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ABSTRACT 

The [11C]PIB PET tracer, originally developed for amyloid imaging, has 

been recently repurposed to quantify demyelination and remyelination in 

multiple sclerosis (MS). Myelin PET imaging however, is limited by its low 

resolution that deteriorates the quantification accuracy of white matter (WM) 

lesions. Here, we introduce a novel partial volume correction (PVC) method 

called Multiresolution–Multimodal Resolution-Recovery (MM-RR), which uses 

the wavelet transform and a synergistic statistical models to exploit MRI 

structural images to improve the resolution of [11C]PIB PET myelin imaging.  

MM-RR performance was tested on a phantom acquisition and in a 

dataset comprising [11C]PIB PET and MR T1- and T2-weighted images of 8 

healthy controls and 20 MS patients. 

For the control group, the MM-RR PET images showed an average 

increase of 5.7% in WM uptake while the grey-matter (GM) uptake remained 

constant, resulting in +31% WM/GM contrast. Furthermore, MM-RR PET 

binding maps correlated significantly with the mRNA expressions of the most 

represented proteins in the myelin sheath (R2=0.57±0.09).  

In the patient group, MM-RR PET images showed sharper lesions 

contour and significant improvement in normal-appearing tissue/WM-lesion 

contrast compared to scanner PET (contrast improvement > +40%). These 

results were consistent with MM-RR performances in phantom experiments. 

 

 

Keywords: partial volume correction, PET/MR, wavelet, myelin, multiple 

sclerosis 
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INTRODUCTION 

Multiple sclerosis (MS) is a complex neurological disorder that 

represents the first non-traumatic cause of neurological disability among 

young adults 1. MS pathophysiology is characterized by an auto-immune 

aggression of myelin sheaths resulting in demyelinated lesions and axonal 

degeneration. Myelin is however a dynamic tissue and there is strong 

evidence in animal models that myelin repair is an efficient process which 

may follow myelin insult 2. However, little is known about the dynamics of re-

myelination in patients with MS. Sensitive imaging tools are now required to 

measure myelin dynamics in-vivo to investigate spontaneous remyelination in 

MS patients and to act as biomarkers for new pro-myelinating therapies. 

Positron emission tomography (PET) with [11C]PIB was originally 

developed to image amyloid deposition in neurodegenerative disorders and 

dementia 3 and has been recently repurposed for myelin imaging in vivo in 

humans 4-6 (Figure 1). The essential steps to measure de-myelination and re-

myelination consist of lesions detection, quantification of myelin content and 

comparison between baseline and follow-up scans. In this perspective, the 

influence of partial volume effect (PVE) is relevant when detecting and 

quantifying myelin changes in lesions, considering the typical poor image 

resolution of PET and the quantification bias resulting from activity spill-in. 

The literature provides a wide range of partial volume correction (PVC) 

techniques to address the PVE in PET imaging 7. One group is represented 

by region-of-interest (ROI) based methods, which are however limited by the 

assumption of radiotracer homogeneous distribution within each ROI 7, 8. This 

condition is clearly inapplicable to MS lesions due to their heterogeneity 9, 10. 

Alternatively, voxel-based techniques like partition-based 11 and 

multiresolution methods 12, 13 are also available. A distinct final approach to 

PVC consists of incorporating a model of the system point spread function 

(PSF) into the reconstruction algorithm 14, 15. 

In this work we introduce the Multiresolution–Multimodal Resolution-

Recovery (MM-RR) method to achieve improved myelin quantification in 

[11C]PIB PET brain images by performing effective PVC using T1-weighted 

MR sequences. MM-RR stems from previous works on brain PET/MR data 13, 
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16-18 and whole-body PET/CT data 19. Similarly to these approaches, the 

relation between functional and anatomical images is exploited in a 

synergistic fashion for a realistic noise-controlled recovering of PET image 

resolution. However, the new algorithm takes a step further by modelling the 

differential sensitivity and specificity to myelin of the two modalities without the 

requirement of any anatomical segmentation which would not be applicable in 

the instance of the MS population. The ultimate clinical aim is to accurately 

quantify lesions uptake according to their degree of myelin loss and repair.  

Hence we focused the validation of the approach on clinically relevant 

metrics 19 and specifically we wanted to demonstrate that MM-RR has the 

potential to: 1) significantly improve white/grey matter contrast in normal 

[11C]PIB PET data without quantitative distortion of grey matter values; 2) 

enhance the contrast between normal appearing white matter (NAWM) and 

T2 positive perilesional and lesion signals, black holes and Gadolinium 

positive lesions 3) ameliorate the partial volume effect in small lesions and 4) 

reduce the partial volume effect around the ventricular spaces. In addition to 

the clinical investigation, the method was further validated with two additional 

analyses. Firstly, the performance of the MM-RR method was compared 

against standard PVC methods in phantom experiments. Then, similarly to 20, 

MM-RR myelin maps from healthy controls were tested against a brain-wide 

mRNA atlas of myelin associated proteins that acted as an independent 

predictor of myelin density. 

 

MATERIALS AND METHODS 

 

The Multiresolution–Multimodal Resolution-Recovery method 

The MM-RR algorithm stems from previously developed methodology 

on partial volume correction 13, 19 and denoising 21 where the structural 

information (CT or MRI) was exploited to improve the image quality of the 

functional counterpart (PET). As in these techniques, MM-RR is based on the 

wavelet decomposition of both functional and structural images.  

