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Abstract. Sequent calculi are proof systems that are exceptionally suit-
able for proving the decidability of a logic. Several relevance logics were
proved decidable using a technique attributable to Curry and Kripke.
Further enhancements led to a proof of the decidability of implicational
ticket entailment by Bimbé and Dunn in [12,13]. This paper uses a dif-
ferent adaptation of the same core proof technique to prove a group of
positive modal logics (with disjunction but no conjunction) decidable.

Keywords: Sequent calculi - Modal logic - Decidability - Relevance
logic - Heap number - Semi-lattice based logic

1 Modal Logics

The well-known modal logic S4 is arguably one of the most successful modal
systems ever invented. It is a system that grew out of Lewis’s original system of
strict implication defined in [29] by the addition of the axiom ={-p 3 =¢--0-p,
where 3 is strict implication (see [15]). S4 was given the nowadays standard
formulation of a normal modal logic as an explicit extension of classical propo-
sitional logic by Godel in [24]. S4 has a close connection to intuitionistic logic
and topology, and it has a straightforward relational semantics over pre-ordered
(or partially ordered) frames. The list of remarkable features goes on and on.

S4 can be formulated by adding two rules, namely, (Ok) and (O) to the
propositional part of LK from [23].

m}
Iy o oled (1)
' Eop op, ' A
This formulation assumes that the other modality, which is often denoted by
¢ is defined (i.e., O is simply an abbreviation for ~0-¢). This is unproblematic
in the case of classical logic, however, we do not always want to have a negation
in a logic or we simply want to have both these modalities as primitives.!
The sequent calculus formulation of S4 with both modalities amends (I0)
to permit multiple formulas in the succedent. The new (Ir0) rule and the rules
for ¢ were introduced in Kripke [27], and they are as follows.

! See for example Dunn [20] and Kripke [27].
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Our goal in this paper is to investigate the problem of decidability for logics
that contain a pair of modalities that have introduction rules analogous to the
ones above, but they lack much of what an underlying 2-valued calculus gives.
We are not concerned with interpretations here, however, we note that it is clear
that once we start to drop rules from LK, the “meanings” of the connectives
change. In order to preclude confusions stemming from connotations, we will
use a pair of neutral symbols—c and <—for the two unary connectives we take
to be modalities. Another effect of omitting rules from LK is that space opens
up for new versions of connectives—even without the introduction of multiple
structural connectives. We will take advantage of this opportunity by including
both v and + in all our logics.

Our strategy is to fix a common set of connective rules for a group of logics.
The choice of the connectives and of the rules for them is motivated by relevance
logic (see, for example, [1,2]). We will vary the structural rules and we will select
9 logics to scrutinize. We will refer to the whole group of these logics or to an
arbitrary element of the group as LX .

Definition 1. The signature for LX" is (02, 52,42, v, o1, <!} (with the arities
indicated in the superscripts). The set of formulas is generated by the following
context-free grammar (CFG) in Backus—Naur form (BNF).

p=Prop|(pop)[(p—>¢) [ (p+e)|(pVve)|ep|p,

where Prop is a non-terminal symbol that can be rewritten as any of the denu-
merably many propositional letters.?

REMARK 1. Occasionally, it is convenient to be able to refer to the connectives
by names, which are somewhat mnemonic. We call o fusion, - implication, +
fission, v disjunction, & solid modality and < fluid modality. The latter two terms
are chosen to keep the usual modal connotations at bay.

In the LX" logics, we want o and + to be connectives that are commuta-
tive and associative. Then, it is felicitous to formulate the notion of sequents
using multisets. In order to make this paper more or less self-contained (and to
minimize the chance of terminological confusions), we include the definition of
a multiset as well as an illustration of the concept.

Definition 2. A multiset is the set of finite sequences comprising the same
elements that is closed under permutation.?

2 We may use other letters than o, from the latter part of the Greek alphabet, as
variables for formulas.

3 In this paper, we only have use for finite multisets; thus, we use the term in a
narrower sense than it is used elsewhere in the literature.
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An essentially equivalent definition of multisets can be given as certain
functions—see, for example, the definition of multisets in [10]. We are not inter-
ested in the reconstruction of sequences or multisets as sets here, and we take
sets, multisets and sequences to be different ways of collecting objects together.
Thus, informally speaking, a multiset is a finite set, in which the elements may
appear more than once, hence, the number of listings matters.

EXAMPLE 2. If the multiset A has two a’s and b’s as its elements, then we could
list the elements of A as a,a,b,b, or equivalently, as b,a,a,b, etc. Of course,
{(a,a,b,b) may be a different 4-tuple than (b, a,a,b) is, but a permutation trans-
forms one into the other. On the other hand, {a,b} = {a,a,b,b}. The latter
specification of a set is not only informal, but unnecessarily repetitive.

NoTATION 3. Obviously, we can describe a multiset by listing its elements. To
distinguish an array from a multiset, we may enclose the latter into [ ], and we
use ; as the separator, because our multisets of formulas are associated to fusions
or fissions of formulas. The letters a, 8,7, ... range over multisets of formulas of
the LX" logics. If ¢ is an element of « thrice, then we may say that the type ¢
is in «, and the tokens @,y and ¢ are in a.

Definition 3. If « and § are multisets, then an g (the intersection of o and [3)
and oW S (the union of o and ) are multisets. & n G has all the types that are
in both « and (3, and the number of tokens for each type is the lesser number
of tokens of that type in the two. a W 3 has all the types that are either in « or
in 3, and the number of tokens for a type is the sum of the number of tokens of
that type in « and that in 5.

