
ELSEVIER The Journal of Logic Programming 38 (1999) 93-110

THE JOURNALOF
LOGIC I:~OGRAMMii',~I;

Technical Note

Reasoning on constraints in CLP(FD)

Evelina Lamina a,,, Michela Milano a,l Paola Mello b,2
a Dib~att.#nento di Elettronica, Informatica e Sistemistica,

Universith ~,.; Bologna, Viale Risorgimento 2, 40136 Bologna, Italy
b Dipartimento di blgegaeria, Universit~ di Ferrara, Via Saragat i. 44100 Ferrara, Italy

Received 30 July 1997; received in revised form 21 January 1998; accepted 28 May 1998

Abstract

Constraint Logic Programming solvers on finite domains (CLP(FD) solvers) use con-
straints to prune those combinations of assignments which cannot appear in any consistent
solution. There are applications, such as temporal reasoning or scheduling, requiring some
form of qualitative reasoning where constraints can be changed (restricted) during the compu-
tation or even chosen when disjunction occurs. We embed in a CLP(FD) solver the concept of
constraints as first class objects. In the extended language, variables range over finite domains
of objects (e.g., integers) and relation variables range over finite domains of relation symbols.
We define operations and co,nstraints on the two sorts of variables and one constraint linking
the two. We first present the extension as a general framework, then we propose two special-
izations on finite domains of integers and of sets. Programming examples are given, showing
the advantages of the extension proposed flora both a knowledge representation and an op-
erational viewpoint. © 1999 Elsevier Scienu. • Inc. All rights reserved.

Keywords: Constraint logic prograntming cx,ensions: Qualitative reasoning: l)isjunctive
constraints

1. Introduction

Constraint Logic Programming (CLP) [19] is a programming paradigm combin-
ing the advantages of Logic Programming and the e~ciency of constraint solving.
In this paper, we focus on CLP over finite domains, CLP(FD). CLP(FD) variables
range over a finite domain of objects (e.g., integers), and ~ire linked by means of con-
straints. During the computation, constraints are used in orde~ to actively prune the
search space, by reducing the variable domains. For this reason, CLP(FD) has been
proved to be a suitable tool for solving hard combinatorial problems such as graph

"Corresponding author. Tel.: +39 51 643033; fax: +39 51 64Z3073; e-mail: elamm~Vqi!deis.unibo.it.
i E-mail: mmilano@deis.unibo.it.
-' E-mail: pmello(~ing.unife.it.

0743-1066/99/$ - see front matter © 1999 Elsevier Science Inc. All rights reserved.
PII: S 0 7 4 3 - 1 0 6 6 (9 8) ! 00 1 6 - X

94 E. Lamma et al. / J. Logic Programming 38 (1999) 93-110

coloring, planning, scheduling, sequencing and assignment problems, to name a few
[9]. Many of these problems require some form of qualitative reasoning. For in-
stance, many applications deal with temporal constraints which can be either quan-
titative, e.g., they link the temporal location of points (intervals) along the time line,
or the distance between two points (intervals) [8], or qualitative, e.g., they link the
relative positions of points and intervals [1,29].

While the quantitative reasoning can be easily handled by CLP(FD), the qualita-
tive one leads to some problems. For example, suppose we have three temporal
points Tl, T2 and/ '3 ranging from 1 to 10 linked by the relations Tl ~< T2, T., < T3.
CLP(FD) constraint propagation, arc-consistency [25], reduces the size of variable
domains, thus leading to Tl:: [1..9], T2:: [1..9] and T3: : [2..10], but it does not infer
the relation between T~ and ~ . This happens because CLP(FD) uses constraints
in order to restrict variable domains, but it never does reason on constraint as do-
main elements, thus inferring quaStative relations and computing new (tighter) con-
straints during the computations.

As another example, suppose we have two variables X and Y with an undefined
domain. CLP(FD) solvers cousider the default domain as I--max, max]. Therefore,
the constraints X < Y and X > Y are recognized as inconsistent after a number of
propagations proportional to max. By reasoning on relations, we are able to deter-
mine the inconsistency in one propagation step.

In this paper, we present an extension of the CLP framework that makes it pos-
sible to reason on constraints. Intuitively, we allow the CLP(FD) language to treat
relations as domain elements, in ~his way, we are able to perform operations, pose
constraints on them and change relations during the computation. In the first above
mentioned example, the relation between T~ and/ '~ can be represented by a relation
variable, called Rrlr,., which ranges on a finite domain of retation symbols [<, =] and
the relation between T., and T~ can be represented by another relation variable, called
Rr~r~, which is instantiated to the value <. Therefore, the relation between T~ and T~
can be computed as < by composing the first two variables.

In the second example, the relation between X and F can be represented by a re-
lation variable R,~. whose value is <. When the second constraint is considered, an
inconsistency arises in one propagation step since > is not contained in the domain
of Rxy.