In the existing techniques, the high-frequency wavelet coefficients are 

transferred from the high-resolution anatomical image to the PET after 
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appropriate statistical weighting. However, prior to the wavelet decomposition, 

the anatomical image is segmented by means of tissue classification based 

on image intensity levels or by using anatomical atlases, under the 

assumption of radiotracer homogeneous distribution within each ROI. This is 

inapplicable in case of demyelinating diseases like MS, due to the 

heterogeneity of myelin content between and within lesions 9, 10. 

In the formulation presented here, the image resolution recovery 

depends on the ad-hoc modelling of the relationship between low-frequency 

information of PET and T1-weighted MR that is then used to insert high-

frequency MR information into the PET image. No a priori brain tissue 

segmentation is performed and no modelling steps are required to remove 

MRI components that are not related to myelin. The MM-RR algorithm can be 

summarized as follows: 

A. Given a T1-weighted MR and [11C]PIB PET binding map (co-registered 

to the same space), the two individual images undergo a 3D wavelet 

decomposition. A model is fitted to the scatter plot defining the 

relationship between MR and PET signal intensities at the lowest 

resolution scales (Low-resolution modelling) (Figure 2A). This 

relationship relies on the assumption of association between myelin-

bound water (as measured by T1-weighted MR) and basic myelin 

protein (as measured by [11C]PIB PET) and can be modelled by a 

linear regression through the origin with positive slope. Note that this 

relationship is proposed only for T1 relaxation and should be re-

evaluated for use with other MRI modalities. 

B. The linear model is calculated in the same fashion between the MR 

and PET coefficients for all the remaining resolution levels of the 3D 

wavelet transforms (High-resolution modelling). In this instance, given 

the loss of resolution of the PET data, the linear slope differs from the 

one at step A. (Figure 2B);  

C. For each resolution level of the 3D PET wavelet transform, new 

wavelet coefficients are calculated, rescaled from the difference 

between the models fitted in A) and B) and corrected to account for 
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MR-PET differences in term of information content and image noise 

(Figure 2C); 

D. The new PET wavelet coefficients are mapped back to the image 

space through inverse wavelet transform, generating the high-

resolution [11C]PIB PET image (2D). 

The detailed mathematical derivation of the method is reported in the  

following paragraph. 

 

The Multiresolution–Multimodal Resolution-Recovery pipeline 

 

Wavelet decomposition MM-RR algorithm 

The wavelet transform (WT) decomposes a 1D signal 𝑓(𝑥) into its high- 

and low- frequency components though a filter bank as follow 

 

𝑓(𝑥) = ∑ ∑ 𝑑𝑗(𝑘) ∙ 𝜓𝑗,𝑘(𝑥) + ∑ 𝐶𝑗(𝑘) ∙ 𝜙𝐽,𝑘(𝑥)

𝑘

𝐽

𝑗−1𝑘

 

 

[1] 

 

where 𝑗  is usually referred to as the decomposition/resolution level, 𝜓  is a 

high band-pass function and 𝜙 is a low-pass scaling function while 𝑑𝑗(𝑘) and 

𝐶𝑗(𝑘) are their resulting coefficients (respectively wavelet and low resolution 

coefficients). 

In tomographic imaging applications the input signal is no longer mono 

dimensional, therefore its components have to be represented by 3-

dimensional wavelet and scaling functions. In this case the transform 

generates 8 components from a 3D input signal while applying the one-

dimensional decomposition (high- and low- pass filters) successively along 

the three 𝑥, 𝑦, 𝑧 directions. The low-resolution coefficients resulting from the 

application of the low-pass filter to all 𝑥, 𝑦, 𝑧  directions represent the input 

signal for the second level wavelet decomposition 𝑗 = 2 . A graphical 

representation of the 3D wavelet decomposition is reported in Supplementary 

Material – Figure 1. 
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In this work, as in previously proposed PVC techniques 13, 19, we 

preferred the dual-tree complex wavelet transform (DT-CWT) 22 to the more 

widespread used dyadic wavelet transform (DWT) 23 in order to achieve better 

directionality selectivity, shift invariance and perfect reconstruction. The 

wavelet decomposition has been carried out using the 3D Complex Dual-Tree 

Discrete Wavelet Transform function from the Matlab Wavelet package 

developed by Polytechnic University, Brooklyn, NY 

(http://taco.poly.edu/WaveletSoftware/). The setting parameters comprise a 

maximum decomposition scale level of 2 and the selection of Farras and 

Kingsbury Q class filters. 

 

Scaling Factors 

Initially, both functional (PET) and anatomical (MRI) images are 

decomposed by means of the DT-CWT into several resolution elements up to 

resolution level 𝑗 = 2 and the wavelet (𝒲𝑃𝐸𝑇, 𝒲𝑀𝑅𝐼) and low resolution (ℒ𝑃𝐸𝑇, 

ℒ𝑀𝑅𝐼) coefficients collected into separate matrixes.  

