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Abstract 

Constraint Logic Programming solvers on finite domains (CLP(FD) solvers) use con- 
straints to prune those combinations of  assignments which cannot appear in any consistent 
solution. There are applications, such as temporal reasoning or scheduling, requiring some 
form of qualitative reasoning where constraints can be changed (restricted) during the compu- 
tation or even chosen when disjunction occurs. We embed in a CLP(FD) solver the concept of 
constraints as first class objects. In the extended language, variables range over finite domains 
of objects (e.g., integers) and relation variables range over finite domains of relation symbols. 
We define operations and co,nstraints on the two sorts of variables and one constraint linking 
the two. We first present the extension as a general framework, then we propose two special- 
izations on finite domains of integers and of sets. Programming examples are given, showing 
the advantages of  the extension proposed flora both a knowledge representation and an op- 
erational viewpoint. © 1999 Elsevier Scienu. • Inc. All rights reserved. 

Keywords: Constraint logic prograntming cx,ensions: Qualitative reasoning: l)isjunctive 
constraints 

1. Introduction 

Constraint Logic Programming (CLP) [19] is a programming paradigm combin- 
ing the advantages of Logic Programming and the e~ciency of constraint solving. 
In this paper, we focus on CLP over finite domains, CLP(FD). CLP(FD) variables 
range over a finite domain of objects (e.g., integers), and ~ire linked by means of con- 
straints. During the computation, constraints are used in orde~ to actively prune the 
search space, by reducing the variable domains. For this reason, CLP(FD) has been 
proved to be a suitable tool for solving hard combinatorial problems such as graph 
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coloring, planning, scheduling, sequencing and assignment problems, to name a few 
[9]. Many of these problems require some form of qualitative reasoning. For in- 
stance, many applications deal with temporal constraints which can be either quan- 
titative, e.g., they link the temporal location of points (intervals) along the time line, 
or the distance between two points (intervals) [8], or qualitative, e.g., they link the 
relative positions of points and intervals [1,29]. 

While the quantitative reasoning can be easily handled by CLP(FD), the qualita- 
tive one leads to some problems. For example, suppose we have three temporal 
points Tl, T2 and/ '3  ranging from 1 to 10 linked by the relations Tl ~< T2, T., < T3. 
CLP(FD) constraint propagation, arc-consistency [25], reduces the size of variable 
domains, thus leading to Tl:: [1..9], T2:: [1..9] and T3: : [2..10], but it does not infer 
the relation between T~ and ~ .  This happens because CLP(FD) uses constraints 
in order to restrict variable domains, but it never does reason on constraint as do- 
main elements, thus inferring quaStative relations and computing new (tighter) con- 
straints during the computations. 

As another example, suppose we have two variables X and Y with an undefined 
domain. CLP(FD) solvers cousider the default domain as I--max, max]. Therefore, 
the constraints X < Y and X > Y are recognized as inconsistent after a number of 
propagations proportional to max. By reasoning on relations, we are able to deter- 
mine the inconsistency in one propagation step. 

In this paper, we present an extension of the CLP framework that makes it pos- 
sible to reason on constraints. Intuitively, we allow the CLP(FD) language to treat 
relations as domain elements, in ~his way, we are able to perform operations, pose 
constraints on them and change relations during the computation. In the first above 
mentioned example, the relation between T~ and/ '~ can be represented by a relation 
variable, called Rrlr,., which ranges on a finite domain of retation symbols [<, = ] and 
the relation between T., and T~ can be represented by another relation variable, called 
Rr~r~, which is instantiated to the value <. Therefore, the relation between T~ and T~ 
can be computed as < by composing the first two variables. 

In the second example, the relation between X and F can be represented by a re- 
lation variable R,~. whose value is <. When the second constraint is considered, an 
inconsistency arises in one propagation step since > is not contained in the domain 
of Rxy. 

Based on this intuition, we present a general language extension which can be ap- 
plied, in theory, to any finite domain constraint language and enables to reason on 
constraints. We present two specializations of the extension proposed on finite do- 
mains of integers and on finite domains of sets (as defined in the Conjunto language 
[14]). For instance, in the first specialization on integers, we have the usual opera- 
tions (+,*) and constraints (<, >, ~<, t>, #, =), while on sets, we have the usual op- 
erations (U,n , / )  and constraints like set inclusion, disjointness and equality 
(c_, _~, ~0, =). In both cases, on relations we define composition, union, least upper 
bound operations, and equality, inequality and disequality constraints. 

Beside the increased expressive power in knowledge representation when reason- 
ing on relations, we deal with disjunctive constraints more effectively than with pure 
CLP(FD) languages. However, current CLP(FD) commercial solvers such as CHIP 
[10] or ILOG [18], making use of global symbolic constraints [4], outperform our re- 
lation based approach since they use sophisticated propagation techniques tailored 
on the specific constraint. The purpose of this paper is to show the effectiveness 



E. Lamina et al. I J. Logic Programming 38 (1999) 93-110 95 

and the generality of the approach when compared with pure CLP(FD) solvers mak- 
ing use of arc-consistency propagation techniques, and not to outperform the state 
of tke art commercial CLP solvers. 

The paper is organized as follows: in Section 2, we concentrate on the language 
extension. We provide the declarative and operational semantics of the resulting gen- 
eral language, two specializations on integers and on sets, and give some implemen- 
tation details. Programming examples are given in Section 3, showing the 
advantages of the extension proposed. Related works are presented in Section 4. 
Conclusion and future work is given in Section 5. 