We defined both n and W to stress the lack of (informal) duality between
them. N is min on the number of tokens, whereas U is not max, rather +. For
our purposes, U is the important operation.

Definition 4. A sequent is an ordered pair of multisets of formulas. We write
a Ik 3 instead of (o, 3). a is the antecedent and (3 is the succedent of the sequent.

NOTATION 4. The empty set is unique and so is the empty multiset, which we
denote by @. However, when @& appears in a sequent, we replace it with space.
To formulate the rules of our calculi, we will use a; ¢ (or ;) instead of aW[y].
Similarly, «; 3 is a shorthand for a W g.

Definition 5. The LX" logics comprise axiom (1) and rules from among the
following.

pE@ (1)
alke; [ alk ;B aYEL ok
—— (kV1) ——— (kV2) (VIE)
alkevy; s alk vy eV ES
alE@; B yEY;d a; ;o kB
a;y B op;3;0 o) a;pot ")
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;P ;B o OF VB oS o)
aky -3 ;7Y > @ 550
ok ;s B ) GYES ekl ()
akp+;f @i+ Yk B6
a® Ik g; 3° a;pE S
S (G - (o)
a® Ik cp; 8 a; ok (3
aF e ﬂ (<) 7040; L 5<) (<)
ak<p; 3 a®; A I 39
ok B ikl
(W) —— (Wk)
alky; g a3
aE Qp; Qp; 3 a; ;oY E S
——— (kW) ——— (cwWk)
akQp; [ a; ok 3
alk g alk g
——  (k<9K) —— (CKE)
alk Qp; 3 a; oY E
alk [ alk B
alky; B (=9 a; k[ ()

Superscript modalities such as a® and $% indicate that for each token ) in
the multiset there is a formula ¢ such that ¥ is <@ or o, respectively.

REMARK 5. The axiom is labeled with the identity combinator |. The con-
traction rules are labeled with w after the binary regular duplicator W, and
the thinning rules are labeled with K after the binary regular cancellator K.
Although these rules are not combinatory rules in the sense of [21], the analogy
between structural rules and combinatory effects is profound. This correlation
was observed and noted long ago (see, for example, Curry [17]).

If we keep all the operational rules fixed, then there are still plenty of logics
that could be defined.* However, the vast majority of those logics would be less
than well motivated. We deem a handful of them worthy of interest.

Definition 6. The LX" logics that we consider are defined by axiom (1) and the
connective rules together with the structural rules with checkmarks as indicated
in Table 1.

4 A quick approximation suggests that there are 89 logics that can be expected to be
distinct.

® x excludes a pair of rules; # shows that the rules are easily derivable, hence, it is
better to omit them—for the sake of economy in proofs.
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Table 1. Structural rules in nine logics

Rules bci bci¥ bciy bcil bciw bck bciw, bck?  s4
(W), (FW) X X X X v X Ng X v
(ewWiE), (Fow) x v X v * x # v %
(cKIE), (F9K) x x v v X * v * *
(KIE), (EK) x x X x x v X v v

NoOTATION 6. The labels for the logics are intended to be somewhat reminiscent
of but not identical to common abbreviations for certain logics. For example, the
principal simple types of the combinators B, C and | are provable in bci. However,
we included not only —, but also o, +, v and the modalities & and < (which are
not in BCI). Likewise, s4 differs from the logic S4.

Definition 7. A proof is a tree, in which the vertices are occurrences of
sequents; the leaves are instances of (1), and a parent node is justified when
that node and its children constitute an instance of a rule. The root of the proof
tree is the sequent proved.

A formula ¢ is a theorem of an LX" logic iff I ¢ has a proof.

Lemma 8. The logic s4 is the negation-free fragment of the normal modal
logic S4.

Proof (sketch). From Sect. 2, we (will) know that the cut rule is admissible in s4,
that is, s4 is a well-formulated sequent calculus. We also assume that we know
that S4 can be formalized as an extension of the propositional part of LK from
[23]. Namely, the two rules for O in (1) have to be added, and if ¢ is a primitive
too, then two more rules are included for ¢ and the (FO) rule is modified by
permitting a parametric set A% on the right-had side of the .

The signature of s4 differs from that of usual formulations of S4. In other
words, we have to explain how to “translate” our formulas. In the presence of
(KiE), (EK), (W) and (EW),IE (o V) = (@ + ) and E (¥ +¢) = (¥ V) are
provable. This means that + is a notational variant of v. Also, o is idempotent and
the following three sequents are provable: I (po(1pve)) = ¢, 1p > ((Yvp)o),
(po(pvx)) = ((pop) v (pox)). Implication is the residual of fusion, that is,
— behaves as > does in LK. This means that -, o and v/+ are exactly like the
positive fragment of classical propositional logic. Setting & to 0O and < to ¢, the
(), (E>), (<) and (<) rules are the rules for O and ¢. There are no other
connectives unaccounted for in s4.

2 Cut Theorems

We formulated our nine LX" logics without the cut rule. However, this does
not mean that we would want to neglect the cut rule, rather, the opposite. The
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cut rule is extremely important for a proof that a sequent calculus defines an
algebraizable logic, and that it is equivalent to an axiomatic system.

Definition 9. The cut rule is the following.

akY;B kS
;v E 350

(cut)

Later we may refer to this cut rule as the single cut—to distinguish this rule
from some other versions of cut. It is easy to see that the cut rule is not a derived
rule in any LX" logic. However, anything provable with cut is provable without
the cut. This is the essence of Theorem 15.