The algorithm requires two scaling factors to account for the resolution 

difference between the two imaging modalities (inter-modality resolution and 

global coefficient scaling factors) and a weighting factor accounting for the 

difference between subsequent wavelet resolution levels (intra-modality 

resolution scaling factor). 

The inter-modality resolution scaling factor 𝑅  compensates for the 

difference in resolution between the two imaging modalities. It is important to 

account for this difference since the wavelet transform decomposes the image 

into several resolution levels. In case the two images being transformed do 

not have the same initial resolution, then the correspondent decomposition 

levels will be out of phase compromising the rest of the algorithm. The 

magnitude of wavelet coefficients depend on the spatial resolution of the 

image, therefore the scaling coefficient is obtained as the ratio of the 

coefficients of the original anatomical image with a smoother version which is 

degraded to PET scanner resolution through a 3-dimensional Gaussian 

filtering in image space. 

 

http://taco.poly.edu/WaveletSoftware/
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𝑅ℒ =  
∑ ℒ𝑀𝑅𝐼

∑ ℒ𝑀𝑅𝐼𝑠
 𝑅𝒲 =  

∑ 𝒲𝑀𝑅𝐼

∑ 𝒲𝑀𝑅𝐼𝑠
 [2] 

 

The global coefficient scaling factor 𝐺  compensates for the difference in 

intensity between PET and MRI coefficients. Note that in Eq [3] the PET 

coefficients are multiplied with the inter-modality resolution scaling factor 𝑅 for 

consistency purpose. 

 

𝐺ℒ =  
𝑅ℒ ∙ ∑ ℒ𝑃𝐸𝑇

∑ ℒ𝑀𝑅𝐼
 𝐺𝒲 =  

𝑅𝒲 ∙ ∑ 𝒲𝑃𝐸𝑇

∑ 𝒲𝑀𝑅𝐼
 [3] 

 

The PET and MRI wavelets and low-resolution coefficients are then 

respectively multiplied within each iterative step by the inter-modality 

resolution and the global coefficient scaling factors that remain unvaried 

during the whole iterative procedure outlined in the next section.  

 

MM-RR algorithm  

The first step of the algorithm consists of creating a correlation model 

between the functional and structural information taking into account only the 

low-resolution coefficients (Figure 2A). This step is also called low-resolution 

modelling and corresponds to: 

 

ℒ𝑚𝑜𝑑𝑒𝑙 = 𝛼 ∙ 𝐺ℒ ∙ ℒ𝑀𝑅𝐼 + 𝛽 [4] 

 

𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠ℒ = 𝐺ℒ ∙ ℒ𝑀𝑅𝐼 −  ℒ𝑚𝑜𝑑𝑒𝑙 [5] 

 

where 𝛼 and 𝛽 are the slope and intercept of MR and PET regression at low-

resolution scales (ℒ𝑚𝑜𝑑𝑒𝑙), stored together with the 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠ℒ before moving 

on with the analysis of the wavelet coefficients.  

In the following iterative steps, each set of wavelet coefficients related 

to a specific direction and resolution level is analysed separately. For each set 

a correlation analysis is performed between the functional and structural high-

resolution wavelet coefficients (𝒲𝑀𝑅𝐼 , 𝒲𝑃𝐸𝑇). The coefficients that fall in the 
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second and fourth quadrant of the Cartesian graph (Figure 2B) are discarded 

before calculating the correlation model. These coefficients with negative 

correlation refers to image component that are present in only one image 

modality thus resulting from image noise.  

 

𝒲𝑚𝑜𝑑𝑒𝑙 = 𝛼 ∙ 𝐺𝒲 ∙ 𝒲𝑀𝑅𝐼 + 𝛽 
 

[6] 

 

Once the linear model is computed, the residuals are calculated and 

stored (Figure 2B).  

 

𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠𝒲 = 𝐺𝒲 ∙ 𝒲𝑀𝑅𝐼 −  𝒲𝑚𝑜𝑑𝑒𝑙 [7] 

 

The residuals are then added to the correlation model (ℒ𝑚𝑜𝑑𝑒𝑙) obtained from 

the low-resolution coefficients at the first step to obtain the final coefficients of 

the improved PET image (Figure 2C). The initial model containing information 

on low-resolution uniform activity distribution is integrated with its missing 

high-resolution information for the specific set of coefficients described by the 

residuals: 

 

𝒲𝑛𝑒𝑤_𝑃𝐸𝑇 = ℒ𝑚𝑜𝑑𝑒𝑙 + 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠𝒲 [8] 

 

To note that in Eq [8], the correlation model obtained with low-resolution 

coefficients of Eq [4] is used as foundation in the computation of the 

coefficients for the new high resolution PET. Since the magnitude of the 

coefficients increases as the decomposition proceeds to finer resolution 

levels, an intra-modality resolution scaling factor Λ  accounting for this 

difference is needed. 