Based on this intuition, we present a general language extension which can be ap-
plied, in theory, to any finite domain constraint language and enables to reason on
constraints. We present two specializations of the extension proposed on finite do-
mains of integers and on finite domains of sets (as defined in the Conjunto language
[14]). For instance, in the first specialization on integers, we have the usual opera-
tions (+,*) and constraints (<, >, ~<, t>, #, =), while on sets, we have the usual op-
erations (U,n , /) and constraints like set inclusion, disjointness and equality
(c_, _~, ~0, =). In both cases, on relations we define composition, union, least upper
bound operations, and equality, inequality and disequality constraints.

Beside the increased expressive power in knowledge representation when reason-
ing on relations, we deal with disjunctive constraints more effectively than with pure
CLP(FD) languages. However, current CLP(FD) commercial solvers such as CHIP
[10] or ILOG [18], making use of global symbolic constraints [4], outperform our re-
lation based approach since they use sophisticated propagation techniques tailored
on the specific constraint. The purpose of this paper is to show the effectiveness

E. Lamina et al. I J. Logic Programming 38 (1999) 93-110 95

and the generality of the approach when compared with pure CLP(FD) solvers mak-
ing use of arc-consistency propagation techniques, and not to outperform the state
of tke art commercial CLP solvers.

The paper is organized as follows: in Section 2, we concentrate on the language
extension. We provide the declarative and operational semantics of the resulting gen-
eral language, two specializations on integers and on sets, and give some implemen-
tation details. Programming examples are given in Section 3, showing the
advantages of the extension proposed. Related works are presented in Section 4.
Conclusion and future work is given in Section 5.

2. Extending the C L P (F D) language

In this section, we describe a constraint solver which makes it possible to reason
on relations. The solver is built on a two sorted first order language on objects (e.g.,
integers) and relations. We define operations and constraints on finite terms (they are
the usual operations and constraints of CLP(FD) solvers) and operations and con-
straints on relations.

A constraint on finite domains can be in the form: x: : [al a,,] or tl R t_, w~ere tl
and t: are finite terms, i.e., variables, finite domain objects and usual expressions,
aad R is one of the constraints defined on ',he domain of discourse (e.g., for integers
we have the usual relations: >, >i, <, 4 , =, :/:). Intuitively, we want to extend the
language so as to make it possible to express constraints like rel(X,R,.,., Y) which
holds if and only if the relation variable R,.,. represents the relation between finite do-
ma#l variable,~ X and Y.

2. !. Syntax and declarative semantics

We consider a two sorted first order language 2; with two associati,:d sorts, S~ and
S:, where $1, whose carrier is FD, represents a linite domain, sort, and S,, whose car-
rier is Rel, the relation sort.

For finite domains, unary constraints link a variable to range over a finite domain
of objects belonging to FD, X: : [a~ a,,]. The meaning of this constraint is

X : : [a l ,a,;] '-7 X = al v . . . v X = a,,.

As usual, binary constraints and operations can be defined on finite domain vari-
ables.

For the relation sort, unary constraints link each relation variable to range over a
finite domain of relations belonging to Rei, R: : [r~ , r,,]. The meaning of this con-
straint is

R:: [rj, r,,] ,---, R =,. rl V . . . V R =,. r,,.

On the relation sort, we always have equality and inequality constraints {=,.,-¢, }
which can be defined as usual. ~ In addition, we assume that a partial order relation

s The letter r in relation symbols ret'ers to the Rel sort. However. with abuse of notation, we omit this
letter in the programming examples since the propagation perlormed for =~ and ¢,. is the same as tbr the

standard CLP(FD) constraints = and -¢.

96 E. Lamina et aLI J. Logic Programmb~g 38 (1999) 93-110

on the Rel sort exists. We introduce it in the language as a constraint through the
symbols { <~ r, >I r} in the following way:

Rl <~,.Rz ~ Vx, y Rl(x,y) --+ R2(x,y).

Operations on relations are composition, union and least upper bound (for the latter
we assume that the operation is well defined, ie., the least upper bound of any
couple of elements exists). We can define them as three predicates: compl3, unionl3
and lubl3. The signature of the predicate comp is (Rel, Rel, Rel) and its declarative
meaning is

¢omp(Ri,R2,R3) ~ Ri ® R2 =~ ~3,

where ® is defined by a transitivity table providing a~: ~,~.i~,J~uoa between primi-
tive relations.

The signature of the predicate union is (Rel, Rel, Rel) and its declarative meaning is

union(Ri,R2,R3) ~ RI =,. R3 V R2 --:r R3.

The signature of the h¢b operation is (Rel, Rel, Rel) and its declarative meaning is

I,~b(RI,R,.,R3) ~ R3 =,. lub_lattice(Ri,R2),

where lub.lattice is defined by the lattice defining the partial order on the Rei
sort.

Finally~ we introduce the tel(X, Rxy, Y) constraint linking the two sorts, whose sig-
nature is (FD, ReI, FD). The declarative meaning of the tel~3 is the following:

Vr~ Rel (rel(X,R,,., Y) ,~ (R, =,. r) A X r Y).