Definition 10. The multiset of formulas in each rule is divided into three cat-
egories: principal, subaltern and parametric formulas. The parametric formulas
are those in «,a”,3,8°,v and §. In a proof (where the rules are instantiated
with concrete sequents), any of these may be @. The principal formulas are the
newly introduced formulas in the lower sequent of a rule, as well as, the displayed
formulas in the lower sequent in the contraction rules. The subalterns are the
formulas from which the principal formulas result—save in the thinning rules,
where there are none. There is a 1-1 correspondence between the elements of
multisets of parametric formulas bearing the same letter in a premise and in the
conclusion, and we assume that a particular such bijection is fixed when needed.®

There is a range of terms and definitions used in the literature in proofs of
cut theorems; hence, we briefly state the notions used in the proof of the next
theorem.

Definition 11. A formula ¢ is an ancestor of 1 when it is in the transitive
closure of the relation emerging from the above analysis through (i) and (ii).

(i) A subaltern is an ancestor of the principal formula in a rule.
(ii) A parametric formula in an upper sequent is an ancestor of its matching
token in a lower sequent.”

For the next two definitions, we assume that we are given a proof, which may
contain applications of the cut rule. We focus on a cut that has no cuts above it
in that given proof.

Definition 12. The left rank of the cut is the maximal number of consecutive
sequents above the left premise of the cut in which ancestors of the cut formula
that are the same type as the cut formula occur in the succedent increased by 1.
The right rank is the number calculated dually. The rank of the cut is the sum
of the left and right ranks of the cut.

5 This analysis is fairly usual. For the ideas behind it and examples of it, we refer to
[17] (and also to [9]).
" This notion is an adaptation of a similar notion from Curry [17].
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Definition 13. The contraction measure of the cut is the number of applica-
tions of contraction rules to ancestors of the cut formula that are the same type
as the cut formula in the subproof rooted in the lower sequent of the application
of the cut rule.

REMARK 7. The previous two definitions depend on the notion of ancestors,
and they reflect Curry’s insight that the subformula property allows tracking a
formula to its origins within a proof. Then, the trace yields a tighter control over
the proof itself.

Definition 14. The degree of a formula ¢ is denoted by d(y).

(i) If ¢ € Prop, then 9(y) = 0.
(ii) If v is @9 (where o is a unary connective), then () =0(¢)) + 1.
(iii) If ¢ is ¢ v¢ (where v is a binary connective), then 2(¢) = 0(¢)) +0(s) + 1.

Theorem 15 (Cut theorem). In any LX" logic, the cut rule is admissible.

Proof. The structure of the proof is fairly usual. A proof contains finitely many
applications of the cut rule. If there is an application of the cut rule, then there
is one that is at the top, in the sense that the subtree of the proof tree rooted
in the lower sequent of the cut contains no other applications of the cut rule.
We show that this subtree can be transformed into a proof tree with the same
root but with no applications of the cut rule. Then, finitely many iterations of
the argument replace the original proof tree with finitely many cuts with a proof
tree (of the same sequent) with no applications of the cut rule.

The main part of the proof is by triple induction on the degree of the cut
formula, on the contraction measure of the cut and on the rank of the cut. We
cannot provide an exhaustive list of cases here; rather, we include two sample
steps, and omit the remaining details.

1. If modalities are introduced in the premises of the cut, then one of the cases
goes as follows (and it is justified by 9(1)+1 = 9(<1))). (We omit : everywhere;
that is, the top sequents are not assumed to be axioms. The symbol “«”
indicates the transformation on the proof tree.)

alky; ~v&s 1 07
(<) (<)
alk ;B ’y‘>;<)¢ e &< altz/);ﬁ 'y‘>;¢||:(5<’

;% E 3;6° ;% E 3;6°

(cut) (cut)

2. The next sample step illustrates a reduction in the rank of the cut.

alk ;3 'y;X;@[Jllz(S( :
—E
eEX;n e =YX kB

(cut) >

;v 60 =Y B0m

8 More details of a triple-inductive proof of the admissibility of the cut rule for a logic
with no lattice operators may be found in [8]. Various enhancements of a more usual
double-inductive proof of the cut theorem were introduced in [6,7], where a goal was
to accommodate constants like Y,y and ¢.
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€EX;N VY;XED
alk ;B V€Y G5
;769 =PIk ;057

(cut)

(~8)

The upshot of the theorem is that the LX" logics are reasonable logics (i.e.,
they are structural, in algebraic terminology). Also, we may focus on cut-free
proofs without a loss of provable sequents.

Lemma 16. Cut-free proofs in the Lx” logics possess the subformula property.
That is, if @ occurs (as a type) anywhere in a proof of « k& (B, then ¢ is a
subformula of a formula in o or in (3.

Proof. The LX" logics have no special zeroary connectives, hence, the claim
follows by a simple inspection of the rules. (Cf. LE®, in [7] for a more complicated
situation.) We note that the contraction rules may reduce the number of tokens,
but they do not omit types. :

3 Decidability

The decidability of a logic may be proved in various ways. This is especially
true for propositional modal logics, for which semantic methods have been used
widely. Probably, the best-known semantic technique is filtration that relies on
the relational semantics of normal modal logics, but algebraic methods have been
successfully applied in some cases. It is not completely straightforward (or easy)
to define set-theoretic semantics for the LX" logics. We cannot go into a detailed
explanation of the reasons beyond mentioning that in the absence of conjunction,
the usual set-theoretic objects—“theories” of some kind or another (or various
sorts of filters, algebraically speaking)—are not available. In any case, we are
interested here in the sequent calculus formulations of the LX" logics and the
properties that we can discover using the sequent calculi.