2. Extending  the C L P ( F D )  language  

In this section, we describe a constraint solver which makes it possible to reason 
on relations. The solver is built on a two sorted first order language on objects (e.g., 
integers) and relations. We define operations and constraints on finite terms (they are 
the usual operations and constraints of CLP(FD) solvers) and operations and con- 
straints on relations. 

A constraint on finite domains can be in the form: x: : [al . . . . .  a,,] or tl R t_, w~ere tl 
and t: are finite terms, i.e., variables, finite domain objects and usual expressions, 
aad R is one of the constraints defined on ',he domain of discourse (e.g., for integers 
we have the usual relations: >, >i, <, 4 ,  =, :/:). Intuitively, we want to extend the 
language so as to make it possible to express constraints like rel(X,R,.,., Y) which 
holds if and only if the relation variable R,.,. represents the relation between finite do- 
ma#l variable,~ X and Y. 

2. !. Syntax and declarative semantics 

We consider a two sorted first order language 2; with two associati,:d sorts, S~ and 
S:, where $1, whose carrier is FD, represents a linite domain, sort, and S,, whose car- 
rier is Rel, the relation sort. 

For finite domains, unary constraints link a variable to range over a finite domain 
of objects belonging to FD, X: : [a~ . . . . .  a,,]. The meaning of this constraint is 

X : : [ a l  . . . .  ,a,;] '-7 X = al v . . .  v X = a,,. 

As usual, binary constraints and operations can be defined on finite domain vari- 
ables. 

For the relation sort, unary constraints link each relation variable to range over a 
finite domain of relations belonging to Rei, R: : [r~ . . . .  , r,,]. The meaning of this con- 
straint is 

R:: [rj, . . . .  r,,] ,---, R =,. rl V . . .  V R =,. r,,. 

On the relation sort, we always have equality and inequality constraints {=,.,-¢, } 
which can be defined as usual. ~ In addition, we assume that a partial order relation 

s The letter r in relation symbols ret'ers to the Rel sort. However. with abuse of notation, we omit this 
letter in the programming examples since the propagation perlormed for =~ and ¢,. is the same as tbr the 

standard CLP(FD)  constraints = and -¢. 
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on the Rel sort exists. We introduce it in the language as a constraint through the 
symbols { <~ r, >I r} in the following way: 

Rl <~,.Rz ~ Vx, y Rl(x,y) --+ R2(x,y). 

Operations on relations are composition, union and least upper bound (for the latter 
we assume that the operation is well defined, ie., the least upper bound of any 
couple of elements exists). We can define them as three predicates: compl3, unionl3 
and lubl3. The signature of the predicate comp is (Rel, Rel, Rel) and its declarative 
meaning is 

¢omp(Ri,R2,R3) ~ Ri ® R2 =~ ~3, 

where ® is defined by a transitivity table providing a~: ~,~.i~,J~uoa between primi- 
tive relations. 

The signature of the predicate union is (Rel, Rel, Rel) and its declarative meaning is 

union(Ri,R2,R3) ~ RI =,. R3 V R2 --:r R3. 

The signature of the h¢b operation is (Rel, Rel, Rel) and its declarative meaning is 

I,~b(RI,R,.,R3) ~ R3 =,. lub_lattice(Ri,R2), 

where lub.lattice is defined by the lattice defining the partial order on the Rei 
sort. 

Finally~ we introduce the tel(X, Rxy, Y) constraint linking the two sorts, whose sig- 
nature is (FD, ReI, FD). The declarative meaning of the tel~3 is the following: 

Vr~ Rel (rel(X,R,,., Y) ,~ (R, =,. r) A X r Y). 

This constraint substitutes the usual CLP(FD) constraints when some tbrm of rea- 
soning on relations is required. It is worth noting that the proposed extension can 
be expressed in the classical first order framework. 

2.2. Specialization on integers 

In this section, we present the specialization of the proposed framework on finite 
domains of integers. We have to define the Rel sort, Rel.int, and operations and con- 
straints on Rel.int. The resulting language is a two sorted language: the carriers of 
the two sorts are integer numbers, i.e., F D = Z ,  and the relation set 
Rel. int= {<, <~,>, >~, -~,=,7-}. 

On integers, we have the usual constraints >, >t, <, <~, =, ~ and operations are 
addition (+) and multiplication (*). 

As concerns the relation sort, unary constraints link each relation variable to 
range over a finite domain of relations R::[r~, . . . , r ,] ,  where r~,... ,r,,  belong to 
Rei.int. On the relation sort, equality and inequality constraints can be defined as 
usual. 

The partial order relation on Rel_int is defined by the lattice depicted in Fig. 1, 
where the top is the constraint 7,  i.e., the most relaxed constraint, which is always 
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Fig. 1. Lattice on the Rel_int sort. 

true for any pair of variables, and the bottom is the inconsistent relation _1_ which is 
not included in the carrier Rel_int. 4 

As a consequence, the lub_lattice operation is defined on the lattice of Fig. 1. For 
example, if R~::[ <~,-7/:], R2::[ ~<, ¢], Rt,,b: : [ 4 ,  :/:, T], then lub(R~,R2,Rh,b) holds. 

The operation ® is defined by a transitivity table described in [29] and 
reported in Table 1 for the sake of completeness. For example, if R~::[<, =] and 
R2:: [<, =], Rs: : [<, =], then comp(R~,R2,Rs) holds. 

