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Abstract

Solomonoff unified Occam’s razor and Epicurus’ principle of multiple explanations to one elegant, formal, universal theory of
inductive inference, which initiated the field of algorithmic information theory. His central result is that the posterior of the universal
semimeasure M converges rapidly to the true sequence generating posterior �, if the latter is computable. Hence, M is eligible as
a universal predictor in case of unknown �. The first part of the paper investigates the existence and convergence of computable
universal (semi) measures for a hierarchy of computability classes: recursive, estimable, enumerable, and approximable. For instance,
M is known to be enumerable, but not estimable, and to dominate all enumerable semimeasures. We present proofs for discrete and
continuous semimeasures. The second part investigates more closely the types of convergence, possibly implied by universality:
in difference and in ratio, with probability 1, in mean sum, and for Martin-Löf random sequences. We introduce a generalized
concept of randomness for individual sequences and use it to exhibit difficulties regarding these issues. In particular, we show that
convergence fails (holds) on generalized-random sequences in gappy (dense) Bernoulli classes.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

All induction problems can be phrased as sequence prediction tasks. This is, for instance, obvious for time-series
prediction, but also includes classification tasks. Having observed data xt at times t < n, the task is to predict the
tth symbol xt from sequence x = x1 . . . xt−1. The key concept to attack general induction problems is Occam’s
razor (simplicity) principle, which says that “Entities should not be multiplied beyond necessity.” and to a less extent
Epicurus’ principle of multiple explanations. The former/latter may be interpreted as to keep the simplest/all theories
consistent with the observations x1 . . . xt−1 and to use these theories to predict xt . Kolmogorov (and others) defined
the complexity of a string as the length of its shortest description on a universal Turing machine. The Kolmogorov
complexity K is an excellent universal complexity measure, suitable for quantifying Occam’s razor. There is (only) one
disadvantage: K is not computable.
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More precisely, a function f is said to be recursive (or finitely computable) if there exists a Turing machine that,
given x, computes f (x) and then halts. Some functions are not recursive but still approximable (or limit-computable)
in the sense that there is a non-halting Turing machine with an infinite (x-dependent) output sequence y1, y2, y3, . . .

and limt→∞ yt = f (x). If additionally the output sequence is monotone increasing/decreasing, then f is said to be
lower/upper semicomputable (or enumerable/co-enumerable). Finally, we call f estimable if some Turing machine,
given x and a precision ε, finitely computes an ε-approximation of x. The major algorithmic property of K is that it is
co-enumerable, but not recursive.

More suitable for predictions is Solomonoff’s [18,19] universal prior M(x) defined as the probability that the output
of a universal monotone Turing machine U starts with string x when provided with fair coin flips on the input tape.
M(x) is enumerable and roughly 2−K(x), hence implementing Occam’s and also Epicurus’ principles.

Assume now that strings x are sampled from a probability distribution �, i.e. the probability of a string starting with
x shall be �(x). The probability of observing xt at time t, given past observations x1 . . . xt−1 is �(xt |x1 . . . xt−1) =
�(x1 . . . xt )/�(x1 . . . xt−1). Solomonoff’s [19] central result is that the universal posterior M(xt |x1 . . . xt−1) =
M(x1 . . . xt )/M(x1 . . . xt−1) converges rapidly to the true (objective) posterior probability �(xt |x1. . .xt−1), if � is
an estimable measure, hence M can be used for predictions in case of unknown �. One representation of M is as a
2−K(�)-weighted sum of all enumerable “defective” probability measures, called semimeasures. The (from this rep-
resentation obvious) dominance M(x)�2−K(�)�(x) for all enumerable � is the central ingredient in the convergence
proof.

Dominance and convergence immediately generalize to arbitrary weighted sums of (semi)measures of some arbitrary
countable set M. So what is so special about the class of all enumerable semimeasures Msemi

enum? The larger we choose
M the less restrictive is the essential assumption that M should contain the true distribution �. Why not restrict to
the still rather general class of estimable or recursive (semi)measures? For every countable class M and �M(x) :=∑

�∈M w��(x) with w� > 0, the important dominance �M(x)�w��(x) ∀� ∈ M is satisfied. The question is what
properties �M possesses. The distinguishing property of Msemi

enum is that M = �Msemi
enum

is itself an element of Msemi
enum.

On the other hand, for prediction, �M ∈ M is not by itself an important property. What matters is whether �M
is computable (in one of the senses we defined above) to avoid getting into the (un)realm of non-constructive
math.

Our first contribution is to classify the existence of generalized computable (semi)measures. From [23] we know
that there is an enumerable semimeasure (namely M) that dominates all enumerable semimeasures in Msemi

enum. We
show that there is no estimable semimeasure that dominates all computable measures (also mentioned in [23]), and
there is no approximable semimeasure that dominates all approximable measures. From this it follows that for a
universal (semi)measure that at least satisfies the weakest form of computability, namely being approximable, the
largest dominated class among the classes considered in this work is the class of enumerable semimeasures. This is the
distinguishing property of Msemi

enum and M. This investigation was motivated by recent generalizations of Kolmogorov
complexity and Solomonoff’s prior by Schmidhuber [14,15].

The second contribution is to investigate more closely the types of convergence, possibly implied by universality: in
difference and in ratio, with probability 1, in mean sum, and for Martin-Löf (M.L.) random sequences. We introduce
a generalized concept of randomness for individual sequences and use it to exhibit difficulties regarding these issues.
More concretely, we consider countable classes M of Bernoulli environments and show that �M converges to � on all
generalized-random sequences if and only if the class is dense.

Contents: In Section 2, we review various computability concepts and discuss their relation. In Section 3, we define
the prefix Kolmogorov complexity K, the concept of (semi)measures, Solomonoff’s universal prior M, and explain its
universality. Section 4 summarizes Solomonoff’s major convergence result, discusses general mixture distributions and
the important universality property—multiplicative dominance. In Section 5, we define seven classes of (semi)measures
based on four computability concepts. Each class may or may not contain a (semi)measures that dominates all elements
of another class. We reduce the analysis of these 49 cases to four basic cases. Domination (essentially by M) is known to
be true for two cases. The other two cases do not allow for domination. In Section 7, we investigate more closely the type
of convergence implied by universality. We summarize the result on posterior convergence in difference (� − � → 0)

and improve the previous result [13] on the convergence in ratio �/� → 1 by showing rapid convergence without use
of martingales. In Section 8, we investigate whether convergence for all M.L. random sequences could hold. We define
a generalized concept of randomness for individual sequences and use it to show that proofs based on universality
cannot decide this question. Section 9 concludes the paper.
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Notation: We denote strings of length n over finite alphabet X by x = x1x2 . . . xn with xt ∈ X and further abbreviate
x1:n := x1x2 . . . xn−1xn and x<n := x1 . . . xn−1, � for the empty string, �(x) for the length of string x, and � = x1:∞
for infinite sequences. We write xy for the concatenation of string x with y. We abbreviate limn→∞ [f (n) − g(n)] = 0

by f (n)
n→∞−→ g(n) and say f converges to g, without implying that limn→∞ g(n) itself exists. We write f (x) � g(x)

for g(x) = O(f (x)), i.e. if ∃c > 0 : f (x)�cg(x)∀x.

2. Computability concepts

We define several computability concepts weaker than can be captured by halting Turing machines.