Sequent calculi are preeminently suitable for proofs of decidability (starting
with the proof of the decidability of propositional intuitionistic logic). Curry
[16] came up with the idea of discarding the (explicit) contraction rules in lieu
of repeating the principal formulas of the connective rules in the premises—
together with a more relaxed form of the axiom p It p (or ¢ IF ) by allowing other
formulas in the axiom as in I, Ik 1, A. Curry proved that the modifications
(for the logics he considered) resulted in sequent calculi that proved the same
sequents, moreover, the height of the proof tree did not increase. A lemma with
a similar claim for a particular logic is often referred to as Curry’s lemma or as
height-preserving admissibility of contraction. A decidability proof then proceeds
in a bottom-up fashion, so to speak. In order to determine whether a sequent is
provable, a complete proof-search tree is constructed, which is in fact explores all
the possibilities as to how the sequent could have been proved. While the search
is exhaustive (perhaps, in more than one sense:), its finiteness is guaranteed by
the limitations that the cut theorem and Curry’s lemma impose (together with
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an easy use of Kdnig’s lemma). It is sufficient to look for cut-free proofs, and
there is no need to seek proofs that are redundant in a sense stemming from
Curry’s lemma.

Taking 'Y Ik ¢, A as an axiom has the effect of turning thinning into an
admissible rule too. This is not acceptable from the point of view of many logics—
from the Lambek calculi to relevance logics.® Kripke [26] introduced another
idea, namely, instead of requiring the principal formulas to be parametric in the
premises, he permits them to be parametric. Of course, this idea is compatible
with thinning as a rule, but what is really intriguing about it is that, when
thinning is excluded, it still renders contraction admissible.

If thinning is not a rule, then Kripke’s invention is an indispensable compo-
nent of the bottom-up proof search. It reflects the insight that a formula has to
be introduced in order to be contracted, hence, a limited amount of contraction
in the operational rules is sufficient in place of an explicit contraction rule.

To guarantee the finiteness of the proof-search tree, Kripke introduced a
lemma, which, nowadays, is called Kripke’s lemma. Originally, this lemma is
about cognate sequents, and an excellent presentation is in Dunn [19, Sect. 3.6].
In the LX" logics, a pair of sequents are cognate if their antecedent and succedent
multisets comprise the same types. However, later on, it was discovered that
Kripke’s lemma is equivalent to various other lemmas (see [19,31]). For example,
a lemma concerning vectors is stated and proved by induction in Kopylov [25,
Lemma 2.2], which also appears to be equipotent to Kripke’s lemma.

REMARK 8. Here is a number-theoretic analog of Kripke’s lemma that is easy
to state; the claim itself is self-evident.'” Let us consider the positive integers.
If we fix P, a finite set of primes, then there are finitely many numbers such
that they have no other prime factors (than those in P), and they pairwise do
not divide each other. For instance, if we start with {3}, then we could pick
27, but then 1, 3 and 9 are excluded (because 3 |27 and 9 | 27). We can add to
our collection 81 and 243, but 729 is excluded (because 27 | 729), and so is any
higher power of 3. The example is intended to be simple, but the case of one
prime factor generalizes to the case of n prime factors without any difficulty.

NOTE 9. Before we embark on proofs of decidability for our LX" logics, it seems
prudent to point out that some of our logics (possibly, in a slightly different
formulation) and some closely related logics are already known to be decidable.
For instance, Meyer [30] proved LR" decidable, which is in close proximity to
bciw. Linear affine logic was proved decidable in Kopylov [25], which implies
the decidability of bck”. The logic that was proved decidable in Bimbé [8] is
orthogonal to bci}, because it has - but lacks v. For further relevant results, see
[14,31].

9 See, in chronological order, [28], [1], [22], [11], as well as [7] for motivations and logics
that leave out the thinning rules from their sequent calculus formulations.

10 See Meyer [31] for a discussion of conceptual links that can be created between
Dickson’s lemma and Kripke’s lemma.
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Definition 17. We partition the LX" group into three subgroups: L3€>1k = {bdi,
bci,,bek }, LX, = { bciw, bciw,,s4 } and LX; = {bci?, bcif, bck” }.

REMARK 10. The rationale behind the division is that we approach the question
of decidability similarly for the members of the subgroups, but with some differ-
ences between the subgroups. In L.’{T, there is no contraction, which means that
Curry’s bottom-up proof search suffices. The L.’f; logics contain the (WiE) and
(EW) rules, and we follow Kripke’s approach. For the L%; logics, we enhance
the Curry—Kripke technique with a new proof search bounded by heap numbers.

We will deal with L%; first, where the Curry—Kripke technique is applicable.