We used a robust measure of the noise variance computed for each 

resolution level (𝜎ℒ and 𝜎𝒲) to account for this scaling factor. Precisely we 

computed the median absolute deviation MAD which is then divided by 

0.6745 for calibration purposes 24, 25. 
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𝜎ℒ = 𝑀𝐴𝐷{𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙ℒ} 0.6745⁄  [9] 

 

𝜎𝒲 = 𝑀𝐴𝐷{𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝒲} 0.6745⁄  [10] 

 

Once the measures of the noise variance are known, the intra-modality 

resolution scaling factor Λ  is computed as their ratio between different 

resolution levels as in Eq [11] and integrated in the final model of Eq [8] to 

obtain Eq [12]  

 

Λ = 𝜎𝒲 𝜎ℒ⁄  [11] 

 

𝒲𝑛𝑒𝑤_𝑃𝐸𝑇 = ℒ𝑚𝑜𝑑𝑒𝑙 + Λ ∙ 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠𝒲 [12] 

 

Once the new wavelet coefficients (𝒲𝑛𝑒𝑤_𝑃𝐸𝑇) are calculated iteratively for all 

the wavelet quadrants, an inverse wavelet transform is performed to obtain 

the new high resolution PET image (Figure 2D).  

 

 

Phantom Experiments 

Given the impossibility to generate simulated PET/MR myelin imaging 

data accounting for the complex biology of the brain tissues, the evaluation of 

the MM-RR method was done using the PET/CT phantom data generated in 

19 where there is a similar positive association between the PET fluorine 

signal and the CT measured density.   

Briefly, the NEMA IEC body phantom with six spheres of different 

volumes (range from 0.5 cm3 to 26.5 cm3) was considered. Compartments 

were filled with both iodinated contrast media (CM) Omnipaque300TM (300 

mg/ml organic Iodine) and radioactive tracer 18F-Fluoride. Two different 

experiments changing the layout of CT and PET contrasts were performed, 

accounting for possible mismatches between functional and anatomical 

images (Figure 3A). Full experimental details are reported in the original 

references 19. 
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The resulting images were then processed with the MM-RR algorithm, 

with the CT image used instead of the MRI as the high-resolution low-

specificity reference image for the algorithm. In addition, the same data were 

reconstructed with the inclusion of a Point Spread Function (PSF) model into 

the standard OSEM algorithm (GE Q.Core VuePoint FX-S, henceforth called 

PET-PSF). For comparative purposes, PVC with the SFS-RR algorithm was 

also included 19.  

 Consistently with previous work 19, the performance of PVC methods 

was expressed in term of Root Mean Square Error (RMSE) and Contrast to 

Noise Ratio (CNR). 

 

Dataset 

The MM-RR technique was tested with two measured datasets from 

the same study comprising [11C]PIB PET and structural T1-weighted MR 

images. For the first part of the study, 8 healthy control subjects (3 male, 5 

female, age: 31.6 ± 6.3 years) were enrolled 20. Inclusion criteria consisted in 

an age between 18 and 55 years and the absence of any known neurological 

or psychiatric condition.  

The second set comprised of 20 relapsing-remitting MS patients age- 

and gender-matched to healthy controls (7 male, 13 female, age: 32.3 ± 5.6 

years) with at least one gadolinium enhancing (Gd+) lesion over 6mm in 

diameter on magnetic resonance imaging (MRI) at study entry 6.  

For both studies, ethical approval was granted by the ethics committee 

of the Pite-Salpetriere Hospital (Approval No. P080503) and informed consent 

was obtained from all participants. This study was conducted according to the 

Declaration of Helsinki. 

 

Positron Emission Tomography and Magnetic Resonance Imaging 

All PET scans were performed on the brain dedicated PET research 

tomograph ECAT-HRRT (CPS Innovations, Knoxville, TN, USA). This high 

resolution scanner achieves an intra-slice spatial resolution of ~2.5 mm full 

width at half maximum, with 25 cm and 31.2 cm of axial and transaxial field of 

view 26. 
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The 90-minute emission scan was initiated coincident with a 1-minute 

intravenous bolus injection of [11C]PIB (mean 358 ± 34 MBq). There were no 

differences between healthy controls and patients in term of injected 

radioactivity or specific activity 6. Images were reconstructed using the 3D 

ordinary Poisson ordered subset expectation maximization algorithm 

(POSEM) 27 implementing point spread function (PSF) modelling up to 10 

iterations. An additional smoothing filter implementing the PSF was applied to 

the reconstructed images to remove image inhomogeneity and spiky artefacts 

28.  

The resulting dynamic PET images consisted of 25 frames of data (6 × 

1, 6 × 2, 4 × 3, 6 × 5, 3 × 10 minutes) with a voxel size of 1.22 mm × 1.22 mm 

× 1.22 mm. Inter-frame subject motion correction was applied by realigning 

each PET frame to a common reference space through a procedure similar to 

those reported by Montgomery et al 29. Data were corrected for carbon-11 

decay. A reference region was determined using previously published 

methodology developed specifically for [11C]PIB that uses a supervised 

clustering approach to determine a set of grey matter voxels with kinetics that 

are the closest to a predefined set of normative dynamics 30. The average 

time-activity curve of these voxels was used as input for the Logan plot to 

derive parametric maps of volume of distribution (DVR)31. We refer to 

Veronese et al 20 for a detailed description of the PET [11C]PIB dynamic 

quantification. 

In addition to the PET acquisition, MR images of all subjects were 

collected using a 3T Siemens system (Siemens, Erlangen, Germany; TRIO 

32-channel TIM system). Specifically, 3D T1-weighted MPRAGE, T2-weighted 

(T2-w) and 3D FLAIR sequences were performed for all subjects while 

patients had additional pre- and post- gadolinium T1 spin-echo sequences. 