Union operation does not need to be specialized because it is general for 
any kind of relation domain. In the integer specialization, for example, if 
Rl:: [<, =], R2: : [<, >] and Rs: : [<, =, >], then union(RI,R2,Rs) holds. 

The mixed computation domain constraint rel links two integer variables and one 
relation variable. In this case, it can be specialized as follows: 

rel(X,R,.,., Y) ~ (R,,. =,. 

(R,., =,. 

(R,v =,. 

(R,,. - ,  

(R,.,. =,. 

(R,,, =,. 

(R,,, =,  

' < ' ) A  X < Y V  

' <~ ' )A  X<~ Y V 

' > ' ) A  X >  Y V  

' ~ ')/ ' , ,¥ ~. 1" v 

' # ' )A  X # Y v  
' = ' ) A  X = : Y V  

'T'). 

2.3. Spechdization on sets 

In this section, we present the specialization of the framework proposed on finite 
domains of sets as introduced in the Conjunto language [14] (provided as a library of 
ECUPS"). A number of works have been proposed on constraint programming on 
sets, such as, for example, {log} [I 1] and CLPS [231 which are more expressive than 

4 The symbol _L represents the inconsistent relation. It is always false for any pair of variables. In the 
following, we omit the inconsistent relation in relation variable domains and we fail ir a relation variable 
domain becomes empty. However, the symbol _L can be used in the language fc, r explicitly handling 
failures and recovering from them. 



98 E. Lamina et al. i J. Logic Programm#~g 38 (1999) 93-110 

Table ! 
Composition of constraints on integers 

® < < > >1 = ¢ T 

< < < T T < T i 

<~ < <~ T T <~ 1- T 

> i i > > > i i 

>1 T T > >t >~ T T 

= < ~ > ) = ~ T 

yt= T T T T # T T 

T T i i T T T T 

Conjunto since they allow to treat non-ground sets. We adopt Conjunto because it 
works on finite domain of sets. 

The aim of this section is to show the capability of our framework to be special- 
ized on other domains than integers. The Conjunto language is mainly targeted to 
express and solve combinatorial problems on sets on which it has been proved to 
be extremely effective, guaranteeing good expressiveness and considerably speed 
up in execution time over traditional logic programming solutions. 

We have to define the Rel sort, Rel_set, and operations and constraints on Rel_set. 
'l'he resulting language is a two sorted language: the carriers of the two sorts are 
FD = FD(HU) which is tile set of finite (ground) sets in 2 m', HU is the Herbrand 
Universe, and the relation set Rel-set = {C,_D, ~o ,= ,  1-}, where ~" represents set 
disjointness. 

On sets, we have unary constraints delined by specifying the greatest lower bound, 
glb.. and the least upper bound, lub, i.e., X: "glh..luh, binary constraints c_, 2, ¢ 0  ~.:. 
and operations are intersection, union and complementary difference. 

As co, ,erns  the relation sort, unary constraints link each relation variable to 
range c~,cr a finite domain of relations R::[r~ . . . .  ,n,], where r~, . . . .  t;, belong to 
Rei~wt . ~ the relation sort, equality and inequality constraints can be defined as 
usual. 

The p,~rtial order relation on Rel_set is defined by the lattice reported in Fig. 2 as 
well as the lub.lattice operation. As for integers, in Fig. 2, the top is the constraint T, 
i.e., the most relaxed constraint, which is always true fbr any pair of variables, and 
the bottom is the inconsistent rc'~ation _L which ;s not included in the carrier Rel_set. 
The operation ® is defined by a transitivity table (see Table 2). 

do,~ ,~n constraint tel links two set variables and one re- The mixed computatie~a , ~" 
lation variable. In this cas.: '~e specialized as follows. 

'- X c Y v  rel(X,R~:, Y) ,~ (R,, =, _ 

(R,:,. =,. ' ~_ X ~_ Y v 

(R:, =,. ') :~ X ~ : 

(R~,. =,. ' =  ' )A X = Y v 

~-T-~ ( R , . v = ,  • ). 
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Fig. 2. Lattice on the Rel.set sort. 

Table 2 
Composition of  constraints on sets 

c_ c_ T c_ #* T 

_'D T .D D T -[ 

= C D_ = #o T 

#o T #o -7/=" T T 

T T T T T T 

2.4. Operational semantics 

The operational semantics of the extended language can be defined by specializing 
the operational semantics presented in [19] based on transition rules, i.e., resohaion, 
constraining, inferem'e and sati~fiabilio, check, which allows the system to switch 
from different states. States are represented by tuples (A, C, S) where A is a multiset 
of atoms and constraints, C is the constraint store of active constraints, i.e., con- 
straints that are awake, and S is the constraint store of passive constraints, i.e., con- 
straints that are asleep. The failure of the system is represented by a state called fail. 
The transition rules can be found in [19], and reported in Fig. 3 for the sake of com- 
pleteness. Two points should be considered for specializing this general semantics 
scheme for a particular language: the predicate consistent and the function infer. 

In the extended language proposed, the consistent transition fails if and only if one 
(relation or finite domain) variable domain is empty, i.e., no consistent value exists 
either for a finite domain variable or for a relation variable. 