Definition 18. The logics (bciw]), (bciw,]) and (s4) are defined by the axiom
(1) and the following connective rules together with the thinning rules from
the matching unbracketed logics. (The (Ki), (EK), (>Kk) and (E<K) rules are
unchanged, that is, they are exactly as in Definition 5. We do not repeat those
rules here, though (bciw,)) and (s4) contain some of them.)

alkE ;8 i) alkY; B (va) aYER ek )
ak(eveiB) 0 ak(eveip) (s v ) e
alkp; B yIEYP;d (o) a;p; ok B (o%)
(o) & (9 0 03 B 6)) (o 09 B
a; ) ;3 () alkP; B Pk (o)
ak (Y- ¢ f) (o730 = @) & (3;9)
alkeP; ;3 B Yok
a k(o +;6) = (o v; 0+ ) i (859) )
a® Ik p; 3° a;p e
a® E cp; 59 (=) (a;op) E B (eF)
alEp; B a®; ¢k 3°
ar(apiB) " ariaprpe

The (| ) notation indicates potential contractions to the following extent.

(1) The principal formula 1 occurs in a multiset of parametric formulas a.
Then: (v; ) is either ¥; or a.

(2) A formula v occurs is both multisets of parametric formulas « and .
Then: («;g) is either ;3 or a; 8 with an occurrence of 1 omitted.

(3) The principal formula ¢ occurs in both multisets of parametric formulas «
and (.
Then: (¥; a; G)) is ¥; a; 8 or 9; «; B with one or two occurrences of ¥ omitted,;
in each case the parametric formulas are dealt with as in (2).
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REMARK 11. We should emphasize that no contractions are mandatory within
( ], and whatever contractions are performed, they never lead to a loss of a type
from a multiset. Sequents are finite, hence, each application of an operational rule
involves finitely many contractions. However, the number of possible contractions
depends on the size and shape of the premises to which a rule is applied, not
simply on what the rule is.

The operational rules above do not introduce vagueness or indeterminacy into
the concept of a proof, because in any proof, which comprises concrete sequents,
the number of contractions can be determined simply by counting formulas.

REMARK 12. There are no structural rules listed in the previous definition. Con-
tractions are omitted, because the goal is to limit the number of contractions,
so that only useful contractions are considered. Thinnings are omitted from
the listing, because if the application of a thinning rule would create a sequent
where contraction is applicable, then the applications of that thinning rule can
be retracted. But we reiterate that if some sort of thinning was in an Lf{; logic
(as per Definition 6), then the same rule is in the ( |)’d version of the logic.

Note also that in the operational rules (&) and (<), no contractions are
permitted (or possible). The principal formulas of those rules are always distinct
from all the types in the multiset of parametric formulas with which they are
joined.

We defined three new sequent calculi; therefore, we have to provide a cut
theorem for them. (Of course, the labels for the logics express our aim of defining
the same logics as before. However, we will know that we have reached that goal
after the next two theorems.)

Definition 19. The left rung of the cut is the length of the longest path in
the proof tree starting with the left premise of the cut in which the cut formula
occurs in the succedent of each sequent on the path. The right rung of the cut is
the length of the longest path in the proof tree starting with the right premise
of the cut in which the cut formula occurs in the antecedent of each sequent on
the path. The rung of the cut is the sum of the left and right rungs of the cut.

The notion of a rung (if not the term itself) is a parameter that is often used
in proofs of cut theorems.

REMARK 13. In the proof of Theorem 15, we used the single cut rule.'! However,
the admissibility of the single cut is typically proved via a detour through other
forms of the cut in calculi that include contraction in some form. This is so
in the calculi that are designed to prove decidability using the Curry—Kripke
technique.'?

' The cut theorem is proved using the single cut in Lambek [28] and in display logics
in Belnap [3] and Anderson et al. [2].

12 The so-called miz rule in [23] and the multicut rule explicitly stated, for example,
in Dunn [18] are versions of the cut that were introduced specifically to facilitate
the inductive proof of the cut theorem for the single cut. An early publication that
exhibits a suitable version of cut in connection to a decidability proof using the
Curry—Kripke method is [4], which is a precursor of the more readily available [5].
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The cut rule used in the proof of the next theorem builds in contraction, and
it is formulated as

akEY; B v ES
(o) = (55 6)

It is obvious that the single cut rule is a special instance of this rule.

(cut).

Theorem 20 (Cut theorem). The single cut rule is admissible in the three
logics (bciw]), (bciw,]) and (s4)).

Proof. The strategy is once again to eliminate a cut with no cut above it. The
proof is by double induction on the degree of the cut formula and on the rung
of the application of the cut rule. Once again, we can only include here a couple
of steps as illustrations to convey the flavor of the proof.

1. Let us consider a case for v. The degree of a disjunction is strictly greater
than the degree of the disjuncts, that is, 9(¢p v¢) = 1+0(¢0) + 0(¢p).

ol p; Vi ED YipkEd
(V) (vE)
q ak (v ;B (vove)Eo aEP;f o kES (ut)
cut v cut
(o v & (350 (oD = (550

2. If the cut formula is parametric in the left premise, then that premise might
have resulted by (+k].

a;PES Yk X;S
(+E)
) (o v; 0+ ) & (x; 35 0) &XED
(s vs 60+ 9] | (B;05m)

(cu
VipEX;O XD

;Y[ (s e 0D 1= (051D
(o v; 60+ ) 1 (550;m)

(cut)
(+E)

Theorem 21 (Curry’s lemma). Let o' Ik 5 be a sequent that results in bciw
from « e B by finitely many applications of the (W) and (EW) rules. If ¥ is a
proof tree with height h of a sequent « k 3 in (bciw|), then there is proof tree
T of the sequent o £ 3" with height h' such that h' < h. Similarly, for the two
other pairs of logics: bciw, and (bciw,|), s4 and (s4)).