Only the T1 weighted images were used for PVC using MM-RR. Lesions were 

segmented on T2-w images with reference to co-registered FLAIR scans. 

For each subject, T2- and T1- weighted images were co-registered to 

the PET space using a rigid transformation using Flirt 

(http://fsl.fmrib.ox.ac.uk/fsl/) maintaining PET data in its original space and 

avoiding further loss of resolution due to interpolation. Using VBM8 toolbox 

(hhttp://dbm.neuro.uni-jena.de/vbm/download/) and FIRST 

http://fsl.fmrib.ox.ac.uk/fsl/
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(http://fsl.fmrib.ox.ac.uk/fsl/), image voxels were automatically classified as 

grey matter (GM), white matter (WM) and cerebrospinal fluid (CSF) using a 

tissue probability threshold of 90%. The quality of all the image segmentations 

and coregistrations was assessed via visual inspection by an experienced 

neuroimaging scientist. 

Additional regions of interest (ROIs) were manually defined on patient 

images by an experienced neurologist using the co-registered information 

from the T2- weighted and T1-weighted images. The ROIs were classified as 

follow: 1) GM; 2) normal-appearing WM; 3) perilesional WM; 4) lesion WM; 5) 

black holes and 6) Gadolinium enhancing (Gd+) lesions. Only lesions above 

2.5 mm (corresponding to the resolution of the PET-camera) were retained as 

effective ROI. 

 

Image analysis and evaluation 

Qualitative and quantitative evaluations were carried out comparing the 

original data, here labelled as “Scanner PET” images with the output of the 

resolution recovery procedure, here named “MM-RR PET”, in order to 

evaluate the performance of the MM-RR algorithm. 

In the first instance, we analysed the images of the healthy subjects to 

evaluate resolution recovery and to control for any bias that may have been 

introduced. For each subject we calculated the average [11C]PIB DVR in three 

ROIs (GM, WM and whole brain respectively) and the mean and standard 

deviation of all subjects were compared between Scanner and MM-RR PET. 

As an additional check, we calculated the [11C]PIB DVR as a function of the 

distance from the cerebral spinal fluid for both WM and GM ROIs as a loss of 

signal near the ventricles was evident in the original data as a result of PVE 

20. This is very relevant for the quantification of all lesions close to these 

boundaries. Finally, for a quantitative evaluation of resolution recovery, a 

contrast analysis was performed taking into consideration the GM/WM 

contrast in small spherical regions of 2.5, 5, 7.5 and 10 mm diameter. For 

each subject a pair of random regions was drawn on the GM and WM 

segmented on the T1-weighted images. Both ROIs were then moved to the 

PET images (Scanner and MM-RR) and the mean of voxel estimates within 

http://fsl.fmrib.ox.ac.uk/fsl/
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each region was computed (𝑊𝑀𝑅𝑂𝐼 ,  𝐺𝑀𝑅𝑂𝐼 ) and the mean local contrast 

calculated as 

 

𝑚𝑙𝑐% =
𝑊𝑀𝑅𝑂𝐼−𝐺𝑀𝑅𝑂𝐼

𝐺𝑀𝑅𝑂𝐼
∙ 100 

[13] 

 

The procedure was repeated up to 500 times for each sphere diameter size 

and mean and variability of 𝑚𝑐𝑙% were compared between different ROI sizes 

as well as between Scanner and MM-RR PET. 

For the patient group, we compared the average [11C]PIB DVR with the 

same statistical methodology used for the healthy subjects group focusing 

however on clinically relevant ROIs, specifically the normal-appearing WM, 

perilesional area, lesions, black holes and Gadolinium enhancing (Gd+) 

lesions. These ROIs were chosen consistently with previous studies 6. 

Additionally, we performed a correlation analysis between the average 

[11C]PIB DVR and the lesional volumes to check whether the effect of the 

PVC depended on the size of the lesion, as one would have expected. To 

perform this type of analysis we grouped all the lesions of all the patients 

according to their volumes. Then, for each lesions size, we calculated the 

average [11C]PIB DVR of all patients’ lesions of that specific volume. The 

analysis was limited to WM lesions, to control for the effect of tissue 

surrounding contrast on PVC. 

 

MM-RR PET myelin mapping: correlation with myelin associated protein 

mRNA expressions 

In order to evaluate the validity of the myelin maps produced by MM-RR 

method, [11C]PIB PET maps derived from the healthy control group (both MM-

RR and Scanner PET) were tested against the brain mRNA expression atlas 

of a set of myelin-associated proteins contained in the Allen Human Brain 

Atlas 32. We have previously shown that these mRNA maps are highly 

predictive of protein levels in-vivo measured with PET for all those transcripts 

that do not undergo significant post-transcriptional modifications 33, a 

condition that is met for the myelin system 20. The comparison between 

imaging and gene expressions was performed by correlation analysis at the 
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voxel level in stereotaxic MNI (Montreal Neurological Institute) coordinate 

accordingly to MENGA pipeline 34 (https://www.nitrc.org/projects/menga/).  