The transition it~er defines the propagation of constraints. In our language, the 
function infer performs an arc-consistency, as well as in CLP(FD) solvers. In fact, 
we perform arc-consistency on finite domain variables, on relation variables and be- 
tween the two. Obviously, the constraint rel(X, Rx:,, Y) is arc-consistent if for each 
value of X (resp. Y), there exists a value for R,,. and Y (resp. X) which is consistent 
with the constraint, and also if for each value of R~,. there exists a value for X and Y 
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Resolution: ( A U a ,  C , S )  ~ ,  ( A O  B ,C ,  S U ( a  = h)) 
where a is an atom selected by the computation rule 
h ~-- B is a rule of the program P renamed to new variables 
h and a have the same predicate symbol 

.fails otherwise. 

C o n s t r a i n i n g :  (A 0 c, C, S) -+¢ (A, C, S 0 c) 
where c is a constraint selected by the computation rule 

Infer: (A, C, S) ~ ,  (A, C', S'). 
where (C', S') = i n f e r (G ,  S) 

Satlsflabillty: (A, C, S) -~, (A, C, S) 
if consis tent(C) ,  

fails otherwise. 

Fig. 3. CLP operational semantics. 

consistent with the constraint. As concerns implementation details, in the next ~ec- 
tion we will see the detailed steps performed by the infer transition. 

2.5. Implementat ion 

In this sectiom we sketch the implementation scheme of our language. We have 
implemented the two specializations of the proposed extension on integers and o .  
sets respectively on top of the finite domain library al~d of the Co~ljunto library of 
ECUPS" [12]. In both cases relation wtriables have been defined as usual finite do- 
main variables. Opera~inn~ and constraints have been defined as ECL"PS" user-de- 
fined operations and ct~nstraints, by means of low level predicates for suspension 
and domain manipulatim~. 

It is worth noting that implementation of a new specialization is modular ,tinct 
just by changing the transitwity table and the definition of the lattice induced by 
the partial order relation, we can tailor the language on whatever relation domain. 

We present now the three basic steps pertbrmed by the #¢'er(C,S) transition. 
I. Arc-consistency on constraints between relation variables: The first step deals 

' R" with constraints and operations among relation variables like comp(R~y,R,.,., .,.,.,, 
umon R~,  R , R , lub R , R , R , R <~ ' " ' " " ' ( .~. "~, ','~.) ( ,. '~. '~',,) .',.,. ~ RI,!~., R~,. ~,. R,.,,, R~,, =~ R~,.. An arc-con- 
sistency is pertbrmed on relation variables. For example~ in the integer specializa- 
tion, given the query: 

: -  RI:: [<, =l, R2:: [<, >], R1 = R2. 

The arc-consistency on relation variables instantiates both variables R1 and R2 to 
the symbol <. 

2. Domain reduction ~ ' re la t ion  variables according to f ini te  domain variables: Giv- 
en the constraint rel(X,R~,,, Y),  the propagation reduces relation variable domains 
according to domain values of finite domain variables. The check performed is the 
following: if C is the current store, for each r E DR,, if C 0 (X r Y) does not produce 
failure, then r is left in the domain of R:~,,. Otherwise, it is deleted. For example, in the 
integer specialization, if we have the following goal: 
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: - X : : [ 1 . . 5 ] ,  Y: : [6 . . lO] ,  R : : [ < ,  >], r e l ( X ,  R, Y) 

the symbol > is no longer supported by X and Y domain values. Therefore, the prop- 
agatioz, instantiates R to the value <. This behavior is achieved through a propaga- 
tion based on the cardinality of the intersection of variable domains and on domain 
upper and lower bounds. For more details on this propagation, see [26]. 

3. Arc-consistemT on finite domain variables subject to least upper bound con- 
straints: The third step is the usual arc-co~sistency propagation on domain variables, 
subject to "least upper bound constraints". For each constraint in S of the form 
,'eI(X,R~,., Y), where R~,, has been reduced according to the previous step, the system 
applies the arc-consistency to the constraint X lub(De~, ) Y. If we have the following 
query: 

: -  r e  l(X, R, Y), R::[<, >] 

the constraint added to the set of passive constraints is simply the least upper bound 
of the two constraints, i.e., X # Y. In this way, we exploit the propagation mecha- 
nism of the underlying CLP(FD) solver. We would obtain the same propagation if 
we consider the result of the propagation of each constraint separately and perform 
the union of the resulting variable domains. 

3. Examples 

In this section, we present some examples that show the advantages of the exten- 
sion proposed from both a knowledge representation and an operational viewpoint. 
In Section 3.1, we describe a point based temporal reasoning problem and an extend- 
ed CLP(FD) progra,n on integers which solves it. In Section 3.2, we discuss the ap- 
plication of the extended framework to disjunctive constraints. We present an 
example of the integer specialization and one example of the set specialization. 

3. i. Temporal reason&g 

Let us consider the Point Algebra introduced by Vilain and Kautz [29]. Let us 
start with an example where temporal points TI, ~ and T~ range over a finite do- 
main of integers (temporal locations). Suppose our '~beginning of the world" is at 
7.00 a.m. and we know that TI happens between 7.10 and 7.20 a.m., 7'., bt:'ween 
7.14 and 7.28 a.m. and T.~ between 7.l,t and 7.32 a.m. In the example, Tt, 7', and 
T.~ represent the events: John enters the d,~or, ,~ho3' telephones and John meets Helen. 
These temporal events are linked by the following relations: Tt (a.fte,'V 
equal) T2, 7",. (after V equal) T3.5 These relations mean that John enters the door af- 
ter or while Mary is telephoning and Mary telephones after or at the same time John 
meets Helen. If the relation between John enters the door (Tt) and meets Helen (Ta) 
is unknown and the user wants to compute it, he can raise the tbllowing query: 

: - T I : :  [ lo . . ao ] ,  T 2 : :  [14. .28] ,  T 3 : :  [14. .32] ,  
R12: :  [ a f t e r ,  equal ] ,  R23::  [ a f t e r .  equal ] ,  

-~ For a unilbrm treatment of point pomt relation with [29], in the current example, ~e replace the 
symbol > with a f t e r .  = with equal ,  and < with before .  
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rel(Tl, RI2, T2), rel(T2, R23, T3), rel(Tl, RI3, T3), 
comp(Rl2, R23, RI3). 