Definition 1 (Computable functions). We consider functions f : N → R:

f is recursive or finitely computable iff there are Turing machines T1/2 with output interpreted as natural numbers
and f (x) = T1(x)

T2(x)
.

f is approximable or limit-computable iff ∃ recursive �(·, ·) with limt→∞ �(x, t) = f (x).
f is enumerable or lower semicomputable iff additionally �(x, t)��(x, t + 1).
f is co-enumerable or upper semicomputable iff [−f ] is lower semicomputable.
f is semicomputable iff f is lower- or upper semicomputable.
f is estimable iff f is lower- and upper semicomputable.

If f is estimable we can finitely compute an ε-approximation of f by upper and lower semicomputing f and
terminating when differing by less than ε. This means that there is a Turing machine which, given x and ε, finitely
computes ŷ ∈ Q such that |ŷ − f (x)| < ε. Moreover, it gives an interval estimate f (x) ∈ [ŷ − ε, ŷ + ε]. An estimable
integer-valued function is recursive (take any ε < 1

2 ). Note that if f is only approximable or semicomputable we can
still come arbitrarily close to f (x) but we cannot devise a terminating algorithm that produces an ε-approximation.
In the case of lower/upper semicomputability we can at least finitely compute lower/upper bounds to f (x). In case of
approximability, the weakest computability form, even this capability is lost.

What we call estimable/recursive/finitely computable is often just called computable, but it makes sense to separate
the concepts in this work, since finite computability is conceptually easier and some previous results have only been
proved for this case. Sometimes we use the word computable generically for some of the computability forms of
Definition 1.

3. The universal prior M

The prefix Kolmogorov complexity K(x) is defined as the length of the shortest binary (prefix) program p ∈ {0, 1}∗
for which a universal prefix Turing machine U (with binary program tape and X ary output tape) outputs string x ∈ X ∗,
and similarly K(x|y) in case of side information y [9,12,3,1]:

K(x) = min{�(p) : U(p) = x}, K(x|y) = min{�(p) : U(p, y) = x}.
Solomonoff [18, Eq. (7)] defined (earlier) the closely related quantity, the universal posterior M(y|x) = M(xy)/M(x).
The universal prior M(x) can be defined as the probability that the output of a universal monotone Turing machine U
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starts with x when provided with fair coin flips on the input tape. Formally, M can be defined as

M(x) := ∑
p : U(p)=x∗

2−�(p), (1)

where the sum is over minimal programs p for which U outputs a string starting with x. The so-called minimal programs
are defined similarly to the prefix programs, but U need not halt, which is indicated by the ∗. Minimal programs are
those which are left to the input head in the moment when U wrote the last bit of x [13,7]. Before we can discuss the
stochastic properties of M we need the concept of (semi)measures for strings.

Definition 2 (Continuous (Semi)measures). �(x) denotes the probability that a sequence starts with string x.
We call ��0 a (continuous) semimeasure if �(�)�1 and �(x)�

∑
a∈X �(xa), and a (probability) measure if equalities

hold.

The reason for calling � with the above property a probability measure is that it satisfies Kolmogorov’s axioms of
probability in the following sense: the sample space is X ∞ with elements � = �1�2�3 . . . ∈ X ∞ being infinite
sequences over alphabet X . The set of events (the �-algebra) is defined as the set generated from the cylinder sets
�x1:n := {� : �1:n = x1:n} by countable union and complement. A probability measure � is uniquely defined by giving
its values �(�x1:n) on the cylinder sets, which we abbreviate by �(x1:n). We will also call � a measure, or even more
loose a probability distribution.

We have
∑

a∈X M(xa) < M(x) because there are programs p that output x, not followed by any a ∈ X . They just
stop after printing x or continue forever without any further output. Together with M(�) = 1 this shows that M is a
semimeasure, but not a probability measure. We can now state the fundamental property of M [23,19]:

Theorem 3 (Universality of M). The universal prior M is an enumerable semimeasure that multiplicatively dominates
all enumerable semimeasures in the sense that M(x) � 2−K(	) · 	(x) for all enumerable semimeasures 	. M is
enumerable, but not estimable (nor recursive).

The Kolmogorov complexity of a function like 	 is defined as the length of the shortest self-delimiting code of a
Turing machine computing this function in the sense of Definition 1. Up to a multiplicative constant, M assigns higher
probability to all x than any other computable probability distribution.

It is possible to normalize M to a true probability measure Mnorm [19,13] with dominance still being true, but at the
expense of giving up enumerability (Mnorm is still approximable). M is more convenient when studying algorithmic
questions, but a true probability measure like Mnorm is more convenient when studying stochastic questions.

4. Universal sequence prediction

In which sense does M incorporate Occam’s razor and Epicurus’principle of multiple explanations? Since the shortest
programs p dominate the sum in M, M(x) is roughly equal to 2−K(x) (M(x) = 2−K(x)+O(K(�(x))), i.e. M assigns high
probability to simple strings. More useful is to think of x as being the observed history. We see from (1) that every
program p consistent with history x is allowed to contribute to M (Epicurus). On the other hand, shorter programs
give significantly larger contribution (Occam). How does all this affect prediction? If M(x) describes our (subjective)
prior belief in x, then M(y|x) := M(xy)/M(x) must be our posterior belief in y. From the symmetry of algorithmic
information K(xy) ≈ K(y|x) + K(x), and M(x) ≈ 2−K(x) and M(xy) ≈ 2−K(xy) we get M(y|x) ≈ 2−K(y|x). This
tells us that M predicts y with high probability iff y has an easy explanation, given x (Occam and Epicurus).

The above qualitative discussion should not create the impression that M(x) and 2−K(x) always lead to predictors of
comparable quality. Indeed, in the online/incremental setting, K(y) = O(1) invalidates the consideration above. The
proof of (3), for instance, depends on M being a semimeasure and the chain rule being exactly true, neither of them is
satisfied by 2−K(x). See [6] for a detailed analysis.

Sequence prediction algorithms try to predict the continuation xt ∈ X of a given sequence x1 . . . xt−1. The following
bound shows that M predicts computable sequences well:

∞∑
t=1

(1−M(xt |x<t ))
2 � − 1

2

∞∑
t=1

ln M(xt |x<t ) = −1

2
ln M(x1:∞) � 1

2
ln 2 · Km(x1:∞), (2)
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where the monotone complexity Km(x1:∞) = min{�(p) : U(p) = x1:∞} is defined as the length of the shortest
(non-halting) program computing x1:∞ [23,11]. In the first inequality we have used (1 − a)2 � − 1

2 ln a for 0�a�1.
In the equality we exchanged the sum with the logarithm and eliminated the resulting product by the chain rule.
In the last inequality we used M(x)�2−Km(x), which follows from (1) by dropping all terms in

∑
p except for the

shortest p computing x. If x1:∞ is a computable sequence, then Km(x1:∞) is finite, which implies M(xt |x<t ) → 1
(
∑∞

t=1 (1 − at )
2 < ∞ ⇒ at → 1). This means, that if the environment is a computable sequence (which so ever, e.g.

the digits of 
 or e in X ary representation), after having seen the first few digits, M correctly predicts the next digit
with high probability, i.e. it recognizes the structure of the sequence.

Assume now that the true sequence is drawn from a computable probability distribution �, i.e. the true (objective)
probability of x1:t is �(x1:t ). The probability of xt given x<t hence is �(xt |x<t ) = �(x1:t )/�(x<t ). Solomonoff’s [19]
central result is that M converges to �. More precisely, for binary alphabet, he showed that

∞∑
t=1

∑
x<t∈{0,1}t−1

�(x<t ) (M(0|x<t )−�(0|x<t ))
2 � 1

2
ln 2·K(�) + O(1) < ∞. (3)

The infinite sum can only be finite if the difference M(0|x<t ) − �(0|x<t ) tends to zero for t → ∞ with �-probability
1 (see Definition 9(i) and [4] or Section 7 for general alphabet). This holds for any computable probability distribution
�. The reason for the astonishing property of a single (universal) function to converge to any computable probability
distribution lies in the fact that the set of �-random sequences differ for different �. Past data x<t are exploited to get a
(with t → ∞) improving estimate M(xt |x<t ) of �(xt |x<t ).