The proteins considered for the analysis were selected based on their 

prevalence in the myelin sheath 35: myelin associated glycoprotein (MAG), 

myelin basic protein (MBP), proteolipid protein-1 (PLP1), 2',3'-Cyclic-

nucleotide 3'-phosphodiesterase  (CNP), myelin oligodendrocyte glycoprotein  

(MOG), and oligodendrocyte basic protein (MOBP). To exclude for spurious 

correlations, [11C]PIB imaging data were also compared with a series of non-

myelin proteins including dopamine D2 receptor (DRD2), 5HT1A serotonin 

receptor (HTR1A), brain-derived neurotrophic factor (BDNF), and Aquaporin 

4  (AQP4). 

 

 

RESULTS 

 

Phantom Data 

The performance of the PVC methods is summarized in Figure 3.  

As expected, the smaller the sphere, the bigger the bias in the activity 

estimation, regardless of the PVC method used. 

Given the lack of segmented anatomical information, as expected the 

performance of MM-RR are inferior to the one of SFS-RR (RMSE relative 

difference +10%±11%; CNR relative difference -9%±13%) but comparable 

with the PSF reconstruction method (RMSE relative difference 0%±4%; CNR 

relative difference +6%±7%) across spheres. Compared to scanner PET. The 

images refer to a representative healthy control. The MM-RR PET images 

show sharper contours compared to the Scanner PET and better WM 

definition. 

The qualitative improvement of the MM-RR [11C]PIB DVR maps is 

confirmed by the quantitative analysis. Figure 4B reports the comparison of 

the three tissue ROIs (whole brain, GM and WM) in the healthy control 

dataset. Each box collects the mean value for the specific ROI of all the 

healthy subjects. The average DVR in the WM is 5.7% higher for the MM-RR 

PET compared to the Scanner PET (Paired t-test p<0.001). The average DVR 

in the GM is comparable between Scanner PET and MM-RR PET (Paired t-
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test p=0.72) confirming the lack of quantitative distortion in the latter. 

Moreover, the resolution recovery does not come at the cost of increased 

noise as the standard deviations of the two imaging modalities are 

comparable for all the three ROIs (F-test p>0.35 for all ROIs).  

A quantitative evaluation of the improved image quality achieved with 

the MM-RR algorithm is shown by the WM/GM contrast analysis 

(Supplementary Material – Figure 2). The MM-RR PET images show an 

average increase of 30% in WM/GM contrast compared to Scanner PET, 

corresponding to an average [11C]PIB DVR WM/GM ratio greater than 15%. 

These results are independent from ROI size; please note that the highest 

signal improvement is reported for the smallest ROI (diameter 2.5 mm) with a 

46% increase in WM/GM contrast compared to Scanner PET.  

A quantitative measure of the PVC that can be achieved with MM-RR 

is shown in Figure 5, where the DVR for WM and GM is displayed as a 

function of the distance from the CSF. In GM, [11C]PIB DVR estimates are 

comparable within the first 3 mm (mean relative difference of 3%±2%), after 

which MM-RR PET returns lower values compared to Scanner PET (mean 

relative difference -9%±1% at 5mm). To note that the further from the CSF 

the lower the number of voxels, especially in the GM, which introduces 

an additional element of variability. For the WM, instead, the highest 

discrepancy between Scanner and MM-RR [11C]PIB DVR estimates is found 

within 5 mm of distance from CSF (up to 31% in mean relative difference), 

while the two images become comparable as the distance increases (mean 

relative difference +2%±1%). This suggests that the recovered resolution 

concurs in correcting for spill-out effect in the WM border area. This 

corresponds to both WM/GM and WM/CSF boundaries. This is of 

relevance given that neurodegeneration around the ventricles is an early 

process in the pathophysiology of MS.  

 

Correlation with myelin associated protein mRNA expressions 

MM-RR did not affect the level of cross-correlation between imaging 

and genomic data (Figure 6A).  High-resolution maps returned the same 

levels of correlation with the mRNA expressions of myelin associated proteins 

of standard resolution maps (Paired t-test p<0.05; mean relative difference: -
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1%±4%) (Figure 6B). Genomic vs imaging cross-correlation was significant for 

all tested cases (p<0.05), ranging from R2 = 0.48 to R2 = 0.67. On the 

opposite, for both resolution levels, imaging vs genomic cross-correlation was 

not significant when non-myelin associated proteins were considered 

(R2<0.26 for all subjects and all genes) (Figure 6B). 

 

Application to [11C]PIB PET myelin imaging in patients with MS 

Figures 7 reports the impact of the MM-RR application to the MS 

patient dataset. Figure 7A provides an example of the improved lesion 

detectability achieved with the MM-RR algorithm compared to the Scanner 

PET. The images refer to a representative MS patient. As for the healthy 

control in Figure 4A, the MM-RR PET images show sharper contours 

compared to the Scanner PET. Additionally, a noticeable improvement in 

lesion detectability can be appreciated in the two representative lesions 

(zoomed in the red circle). Additional specific example for Gadolinium 

enhanced lesion is reported in Figure 6 – Supplementary material. 