The propagation in pure CLP(FD) is just the reduction of the domain variables to 
14 . .  20, but the relation between T~ and/ '3 cannot be computed starting from do- 
main values. In the extended language specialized over integers, we can compute the 
above mentioned relation thanks to the operation e omp/3 that performs the com- 
position of the first two variables (s~ Table 1). The result will be, therefore, a reduc- 
tion of the variable domains to 14 . .  20, as in a pure CLP(FD) language, but also 
a13: : [ a f t e r ,  e q u a l  ] with the suspended constraints comp (R12, R23, R13), 
rel(Tl, RI2, T2), rel(T2, R23, T3)and rel(Tl, RI3~ T3). 

Another example, based on the same temporal points, concerns the problem of 
finding feasible qualitative temporal scenario [2], i.e., an instantiation of relation 
variables which is consistent with constraints. In the above mentioned program, sup- 
pose the relation between T~ and T3 is defined by the user as T~ before V equal T3, 
Obviously, the network is inconsistent if we consider the left side of the disjunctions, 
i.e., T1 a f t e r  T2, T2 a f t e r  T3, T1 b e f o r e  T3. However, there is a solution if 
we consider the relations T1 e q u a l  T2, T2 e q u a l  T3, T3 e q u a l  T1. 

This solution can be found if we assign values to relation variables by means of a 
labeling step: 

: - T I : :  [10..201 , T2::  [14..281 , T3: .  [14..32], 
RI2:: [after, equal],R23 : : [after, equal], RI3:: [before, equal], 
rel(Tl, RI2, T2), rel(T2, R23, T3), rel(Tl, RI3, T3), 
comp(Rl2, R23, RI3), 
labeling([Rl2, R23, RI3]), 

where the labeling clause instantiates each variable to a value of its domain. The ex- 
tended CLP(FD) solver on integers gives the solution: 

Tl, T2, T3::[14..20], RI2, RI3, R23= equal 
corresponding to the only feasible scenario where the temporal events represented by 
T~, T~, T3 happen at the same time. They can happen in all temporal locations be- 
tween 14 and 20. 

As another example, consider the operation union, which is a very effective oper- 
ator from a knowledge representation viewpoint since it embeds the concept of dis- 
junction. We can state complex constraints such as: the relation between temporal 
events TI and T, can be equal to the relation between events T3 and Ta or between 
events T5 and T6. The resulting code is: 

:-rel(Tl, RI2, T2), rel(T3, R34, T4), rel(T5, R56, T6), 
R34 :: [ a f t e r ] ,  R56 :: [before] ,  
union(R34, R56, RI2). 

where variable R12 is instantiated to the domain [ a f t e r ,  b e f o r e  ]. 
The expressive power of CLP(FD) languages is thus increased by the extension 

proposed. In [22] we have presented the application of this extension to the Interval 
Algebra [1] and to the Simple Temporal Problem (STP) framework [8]. 

3.2. Disjunctive constraints 

In this section, we show how to handle disjunction in our framework. This exam- 
ple is motivated by the need to achieve a more global pruning for disjunctive con- 
straints than the one offered by disjunctive clauses in pure CLP(FD) solvers. We 
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will see two applications of our extended language: the first concerns scheduling 
problems, while the second bin pack#~g problems. 

3.2.1. Scheduling appficattons 
Consider, for instance, two tasks a and b competing for the same single-capacity 

resource. Of course, the two tasks cannot be executed at the same time, i.e., they can- 
not overlap. Given Sa and Sb the starting points of the tasks and Da and Ob their 
duration, the n o _ o v e r l a p  constraint can be expressed directly in a CLP(FD) lan- 
guage by using two disjunctive clauses: 

n o _ o v e r l a p ( S i ,  Sj, Di, D j ) - -  Si + Di # , ( =  Sj: 

n o _ o v e r l a p ( S / ,  Sj, Di, D j ) ' -  Si + Di # < =  Si, 
where the symbol #< = represents the constraint less or equal in the ECLIPS e [12] 
syntax. The main problem with this formulation comes from the fact that no pruning 
is performed in order to reduce the search space. Constraints are only used as choices. 

In our framework, we can reason on relations and we can represent the same 
problem as a conjunction of constraints on relation variables: 

no_ove rlap(Si, Sj, Di, D])" - 
R I " "  [ < = , > = 1 ,  R2"" [ < = , > = ] ,  R1 # # R 2 ,  
r e l ( S i  + Di, R1, Sj),  r e l ( S  j + Dj, R2, Si), 

where symbol ## is the inequality constraint between relation variables. This repre- 
sentation of the problem can be explained as follows: we have two relation variables 
between the starting and end points of the tasks. 6 Only two configurations of values 
are allowed: 

R~ =,. <~ and R2 =,. i> if task i is scheduled before task j, 
R2 =,. <~ and R~ =,. >I if task./is scheduled before task i. 