The universality property (Theorem 3) is the central ingredient in the proof of (3). The proof involves the construction
of a semimeasure � whose dominance is obvious. The hard part is to show its enumerability and equivalence to M.
Let M be the (countable) set of all enumerable semimeasures and define

�(x) := ∑
�∈M

2−K(�)�(x). (4)

Then dominance

�(x)�2−K(�)�(x) ∀ � ∈ M (5)

is obvious. Is � lower semicomputable? To answer this question one has to be more precise. Levin [23] has shown
that the set of all lower semicomputable semimeasures is enumerable (with repetitions). For this (ordered multi) set
M = Msemi

enum := {�1, �2, �3, . . .} and K(�i ) := K(i) one can easily see that � is lower semicomputable. Finally,
proving M(x) � �(x) also establishes universality of M (see [19,13] for details).

The advantage of � over M is that it immediately generalizes to arbitrary weighted sums of (semi)measures for
arbitrary countable M.

5. Universal (semi)measures

What is so special about the set of all enumerable semimeasures Msemi
enum? The larger we choose M the less restrictive

is the assumption that M should contain the true distribution �, which will be essential throughout the paper. Why
do we not restrict to the still rather general class of estimable or recursive (semi)measures? It is clear that for every
countable (multi)set M, the universal or mixture distribution

�(x) := �M(x) := ∑
�∈M

w��(x) with
∑

�∈M
w� �1 and w� > 0 (6)

dominates all � ∈ M. This dominance is sufficient for the desired convergence � → � similarly to (3). The question
is what properties � possesses. The distinguishing property of Msemi

enum is that � is itself an element of Msemi
enum. When

concerned with predictions, �M ∈ M is not by itself an important property, but whether � is computable in one of the
senses of Definition 1. We define

M1 �M2 :⇔ there is an element of M1 that dominates all elements of M2

:⇔ ∃ 	∈M1 ∀�∈M2 ∃w� >0 ∀x : 	(x)�w��(x).
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Table 1
Existence of universal (semi)measures

↖ M Semimeasure Measure

	 ↘ rec. est. enum. appr. rec. est. appr.

s rec. noiii noiii noiii noiv noiii noiii noiv

e est. noiii noiii noiii noiv noiii noiii noiv

m enum. yesi yesi yesi noiv yesi yesi noiv

i appr. yesi yesi yesi noiv yesi yesi noiv

m rec. noiii noiii noiii noiv noiii noiii noiv

s est. noiii noiii noiii noiv noiii noiii noiv

r appr. yesii yesii yesii noiv yesii yesii noiv

The entry in row r and column c indicates whether there is an r-able (semi)measure 	 dominating the set M that contains all c-able (semi)measures,
where r, c ∈ {recurs, estimat, enumer, approxim}. Enumerable measures are estimable. This is the reason why the enum. row and column in case
of measures are missing. The superscript indicates from which part of Theorem 4 the answer follows. For the bold face entries directly, for the
others using transitivity of � .

� is transitive (but not necessarily reflexive) in the sense that M1 �M2 �M3 implies M1 �M3 and M0 ⊇
M1 �M2 ⊇ M3 implies M0 �M3. For the computability concepts introduced in Section 2, we have the following
proper set inclusions:

Mmsr
rec ⊂ Mmsr

est ≡ Mmsr
enum ⊂ Mmsr

appr
∩ ∩ ∩ ∩

Msemi
rec ⊂ Msemi

est ⊂ Msemi
enum ⊂ Msemi

appr

where Mmsr
c stands for the set of all probability measures of appropriate computability type c ∈ {rec = recursive, est =

estimable, enum = enumerable, appr = approximable}, and similarly for semimeasures Msemi
c . From an enumeration

of a measure 	 one can construct a co-enumeration by exploiting 	(x1:n) = 1 −∑
y1:n �=x1:n 	(y1:n). This shows that

every enumerable measure is also co-enumerable, hence estimable, which proves the identity ≡ above.
With this notation, Theorem 3 implies Msemi

enum �Msemi
enum. Transitivity allows to conclude, for instance, that Msemi

appr �
Mmsr

rec , i.e. that there is an approximable semimeasure that dominates all recursive measures.
The standard “diagonalization” way of proving M1 ��M2 is to take an arbitrary � ∈ M1 and “increase” it to 	

such that � �� 	 and show that 	 ∈ M2. There are 7 × 7 combinations of (semi)measures M1 with M2 for which
M1 �M2 could be true or false. There are four basic cases, explicated in the following theorem, from which the other
49 combinations displayed in Table 1 follow by transitivity.

Theorem 4 (Universal (semi)measures). A semimeasure 	 is said to be universal for M if it multiplicatively dominates
all elements of M in the sense ∀�∃w� > 0 : 	(x)�w��(x)∀x. The following holds true:
(o) ∃	 : {	} �M: For every countable set of (semi)measures M, there is a (semi)measure that dominates all elements

of M.

(i) Msemi
enum �Msemi

enum: The class of enumerable semimeasures contains a universal element.

(ii) Mmsr
appr �Msemi

enum: There is an approximable measure that dominates all enumerable semimeasures.

(iii) Msemi
est ��Mmsr

rec : There is no estimable semimeasure that dominates all recursive measures.

(iv) Msemi
appr ��Mmsr

appr: There is no approximable semimeasure that dominates all approximable measures.

If we ask for a universal (semi)measure that at least satisfies the weakest form of computability, namely being approx-
imable, we see that the largest dominated set among the 7 sets defined above is the set of enumerable semimeasures.
This is the reason why Msemi

enum plays a special role. On the other hand, Msemi
enum is not the largest set dominated by

an approximable semimeasure, and indeed no such largest set exists. One may, hence, ask for “natural” larger sets
M. One such set, namely the set of cumulatively enumerable semimeasures MCEM, has recently been discovered by
Schmidhuber [14,15], for which even �CEM ∈ MCEM holds.
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Theorem 4 also holds for discrete (semi)measures P defined as follows:

Definition 5 (Discrete (semi)measures). P(x) denotes the probability of x ∈ N. We call P : N → [0, 1] a discrete

(semi)measure if
∑

x∈N P(x)
(<)= 1.

Theorem 4 (i) is Levin’s major result [13, Thm. 4.3.1, Thm. 4.5.1], and (ii) is due to Solomonoff [19]. The proof
of Msemi

rec ��Msemi
rec in [13, p. 249] contains minor errors and is not extensible to (iii), and the proof in [13, p. 276]

only applies to infinite alphabet and not to the binary/finite case considered here. Msemi
est ��Msemi

est is mentioned in
[23] without proof. A direct proof of (iv) can be found in [7]. Here, we reduce (iv) to (iii) by exploiting the following
elementary fact (well-known for integer-valued functions, see e.g. [17, p. 634]):

Lemma 6 (Approximable = H -estimable). A function is approximable iff it is estimable with the help of the halting
oracle.

Proof. With H-computable we mean, computable with the help of the halting oracle, or equivalently, computable under
extra input of the halting sequence h = h1:∞ ∈ {0, 1}∞, where hn = 1 :⇔ U(n) halts.