The quantitative impact of the MM-RR application on patient images is 

reported in Figure 7B. As previously done for healthy controls (Figure 4B), 

each box collects the mean value for a specific clinically relevant ROI for all 

the patients. The average [11C]PIB DVR in the lesional tissue (T2-w lesions, 

black holes and Gadolinium enhancing lesions) is significantly lower for the 

MM-RR PET (mean difference 4-12%, p<0.05). On the other hand, there is a 

consistent increase of the DVR in the perilesional area, normal-appearing WM 

and GM (Paired t-test p<0.001) up to 5%. Compared to Scanner PET, the 

average normal-appearing WM/lesion contrast improves in high-resolution 

PET: +34% for T2-w lesions, +39% for black holes and +101% for Gadolinium 

enhancing lesions. As for the analysis of the healthy control dataset, the 

standard deviation of the two imaging modalities is comparable for all the 

ROIs (F-test p>0.87 for all ROIs). 

These results are then consistent with the resolution analysis carried 

out on the collected lesions of varying size (Supplementary Material – Figure 

3). Lesions on the MM-RR PET tend to have lower [11C]PIB DVR than the 

Scanner PET ones but this difference is more evident on small lesions, while 

for big lesions the two modalities produce very similar DVRs. 
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Application to [18F]FDOPA PET imaging 

The robustness to anatomical and functional mismatch of PVC 

wavelet-based approached has been previously demonstrated 19. However, 

an additional test was performed to ensure that no bias or artefacts are 

introduced when the structural and functional signals are not related. We 

applied the MM-RR algorithm to a sample [18F]FDOPA PET/MR scan of a 

healthy subject (www.nitrc.org/projects/spmtemplates/) where the anatomical 

information had not relation with the PET signal located in the basal ganglia. 

As predicted, no artefacts are introduced after application of MM-RR 

(Supplementary Material – Figure 4). 

 

DISCUSSION 

MM-RR has been developed to give a mathematical account of the 

better specificity to myelin of PET at low resolution as well as the good 

precision of MRI at finer resolution scales. The application to clinical data 

showed that MM-RR led to improved WM/GM contrast compared to Scanner 

PET imaging. In MS patients, MM-RR allowed a better signal characterization 

of [11C]PIB PET in lesions. One main advantage of MM-RR methods over 

more conventional approach is straightforward applicability without 

prior knowledge or pre-processing. Standard PVC techniques often 

require ad-hoc measurements of the scanner PSF or tissue 

classification and/or segmentation, which cannot be easily performed 

on such heterogeneous lesion distribution.  

Our results on the healthy control dataset showed a qualitative 

significant improvement especially in the delineation of WM structures and an 

average 30% increase in contrast between white and grey matter at the 

expenses of no quantification bias or noise increase. The signal recovery and 

good noise control assessed in the healthy controls were then reflected into 

patient images that demonstrated lesions with sharper and better-defined 

contours and the resulting accurate quantification of [11C]PIB DVR in different 

lesion types and perilesional areas.  

http://www.nitrc.org/projects/spmtemplates/
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Additional validations of the method included application to phantom 

data and comparison of MM-RR myelin map with genomic dataset. In the first 

case, MM-RR demonstrated to return comparable PVC results to PSF 

reconstruction method but worse performances in term of bias and image 

contrast than the atlas-based approach implemented in SFS which is 

expected given the stronger and more informed prior implemented by SFS 

compared to MM-RR.  Please note that in this work the resolution 

recovery algorithm was applied to clinical data that were reconstructed 

with PSF inclusion and POESM settings that were optimized according 

to our previous work 5. The application of resolution recovery methods 

to parametric maps of lower quality may degrade the final quality of the 

images.  

The reliability of the MM-RR method was confirmed by the genomic 

analysis as MM-RR returned high-resolution [11C]PIB maps without altering 

the degree of correlation with the myelin-associated protein gene expressions.  

The effectiveness of the MM-RR relies on the validity of some important 

assumptions. First of all the presence of a shared myelin content between 

[11C]PIB PET and T1w MR imaging. This relationship allows the identification 

of the low-resolution model in wavelet space, which is at the basis of the 

fusion between the two modalities. This assumption limits the MM-RR 

extendibility to those cases when the information content of both anatomical 

and functional images is mismatched. At the same time, MM-RR requires the 

accurate spatial coregistration of both modalities. In case of misalignment, 

MM-RR method can lead to image artefacts (Supplementary Material – Figure 

5). This result was quite expected as all PVC techniques which relies on 

anatomical information are naturally sensitive to mis-registration errors. 

Accurate image co-registration should be achieved prior PVC application. The 

choice of PVC technique should depend on application and image co-

registration reliability 36. 

In order to assess the robustness of the algorithm towards possible 

artefacts due to mismatch between anatomical and functional images, we 

additionally tested the algorithm using [18F]FDOPA PET and T1 MR images 

from healthy subjects. Since T1 sequences are not sensitive to dopamine, 
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one would not expect significant changes in the final PET images as the 

analysis demonstrated. It follows that MM-RR method can only be applied 

when functional and structural data share an association to the biological 

target. In this investigation the structural information was provided by T1-w 

images; however, this MRI sequence is not the most specific to myelin 

content. Future work will consider the use of more myelin-sensitive MR 

imaging sequences such as the Magnetic Transfer Imaging (MTR)37, 38 or the 

Multi-Component Driven Equilibrium Single Pulse Observation of T1 (mc-

DESPOT)39, 40.  