This constraint substitutes the usual CLP(FD) constraints when some tbrm of rea-
soning on relations is required. It is worth noting that the proposed extension can
be expressed in the classical first order framework.

2.2. Specialization on integers

In this section, we present the specialization of the proposed framework on finite
domains of integers. We have to define the Rel sort, Rel.int, and operations and con-
straints on Rel.int. The resulting language is a two sorted language: the carriers of
the two sorts are integer numbers, i.e., F D = Z , and the relation set
Rel. int= {<, <~,>, >~, -~,=,7-}.

On integers, we have the usual constraints >, >t, <, <~, =, ~ and operations are
addition (+) and multiplication (*).

As concerns the relation sort, unary constraints link each relation variable to
range over a finite domain of relations R::[r~, . . . , r ,] , where r~,... ,r,, belong to
Rei.int. On the relation sort, equality and inequality constraints can be defined as
usual.

The partial order relation on Rel_int is defined by the lattice depicted in Fig. 1,
where the top is the constraint 7, i.e., the most relaxed constraint, which is always

E. Lamina et al. I J. Logic Programmh~g 38 (1999) 93-110 97

Fig. 1. Lattice on the Rel_int sort.

true for any pair of variables, and the bottom is the inconsistent relation _1_ which is
not included in the carrier Rel_int. 4

As a consequence, the lub_lattice operation is defined on the lattice of Fig. 1. For
example, if R~::[<~,-7/:], R2::[~<, ¢], Rt,,b: : [4 , :/:, T], then lub(R~,R2,Rh,b) holds.

The operation ® is defined by a transitivity table described in [29] and
reported in Table 1 for the sake of completeness. For example, if R~::[<, =] and
R2:: [<, =], Rs: : [<, =], then comp(R~,R2,Rs) holds.

Union operation does not need to be specialized because it is general for
any kind of relation domain. In the integer specialization, for example, if
Rl:: [<, =], R2: : [<, >] and Rs: : [<, =, >], then union(RI,R2,Rs) holds.

The mixed computation domain constraint rel links two integer variables and one
relation variable. In this case, it can be specialized as follows:

rel(X,R,.,., Y) ~ (R,,. =,.

(R,., =,.

(R,v =,.

(R,,. - ,

(R,.,. =,.

(R,,, =,.

(R,,, =,

' < ') A X < Y V

' <~ ')A X<~ Y V

' > ') A X > Y V

' ~ ')/ ' , ,¥ ~. 1" v

' # ')A X # Y v
' = ') A X = : Y V

'T').

2.3. Spechdization on sets

In this section, we present the specialization of the framework proposed on finite
domains of sets as introduced in the Conjunto language [14] (provided as a library of
ECUPS"). A number of works have been proposed on constraint programming on
sets, such as, for example, {log} [I 1] and CLPS [231 which are more expressive than

4 The symbol _L represents the inconsistent relation. It is always false for any pair of variables. In the
following, we omit the inconsistent relation in relation variable domains and we fail ir a relation variable
domain becomes empty. However, the symbol _L can be used in the language fc, r explicitly handling
failures and recovering from them.

98 E. Lamina et al. i J. Logic Programm#~g 38 (1999) 93-110

Table !
Composition of constraints on integers

® < < > >1 = ¢ T

< < < T T < T i

<~ < <~ T T <~ 1- T

> i i > > > i i

>1 T T > >t >~ T T

= < ~ >) = ~ T

yt= T T T T # T T

T T i i T T T T

Conjunto since they allow to treat non-ground sets. We adopt Conjunto because it
works on finite domain of sets.

The aim of this section is to show the capability of our framework to be special-
ized on other domains than integers. The Conjunto language is mainly targeted to
express and solve combinatorial problems on sets on which it has been proved to
be extremely effective, guaranteeing good expressiveness and considerably speed
up in execution time over traditional logic programming solutions.

We have to define the Rel sort, Rel_set, and operations and constraints on Rel_set.
'l'he resulting language is a two sorted language: the carriers of the two sorts are
FD = FD(HU) which is tile set of finite (ground) sets in 2 m', HU is the Herbrand
Universe, and the relation set Rel-set = {C,_D, ~o ,= , 1-}, where ~" represents set
disjointness.

On sets, we have unary constraints delined by specifying the greatest lower bound,
glb.. and the least upper bound, lub, i.e., X: "glh..luh, binary constraints c_, 2, ¢ 0 ~.:.
and operations are intersection, union and complementary difference.

As co, ,erns the relation sort, unary constraints link each relation variable to
range c~,cr a finite domain of relations R::[r~ ,n,], where r~, t;, belong to
Rei~wt . ~ the relation sort, equality and inequality constraints can be defined as
usual.

The p,~rtial order relation on Rel_set is defined by the lattice reported in Fig. 2 as
well as the lub.lattice operation. As for integers, in Fig. 2, the top is the constraint T,
i.e., the most relaxed constraint, which is always true fbr any pair of variables, and
the bottom is the inconsistent rc'~ation _L which ;s not included in the carrier Rel_set.
The operation ® is defined by a transitivity table (see Table 2).

do,~ ,~n constraint tel links two set variables and one re- The mixed computatie~a , ~"
lation variable. In this cas.: '~e specialized as follows.