Assume f is approximable, i.e. ∀ε∃y, m : R(m, y, ε), where relation R(m, y, ε) := [∀n�m : |fn(x) − y| < ε] and
recursive fn → f . Fix ε > 0. Search (dovetail) for m ∈ N and y (∈ 1

2 εZ is sufficient) such that R(m, y, ε) =true. R
is co-enumerable, hence H-decidable, hence y can be H-computed, hence f is H-estimable, since f (x) = y ± O(ε).

Now assume that f is H-estimable, i.e. ∃T ∈ TM ∀ε, x : |T (x, ε, h) − f (x)| < ε. Since h is enumerable, T and
hence f are approximable. More formally, let ht

n = 1 :⇔ U(n) halts within t steps. Then g(x, ε) := T (x, ε, h) =
T (x, ε, limt→∞ ht ) = limt→∞ T (x, ε, ht ) is approximable, where the exchange of limits holds, since T only reads
nxε < ∞ bits of h and h1:nxε = ht

1:nxε
for sufficiently large t. �

6. Proof of Theorem 4

We first prove the theorem for discrete (semi)measures P (Definition 5), since it contains the essential ideas in a
cleaner form. We then present the proof for continuous (semi)measures � (Definition 2). We present proofs for binary
alphabet X = {0, 1} only. The proofs naturally generalize from binary to arbitrary finite alphabet. arg minx f (x) is the
x that minimizes f (x). Ties are broken in an arbitrary but computable way (e.g. by taking the smallest x).

Proof (discrete case).
(o) Q(x) := ∑

P∈M wP P (x) with wP > 0 obviously dominates all P ∈ M (with constant wP ). With
∑

P wP = 1
and all P being discrete (semi)measures also Q is a discrete (semi)measure.

(i) See [13, Thm. 4.3.1].
(ii) Let P be the universal element in Msemi

enum and � := ∑
x P (x). We normalize P by Q(x) := 1

�P(x). Since ��1 we
have Q(x)�P(x). Hence Q�P �Msemi

enum. As a ratio between two enumerable functions, Q is still approximable,
hence Mmsr

appr �Msemi
enum.

(iii) Let P ∈ Msemi
rec . We partition N into chunks In := {2n−1, . . . , 2n − 1} (n�1) of increasing size. With xn :=

arg minx∈In
P (x) we define Q(xn) := 1

n(n+1)
∀n and Q(x) := 0 for all other x. Exploiting that a minimum is

smaller than an average and that � is a semimeasure, we get

P(xn) = min
x∈In

P (x)� 1

|In|
∑

x∈In

P (x)� 1

|In| = 1

2n−1 = n(n + 1)

2n−1 Q(xn).

Since n(n+1)

2n−1 → 0 for n → ∞, P cannot dominate Q (P ��Q). With P also Q is recursive. Since P was an

arbitrary recursive semimeasure and Q is a recursive measure (
∑

Q(x) = ∑[ 1
n(n+1)

] = ∑[ 1
n

− 1
n+1 ] = 1) this

implies Msemi
rec ��Mmsr

rec .
Assume now that there is an estimable semimeasure S �Mmsr

rec . We construct a recursive semimeasure P � S as
follows. Choose an initial ε > 0 and finitely compute an ε-approximation Ŝ of S(x). If Ŝ > 2ε define P(x) := 1

2 Ŝ,
else halve ε and repeat the process. Since S(x) > 0 (otherwise it could not dominate, e.g. T (x):= 1

x(x+1)
∈ Mmsr

rec )
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the loop terminates after finite time. So P is recursive. Inserting Ŝ = 2P(x) and ε < 1
2 Ŝ = P(x) into |S(x) −

Ŝ| < ε we get |S(x) − 2P(x)| < P(x), which implies S(x)�P(x) and S(x)�3P(x). The former implies∑
x P (x)�

∑
x S(x)�1, i.e. P is a semimeasure. The latter implies P � 1

3S �Mmsr
rec . Hence P is a recursive

semimeasure dominating all recursive measures, which contradicts what we have proven in the first half of (iii).
Hence the assumption on S was wrong which establishes Msemi

est ��Mmsr
rec .

(iv) From (iii) we know that Msemi
est ��Mmsr

est . The proof and hence result remains valid under the halting oracle, i.e.
Msemi

H-est ��Mmsr
H-est . By Lemma 6, the H-estimable functions/(semi)measures coincide with the approximable

functions/(semi)measures, hence Msemi
appr ��Mmsr

appr. �

Proof (continuous case). The major difference to the discrete case is that one also has to take care that 	(x)
(>)=

	(x0) + 	(x1), x ∈ {0, 1}∗, is respected. On the other hand, the chunking In := {0, 1}n is more natural here.

(o) 	(x) := ∑
�∈M w��(x) with w� > 0 obviously dominates all � ∈ M (with domination constant w�). With∑

� w� = 1 and all � being (semi)measures also 	 is a (semi)measure.
(i) See [13, Thm. 4.5.1].

(ii) Let � be a universal element in Msemi
enum. We define [19]

�norm(x1:n) :=
n∏

t=1

�(x1:t )
�(x<t0) + �(x<t1)

.

By induction one can show that �norm is a measure and that �norm(x)��(x)∀x, hence �norm �� �Msemi
enum. As a

ratio of enumerable functions, �norm is still approximable, hence Mmsr
appr �Msemi

enum.

(iii) Analogous to the discrete case we could start by recursively defining x∗
k := arg minxk

�(x∗
<kxk) for � ∈ Msemi

rec .
See [5] for a proof along this line. Simpler is to directly consider � ∈ Msemi

est and to compute x∗
1:∞ recursively

by computing some ε-approximation e(xk|x∗
<t ) of �(xk|x∗

<t ) and define x∗
k = arg minxk

e(xk|x∗
<t ), which implies

�(x∗
k |x∗

<t )� 1
2 + ε. Finally, we define measure 	 by 	(x∗

1:k) = 1∀k and 	(x) = 0 for all x that are not prefixes of
x∗

1:∞. Hence �(x∗
1:n)�( 1

2 + ε)n = ( 1
2 + ε)n	(x∗

1:n), which demonstrates that � does not dominate 	 for ε < 1
2 .

Since � ∈ Msemi
est was arbitrary and 	 is a recursive measure, this implies Msemi

est ��Mmsr
rec .

(iv) Identical to discrete case. �

7. Posterior convergence

We investigated in detail the computational properties of various mixture distributions �. A mixture �M multiplica-
tively dominates all distributions in M. We mentioned that dominance implies posterior convergence. In this section
we present in more detail what dominance implies and what not.

Convergence of �(xt |x<t ) to �(xt |x<t ) with �-probability 1 tells us that �(xt |x<t ) is close to �(xt |x<t ) for sufficiently
large t on“most” sequences x1:∞. It says nothing about the speed of convergence, nor whether convergence is true for
any particular sequence (of measure 0). Convergence in mean sum defined below is intended to capture the rate of
convergence, Martin-Löf randomness is used to capture convergence properties for individual sequences.

Martin-Löf randomness is a very important concept of randomness of individual sequences, which is closely related
to Kolmogorov complexity and Solomonoff’s universal prior. Levin gave a characterization equivalent to Martin-Löf’s
original definition [11]:

Theorem 7 (Martin-Löf random sequences). A sequence x1:∞ is �-Martin-Löf random (�.M.L.) iff there is a constant
c such that M(x1:n)�c · �(x1:n) for all n.