Proof. Both parts of the claim will be important for the decidability proofs
later on. The admissibility of the two contraction rules ensures that no provable
sequents are lost in moving to the ( |)’d logics. Both in the inductive proof of
this claim and in the proof search it is crucial that sequents that would result
by the (wik) and (Irw) rules have shorter proofs than the longer sequents (from
which they are obtained) have. The proof is by induction on h, the height of the
given proof tree. (Once again, we omit almost all cases due to lack of space.)
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1. If « E B is an instance of (1), then o' k 3" is « Ik B; hence, the claim is
obviously true.
2. We will abbreviate n tokens of ¢ in a multiset by ¢" (assuming n > 1). Given
n, n’ <n and n’ > 1. Let us consider the (ieo|) rule.
; - i.h.
X" Epi(po)™ich B v kg (poip)kichs
;v X ()" (o) (MR gD 3§
X" E@i (o)™ B X kg (po) o
a;y; XD (i 0 ) (R G By g

It is easy to see that if we want each of x and ¢ to have at least 2 occurrences
in the lower sequent, then n’+j" and ¢’ +1’ (i.e., applications of the hypothesis
of the induction) suffice. Similarly, for 3 occurrences for ¢ o 1. However, if
(n+7) =1, (m+k) =1or 2, or (i+1) =1, then we have the upper sequents
by the hypothesis of the induction, and the contractions that are part of
the (ko)) rule yield the desired lower sequent. Here is the most contracted
situation, in which the premises are available to us by inductive hypothesis.

a;X E@ioo;e B X EY 0ol
;75 X E o is; 50

(o))
3. Let us consider an extensional rule too, namely, (V).

; ; i.h.
a X" (Pve)hipkEdi B ax" (Y ve)Y eSS
;x5 (P v )™ e B
X" (ve)miers B asx™ (V)™
a; X5 (b v )™ T B
Definition 22. A sequence of sequents is irredundant when an earlier element
of the sequence is not obtainable from a latter one by finitely many applications

of the contraction rules. We expand the use of the term “irredundant” to proofs.
An irredundant proof contains no redundant sequences of sequents.

REMARK 14. The notion of irredundant sequences of sequents is in harmony
with Curry’s lemma. Looking at a proof tree from its root upward, an irredun-
dant sequence of sequents on a path in the proof tree signals an unnecessary
detour in the proof.

Lemma 23 (Kripke’s lemma). An irredundant sequence of cognate sequents
is finite.

As we already mentioned, this lemma is equivalent to various other lemmas
in discrete mathematics. For a direct proof, we refer to Anderson and Belnap [1,
Sect. 13, p. 139].

Lemma 24 (Kénig’s lemma). A finitely branching tree, in which all branches
are finite, is finite.
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This is also a well-known lemma. For a direct proof, we refer to Smullyan [32].
Theorem 25. The logics (bciw]), (bciw,|) and (s4]) are decidable.

Proof. The decision procedure builds a proof-search tree for the given sequent,
with the property that if the sequent has a proof, then a subtree of the proof-
search tree is a proof. The usual way to do this is to build the tree from its root,
which is the sequent that is allegedly provable. A branch may be terminated
when it would become redundant. The finiteness of the tree guarantees that an
unsuccessful search will not run on indefinitely long.

The finiteness of the tree follows from several factors. Formulas and sequents
are finite, with each formula having finitely many subformulas. Each rule has one
or two premises, and no sequent can result from infinitely many different poten-
tial premises. These features combined with the previous two lemmas exclude
infinite trees from consideration.

Corollary 26. The logics bciw, bciw, and s4 are decidable.

Proof. The truth of the claim is a consequence of the equivalence of the loglcs
with and without ( .

NoTE 15. The decidability of s4 is also a consequence of the decidability of S4
(which is widely known) in view of Lemma 8.

Now we turn to the question of the decidability in the subgroup LS{;.

Definition 27. The logics in L%; and L.’{; are paired up with each other as
follows: (bciw,bci”), (bciw,, bciy) and (s4,bck”).

Lemma 28. If «a k3 is provable in an L%; logic, then « [k 3 is provable in its
L%; pair.

Lemma 29. If ok (3 is provable in bci¥, bci} or bck?, then it is provable in
(bciw)), (bciw,)) or (s4), respectively, by irredundant proofs.

Proof (of Lemmas 28 and 29). Tt is sufficient to scrutinize the definitions of the
logics together with the proof of Theorem 25.

REMARK 16. In all the calculi that we consider, the cut rule is admissible. Then,
it is enough to look for cut-free proofs, for which the subformula property holds.
For a formula to be contracted, it must be introduced by an axiom or rule into
the proof. Compound subformulas have more than one subformula, hence, a
contraction applied to a compound formula decreases the number of subformulas
more than a contraction applied to one of their proper subformulas. Furthermore,
a formula to which no contraction is applied remains in the sequent (possibly,
as a subformula of a formula), because the subformula property holds. These
observations motivate the introduction of the notion of a heap number, which is
a cumulation of contractions on subformulas of a formula in a proof.
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Definition 30. Let « Ik § be provable in an L%; logic. For any subformula ¢ of
a formula in oW 3, we define the heap number of ¢, denoted by h* () as follows.

(1) If ¢ is not of the form & or <) for some 1, then h* () = 0;

(2) otherwise, h”(¢) is the maximal number of contractions on ¢ and the ances-
tors of ¢ in any irredundant proof of a I 3 in the ( [)’d L%; logic in
question.