'- X c Y v rel(X,R~:, Y) ,~ (R,, =, _

(R,:,. =,. ' ~_ X ~_ Y v

(R:, =,. ') :~ X ~ :

(R~,. =,. ' = ')A X = Y v

~-T-~ (R , . v = , •).

E. Lamina et al. I J. Logic Programmh~g 38 (1999) 93-110 99

Fig. 2. Lattice on the Rel.set sort.

Table 2
Composition of constraints on sets

c_ c_ T c_ #* T

_'D T .D D T -[

= C D_ = #o T

#o T #o -7/=" T T

T T T T T T

2.4. Operational semantics

The operational semantics of the extended language can be defined by specializing
the operational semantics presented in [19] based on transition rules, i.e., resohaion,
constraining, inferem'e and sati~fiabilio, check, which allows the system to switch
from different states. States are represented by tuples (A, C, S) where A is a multiset
of atoms and constraints, C is the constraint store of active constraints, i.e., con-
straints that are awake, and S is the constraint store of passive constraints, i.e., con-
straints that are asleep. The failure of the system is represented by a state called fail.
The transition rules can be found in [19], and reported in Fig. 3 for the sake of com-
pleteness. Two points should be considered for specializing this general semantics
scheme for a particular language: the predicate consistent and the function infer.

In the extended language proposed, the consistent transition fails if and only if one
(relation or finite domain) variable domain is empty, i.e., no consistent value exists
either for a finite domain variable or for a relation variable.

The transition it~er defines the propagation of constraints. In our language, the
function infer performs an arc-consistency, as well as in CLP(FD) solvers. In fact,
we perform arc-consistency on finite domain variables, on relation variables and be-
tween the two. Obviously, the constraint rel(X, Rx:,, Y) is arc-consistent if for each
value of X (resp. Y), there exists a value for R,,. and Y (resp. X) which is consistent
with the constraint, and also if for each value of R~,. there exists a value for X and Y

100 E. Lamina et aLI J. Logic Programming 38 (1999) 93-110

Resolution: (A U a , C , S) ~ , (A O B ,C , S U (a = h))
where a is an atom selected by the computation rule
h ~-- B is a rule of the program P renamed to new variables
h and a have the same predicate symbol

.fails otherwise.

C o n s t r a i n i n g : (A 0 c, C, S) -+¢ (A, C, S 0 c)
where c is a constraint selected by the computation rule

Infer: (A, C, S) ~ , (A, C', S').
where (C', S') = i n f e r (G , S)

Satlsflabillty: (A, C, S) -~, (A, C, S)
if consis tent(C) ,

fails otherwise.

Fig. 3. CLP operational semantics.

consistent with the constraint. As concerns implementation details, in the next ~ec-
tion we will see the detailed steps performed by the infer transition.

2.5. Implementat ion

In this sectiom we sketch the implementation scheme of our language. We have
implemented the two specializations of the proposed extension on integers and o .
sets respectively on top of the finite domain library al~d of the Co~ljunto library of
ECUPS" [12]. In both cases relation wtriables have been defined as usual finite do-
main variables. Opera~inn~ and constraints have been defined as ECL"PS" user-de-
fined operations and ct~nstraints, by means of low level predicates for suspension
and domain manipulatim~.

It is worth noting that implementation of a new specialization is modular ,tinct
just by changing the transitwity table and the definition of the lattice induced by
the partial order relation, we can tailor the language on whatever relation domain.

We present now the three basic steps pertbrmed by the #¢'er(C,S) transition.
I. Arc-consistency on constraints between relation variables: The first step deals

' R" with constraints and operations among relation variables like comp(R~y,R,.,., .,.,.,,
umon R~, R , R , lub R , R , R , R <~ ' " ' " " ' (.~. "~, ','~.) (,. '~. '~',,) .',.,. ~ RI,!~., R~,. ~,. R,.,,, R~,, =~ R~,.. An arc-con-
sistency is pertbrmed on relation variables. For example~ in the integer specializa-
tion, given the query:

: - RI:: [<, =l, R2:: [<, >], R1 = R2.

The arc-consistency on relation variables instantiates both variables R1 and R2 to
the symbol <.

2. Domain reduction ~ ' re la t ion variables according to f ini te domain variables: Giv-
en the constraint rel(X,R~,,, Y), the propagation reduces relation variable domains
according to domain values of finite domain variables. The check performed is the
following: if C is the current store, for each r E DR,, if C 0 (X r Y) does not produce
failure, then r is left in the domain of R:~,,. Otherwise, it is deleted. For example, in the
integer specialization, if we have the following goal:

E. Lamina et al. I J. Logh" Programm&g 38 (1999) 93-110 101

: - X : : [1 . . 5] , Y: : [6 . . lO] , R : : [< , >], r e l (X , R, Y)

the symbol > is no longer supported by X and Y domain values. Therefore, the prop-
agatioz, instantiates R to the value <. This behavior is achieved through a propaga-
tion based on the cardinality of the intersection of variable domains and on domain
upper and lower bounds. For more details on this propagation, see [26].