An equivalent formulation for estimable � is:

x1:∞ is �.M.L.-random ⇔ Km(x1:n) = − log �(x1:n) + O(1) ∀n. (7)

Theorem 7 follows from (7) by exponentiation, “using 2−Km ≈ M” and noting that M � � follows from universality of
M. Consider the special case of � being a fair coin, i.e. �(x1:n) = 2−n, then x1:∞ is M.L. random iff Km(x1:n) = n+O(1),
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i.e. if x1:n is incompressible. For general �, − log �(x1:n) is the length of the Shannon–Fano code of x1:n, hence x1:∞
is �.M.L.-random iff the Shannon–Fano code is optimal.

One can show that a�.M.L.-random sequencex1:∞ passes all thinkable effective randomness tests, e.g. the law of large
numbers, the law of the iterated logarithm, etc. In particular, the set of all �.M.L.-random sequences has �-measure 1.
The following generalization is natural when considering general Bayes mixtures � as in this work:

Definition 8 (�/�-random sequences). A sequence x1:∞ is called �/�-random (�.�.r.) iff there is a constant c such that
�(x1:n)�c · �(x1:n) for all n.

Typically, � is a mixture over some M as defined in (6), in which case the reverse inequality �(x) � �(x) is also true
(for all x). For finite M or if � ∈ M, the definition of �/�-randomness depends only on M, and not on the specific
weights w� used in �. For M = Msemi

enum, �/�-randomness is just �.M.L.-randomness. The larger M, the more patterns
are recognized as nonrandom. Roughly speaking, those regularities characterized by some � ∈ M are recognized by
�/�-randomness, i.e. for M ⊂ Msemi

enum some �/�-random strings may not be M.L. random. Other randomness concepts,
e.g. those by Schnorr, Ko, van Lambalgen, Lutz, Kurtz, von Mises, Wald, and Church (see [22,10,16]), could possibly
also be characterized in terms of �/�-randomness for particular choices of M.

A classical (non-random) real-valued sequence at is defined to converge to a∗, short at → a∗ if ∀ε∃t0∀t � t0 :
|at − a∗| < ε. We are interested in convergence properties of random sequences zt (�) for t → ∞ (e.g. zt (�) =
�(�t |�<t ) − �(�t |�<t )). We denote �-expectations by E. The expected value of a function f : X t → R, dependent
on x1:t , independent of xt+1:∞, and possibly undefined on a set of �-measure 0, is E[f ] = ∑′

x1:t∈X t �(x1:t )f (x1:t ).
The prime denotes that the sum is restricted to x1:t with �(x1:t ) �= 0. Similarly we use P[..] to denote the �-probability
of event [..]. We define four convergence concepts for random sequences.

Definition 9 (Convergence of random sequences). Let z1(�), z2(�), . . . be a sequence of real-valued random vari-
ables. zt is said to converge for t → ∞ to (random variable) z∗

(i) with probability 1 (w.p.1) :⇔ P[{� : zt → z∗}] = 1,

(ii) in mean sum (i.m.s.) :⇔ ∑∞
t=1 E[(zt − z∗)2] < ∞,

(iii) for every �-M.-L. random sequence (�.M.L.) :⇔ ∀�: If [∃c∀n : M(�1:n)�c�(�1:n)] then zt (�) → z∗(�) for
t → ∞,

(iv) for every �/�-random sequence (�.�.r.) :⇔ ∀�: If [∃c∀n : �(�1:n)�c�(�1:n)] then zt (�) → z∗(�) for t → ∞.

In statistics, (i) is the “default” characterization of convergence of random sequences. Convergence i.m.s. (ii) is very
strong: it provides a rate of convergence in the sense that the expected number of times t in which zt deviates more than
ε from z∗ is finite and bounded by c/ε2 and the probability that the number of ε-deviations exceeds c

ε2� is smaller than

�, where c := ∑∞
t=1 E[(zt − z∗)2]. Nothing can be said for which t these deviations occur. If, additionally, |zt − zs |

were monotone decreasing, then |zt − z∗| = o(t−1/2) could be concluded. (iii) uses M.-L.’s notion of randomness of
individual sequences to define convergence M.L. Since this work deals with general Bayes mixtures �, we generalized
in (iv) the definition of convergence M.L. based on M to convergence �.�.r. based on � in a natural way. One can show
that convergence i.m.s. implies convergence w.p.1. Also convergence M.L. implies convergence w.p.1. Universality of
� implies the following posterior convergence results:

Theorem 10 (Convergence of � to �). Let there be sequences x1x2 . . . over a finite alphabet X drawn with probability
�(x1:n) ∈ M for the first n symbols, where � is a measure and M a countable set of (semi)measures. The univer-
sal/mixture posterior probability �(xt |x<t ) of the next symbol xt given x<t is related to the true posterior probability
�(xt |x<t ) in the following way:

n∑
t=1

E

⎡
⎣(

√
�(xt |x<t )

�(xt |x<t )
− 1

)2⎤⎦�
n∑

t=1
E

[∑
x′
t

(√
�(x′

t |x<t ) −
√

�(x′
t |x<t )

)2
]

� ln w−1
� < ∞,

where w� is the weight (6) of � in �.
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Theorem 10 implies

√
�(x′

t |x<t ) →
√

�(x′
t |x<t ) for any x′

t and

√
�(xt |x<t )

�(xt |x<t )
→ 1,

both i.m.s. for t → ∞.

The latter strengthens the result �(xt |x<t )/�(xt |x<t ) → 1 w.p.1 derived by Gács [13, Thm. 5.2.2] in that it also provides
the “speed” of convergence.

Note also the subtle difference between the two convergence results. For any sequence x′
1:∞ (possibly constant

and not necessarily �-random), �(x′
t |x<t ) − �(x′

t |x<t ) converges to zero w.p.1 (referring to x1:∞), but no statement
is possible for �(x′

t |x<t )/�(x′
t |x<t ), since lim inf �(x′

t |x<t ) could be zero. On the other hand, if we stay on-sequence
(x′

1:∞ = x1:∞), we have �(xt |x<t )/�(xt |x<t ) → 1 w.p.1 (whether inf �(xt |x<t ) tends to zero or not does not matter).
Indeed, it is easy to give an example where �(x′

t |x<t )/�(x′
t |x<t ) diverges. If we choose

M = {�1, �2}, �≡�1, �1(1|x<t ) = 1
2 t−3 and �2(1|x<t ) = 1

2 t−2

the contribution of �2 to � causes � to fall off like �2 ∼ t−2, much slower than � ∼ t−3 causing the quotient to diverge:

�1(01:n) =
n∏

t=1
(1 − 1

2 t−3)
n→∞−→ c1 = 0.450 . . . > 0 ⇒ 01:∞ is a �-random sequence,

�2(01:n) =
n∏

t=1
(1− 1

2 t−2)
n→∞−→ c2 = 0.358 . . . > 0 ⇒ �(01:n) → w1c1 + w2c2 := c� > 0,

�(0<t1) = w1�1(1|0<t )�1(0<t ) + w2�2(1|0<t )�2(0<t ) → 1
2w2c2t

−2

⇒ �(1|0<t ) = �(0<t1)

�(0<t )
→ w2c2

2c�
t−2 ⇒ �(1|0<t )

�(1|0<t )
→ w2c2

c�
t → ∞ diverges.

