. (2017) Available at https://blocktix.io/public/doc/
blocktix-wp-draft.pdf.

9. Azaria, A., Ekblaw, A., Vieira, T., Lippman, A.: Medrec: Using blockchain for medical data
access and permission management. In: Open and Big Data (OBD), International Conference
on, IEEE (2016) 25–30

10. Dong, C., Wang, Y., Aldweesh, A., McCorry, P., van Moorsel, A.: Betrayal, distrust, and
rationality: Smart counter-collusion contracts for verifiable cloud computing. (2017)

11. : The DAO smart contract (2016) Available at http://etherscan.io/address/
0xbb9bc244d798123fde783fcc1c72d3bb8c189413#code.

12. : The parity wallet breach (2017) Available at https://www.coindesk.com/
30-million-ether-reported-stolen-parity-wallet-breach/.

13. : The parity wallet vulnerability (2017) Available at https://paritytech.io/blog/
security-alert.html.

14. Atzei, N., Bartoletti, M., Cimoli, T.: A survey of attacks on ethereum smart contracts (sok).
In: International Conference on Principles of Security and Trust, Springer (2017) 164–186

15. Grishchenko, I., Maffei, M., Schneidewind, C.: A semantic framework for the security anal-
ysis of ethereum smart contracts. In: Proceedings of the 7th International Conference on
Principles of Security and Trust (POST), Springer (2018)

16. Luu, L., Chu, D.H., Olickel, H., Saxena, P., Hobor, A.: Making smart contracts smarter.
In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security, ACM (2016) 254–269

17. Zhou, E., Hua, S., Pi, B., Sun, J., Nomura, Y., Yamashita, K., Kurihara, H.: Security assur-
ance for smart contract. In: New Technologies, Mobility and Security (NTMS), 2018 9th
IFIP International Conference on, IEEE (2018) 1–5

18. Nikolic, I., Kolluri, A., Sergey, I., Saxena, P., Hobor, A.: Finding the greedy, prodigal, and
suicidal contracts at scale. arXiv preprint arXiv:1802.06038 (2018)

19. Kalra, S., Goel, S., Dhawan, M., Sharma, S.: Zeus: Analyzing safety of smart contracts,
NDSS (2018)

20. Buenzli, F., Dan, A., Drachsler-Cohen, D., Gervais, A., Tsankov, P., Vechev, M.: Securify
(2017) Available at http://securify.ch.

21. : Mythril Available at https://github.com/ConsenSys/mythril.
22. : Manticore Available at https://github.com/trailofbits/manticore.
23. SmartDec: Smartcheck. https://github.com/smartdec/smartcheck
24. : Solgraph Available at https://github.com/raineorshine/solgraph.
25. Hirai, Y.: Defining the ethereum virtual machine for interactive theorem provers. In: Inter-

national Conference on Financial Cryptography and Data Security, Springer (2017) 520–535
26. Wood, G.: Ethereum: A secure decentralised generalised transaction ledger. Ethereum

Project Yellow Paper 151 (2014) 1–32
27. Amani, S., Bégel, M., Bortin, M., Staples, M.: Towards verifying ethereum smart contract

bytecode in isabelle/hol. CPP. ACM. To appear (2018)

https://blocktix.io/public/doc/blocktix-wp-draft.pdf
https://blocktix.io/public/doc/blocktix-wp-draft.pdf
http://etherscan.io/address/ 0xbb9bc244d798123fde783fcc1c72d3bb8c189413#code
http://etherscan.io/address/ 0xbb9bc244d798123fde783fcc1c72d3bb8c189413#code
https://www.coindesk.com/30-million-ether-reported-stolen-parity-wallet-breach/
https://www.coindesk.com/30-million-ether-reported-stolen-parity-wallet-breach/
https://paritytech.io/blog/security-alert.html
https://paritytech.io/blog/security-alert.html
http://securify.ch
https://github.com/ConsenSys/mythril
https://github.com/trailofbits/manticore
https://github.com/smartdec/smartcheck
https://github.com/raineorshine/solgraph

28. Hildenbrandt, E., Saxena, M., Zhu, X., Rodrigues, N., Daian, P., Guth, D., Rosu, G.: Kevm:
A complete semantics of the ethereum virtual machine. Technical report (2017)

29. Roşu, G., Şerbănută, T.F.: An overview of the k semantic framework. The Journal of Logic
and Algebraic Programming 79(6) (2010) 397–434

30. Bhargavan, K., Delignat-Lavaud, A., Fournet, C., Gollamudi, A., Gonthier, G., Kobeissi,
N., Kulatova, N., Rastogi, A., Sibut-Pinote, T., Swamy, N., et al.: Formal verification of
smart contracts: Short paper. In: Proceedings of the 2016 ACM Workshop on Programming
Languages and Analysis for Security, ACM (2016) 91–96

31. Grossman, S., Abraham, I., Golan-Gueta, G., Michalevsky, Y., Rinetzky, N., Sagiv, M., Zo-
har, Y.: Online detection of effectively callback free objects with applications to smart con-
tracts. Proceedings of the ACM on Programming Languages 2(POPL) (2017) 48

32. Cook, T., Latham, A., Lee, J.H.: Dappguard: Active monitoring and defense for solidity
smart contracts

33. OConnor, R.: Simplicity: A new language for blockchains. arXiv preprint arXiv:1711.03028
(2017)

34. Pettersson, J., Edström, R.: Safer smart contracts through type-driven development
35. Coblenz, M.: Obsidian: A safer blockchain programming language. In: Software Engineer-

ing Companion (ICSE-C), 2017 IEEE/ACM 39th International Conference on, IEEE (2017)
97–99

36. Schrans, F., Eisenbach, S., Drossopoulou, S.: Writing safe smart contracts in flint
37. : Vyper Available at https://github.com/ethereum/vyper.
38. : Bamboo Available at https://github.com/pirapira/bamboo.
39. : Formal verification for solidity contracts. available at https://forum.ethereum.

org/discussion/3779/formal-verification-for-solidity-
contracts

40. Filliâtre, J.C., Paskevich, A.: Why3where programs meet provers. In: European Symposium
on Programming, Springer (2013) 125–128

41. Sergey, I., Kumar, A., Hobor, A.: Scilla: a smart contract intermediate-level language. arXiv
preprint arXiv:1801.00687 (2018)

42. Wöhrer, M., Zdun, U.: Smart contracts: Security patterns in the ethereum ecosystem and
solidity. (2018)

43. Mavridou, A., Laszka, A.: Designing secure ethereum smart contracts: A finite state machine
based approach. arXiv preprint arXiv:1711.09327 (2017)

44. Sergey, I., Hobor, A.: A concurrent perspective on smart contracts. arXiv preprint
arXiv:1702.05511 (2017)

45. De Moura, L., Bjørner, N.: Z3: An efficient smt solver. In: International conference on Tools
and Algorithms for the Construction and Analysis of Systems, Springer (2008) 337–340

46. Komuravelli, A., Gurfinkel, A., Chaki, S.: Smt-based model checking for recursive programs.
Form. Methods Syst. Des. 48(3) (June 2016) 175–205

https://github.com/ethereum/vyper
https://github.com/pirapira/bamboo
https://forum.ethereum.org/discussion/3779/formal-verification-for-solidity-
https://forum.ethereum.org/discussion/3779/formal-verification-for-solidity-
contracts

	Foundations and Tools for the Static Analysis of Ethereum smart contracts