3. Arc-consistemT on finite domain variables subject to least upper bound con-
straints: The third step is the usual arc-co~sistency propagation on domain variables,
subject to "least upper bound constraints". For each constraint in S of the form
,'eI(X,R~,., Y), where R~,, has been reduced according to the previous step, the system
applies the arc-consistency to the constraint X lub(De~,) Y. If we have the following
query:

: - r e l(X, R, Y), R::[<, >]

the constraint added to the set of passive constraints is simply the least upper bound
of the two constraints, i.e., X # Y. In this way, we exploit the propagation mecha-
nism of the underlying CLP(FD) solver. We would obtain the same propagation if
we consider the result of the propagation of each constraint separately and perform
the union of the resulting variable domains.

3. Examples

In this section, we present some examples that show the advantages of the exten-
sion proposed from both a knowledge representation and an operational viewpoint.
In Section 3.1, we describe a point based temporal reasoning problem and an extend-
ed CLP(FD) progra,n on integers which solves it. In Section 3.2, we discuss the ap-
plication of the extended framework to disjunctive constraints. We present an
example of the integer specialization and one example of the set specialization.

3. i. Temporal reason&g

Let us consider the Point Algebra introduced by Vilain and Kautz [29]. Let us
start with an example where temporal points TI, ~ and T~ range over a finite do-
main of integers (temporal locations). Suppose our '~beginning of the world" is at
7.00 a.m. and we know that TI happens between 7.10 and 7.20 a.m., 7'., bt:'ween
7.14 and 7.28 a.m. and T.~ between 7.l,t and 7.32 a.m. In the example, Tt, 7', and
T.~ represent the events: John enters the d,~or, ,~ho3' telephones and John meets Helen.
These temporal events are linked by the following relations: Tt (a.fte,'V
equal) T2, 7",. (after V equal) T3.5 These relations mean that John enters the door af-
ter or while Mary is telephoning and Mary telephones after or at the same time John
meets Helen. If the relation between John enters the door (Tt) and meets Helen (Ta)
is unknown and the user wants to compute it, he can raise the tbllowing query:

: - T I : : [lo . . ao] , T 2 : : [14. .28] , T 3 : : [14. .32] ,
R12: : [a f t e r , equal] , R23:: [a f t e r . equal] ,

-~ For a unilbrm treatment of point pomt relation with [29], in the current example, ~e replace the
symbol > with a f t e r . = with equal , and < with before .

102 E. Lamina et al. I J. Logic Programming 38 (1999) 93-110

rel(Tl, RI2, T2), rel(T2, R23, T3), rel(Tl, RI3, T3),
comp(Rl2, R23, RI3).

The propagation in pure CLP(FD) is just the reduction of the domain variables to
14 . . 20, but the relation between T~ and/ '3 cannot be computed starting from do-
main values. In the extended language specialized over integers, we can compute the
above mentioned relation thanks to the operation e omp/3 that performs the com-
position of the first two variables (s~ Table 1). The result will be, therefore, a reduc-
tion of the variable domains to 14 . . 20, as in a pure CLP(FD) language, but also
a13: : [a f t e r , e q u a l] with the suspended constraints comp (R12, R23, R13),
rel(Tl, RI2, T2), rel(T2, R23, T3)and rel(Tl, RI3~ T3).

Another example, based on the same temporal points, concerns the problem of
finding feasible qualitative temporal scenario [2], i.e., an instantiation of relation
variables which is consistent with constraints. In the above mentioned program, sup-
pose the relation between T~ and T3 is defined by the user as T~ before V equal T3,
Obviously, the network is inconsistent if we consider the left side of the disjunctions,
i.e., T1 a f t e r T2, T2 a f t e r T3, T1 b e f o r e T3. However, there is a solution if
we consider the relations T1 e q u a l T2, T2 e q u a l T3, T3 e q u a l T1.

This solution can be found if we assign values to relation variables by means of a
labeling step:

: - T I : : [10..201 , T2:: [14..281 , T3: . [14..32],
RI2:: [after, equal],R23 : : [after, equal], RI3:: [before, equal],
rel(Tl, RI2, T2), rel(T2, R23, T3), rel(Tl, RI3, T3),
comp(Rl2, R23, RI3),
labeling([Rl2, R23, RI3]),

where the labeling clause instantiates each variable to a value of its domain. The ex-
tended CLP(FD) solver on integers gives the solution:

Tl, T2, T3::[14..20], RI2, RI3, R23= equal
corresponding to the only feasible scenario where the temporal events represented by
T~, T~, T3 happen at the same time. They can happen in all temporal locations be-
tween 14 and 20.