Proof. For a probability distribution yi �0 with
∑

i yi = 1 and a semi-distribution zi �0 with
∑

i zi �1 and i =
{1, . . . , N}, the Hellinger distance h(�y, �z) := ∑

i (
√

yi − √
zi)

2 is upper bounded by the relative entropy d(�y, �z) =∑
i yi ln yi

zi
(and 0 ln 0

z
:= 0). This can be seen as follows: For arbitrary 0�y�1 and 0�z�1 we define

f (y, z) := y ln
y

z
− (

√
y − √

z)2 + z − y = 2yg(
√

z/y)

with g(t) := − ln t + t − 1�0. This shows f �0, and hence
∑

i f (yi, zi)�0, which implies

∑
i

yi ln
yi

zi

−∑
i

(
√

yi − √
zi)

2 �
∑
i

yi −∑
i

zi �1 − 1 = 0.

The (conditional) �-expectations of a function f : X t → R are defined as

E[f ] = ∑
x1:t∈X t

′�(x1:t )f (x1:t ) and Et [f ] := E[f |x<t ] = ∑
xt∈X

′ �(xt |x<t )f (x1:t ),

where
∑′ sums over all xt or x1:t for which �(x1:t ) �= 0. If we insert X = {1, . . . , N}, N = |X |, i = xt , yi = �t :=

�(xt |x<t ), and zi = �t := �(xt |x<t ) into h and d we get (w.p.1)

ht (x<t ) := ∑
xt

(
√

�t −
√

�t )
2 � dt (x<t ) := ∑

xt
�t ln

�t

�t

= Et

[
ln

�t

�t

]
.

Taking the expectation E and the sum
∑n

t=1 we get

n∑
t=1

E[dt (x<t )]=
n∑

t=1
E
[

Et

[
ln

�t

�t

]]
= E

[
ln

n∏
t=1

�t

�t

]
= E

[
ln

�(x1:n)
�(x1:n)

]
� ln w−1

� , (8)
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where we have used E[Et[..]] = E[..] and exchanged the t-sum with the expectation E, which transforms to a product
inside the logarithm. In the last equality we have used the chain rule for � and �. Using universality �(x1:n)�w��(x1:n)
yields the final inequality. Finally

Et

⎡
⎣(

√
�t

�t

−1

)2
⎤
⎦=∑

xt

′�t

(√
�t

�t

−1

)2

=∑
xt

′
(
√

�t −√
�t )

2�ht (x<t )�dt (x<t ).

Taking the expectation E and the sum
∑n

t=1 and chaining the result with (8) yields Theorem 10. �

8. Convergence in M.L. sense

An interesting open question is whether � converges to � (in difference or ratio) individually for all M.-L. random
sequences. Clearly, convergence �.M.L. may at most fail for a set of sequences with �-measure zero. A convergence
M.L. result would be particularly interesting and natural for Solomonoff’s universal prior M, since M.L. randomness
can be defined in terms of M (see Theorem 7). Attempts to convert the bounds in Theorem 10 to effective �.M.L.-

randomness tests fail, since M(xt |x<t ) is not enumerable. The proof of M/�
M.L.−→ 1 given in [13, Thm. 5.2.2, 20, Thm.

10] is incomplete.1 The implication “M(x1:n)�c · �(x1:n)∀n ⇒ limn→∞ M(x1:n)/�(x1:n) exists” has been used, but
not proven, and is indeed generally wrong [8]. Theorem 7 only implies supn M(x1:n)/�(x1:n) < ∞ for M.L. random
sequences x1:∞, and [2, pp. 324–325] implies only that limn→∞ M(x1:n)/�(x1:n) exists w.p.1, and not �.M.L. Vovk
[21] shows that for two estimable semimeasures � and 	 and x1:∞ being � and 	 M.L. random that

∞∑
t=1

∑
x′
t

(√
�(x′

t |x<t ) −
√

	(x′
t |x<t )

)2

< ∞ and
∞∑
t=1

(
	(xt |x<t )

�(xt |x<t )
− 1

)2

< ∞.

If M were estimable, then this would imply posterior M → � and M/� → 1 for every �.M.L.-random sequence x1:∞,
since every sequence is M.M.L. random. Since M is not estimable, Vovk’s theorem cannot be applied and it is not
obvious how to generalize it. So the question of individual convergence remains open. More generally, one may ask
whether �M → � for every �/�-random sequence. It turns out that this is true for some M, but false for others.

Theorem 11 (�/�-convergence of � to �). Let X = {0, 1} be binary and M
 := {�� : ��(1|x<t ) = � ∀t, � ∈ 
}
be the set of Bernoulli(�) distributions with parameters � ∈ 
. Let 
D be a countable dense subset of [0, 1], e.g.
[0, 1] ∩ Q, and let 
G be a countable subset of [0, 1] with a gap in the sense that there exist 0 < �0 < �1 < 1 such

that [�0, �1] ∩ 
G = {�0, �1}, e.g. 
G = { 1
4 , 1

2 } or 
G = ([0, 1
4 ] ∪ [ 1

2 , 1]) ∩ Q. Then

(i) If x1:∞ is �/�M
D
random with � ∈ M
D

, then �M
D
(xt |x<t ) → �(xt |x<t ),

(ii) There are � ∈ M
G
and �/�M
G

random x1:∞ for which �M
G
(xt |x<t ) �→ �(xt |x<t ).

Our original/main motivation of studying �/�-randomness is the implication of Theorem 11 that M
M.L.−→ � cannot

be decided from M being a mixture distribution or from the universality property (Theorem 3) alone. Further structural
properties of Msemi

enum have to be employed. For Bernoulli sequences, convergence �.�M

.r. is related to denseness of

M
. May be a denseness characterization of Msemi
enum can solve the question of convergence M.L. of M. The property

M ∈ Msemi
enum is also not sufficient to resolve this question, since there are M � � for which �

�.�.r−→ � and M � � for

which � ��.�.r−→ �. Theorem 11 can be generalized to i.i.d. sequences over general finite alphabet X .

1The formulation of their theorem is quite misleading in general: “Let � be a positive recursive measure. If the length of y is fixed and the length
of x grows to infinity, then M(y|x)/�(y|x) → 1 with �-probability one. The infinite sequences � with prefixes x satisfying the displayed asymptotics
are precisely [“⇒” and “⇐”] the �-random sequences.” First, for off-sequence y convergence w.p.1 does not hold (xy must be demanded to be a
prefix of �). Second, the proof of “⇐” has gaps (see main text). Last, “⇒” is given without proof and is wrong [8]. Also the assertion in [13, Thm.
5.2.1] that St := E

∑
x′
t
(�(x′

t |x<t ) − M(x′
t |x<t ))

2 converges to zero faster than 1/t cannot be made, since St does not decrease monotonically

[7, Prob.2.7]. For example, for at := 1/
√

t if t is a cube and 0 otherwise, we have
∑∞

t=1 at < ∞, but at �= o(1/t).
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The idea to prove (ii) is to construct a sequence x1:∞ that is ��0
/�-random and ��1

/�-random for �0 �= �1. This is
possible if and only if 
 contains a gap and �0 and �1 are the boundaries of the gap. Obviously � cannot converge to
�0 and �1, thus proving non-convergence. For no � ∈ [0, 1] will this x1:∞ be �� M.L.-random. Finally, the proof of
Theorem 11 makes essential use of the mixture representation of �, as opposed to the proof of Theorem 10 which only
needs dominance � �M.

An example for (ii) is M = {�0, �1}, �0(1|x<t ) = �1(0|x<t ) = 1
4 , x1:∞ = (01)∞ = 01010101 . . . ⇒ �0(x1:2n) =

�1(x1:2n) = �(x1:2n) = ( 1
4 )n( 3

4 )n ⇒ x1:∞ is�0/�-random and�1/�-random, but�0(x2n|x<2n) = 1
4 ,�0(x2n+1|x1:2n) =

3
4 , �1(x2n|x<2n) = 3

4 , �1(x2n+1|x1:2n) = 1
4 and �(x2n|x<2n) = 3

8 , �(x2n+1|x1:2n) = 1
2 for w0 = w1 = 1

2 ⇒
�(xn|x<n) �→ �0/1(xn|x<n).