 

CONCLUSION 

We have developed a robust multimodal methodology for the 

quantitative resolution recovery of brain [11C]PIB PET data, here specifically 

designed for myelin imaging, and tested it on a set of clinical healthy controls 

and MS patients data. The technique produces images with significantly 

improved quantitative properties and visual quality and it is of straightforward 

and rapid application. The work presented here is highly relevant for the newly 

introduced PET-MRI scanners as it presents one of the first synergistic 

approaches combining PET and MRI data for the same target. 
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FIGURE LEGENDS 

Figure 1 – Representation of [11C]PIB PET myelin signal. A) Axon 

structure with visible alternation of myelin lipid bilayer and myelin water 

content; B) detailed representation of myelin structure where the lipid bilayers 

and the myelin basic proteins (MBP) in between are highlighted; C) schematic 

representation of [11C]PIB PET myelin signal: [11C]PIB, in analogy to its 

interaction to amyloid fibrils, might have multiple interactions with the myelin 

structure: on one side it might get trapped into β-sheet structures of myelin 

proteins such as MBP 41-43, and on the other side be highly soluble in the 

myelin associated lipid bilayer 44. 
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Figure 2 - Graphical representation of the MM-RR algorithm. A) wavelet 

decomposition and model definition of the relationship between MR and PET 

signals at low resolution scales (Low-resolution modelling); B) model definition 

of the relationship between MR and PET high-resolution coefficients (High-

resolution modelling); C) definition of new wavelet coefficients from the 

models defined in A) and B) after appropriate scaling and de-noising; D) 

inverse wavelet transform of the final wavelet coefficients originates the 

improved PET image. To note that the wavelet coefficients in XY plots are 

unitless. 
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Figure 3 – Phantom Experiment. A) [18F]Fluoride PET/CT transaxial images 

of three different phantom experiment acquisitions (one for each line). 

Alongside the CT image (1st column) are three different type of functional 

images: scanner PET images (2nd column), images resulting from the 

inclusion of a PSF model into the reconstruction (3rd column), images 

resulting after the application of the SFS resolution recovery algorithm (4th 

column), and images resulting after the application of the MMRR resolution 

recovery algorithm (5th column).  B-D) Root mean square error and noise 

analysis. For each sphere (S1-S6) four values corresponding to images 

obtained with different modalities are reported: Scanner PET (black circle), 

PET with PSF reconstruction (grey triangle), PET corrected with SFS-RR 

algorithm (white diamond), and PET corrected with MM-RR algorithm (black 

cross). A) Root mean square error for the six spheres obtained as an average 

between the two phantom experiments. B-C) Contrast to noise ratio computed 

for each sphere against a uniform region in the phantom background. 

Representative phantom figures are reported next to graph for reference 

purposes. 
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Figure 4 – Scanner and MM-RR PET in a representative healthy control. 

A) Images: Left column MRI images; central column Scanner PET; right 

column MM-RR PET. PET colorbars indicate DVR estimates (unitless). B) 

[11C]PIB DVR values: The box-plot diagrams show the median (middle line) 

and range of DVR values for the healthy control group in three different ROIs 

(from left to right: whole brain, grey matter, white matter). The table reports 

the numerical value of mean and standard deviation for each box. ** indicates 

p-value<0.001 
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Figure 5 - The graph reports the [11C]PIB DVR values measured for white 

matter (white markers) and grey matter (grey markers) as function of the 

distance from the cerebral spinal fluid (CSF). Lines with circle markers 

refer to the Scanner PET and the lines with triangle markers refer to the MM-

RR PET. Light grey markers on grey matter lines refer to significant lower 

fraction of grey matter tissue compared to the sample closer to the CSF. 
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Figure 6 – Comparison between [11C]PET myelin imaging and genomics. Panel 

A compares imaging vs genomic cross-correlation between Scanner and MM-RR 

PET images. All subjects and proteins are reported. Blue circles refer to myelin 

associated proteins (i.e. MAG, MBP, PLP1, CNP, MOG and MOBP) while red circles 

to non-myelin associated proteins (i.e. DRD2, HTR1A, BDNF and AQP4). Panel B 

compares mean±SD imaging vs genomic cross-correlation between subjects for MM-

RR and Scanner PET resolution respectively. Blue bars refer to myelin associated 

proteins. Red bars refer to non-myelin associated proteins. Bright bars refer MM_RR 

resolution PET. Light bars refer to Scanner resolution PET. All the correlations above 

significance threshold line result statistically significant (pvalue<0.05). 
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Figure 7 - Axial and sagittal views from a representative MS patient. A) 

Images: From left to right: MRI images; Scanner PET; MM-RR PET; zooms of 

the area delimited in the MRI image with a red circle. PET colorbars indicate 

DVR estimates (unitless). B) [11C]PIB DVR values: The box-plot diagrams 

show the median (middle line) and range of DVR for the healthy control group 

in three different ROIs (from left to right: grey matter GM, normal-appearing 

white matter NAWM, Perilesions, T2-w lesions, Black Holes, Gad enhancing 

lesions). The table reports the numerical value of mean and standard 

deviation for each box. ** indicates p-value<0.001. * indicates p-value<0.05 

 