The constraint R] ## R2 allows only these two possible configurations. We have to 
impose these constraints between starting and end points of all not overlapping 
tasks. 

A more global propagation can be performed by computing the (qualitative) 
transitive closure of the network. This closure can be realized by means of the 
e omp/3 operator. The idea is to find a consistent ordering between tasks competing 
for the same resource by imposing new precedence constraints, as suggested in [28]. 
The first step is to impose precedence relations (i.e., ground relation variables), then 
collect all the tasks that compete for the same resource in a list and impose 
n o _ o v e r l a p  constraints. Finally, by working on a list of triplets (Task~, R e l ,  
Taskj), representing respectively the name of Task~ the relation between Task,  
and Taskj  and the name of Taskj ,  we can compute the transitive closure by select- 
ing (through the f i n d a l l  predicate) all those couples of tasks (Task~, Taskk) whose 
first task unifies with Task,  in the clause head, and then by performing the closure 
on the triplet of tasks. 

t, It is worth noting that, tbr instance, a domain containing the relation symbol < = is different from a 
domain containing both symbols [<, = ]. In fact, although they lead to the same propagation Ipoint 3 in 
Section 2.5) on integer variables linked by the tel constraint, they have a different behavior in the labeling 
step. In the first case, when a consistent solution is lbund, we have an instantiation of the relation variable 
to the unique symbol ~<, while in the second case we possibly have two different solutions: one for the 
relation < and the other for the symbol = .  
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transitive([(Taski, Rij, Taskj) I RestTasks]):- 
findall((Taski, Rik, Taskk), member((Taski, 
Rik, Taskk), RestTasks),List), 
closure((Task, R 0, Taskj),RestTasks,List), 
t rans i t ive (Re s tTasks). 

closure(_,_, [ ]). 
closure((Taski, R/j, Taskj), RestTasks,[(Taski, Rik, Taskk)IRL]):- 

member((Taskj, Rjk, Taskk),RestTasks), !, 
comp(Rij, Rj~, Rik), 
closure((Taski, Rq, TasKj),RestTasks,RL). 

The complexity of the transitive closure propagation can be computed as follows: if 
we have n tasks competing for a resource, we have a number of compositions equal 
to the combinations of n elements in k-tuples with k = 3 (we compose Tt, Tj and Tk 
independently from the order). Therefore, the number of compositions is O(n3). In 
fact 

n ( n - l ) . . . ( n - k + l )  n (n - l) (n - 2) 
k! 6 

This propagation is quite expensive, but in many cases very powerful since constrahlt 
re  1 /3  propagates from values of tasks starting and end points to relations and vice 
versa, while the transitive closure removes inconsistent relations. Consider the fol- 
lowing simple example: we have five tasks, named respectively al, a2, bl, b2 and 
ba, belonging to two jobs a and b competing for the same resource. Tasks of the same 
job are linked by precedence relations, i.e., al ~< a2, b, ~< b2, b2 ~< b3. Consider tasks 
al and b3" they have a starting time Sa,:" [45..85], Sh3"" [7..30] and a duration 
dat = 20, &, = 10. Obviously, all the tasks competing for the same resource are 
linked by a relation variable R whose domain is [ <~, >i ]. The starting and end points 
determine an ordering for tasks a~ and b3, where b.a precedes a~. This propagation 
can be achieved by means of the constraint rell3 which instantiates the relation be- 
tween the two tasks, as shown in Fig. 4(a) where all the missing arcs represents re- 
lations whose domain is [<~, >I ]. The transitive closure of the network propagates 
precedence relations and the one inferred by the rell3 constraint between b3 and 
a~. As a consequence, all the other relations are instantiated as described in Fig. 4(b). 
A standard CLP(FD) approach does not recognize that the ordering among all the 
tasks is defined by the consideration that b3 comes before a~, and tries the assignment 
of an ordering in a standard backtracking way. We perform a sort of forward check- 
ing propagation since as soon as a relation is known all the other relations can be 
propagated accordingly. 

• We have evaluated the performance of our approach based on relation variables, 
on five sets of randomly generated disjunctive scheduling problems of, respectively, 18 
and 20 tasks on two resources, 20 and 25 on three resources and of 40 and 50 on five 
resources. We have considered two parameters: the number of nodes generated for 
the non-deterministic choice of conflicting task ordering, and the computational time. 

In Table 3, the number of nodes generated by the relation-based approach 
( indomain  on relation variables), reported in column Re! Nodes, is significantly less 
than the numberer of nodes generated by a pure CLP approach reported in column 
CLP Nodes (number of calls to the n o _ o v e r l a p  disjunctive choice where an order- 
ing between conflicting tasks is decided). 
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0 

a. b 

Fig. 4. Example of ordering relations. 