Proof. Let X = {0, 1} and M = {�� : � ∈ 
} with countable 
 ⊂ [0, 1] and ��(1|x1:n) = � = 1 −��(0|x1:n), which
implies

��(x1:n) = �n1(1 − �)n−n1, n1 := x1+ · · · +xn, �̂ ≡ �̂n := n1

n

�̂ depends on n; all other used/defined � will be independent of n. We assume �·· ∈ 
, where .. stands for some (possible
empty) index, and �̈ ∈ [0, 1] (possibly �= 
), where .. stands for some superscript, i.e. ��·· and w�·· make sense, whereas
��̈ and w�̈ do not. � is defined in the standard way as

�(x1:n) = ∑
�∈


w���(x1:n) ⇒ �(x1:n)�w���(x1:n), (9)

where
∑

� w� = 1 and w� > 0 ∀�. In the following let � = ��0
∈ M be the true environment

� = x1:∞ is �/�-random ⇔ ∃c� : �(x1:n)�c� ·��0
(x1:n) ∀n. (10)

For binary alphabet it is sufficient to establish whether �(1|x1:n)
n→∞−→ �0 ≡ �(1|x1:n) for �/�-random x1:∞ in order to

decide �(xn|x<n) → �(xn|x<n). We need the following posterior representation of �:

�(1|x1:n) = ∑
�∈


w�
n��(1|x1:n), w�

n := w�
��(x1:n)
�(x1:n)

� w�

w�0

��(x1:n)
��0

(x1:n)
,

∑
�∈


w�
n = 1. (11)

The ratio ��/��0
can be represented as follows:

��(x1:n)
��0

(x1:n)
= �n1(1−�)n−n1

�n1
0 (1−�0)n−n1

=
⎡
⎣( �

�0

)�̂n
(

1−�

1−�0

)1−�̂n

⎤
⎦

n

= e n[D(�̂n||�0)−D(�̂n||�)] where D(�̂||�) = �̂ ln
�̂

�
+ (1−�̂) ln

1 − �̂

1 − �
(12)

is the relative entropy between �̂ and �, which is continuous in �̂ and �, and is 0 if and only if �̂ = �. We also need the
following implication for sets � ⊆ 
:

If w�
n �w�g�(n)

n→∞−→ 0 and g�(n)�c ∀�∈�, then
∑
�∈�

w�
n��(1|x1:n) �

∑
�∈�

w�
n

n→∞−→ 0, (13)

which easily follows from boundedness
∑

� w�
n �1 and �� �1 [7, Lem. 5.28ii]. We now prove Theorem 11. We leave

the special considerations necessary when 0, 1 ∈ 
 to the reader and assume, henceforth, 0, 1 �∈ 
.
(i) Let 
 be a countable dense subset of (0, 1) and x1:∞ be �/�-random. Using (9) and (10) in (12) for � ∈ 
 to be

determined later we can bound

en[D(�̂n||�0)−D(�̂n||�)] = ��(x1:n)
��0

(x1:n)
� c�

w�
=: c < ∞. (14)

Let us assume that �̂ ≡ �̂n �→ �0. This implies that there exists a cluster point �̃ �= �0 of sequence �̂n, i.e. �̂n is
infinitely often in an ε-neighborhood of �̃, e.g. D(�̂n||�̃)�ε for infinitely many n. �̃ ∈ [0, 1] may be outside 
.



M. Hutter / Theoretical Computer Science 364 (2006) 27 –41 39

Since �̃ �= �0 this implies that �̂n must be “far” away from �0 infinitely often. For instance, for ε = 1
4 (�̃ − �0)

2, using

D(�̂||�̃)+D(�̂||�0)�(�̃−�0)
2, we getD(�̂||�0)�3ε.We now choose� ∈ 
 so near to �̃ such that |D(�̂||�)−D(�̂||�̃)|�ε

(here we use denseness of 
). Chaining all inequalities we get D(�̂||�0)−D(�̂||�)�3ε−ε−ε = ε > 0. This, together
with (14) implies enε �c for infinitely many n which is impossible. Hence, the assumption �̂n �→ �0 was wrong.

Now, �̂n → �0 implies that for arbitrary � �= �0, � ∈ 
 and for sufficiently large n there exists �� > 0 such that
D(�̂n||�)�2�� (since D(�0||�) �= 0) and D(�̂n||�0)���. This implies

w�
n � w�

w�0

en[D(�̂n||�0)−D(�̂n||�)] � w�

w�0

e−n��
n→∞−→ 0,

where we have used (11) and (12) in the first inequality and the second inequality holds for sufficiently large n. Hence∑
� �=�0

w�
n → 0 by (13) and w

�0
n → 1 by normalization (11), which finally gives

�(1|x1:n) = w�0
n ��0

(1|x1:n) + ∑
� �=�0

w�
n��(1|x1:n)

n→∞−→ ��0
(1|x1:n).

(ii) We first consider the case 
 = {�0, �1}: Let us choose �̄(= ln( 1−�0
1−�1

)/ ln( �1
�0

1−�0
1−�1

) �= 
) in the (KL) middle of
�0 and �1 such that

D(�̄||�0) = D(�̄||�1), 0 < �0 < �̄ < �1 < 1, (15)

and choose x1:∞ such that �̂n := n1
n

satisfies |�̂n − �̄|� 1
n
(⇒ �̂n

n→∞−→ �̄).
We will show that x1:∞ is ��0

/�-random and ��1
/�-random. Obviously no � can converge to �0 and �1, thus proving

�/�-non-convergence. (x1:∞ is obviously not ��0/1
M.L.-random, since the relative frequency �̂n �→ �0/1. x1:∞ is

not even ��̄ M.L.-random, since �̂n converges too fast (∼ 1
n

). x1:∞ is indeed very regular, whereas n1
n

of a truly ��̄
M.L.-random sequence has fluctuations of the order 1/

√
n. The fast convergence is necessary for doubly �/�-

randomness. The reason that x1:∞ is �/�-random, but not M.L.-random is that �/�-randomness is a weaker concept than
M.L.-randomness for M ⊂ Msemi

enum. Only regularities characterized by � ∈ M are recognized by �/�-randomness.)
In the following we assume that n is sufficiently large such that �0 � �̂n ��1. We need

|D(�̂||�) − D(�̄||�)|�c|�̂ − �̄| ∀ �, �̂, �̄ ∈ [�0, �1] (16)

with c := ln �1(1−�0)
�0(1−�1)

< ∞, which follows for �̂� �̄ (similarly �̂� �̄) from

D(�̂||�)−D(�̄||�) =
∫ �̂

�̄

[
ln

�′

�
−ln

1 − �′

1 − �

]
d�′ �

∫ �̂

�̄

[
ln

�1

�0
−ln

1 − �1

1 − �0

]
d�′ = c·(�̂−�̄),

where we have increased �′ to �1 and decreased � to �0 in the inequality. Using (16) in (12) twice we get

��1
(x1:n)

��0
(x1:n)

= en[D(�̂n||�0)−D(�̂n||�1)] �en[D(�̄||�0)+c|�̂n−�̄|−D(�̄||�1)+c|�̂n−�̄|] �e2c, (17)

where we have used (15) in the last inequality. Now, (17) and (11) lead to

w�0
n = w�0

��0
(x1:n)

�(x1:n)
=
[

1+ w�1

w�0

��1
(x1:n)

��0
(x1:n)

]−1

�
[

1+ w�1

w�0

e2c

]−1

=: c0 > 0, (18)

which shows that x1:∞ is ��0
/�-random by (10). Exchanging �0 ↔ �1 in (17) and (18) we similarly get w

�1
n �c1 > 0,

which implies (using w
�0
n + w

�1
n = 1)

�(1|x1:n) = ∑
�∈{�0,�1}

w�
n��(1|x1:n) = w�0

n ·�0 + w�1
n ·�1 �= �0 = ��0

(1|x1:n). (19)
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This shows �(1|x1:n) �n→∞−→ �(1|x1:n). One can show that �(1|x1:n) does not only not converge to �0 (and �1), but that it
does not converge at all. The fast convergence demand |�̂n − �̄|� 1

n
on x1:∞ can be weakened to �̂n � �̄ + O( 1

n
) ∀n and

�̂n � �̄ − O( 1
n
) for infinitely many n, then x1:∞ is still ��0

/�-random, and w
�1
n �c′

1 > 0 for infinitely many n, which is
sufficient to prove � �→ �.