REMARK 17. Given a provable sequent of an L.’{; logic, we may think of all the
subformulas having a number attached to them. We know that all the sequents
that are provable in their L%; pair are among those. However, it is easy to prove
that not all sequents provable in an L¥, logic are provable in their L.’{; pair.
Since contractions in the L%; logics are possible only on modalized formulas,
we transfer all the contractions that might have happened on ancestors of a
modalized formula in any irredundant proof to the formula itself.

REMARK 18. We want to emphasize that the definition of a heap number is
not recursive. We simply zeroed the heap number for all non-modal formulas,
whether they are or are not a subformula of a formula in the provable sequent.

For any provable sequent, there are finitely many irredundant proofs each of
which is finite. Hence, the heap number requires the inspection of finitely many
finite objects. As we mentioned in Remark 11, in a proof involving applications of
the (| ) rules, the number of contractions can be simply counted, and there is no
ambiguity with respect to which formulas and how many times were contracted.
In sum, the notion of a heap number is well defined.

Theorem 31. The logics bci”, bcif and bck” are decidable.

Proof. Let « Ik 3 be a given sequent. For any of the L%; logics, we can decide,
by appeal to Lemma 29, whether the sequent is provable in the L%; pair of our
L%; logic. If the sequent is not provable, then we may conclude that it is not
provable in the LXj logic either.

If the sequent is provable in the L%; pair of our logic, then we start a new
proof search using the L.’{; logic itself. The only contraction rules are (cWie) and
(E<w). We start to build a proof-search tree as usual, and for each modalized
formula we limit the number of the applications of the previous two rules by the
heap number for the principal formula of the rule.'3

The proof-search tree is finite. The connective rules—looked at from the
lower sequent upward—reduce the number of connectives in the sequent. So do

13 We defined heap numbers in a very liberal manner in order to make sure that all
the necessary contractions are permitted. However, even if h*(<¢) > 1, for example,
it may happen that in the L%; logic no contraction will be applied to the formula,
because it occurs on the left-hand side of the k. (Similarly, but dually for c¢.) This
does not cause any problem in the proof search, because the heap number (like the
( ) notation) does not force contractions, rather, it places a limit on the number of
potential applications of the contraction rules.
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typically the thinning rules. The number of applications of the (cwik) and the
(E<ow) rules is bounded, and there are finitely many modal formulas to start
with.

The proof-search tree will contain a proof if there is one. As usual, we assume
that the proof-search tree is comprehensive, that is, all the possible upper
sequents are added to the tree. This guarantees—as usual—that no potential
proof step is missed. We only have to scrutinize whether we have permitted all
the needed applications of the (cwie) and (lE<w) rules. Let us assume that more
than heap number-many contractions (i.e., some extra contractions) are required
to prove a sequent. The principal formula cannot be by thinning, because the lat-
ter could be simply omitted (contradicting the necessity for extra contractions).
If the principal formula is by the axiom (1) or a connective rule, then all the
atomic subformulas have another occurrence introduced (possibly, on the other
side of the ). If those occurrences are contracted, then the extra contractions
are not necessary. If they remain in the provable sequent, then the extra con-
tractions must have been applied in some irredundant proof; hence, they must
have been counted in the heap number contradicting the starting assumption.-:-

Lastly, we deal with the subgroup L.’{T.
Theorem 32. The logics bci, bci, and bck are decidable.

Proof. The proof is a simple proof-search. None of the calculi contains a con-
traction rule, hence, the finiteness of the sequents, of the set of subformulas of
a formula and Ko6nig’s lemma together guarantee the finiteness of the proof-
search tree. :

4 Conclusions

We have selected 9 modal logics, each of which is definable as an extension of
a core logic bci that includes disjunction and an implication (with two more
intensional connectives), and a pair of modalities > and <. We gave a systematic
presentation of these logics as sequent calculi. From the point of view of prov-
ing their decidability, the LX" logics fall into three groups. Curry’s bottom-up
approach is applicable to the L.’{; group. Kripke’s refinement delivers decid-
ability for the L.’{; group. Finally, the concept of a heap number together with
the decidability of the L%; logics yields the decidability of the L%; logics. To
summarize, each of our 9 modal logics turns out to be decidable.

Acknowledgments. I am grateful to the organizers of the TABLEAUX, FroCoS and
ITP conferences for their invitation for me to speak at those conferences, which trig-
gered the writing of this paper.

I would also like to thank the program committee for helpful comments on the first
version of this paper.



page 60 On the Decidability of Certain Semi-Lattice Based Modal Logics 17

References

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

22.

Anderson, A.R., Belnap, N.D.: Entailment: The Logic of Relevance and Necessity,
vol. I. Princeton University Press, Princeton (1975)

Anderson, A.R., Belnap, N.D., Dunn, J.M.: Entailment: The Logic of Relevance
and Necessity, vol. II. Princeton University Press, Princeton (1992)

Belnap, N.D.: Display logic. J. Philos. Logic 11, 375-417 (1982)

Belnap, N.D., Wallace, J.R.: A decision procedure for the system F7 of entailment
with negation. Technical report 11, Contract No. SAR/609 (16), Office of Naval
Research, New Haven (1961)

Belnap, N.D., Wallace, J.R.: A decision procedure for the system E7 of entailment
with negation. Zeitschrift fiir mathematische Logik und Grundlagen der Mathe-
matik 11, 277-289 (1965)

Bimbé, K.: Admissibility of cut in LC' with fixed point combinator. Stud. Logica
81, 399423 (2005). doi:10.1007/s11225-005-4651-y

