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Abstract

Some special random variables in occupancy model that balls are
distributed into m urns are investigated. The number of occupied urns
and the minimal number of balls in all urns are discussed. Some combi-
natorial identities and their explanations related to the binomial coeffi-
cient and Stirling number are derived. Several new infinite summation
combinatorial identities on the binomial coefficients are obtained.
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1 Introduction

It is an important method to find and prove some combinatorial identities
based on probabilistic models[1−8]. In this paper, some classical occupancy
models are investigated again by discussing some interesting random variables,
and several combinatorial identities or combinatorial explanations are given.

2 Occupied Number in Occupancy Model

In this section, suppose that n balls fall into m urns, we consider the random
variable X the number of occupied urns.

Set Xi =
{

1 the ith urn is occupied ,
0 otherwise

, then

X = X1 + X2 + · · ·+ Xm.
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2.1 Undistinguishable balls and distinguishable urns
Model 1 n like balls are distributed randomly into m distinguishable urns. If
vacant urn is permitted and the capacity of urns is unlimited, then there are(

n+m−1
m−1

)
ways. Furthermore, If no vacant urn exists and n ≥ m, then there

are
(

n−1
m−1

)
ways.

Clearly,

P (X = k) =

(
n−1
n−k

)(
m
k

)
(

n+m−1
m−1

) , k = 1, 2, · · · , m.

Therefore,
m∑

k=1

P (X = k) =
m∑

k=1

(
n−1
n−k

)(
m
k

)
(

n+m−1
m−1

) = 1.

This derives Vandermode identity

m∑
k=1

(
n − 1

n − k

)(
m

k

)
=

(
n + m − 1

n

)
. (1)

Namely, we give a combinatorial explanation for (1).

Furthermore, if we draw n balls without replacement from an urn containing
m red balls and n − 1 white balls, considering Ai event that i red balls are

drawn. By P
( m⋃

i=0
Ai

)
= 1, (1) is obtained also.

Because

P (Xi = 1) =

(
n+m−1

n

)
−
(

n+m−2
n

)
(

n+m−1
n

) =
n

n + m − 1
, i = 1, 2, · · · , m.

Then the mean EX = mn
n+m−1

. By EX =
m∑

k=1
kP{X = k},

m∑
k=1

k

(
n − 1

n − k

)(
m

k

)
=

mn

n + m − 1

(
n + m − 1

n

)
. (2)

In fact, (2) is equivalent to Vandermode involution formula

m∑
k=1

(
n − 1

n − k

)(
m − 1

k − 1

)
=

(
n + m − 2

n − 1

)
.

In addition,

E(X2) = E(X1 + X2 + · · · + Xm)2 = m(m − 1)E(X1X2) + mE(X2
1 ),
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P (X1X2 = 1) =

(
n+m−1

n

)
− 2

(
n+m−2

n

)
+
(

n+m−3
n

)
n + m − 1

=
n(n − 1)

(n + m − 1)(n + m − 2)
,

P (X2
1 = 1) = P (X1 = 1) =

n

n + m − 1
,

Hence

E(X2) =
mn(mn − 1)

(n + m − 1)(n + m − 2)
.

Thus we obtain

m∑
k=1

k2

(
n − 1

n − k

)(
m

k

)
=

(
n + m − 1

n

)
mn(mn − 1)

(n + m − 1)(n + m − 2)
. (3)

For example, n = 5, m = 3, the right and left are 105.
Now, we study the random variable X in another way.

P (X = k) =

(
m

k

)
P
(
X1 = 1, · · · , Xk = 1, Xk+1 = 0, · · · , Xm = 0

)
. (4)

By the inclusion-exclusion principle,

P
(
X1 = 1, X2 = 1, · · · , Xk = 1, Xk+1 = 0, Xk+2 = 0, · · · , Xm = 0

)

=
m−k∑
i=0

(−1)i

(
m − k

i

)
P (X1 = 1, X2 = 1, · · · , Xk+i = 1).

In general,

P
(
X1 = 1, X2 = 1, · · · , Xl = 1

)
=

(
n−l+m−1

m−1

)
(

n+m−1
m−1

) .

Thus

P (X = k) =

(
m

k

)
m−k∑
i=0

(−1)i

(
m − k

i

)(n−k−i+m−1
m−1

)
(

n+m−1
m−1

) =

(
n−1
k−1

)(
m
k

)
(

n+m−1
m−1

) .

That is, for any m(k ≤ m ≤ n),

m−k∑
i=0

(−1)i

(
m − k

i

)(
n − k − i + m − 1

m − 1

)
=

(
n − 1

k − 1

)
. (5)

For example, (5) holds when n = 5, k = 2 for any 2 ≤ m ≤ 5, the right and
left are 4 .

2.2 Distinguishable balls and distinguishable urns
Model 2 n Distinguishable balls are distributed randomly into m distinguish-
able urns. If the capacity of urns is unlimited and no vacant urn exists and
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n ≥ m, then there are S(n, m)m! ways, where S(n, k) is the Stirling number
of the second.
By the definition of S(n, m),

m∑
k=1

S(n, k)(m)k = mn, P (X = k) =
S(n, k)(m)k

mn
, k = 1, 2, · · · , m,

P (Xi = 1) = 1 − (1 − 1

m
)n, X = X1 + X2 + · · · + Xm.