As another example, consider the operation union, which is a very effective oper-
ator from a knowledge representation viewpoint since it embeds the concept of dis-
junction. We can state complex constraints such as: the relation between temporal
events TI and T, can be equal to the relation between events T3 and Ta or between
events T5 and T6. The resulting code is:

:-rel(Tl, RI2, T2), rel(T3, R34, T4), rel(T5, R56, T6),
R34 :: [a f t e r] , R56 :: [before] ,
union(R34, R56, RI2).

where variable R12 is instantiated to the domain [a f t e r , b e f o r e].
The expressive power of CLP(FD) languages is thus increased by the extension

proposed. In [22] we have presented the application of this extension to the Interval
Algebra [1] and to the Simple Temporal Problem (STP) framework [8].

3.2. Disjunctive constraints

In this section, we show how to handle disjunction in our framework. This exam-
ple is motivated by the need to achieve a more global pruning for disjunctive con-
straints than the one offered by disjunctive clauses in pure CLP(FD) solvers. We

E. Lamina et al. I J. Logic Programming 38 (1999) 93-110 103

will see two applications of our extended language: the first concerns scheduling
problems, while the second bin pack#~g problems.

3.2.1. Scheduling appficattons
Consider, for instance, two tasks a and b competing for the same single-capacity

resource. Of course, the two tasks cannot be executed at the same time, i.e., they can-
not overlap. Given Sa and Sb the starting points of the tasks and Da and Ob their
duration, the n o _ o v e r l a p constraint can be expressed directly in a CLP(FD) lan-
guage by using two disjunctive clauses:

n o _ o v e r l a p (S i , Sj, Di, D j) - - Si + Di # , (= Sj:

n o _ o v e r l a p (S / , Sj, Di, D j) ' - Si + Di # < = Si,
where the symbol #< = represents the constraint less or equal in the ECLIPS e [12]
syntax. The main problem with this formulation comes from the fact that no pruning
is performed in order to reduce the search space. Constraints are only used as choices.

In our framework, we can reason on relations and we can represent the same
problem as a conjunction of constraints on relation variables:

no_ove rlap(Si, Sj, Di, D])" -
R I " " [< = , > = 1 , R2"" [< = , > =] , R1 # # R 2 ,
r e l (S i + Di, R1, Sj), r e l (S j + Dj, R2, Si),

where symbol ## is the inequality constraint between relation variables. This repre-
sentation of the problem can be explained as follows: we have two relation variables
between the starting and end points of the tasks. 6 Only two configurations of values
are allowed:

R~ =,. <~ and R2 =,. i> if task i is scheduled before task j,
R2 =,. <~ and R~ =,. >I if task./is scheduled before task i.

The constraint R] ## R2 allows only these two possible configurations. We have to
impose these constraints between starting and end points of all not overlapping
tasks.

A more global propagation can be performed by computing the (qualitative)
transitive closure of the network. This closure can be realized by means of the
e omp/3 operator. The idea is to find a consistent ordering between tasks competing
for the same resource by imposing new precedence constraints, as suggested in [28].
The first step is to impose precedence relations (i.e., ground relation variables), then
collect all the tasks that compete for the same resource in a list and impose
n o _ o v e r l a p constraints. Finally, by working on a list of triplets (Task~, R e l ,
Taskj), representing respectively the name of Task~ the relation between Task,
and Taskj and the name of Taskj , we can compute the transitive closure by select-
ing (through the f i n d a l l predicate) all those couples of tasks (Task~, Taskk) whose
first task unifies with Task, in the clause head, and then by performing the closure
on the triplet of tasks.

t, It is worth noting that, tbr instance, a domain containing the relation symbol < = is different from a
domain containing both symbols [<, =]. In fact, although they lead to the same propagation Ipoint 3 in
Section 2.5) on integer variables linked by the tel constraint, they have a different behavior in the labeling
step. In the first case, when a consistent solution is lbund, we have an instantiation of the relation variable
to the unique symbol ~<, while in the second case we possibly have two different solutions: one for the
relation < and the other for the symbol = .

104 E. Lamina etal. I Z Logic Programming 38 (1999) 93-110

transitive([(Taski, Rij, Taskj) I RestTasks]):-
findall((Taski, Rik, Taskk), member((Taski,
Rik, Taskk), RestTasks),List),
closure((Task, R 0, Taskj),RestTasks,List),
t rans i t ive (Re s tTasks).

closure(_,_, []).
closure((Taski, R/j, Taskj), RestTasks,[(Taski, Rik, Taskk)IRL]):-

member((Taskj, Rjk, Taskk),RestTasks), !,
comp(Rij, Rj~, Rik),
closure((Taski, Rq, TasKj),RestTasks,RL).