Table 3 
Experimental results 

Tasks Resources Rel Nodes CLP Nodes Rel Time CLP Time 

18 2 133 12 278 22 58 
20 2 336 23 716 297 1042 
20 3 416 169 368 139 100 
25 3 741 131 229 322 541 
40 5 1020 255 402 870 1690 
50 5 1540 266 710 1200 1873 

Another comparison parameter is the computational time. The extended language 
generally outperforms a pure CLP(FD) solver on disjunctive scheduling problems. 
Some applications, however, do not benefit from the use of the transitive closure. 
In particular, for applications where domain variables do not restrict relation vari- 
able domains, or applications with few precedence constraints, the tradeoff between 
the overhead introduced by relation variables and the propagation benefit is not 
worthy. In addition, note that current CLP(FD) commercial solvers such as CHIP 
[10] or ILOG [18], making use of global symbolic constraints [4], outperform our re- 
lation based approach since they use sophisticated propagation techniques tailored 
on the specific constraint. In fact, global symbolic constraints represent suitable ab- 
stractions that enable a declarative statement of the problem and an operational be- 
havior matching the best available pruning techniques. Our approach strength is the 
generality and expressivity since it can be applied to any kind of disjunctive con- 
straints and does not rely on special purpose propagation techniques. For this rea- 
son, we compare our extended solver with a pure CLP(FD) solver making use of 
arc-consistency propagation techniques. 

3.2.2. Bin packing problem 
In this section, we present an example of the extended language specialized on 

sets. All the considerations from a knowledge representation viewpoint made on in- 
tegers hold also for sets. 

Consider the bin packing problem: given a multiset of n integers {wl, . . . ,  w, }, rep- 
resenting weights of a set of objects to partition, the goal is to find a partition of the 
objects into a minimal number m of bins or sets (to be determined) such that in each 
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bin the sum of all weights does not exceed a given capacity ~,~.  The Conjunto ab- 
stract formulation of the problem is the following: 

si:" { ( 1 , w j ) , . . . , ( n ,  wn)}, 

s~ n sj = { } for all i ¢ ./, 

s, u . . .  = { ( l , w , ) , . . . , ( , , , w , ) } ,  

w~ ~< W,,,~ for all sj. 
il(i.w~) E glb(sj) 

The goal is to minimize the number m of bins. Now, suppose that we have the fol- 
lowing constraint: object i and object j cannot be inserted in the same bin. Therefore, 
we have a disjunctive constraint of the kind: 

{i} C sk V {j} C_ sk V ({i} #° sk A {j} #O s,) for a l l k =  1..m. 

In the extended language, we express this disjunction by creating, for each bin, 
two relation variables R~..~, and R;..~, (representing the relations between sets {i} 
and {j}, respectively, and set Sk) whose domain contains both symbols [c, _¢0]. 
The allowed configurations are 

Ri~ =~ C_ and Rj~ k =~ 

R~..,, =~ ¢o and Rj..~, =~ C_, 
, # 0  = ¢,,  Ri.s~- .  and Rj..~, ,. . 

Thus, we can impose that the least upper bound of the two variables can assume only 
two values: Rh,h ' " [T, ~o] (i.e., lub(R~..~ ,R,..~, Rha,)). In fact, the first two allowed con- 
figurations give T as a least upper bound, while the third configuration gives ¢0 as a 
least upper bound. The only not allowed configuration would give as a least upper 
bound the symbol c which is not included in the domain of Rt,,t,. Experimental re- 
sults are encouraging. For example, a set partitioning problem with 81 objects to 
be placed in at most 28 bins with disjunctive constraints can be solved by our exten- 
sion in 19 s, while the Conjunto language, exploiting clause disjunction, finds the 
same solution in 42 s. 

An interesting point is that if we change the order in which disjunctive clauses are 
selected, performances change drastically: Conjunto does not even find a solution in 
1 h, while if we change the order in which values are inserted in the domain of rela- 
tion variables, the same solution can be found in almost the same time (22 s). Thanks 
to constraint propagation on relation variables. 

The same considerations made on symbolic constraints in Section 3.2.1 also apply 
for this case. Modern Constraint Programming systems [10,18] have special purpose 
constraints for bin packing applications more efficient than Conjunto and our pro- 
posed approach. 

4. Related work 

A work related to our approach is described in [24] and concerns the integration 
into a finite domain constraint solver of the Interval Algebra qualitative constraints. 
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The authors represent Interval Algebra constraints as variables and compute the 
transitive closure of the network. Our approach extends and formalizes this idea 
since it embeds not only qualitative but also quantitative reasoning and the integra- 
tion of both. 

A work similar to ours is that by Friihwirth [13] on Constraint Handling Rules 
(CHRs) as an extension of Constraint Logic Programming languages. The author 
uses guarded rules in order ~o perform operations such as composition and intersec- 
tion on constraints. CLP programs can be extended by CHRs that operationally des- 
cribe the behavior (in terms of the propagation to be performed) of the constraint 
solver when it encounters a constraint. We do not define operational rules (that 
are embedded in the constraint solver), but we have a constraint that declaratively 
links integer and relation variables, and constraints among relation variables in 
the CLP(FD) language. Nevertheless, CHRs can be a suitable tool for implementing 
our extension. 

A common way of coping with disjunctive constraints in CLP systems such as Oz 
[17], AKL(FD) [5] and Prolog IV [6] relies on the use of boolean variables associated 
with constraints, i.e., (C ~ X = 1 A X:: [0, 1]), called reified constraints. A similar 
concept has been applied for solving disjunctive scheduling problems in [7]. The idea 
is that the boolean value of variable X corresponds to the truth value of the con- 
straint C. Disjunction is handled by associating two boolean variables with different 
disjuncts and iml:osing an exclusive er between them. From this perspective, we 
achieve the same results. The main difference with our work concerns the fact that 
in our language the user can express operations and constraints among relation vari- 
ables thus changing constraints during the computation. This feature can be very 
useful and expressive in temporal reasoning applications and in general from a 
knowledge representation point of view. 