Where (x)k = x(x − 1) · · · (x − k + 1).
The mean

EX =
m∑

k=1

k
S(n, k)(m)k

mn
= m

(
1 − (1 − 1

m
)n
)
.

m∑
k=1

kS(n, k)(m)k = mn+1 − m(m − 1)n. (6)

P (X1X2 = 0) = 1 − P (X1 = 0) − P (X2 = 0) + P (X1 = 0, X2 = 0)

= 1 − 2P (X1 = 0) + P (X1 = 0, X2 = 0)

=
mn − 2(m − 1)n + (m − 2)n

mn
.

E(X2) = E(X1 + X2 + · · ·+ Xm)2

= m(m − 1)E(X1X2) + mE(X2
1 )

= m(m − 1)
mn − 2(m − 1)n + (m − 2)n

mn
+ m

(
1 − (m − 1)n

mn

)

We have the combinatorial identity

m∑
k=1

k2S(n, k)(m)k = m(m−1)
(
mn−2(m−1)n+(m−2)n

)
+m

(
mn−(m−1)n

)
.

(7)
For example, m = 5, m = 3,

3∑
k=1

k2S(5, k)(3)k = 6
(
35 − 2 × 25 + 1

)
+ 3

(
35 − 25

)
= 1713.

Now, we study the random variable X in another view as above.

P (X = k) =

(
m

k

)
m−k∑
i=0

(−1)i

(
m − k

i

)
P
(
X1 = 1, X2 = 1, · · · , Xk+i = 1

)
.

In general,

P
(
X1 = 1, X2 = 1, · · · , Xl = 1

)
=

1

mn

l∑
j=0

(−1)j

(
l

j

)
(m − j)n.
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Applying the same argument similar to (4), we have

P (X = k) =

(
m

k

)
m−k∑
i=0

(−1)i

(
m − k

i

)
1

mn

k+i∑
j=0

(−1)j

(
k + i

j

)
(m − j)n.

That is, for any m(k ≤ m ≤ n), we obtain the same explicit expression on the
Stirling number of the second as in [8]

S(n, k) =
1

k!

m−k∑
i=0

k+i∑
j=0

(−1)i+j

(
m − k

i

)(
k + i

j

)
(m − j)n. (8)

For example, (8) holds when n = 5, k = 2 for m = 2, 3, 4, 5, the right and left
is 10 .
Case n = 5, k = 3, for m = 3, or m = 4 shown as the following:

S(5, 3) =
1

3!

3−3∑
i=0

3+i∑
j=0

(−1)i+j

(
3 − 3

i

)(
3 + i

j

)
(3 − j)5

=
1

3!

3∑
j=0

(−1)j

(
3

j

)
(3 − j)5 =

1

3!
(35 − 3 × 25 + 3) = 25.

S(5, 3) =
1

3!

4−3∑
i=0

3+i∑
j=0

(−1)i+j

(
4 − 3

i

)(
3 + i

j

)
(4 − j)5

=
1

3!

[ 3∑
j=0

(−1)j

(
3

j

)
(4 − j)5 +

4∑
j=0

(−1)1+j

(
4

j

)
(4 − j)5

]

=
1

3!
[45 − 3 × 35 + 3 × 25 − 1 − 45 + 4 × 35 − 6 × 25 + 4] = 25.

3 The Minimal Number of Balls in Urns
In this section, we consider model that n balls are distributed into m urns,
and the random variable Y the minimal number of balls in urns.
3.1 Undistinguishable balls and distinguishable urns
In this case, [x] denotes the integral part of x, then

P (Y = k) =

m−1∑
i=1

(
n−km−1
m−i−1

)(
m
i

)
(

n+m−1
m−1

) =

(
n−km+m−1

m−1

)
−
(

n−km−1
m−1

)
(

n+m−1
m−1

) , k = 0, 1, 2, · · · , [n − 1

m
].

P (Y = [ n
m

]) = 1

(n+m−1
n )

if m|n.

3.2 Undistinguishable balls and undistinguishable urns
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This case is corresponding to integer partition. Let p(n, m) be the number of
integer n is divided into sum of m positive integers. For example, 5 = 1 + 4 =
2 + 3, then p(5, 2) = 2.

P (Y = k) =

m−1∑
i=1

p(n − km, m − i)

m∑
k=1

p(n, k)
.

Thus,
�n−1

m
�∑

k=0

m−1∑
i=1

p(n − km, m − i) + λm,n =
m∑

k=1

p(n, k). (9)

Where �x� is the minimal integer that is not less than x, λm.n =
{

1 m | n,
0 m � | n

.

For example, n = 5, m = 3 and n = 6, m = 3.

2∑
i=1

p(5, 3 − 1) +
2∑

i=1

p(2, 3 − i) = (2 + 1) + (1 + 1) = 5.

2∑
i=1

p(6, 3 − 1) +
2∑

i=1

p(3, 3 − i) + 1 = (3 + 1) + (1 + 1) + 1 = 6.