The complexity of the transitive closure propagation can be computed as follows: if
we have n tasks competing for a resource, we have a number of compositions equal
to the combinations of n elements in k-tuples with k = 3 (we compose Tt, Tj and Tk
independently from the order). Therefore, the number of compositions is O(n3). In
fact

n (n - l) . . . (n - k + l) n (n - l) (n - 2)
k! 6

This propagation is quite expensive, but in many cases very powerful since constrahlt
re 1 /3 propagates from values of tasks starting and end points to relations and vice
versa, while the transitive closure removes inconsistent relations. Consider the fol-
lowing simple example: we have five tasks, named respectively al, a2, bl, b2 and
ba, belonging to two jobs a and b competing for the same resource. Tasks of the same
job are linked by precedence relations, i.e., al ~< a2, b, ~< b2, b2 ~< b3. Consider tasks
al and b3" they have a starting time Sa,:" [45..85], Sh3"" [7..30] and a duration
dat = 20, &, = 10. Obviously, all the tasks competing for the same resource are
linked by a relation variable R whose domain is [<~, >i]. The starting and end points
determine an ordering for tasks a~ and b3, where b.a precedes a~. This propagation
can be achieved by means of the constraint rell3 which instantiates the relation be-
tween the two tasks, as shown in Fig. 4(a) where all the missing arcs represents re-
lations whose domain is [<~, >I]. The transitive closure of the network propagates
precedence relations and the one inferred by the rell3 constraint between b3 and
a~. As a consequence, all the other relations are instantiated as described in Fig. 4(b).
A standard CLP(FD) approach does not recognize that the ordering among all the
tasks is defined by the consideration that b3 comes before a~, and tries the assignment
of an ordering in a standard backtracking way. We perform a sort of forward check-
ing propagation since as soon as a relation is known all the other relations can be
propagated accordingly.

• We have evaluated the performance of our approach based on relation variables,
on five sets of randomly generated disjunctive scheduling problems of, respectively, 18
and 20 tasks on two resources, 20 and 25 on three resources and of 40 and 50 on five
resources. We have considered two parameters: the number of nodes generated for
the non-deterministic choice of conflicting task ordering, and the computational time.

In Table 3, the number of nodes generated by the relation-based approach
(indomain on relation variables), reported in column Re! Nodes, is significantly less
than the numberer of nodes generated by a pure CLP approach reported in column
CLP Nodes (number of calls to the n o _ o v e r l a p disjunctive choice where an order-
ing between conflicting tasks is decided).

E. Lamma et al. I J. Logic Programming 38 (1999) 93-110 105

0

a. b

Fig. 4. Example of ordering relations.

Table 3
Experimental results

Tasks Resources Rel Nodes CLP Nodes Rel Time CLP Time

18 2 133 12 278 22 58
20 2 336 23 716 297 1042
20 3 416 169 368 139 100
25 3 741 131 229 322 541
40 5 1020 255 402 870 1690
50 5 1540 266 710 1200 1873

Another comparison parameter is the computational time. The extended language
generally outperforms a pure CLP(FD) solver on disjunctive scheduling problems.
Some applications, however, do not benefit from the use of the transitive closure.
In particular, for applications where domain variables do not restrict relation vari-
able domains, or applications with few precedence constraints, the tradeoff between
the overhead introduced by relation variables and the propagation benefit is not
worthy. In addition, note that current CLP(FD) commercial solvers such as CHIP
[10] or ILOG [18], making use of global symbolic constraints [4], outperform our re-
lation based approach since they use sophisticated propagation techniques tailored
on the specific constraint. In fact, global symbolic constraints represent suitable ab-
stractions that enable a declarative statement of the problem and an operational be-
havior matching the best available pruning techniques. Our approach strength is the
generality and expressivity since it can be applied to any kind of disjunctive con-
straints and does not rely on special purpose propagation techniques. For this rea-
son, we compare our extended solver with a pure CLP(FD) solver making use of
arc-consistency propagation techniques.

3.2.2. Bin packing problem
In this section, we present an example of the extended language specialized on

sets. All the considerations from a knowledge representation viewpoint made on in-
tegers hold also for sets.

Consider the bin packing problem: given a multiset of n integers {wl, . . . , w, }, rep-
resenting weights of a set of objects to partition, the goal is to find a partition of the
objects into a minimal number m of bins or sets (to be determined) such that in each

106 E. Lamina et ai. I J. Logk' Programmhag 38 (1999) 93-110

bin the sum of all weights does not exceed a given capacity ~,~. The Conjunto ab-
stract formulation of the problem is the following:

si:" { (1 , w j) , . . . , (n , wn)},

s~ n sj = { } for all i ¢ ./,

s, u . . . = { (l , w ,) , . . . , (, , , w ,) } ,

w~ ~< W,,,~ for all sj.
il(i.w~) E glb(sj)

The goal is to minimize the number m of bins. Now, suppose that we have the fol-
lowing constraint: object i and object j cannot be inserted in the same bin. Therefore,
we have a disjunctive constraint of the kind:

{i} C sk V {j} C_ sk V ({i} #° sk A {j} #O s,) for a l l k = 1..m.

In the extended language, we express this disjunction by creating, for each bin,
two relation variables R~..~, and R;..~, (representing the relations between sets {i}
and {j}, respectively, and set Sk) whose domain contains both symbols [c, _¢0].
The allowed configurations are

Ri~ =~ C_ and Rj~ k =~

R~..,, =~ ¢o and Rj..~, =~ C_,
, # 0 = ¢,, Ri.s~- . and Rj..~, ,. .