As far as disjunction in CLP is concerned, we have to mention also the construc- 
tive di,~junction [15]. The idea is to remove from wtriable domains those values 
which are not supported by any disjuncts of the disjunction. This is a very power- 
ful way of coping with disjunction which is not alternative to our method. In fact, 
it c~.n be integrated in our language in order to further increase the etiiciency of the 
solver. Our extension is mainly devoted to the qualitative reasoning. One example 
can be found by considering the Ibllowing ~constraint store: {X~< Y , Y ~ Z ,  
(X >I Z UX <~ Y}, where variables X, Y and Z are defined on a domain [1..10]. 
Even by considering the constructive disjunction, i.e., propagating each disjunct 
separately and considering the union of the resulting domains, no inference can 
be done on constraints in the disjunction. In our framework, even thought we 
do not reduce variable domains, we choose the constraint X ~< Y since the only 
way to guarantee the consistency of the constraint i> is to have three equal values 
which is subsumed by X <~ Y. 

Another related approach, as far as disjunction is concerned, is the cardinality op- 
erator by Van Hentenryck and Deville [16]. The cardinality operator is a non-prim- 
itive constraint for inferring shnple constraints J?om di~cult ones. The syntax of the 
cardinality operator is the following: 

#(l,u,[cl,c,,...,c,,]). 
Declaratively, it means that the number of satisfied constraints in the set 
[c~, c2, . . . ,  co] is greater than I and smaller than u. Disjunction is solved in the follow- 
ing way: 
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# ( 1 , 1 ,  [rjl < r,2, r,I > 
ThE cardinality operator can be implemented on top of the so-caUed ask and tell 
languages that support the entailment of constraints [27]. Our approach can 
be built on top of any CLP(FD) language without the entailment, i.e., tell 
languages. 

Another way of coping with disjunction in CLP is by means of the cumulative con- 
straint [10]. This constraint is often used when expressing capacity constraints. Its 
syntax is cumulative(Start, Duration, Resource, Max)where Start 
represents a list of tasks starting times, Duration a list of durations, Resource 
a list of resources used by difibrent tasks, and Max the maximum capacity of a set 
of resources. The first three parameters are lists of domain variables. The semantics 
of the constraint is that the sum of the resources used by single tasks, in each time 
point, cannot be greater than the threshold Max. In order to express the 
before v after disjunctioil we can write: 

cumulative([S/, Sj], [D,, Dj], [1,1] 1). 
In this way, we avoid the two tasks to overlap. However, this constraint cannot be 
used in order to represent more complex qualitative ~onstraints such as 
Task, bejbre v overlapped_by Taskj [1]. We can express this kind of constraints in 
our framework, by properly combining relations and operations between relation 
variables, see [22]. From this perspective, our approach is more general since it 
caa be applied to any kind of disjunctive constraints. Obviously, the propagation 
peribrmed by the cumulative constraint is much more powerful since it is based 
on the best available pruning techniques. 

As tar as the transitive closure of the network is concerned (as described in 
Section 3.2.1~, in [20] the authors propose an efficient and incremental propaga- 
tion algorithm lbr (linear~ Two-Variables-Per-lnequa!iO' (TVPI) constraints. This 
algorithm can be embedded in a constraint solver thus increasing its pertbr- 
mance on these kinds of constraints. The transitive closure of the network can 
be ~'omputed also in our framework with some ditterences with respect to [20]: 
first, we pertbrm a qualitative closure on binary constraints, while in [20] they 
perform a more complex closure that introduces more constraints containing op- 
erators such as sum, difference, and so on; second, our transitive closure is guid- 
ed by the user that imposes, at language level, the composition operator among 
relation variables, while in [20] the transitive closure is embedded in the con- 
straint solver. 

This paper, even though presenting these differences, suggests to us an interesting 
future direction for treating operators in our framework. For example, given the 
constraint store {X < Y + 5, Y < Z} we would like to deduce the constraint 
X < Z + 4. A possibility could be to represent a relation R as a triple (Rel. Val, 
Op) where Rel is an ordering relation, Val is a value "rod Op an operator. The mean- 
ing of the relation rei(X,R, D is that the application of the operator Op to the vari- 
able X and the value leal is in relation Rel with Y. 

Other works, like Re[~. [2 !,3] treat relations as matrices of admitted sets of values 
and in that sense they reason on constraints. In particular, the work presented in [21] 
is based on a relation algebra with operations on relations which are basically the 
same used in our paper. However, w~. work on an intensionai representation of re- 
lations as relation symbols and uot on admitted values. 
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5. Conclusion and future work 

We have presented an extension of the CLP framework for reasoning on con- 
straints. The extension has been first introduced as a general framework, then spe- 
cialized on integers and sets. We provided sc:ae examples that show the increased 
expressive power of the extended C L P ( F D . ,  aguage and the effectiveness of the ap- 
proach in dealing with disjunction. 

Future works are aimed to: 
• implement the relation variable constraints at lower level thus increasing the effi- 

ciency of the relation based propagation; 
• define heuristics on relation variables and value ordering during the labeling step, 

as those suggested in [28]; 
• extend the language in order to cope with operators as briefly suggested in Sec- 

tion 4; 
• specialize the extension proposed on other relation domains; 
• apply the extended language to real life applications in the field of scheduling and 

planning and compare the proposed approach with a pure CLP one. 
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