4 Sequential Distribution Model
Model 3 Assume that like balls are sequentially distributed at random into
m distinguishable urns of unlimited capacity.
Three random variables investigated respectively. Some infinite summation
combinatorial identities related to binomial coefficients are obtained.
let Wk be the number of balls required to be distributed until k urns are
occupied[1, p.245].

P (Wk = n) =

(
m−1
k−1

)(
n−2
k−2

)
(

m+n−1
n−1

) ,

then
∞∑

n=k

(
n−2
k−2

)
(

m+n−1
n−1

) =
1(

m−1
k−1

)(m ≥ k ≥ 2), (10)

i.e.
∞∑

n=k

(
n−1
k−1

)
(

m+1+n
n

) =
1(
m
k

)(m ≥ k ≥ 1). (11)

Let Vl be the number of balls required to be distributed until the minimal
number of balls in all m urns reaches l respectively. Then

P (Vl = n) =

(
n−(l−1)m−2

m−2

)
m(

n+m−1
m

) l

m
=

(
n−lm+m−2

m−2

)
l(

n+m−1
m

) (n ≥ ml, l ≥ 1).
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Thus
∞∑

n=ml

(
n−lm+m−2

m−2

)
(

n+m−1
m

) =
1

l
. (12)

This is (10) when l = 1 and m = k. That is the case all urns are not vacant.
For example, m = 2,

∞∑
n=2l

l

n(n + 1)/2
= 1.

m = 3,

∞∑
n=3l

(n − 3l + 1) × 6l

n(n + 1)(n + 2)
= 6l

∞∑
n=3l

1

n(n + 2)
− 18l2

∞∑
n=3l

1

n(n + 1)(n + 2)

= 6l
1

2
(
1

3l
+

1

3l + 1
) − 18l2

1

2 × 3l(3l + 1)
= 1.

m = 4,

12l
∞∑

n=4l

(n − 4l + 2)(n − 4l + 1)

n(n + 1)(n + 2)(n + 3)

= 12l
∞∑

n=4l

1

n(n + 3)
− 48l2

( ∞∑
n=4l

1

n(n + 1)(n + 3)
+

∞∑
n=4l

1

n(n + 2)(n + 3)

)

+12 × 16l3
∞∑

n=4l

1

n(n + 1)(n + 2)(n + 3)

= 12l × 1

3
(
1

4l
+

1

4l + 1
+

1

4l + 2
) − 48l2

( ∞∑
n=4l

1

n(n + 2)
−

∞∑
n=4l

1

(n + 1)(n + 3)

)

+12 × 16l3 × 1

3 × 4l(4l + 1)(4l + 2)

= 12l × 1

3
(
1

4l
+

1

4l + 1
+

1

4l + 2
) − 48l2

(1

2
(
1

4l
+

1

4l + 1
) − 1

2
(

1

4l + 1
+

1

4l + 2
)
)

+12 × 16l3 × 1

3 × 4l(4l + 1)(4l + 2)
= 1.

In addition, case m = 5 is true by computing.

Furthermore, let Vl,r be the number of balls required to be distributed until
the minimal number of balls in the appointed r (2 ≤ r ≤ m − 1) urns reaches
l (l ≥ 1) respectively.
See Vl when r = m, and if r = 1 we have

∞∑
n=l

(
n−l+m−2

m−2

)
(

n+m−1
m

) =
m

l
(m ≥ 2). (13)
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Then

P (Vl,r = n) =
lr

m

n∑
k=lr

(
k−(l−1)r−2

r−2

) (
n−k+m−r−1

m−r−1

)
(

n+m−1
m

) (n ≥ lr).

It follows that
∞∑

n=lr

n∑
k=lr

(
k−(l−1)r−2

r−2

) (
n−k+m−r−1

m−r−1

)
(

n+m−1
m

) =
m

lr
. (14)

For example, m = 3, r = 2.

∞∑
n=2l

6(n − 2l + 1)

(n + 2)(n + 1)n
= 6

∞∑
n=2l

1

(n + 2)n
− 12l

∞∑
n=2l

1

(n + 2)(n + 1)n

= 6 × 1

2
(
1

2l
+

1

2l + 1
) − 12l × 1

2 × 2l(2l + 1)
=

3

2l
=

m

lr
.

m = 4, r = 2.

∞∑
n=2l

n∑
k=2l

n − k(
n+3

4

) = 12
∞∑

n=2l

n(n + 1) − (4l − 2)n + (4l2 − 6l + 2)

(n + 3)(n + 2)(n + 1)n

= 12
( ∞∑

n=2l

1

(n + 3)(n + 2)
− (4l − 2)

∞∑
n=2l

1

(n + 3)(n + 2)(n + 1)

+(4l2 − 6l + 2)
∞∑

n=2l

1

(n + 3)(n + 2)(n + 1)n

)

= 12
( 1

2l + 2
− (4l − 2)

1

2(2l + 1)(2l + 2)
+

4l2 − 6l + 2

3 × 2l(2l + 1)(2l + 2)

)
=

2

l
=

m

lr
.
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