We now consider general 
 with gap in the sense that there exist 0 < �0 < �1 < 1 with [�0, �1] ∩ 
 = {�0, �1}:
We show that all � �= �0, �1 give asymptotically no contribution to �(1|x1:n), i.e. (19) still applies. Let � ∈ 
\ {�0, �1};
all other definitions as before. Then �� := D(�̄||�) − D(�̄||�0/1) > 0, since � is farther than �0/1 away from �̄
(|� − �̄| > |�0/1 − �̄|). Similarly to (17) with � instead �1 we get

��(x1:n)
��0

(x1:n)
= en[D(�̂n||�0)−D(�̂n||�)] �e2c ·en[D(�̄||�0)−D(�̄||�)] = e2ce−n��

n→∞−→ 0.

Hence w�
n � w�

w�0
e2ce−n�� → 0 from (11) and εn := ∑

�∈
\{�0,�1}w
�
n��(1|x1:n)

n→∞−→ 0 from (13). Hence �(1|x1:n) =
w

�0
n · �0 + w

�1
n · �1 + εn �= �0 = ��0

(1|x1:n) for sufficiently large n, since εn → 0, w
�1
n �c′

1 > 0 and �0 �= �1. �

9. Conclusions

For a hierarchy of four computability definitions, we completed the classification of the existence of computable
(semi)measures dominating all computable (semi)measures. Dominance is an important property of a prior, since it
implies rapid convergence of the corresponding posterior with probability one. A strengthening would be convergence
for all M.-L. random sequences. This seems natural, since M.L. randomness can be defined in terms of Solomonoff’s
prior M, so there is a close connection. Contrary to what was believed before, the question of posterior convergence
M/� → 1 for all M.L. random sequences is still open. Some exciting progress has been made recently in [8], partially
answering this question. We introduced a new flexible notion of �/�-randomness which contains M.L. randomness as
a special case. Though this notion may have a wider range of application, the main purpose for its introduction was to

show that standard proof attempts of M/�
M.L.−→ 1 based on dominance only must fail. This follows from the derived

result that the validity of �/� → 1 for �/�-random sequences depends on the Bayes mixture �.

References

[1] G.J. Chaitin, A theory of program size formally identical to information theory, J. ACM 22 (3) (1975) 329–340.
[2] J.L. Doob, Stochastic Processes, Wiley, New York, 1953.
[3] P. Gács, On the symmetry of algorithmic information, Soviet Math. Doklady 15 (1974) 1477–1480.
[4] M. Hutter, Convergence and error bounds for universal prediction of nonbinary sequences, in: Proc. 12th European Conf. on Machine Learning

(ECML-2001), Lecture Notes on Artificial Intelligence, Vol. 2167, Freiburg, Springer, Berlin, 2001, pp. 239–250.
[5] M. Hutter, On the existence and convergence of computable universal priors, in: Proc. 14th Internat. Conf. on Algorithmic Learning Theory

(ALT-2003), Lecture Notes on Artificial Intelligence, Vol. 2842, Sapporo, Springer, Berlin, 2003, pp. 298–312.
[6] M. Hutter, Sequence prediction based on monotone complexity, in: Proc. 16th Annu. Conf. on Learning Theory (COLT-2003), Lecture Notes

on Artificial Intelligence, Vol. 2777, Washington, DC, Springer, Berlin, 2003, pp. 506–521.
[7] M. Hutter, Universal Artificial Intelligence: Sequential Decisions based on Algorithmic Probability, Springer, Berlin, 2004, 300p, 〈http://www.

idsia.ch/∼marcus/ai/uaibook.htm〉.
[8] M. Hutter, An.A. Muchnik, Universal convergence of semimeasures on individual random sequences, in: Proc. 15th International Conf. on

Algorithmic Learning Theory (ALT-2004), Lecture Notes on Artificial Intelligence, Vol. 3244, Padova, Springer, Berlin, 2004, pp. 234–248.
[9] A.N. Kolmogorov, Three approaches to the quantitative definition of information, Problems Inform. Transmission 1 (1) (1965) 1–7.

[10] M. van Lambalgen, Random sequences, Ph.D. Thesis, University of Amsterdam, 1987.
[11] L.A. Levin, On the notion of a random sequence, Soviet Math. Doklady 14 (5) (1973) 1413–1416.
[12] L.A. Levin, Laws of information conservation (non-growth) and aspects of the foundation of probability theory, Problems Inform. Transmission

10 (3) (1974) 206–210.
[13] M. Li, P.M.B. Vitányi, An Introduction to Kolmogorov Complexity and its Applications, second ed., Springer, Berlin, 1997.
[14] J. Schmidhuber, Algorithmic theories of everything, Report IDSIA-20-00, quant-ph/0011122, IDSIA, Manno (Lugano), Switzerland, 2000.
[15] J. Schmidhuber, Hierarchies of generalized Kolmogorov complexities and nonenumerable universal measures computable in the limit, Internat.

J. Found. Comput. Sci. 13 (4) (2002) 587–612.
[16] C.P. Schnorr, Zufälligkeit und Wahrscheinlichkeit, Springer, Berlin, 1971.
[17] S.G. Simpson, Degrees of unsolvability: a survey of results, in: J. Barwise (Ed.), Handbook of Mathematical Logic, North-Holland, Amsterdam,

1977, pp. 631–652.

http://www.idsia.ch/~marcus/ai/uaibook.htm
http://www.idsia.ch/~marcus/ai/uaibook.htm


M. Hutter / Theoretical Computer Science 364 (2006) 27 –41 41

[18] R.J. Solomonoff, A formal theory of inductive inference: Parts 1 and 2, Inform. Control 7 (1–22) (1964) 224–254.
[19] R.J. Solomonoff, Complexity-based induction systems: comparisons and convergence theorems, IEEE Trans. Inform. Theory (IT-24) (1978)

422–432.
[20] P.M.B. Vitányi, M. Li, Minimum description length induction, Bayesianism, and Kolmogorov complexity, IEEE Trans. Inform. Theory 46 (2)

(2000) 446–464.
[21] V.G. Vovk, On a randomness criterion, Soviet Math. Doklady 35 (3) (1987) 656–660.
[22] Y. Wang, Randomness and complexity, Ph.D. Thesis, Universität Heidelberg, 1996.
[23] A.K. Zvonkin, L.A. Levin, The complexity of finite objects and the development of the concepts of information and randomness by means of

the theory of algorithms, Russian Math. Surveys 25 (6) (1970) 83–124.