Bimbé, K.: LEY, LRZ, LK and cutfree proofs. J. Philos. Logic 36, 557-570 (2007).
doi:10.1007/s10992-007-9048-0

Bimbd, K.: The decidability of the intensional fragment of classical linear logic.
Theoret. Comput. Sci. 597, 1-17 (2015). doi:10.1016/j.tcs.2015.06.019

Bimbd, K.: Proof Theory: Sequent Calculi and Related Formalisms. Discrete Math-
ematics and Its Applications. CRC Press, Boca Raton (2015). doi:10.1201/b17294
Bimbé, K., Dunn, J.M.: Generalized Galois Logics: Relational Semantics of Non-
classical Logical Calculi. CSLI Lecture Notes, vol. 188. CSLI Publications, Stanford
(2008)

Bimbé, K., Dunn, J.M.: Calculi for symmetric generalized Galois logics. In: van
Benthem, J., Moortgat, M. (eds.) Festschrift for Joachim Lambek. Linguistic
Analysis, vol. 36, pp. 307-343. Linguistic Analysis, Vashon (2010)

Bimbé, K., Dunn, J.M.: New consecution calculi for Rf,. Notre Dame J. Formal
Logic 53(4), 491-509 (2012). do0i:10.1215/00294527-1722719

Bimbd, K., Dunn, J.M.: On the decidability of implicational ticket entailment. J.
Symb. Logic 78(1), 214-236 (2013). do0i:10.2178/js1.7801150

Bimbé, K., Dunn, J.M.: Modalities in lattice-R (2015). (manuscript, 34 pages)
Cresswell, M., Mares, E., Rini, A. (eds.): Logical Modalities from Aristotle to
Carnap. The Story of Necessity. Cambridge University Press, Cambridge (2016)
Curry, H.B.: A Theory of Formal Deducibility. No. 6 in Notre Dame Mathematical
Lectures. University of Notre Dame Press, Notre Dame (1950)

Curry, H.B.: Foundations of Mathematical Logic. McGraw-Hill Book Company,
New York (1963). (Dover, New York, 1977)

Dunn, J.M.: A ‘Gentzen system’ for positive relevant implication (abstract). J.
Symb. Logic 38, 356-357 (1973)

Dunn, J.M.: Relevance logic and entailment. In: Gabbay, D., Guenthner, F. (eds.)
Handbook of Philosophical Logic, vol. 3, 1st edn, pp. 117-224. D. Reidel, Dordrecht
(1986)

Dunn, J.M.: Positive modal logic. Stud. Logica. 55, 301-317 (1995)

Dunn, J.M., Meyer, R.K.: Combinators and structurally free logic. Logic J. IGPL
5, 505-537 (1997)

Dunn, J.M., Restall, G.: Relevance logic. In: Gabbay, D., Guenthner, F. (eds.)
Handbook of Philosophical Logic, vol. 6, 2nd edn, pp. 1-128. Kluwer, Amsterdam
(2002)


http://dx.doi.org/10.1007/s11225-005-4651-y
http://dx.doi.org/10.1007/s10992-007-9048-0
http://dx.doi.org/10.1016/j.tcs.2015.06.019
http://dx.doi.org/10.1201/b17294
http://dx.doi.org/10.1215/00294527-1722719
http://dx.doi.org/10.2178/jsl.7801150

18

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

K. Bimbé page 61

Gentzen, G.: Untersuchungen iiber das logische Schlieen. Mathematische
Zeitschrift 39, 176-210 (1935)

Godel, K.: Eine Interpretation des intuitionistischen Aussagenkalkiils. In: Fefer-
man, S. (ed.) Collected Works, vol. I, pp. 300-303. Oxford University Press and
Clarendon Press, New York and Oxford (1986)

Kopylov, A.P.: Decidability of linear affine logic. In: Meyer, A.R. (ed.) Special issue:
LICS 1995, Information and Computation, vol. 164, pp. 173-198. IEEE (2001)
Kripke, S.A.: The problem of entailment (abstract). J. Symb. Logic 24, 324 (1959)
Kripke, S.A.: Semantical analysis of modal logic I. Normal modal propositional
calculi. Zeitschrift fiir mathematische Logik und Grundlagen der Mathematik, pp.
67-96 (1963)

Lambek, J.: The mathematics of sentence structure. Am. Math. Mon. 65, 154-169
(1958)

Lewis, C.I.: A Survey of Symbolic Logic. University of California Press, Berkeley
(1918). (Dover Publications, Mineola, 1960)

Meyer, R.K.: Topics in modal and many-valued logic. Ph.D. thesis, University of
Pittsburgh, Ann Arbor (UMI) (1966)

Meyer, R.K.: Improved decision procedures for pure relevant logic. In: Anderson,
C.A., Zelény, M. (eds.) Logic, Meaning and Computation: Essays in Memory of
Alonzo Church, pp. 191-217. Kluwer Academic Publishers, Dordrecht (2001)
Smullyan, R.M.: First-Order Logic. Springer, New York (1968). doi:10.1007/
978-3-642-86718-7. (Dover, New York 1995)


http://dx.doi.org/10.1007/978-3-642-86718-7
http://dx.doi.org/10.1007/978-3-642-86718-7

	On the Decidability of Certain Semi-Lattice Based Modal Logics
	1 Modal Logics
	2 Cut Theorems
	3 Decidability
	4 Conclusions
	References