Thus, we can impose that the least upper bound of the two variables can assume only
two values: Rh,h ' " [T, ~o] (i.e., lub(R~..~ ,R,..~, Rha,)). In fact, the first two allowed con-
figurations give T as a least upper bound, while the third configuration gives ¢0 as a
least upper bound. The only not allowed configuration would give as a least upper
bound the symbol c which is not included in the domain of Rt,,t,. Experimental re-
sults are encouraging. For example, a set partitioning problem with 81 objects to
be placed in at most 28 bins with disjunctive constraints can be solved by our exten-
sion in 19 s, while the Conjunto language, exploiting clause disjunction, finds the
same solution in 42 s.

An interesting point is that if we change the order in which disjunctive clauses are
selected, performances change drastically: Conjunto does not even find a solution in
1 h, while if we change the order in which values are inserted in the domain of rela-
tion variables, the same solution can be found in almost the same time (22 s). Thanks
to constraint propagation on relation variables.

The same considerations made on symbolic constraints in Section 3.2.1 also apply
for this case. Modern Constraint Programming systems [10,18] have special purpose
constraints for bin packing applications more efficient than Conjunto and our pro-
posed approach.

4. Related work

A work related to our approach is described in [24] and concerns the integration
into a finite domain constraint solver of the Interval Algebra qualitative constraints.

E. Lamina et ai. I J. L,~4ic Programming 38 (1999) 93-110 107

The authors represent Interval Algebra constraints as variables and compute the
transitive closure of the network. Our approach extends and formalizes this idea
since it embeds not only qualitative but also quantitative reasoning and the integra-
tion of both.

A work similar to ours is that by Friihwirth [13] on Constraint Handling Rules
(CHRs) as an extension of Constraint Logic Programming languages. The author
uses guarded rules in order ~o perform operations such as composition and intersec-
tion on constraints. CLP programs can be extended by CHRs that operationally des-
cribe the behavior (in terms of the propagation to be performed) of the constraint
solver when it encounters a constraint. We do not define operational rules (that
are embedded in the constraint solver), but we have a constraint that declaratively
links integer and relation variables, and constraints among relation variables in
the CLP(FD) language. Nevertheless, CHRs can be a suitable tool for implementing
our extension.

A common way of coping with disjunctive constraints in CLP systems such as Oz
[17], AKL(FD) [5] and Prolog IV [6] relies on the use of boolean variables associated
with constraints, i.e., (C ~ X = 1 A X:: [0, 1]), called reified constraints. A similar
concept has been applied for solving disjunctive scheduling problems in [7]. The idea
is that the boolean value of variable X corresponds to the truth value of the con-
straint C. Disjunction is handled by associating two boolean variables with different
disjuncts and iml:osing an exclusive er between them. From this perspective, we
achieve the same results. The main difference with our work concerns the fact that
in our language the user can express operations and constraints among relation vari-
ables thus changing constraints during the computation. This feature can be very
useful and expressive in temporal reasoning applications and in general from a
knowledge representation point of view.

As far as disjunction in CLP is concerned, we have to mention also the construc-
tive di,~junction [15]. The idea is to remove from wtriable domains those values
which are not supported by any disjuncts of the disjunction. This is a very power-
ful way of coping with disjunction which is not alternative to our method. In fact,
it c~.n be integrated in our language in order to further increase the etiiciency of the
solver. Our extension is mainly devoted to the qualitative reasoning. One example
can be found by considering the Ibllowing ~constraint store: {X~< Y , Y ~ Z ,
(X >I Z UX <~ Y}, where variables X, Y and Z are defined on a domain [1..10].
Even by considering the constructive disjunction, i.e., propagating each disjunct
separately and considering the union of the resulting domains, no inference can
be done on constraints in the disjunction. In our framework, even thought we
do not reduce variable domains, we choose the constraint X ~< Y since the only
way to guarantee the consistency of the constraint i> is to have three equal values
which is subsumed by X <~ Y.

Another related approach, as far as disjunction is concerned, is the cardinality op-
erator by Van Hentenryck and Deville [16]. The cardinality operator is a non-prim-
itive constraint for inferring shnple constraints J?om di~cult ones. The syntax of the
cardinality operator is the following:

#(l,u,[cl,c,,...,c,,]).
Declaratively, it means that the number of satisfied constraints in the set
[c~, c2, . . . , co] is greater than I and smaller than u. Disjunction is solved in the follow-
ing way:

108 E. Lamina et al. I J. Logic Programm#kg 38 (1999) 93 t q~

(1 , 1 , [rjl < r,2, r,I >
ThE cardinality operator can be implemented on top of the so-caUed ask and tell
languages that support the entailment of constraints [27]. Our approach can
be built on top of any CLP(FD) language without the entailment, i.e., tell
languages.

Another way of coping with disjunction in CLP is by means of the cumulative con-
straint [10]. This constraint is often used when expressing capacity constraints. Its
syntax is cumulative(Start, Duration, Resource, Max)where Start
represents a list of tasks starting times, Duration a list of durations, Resource
a list of resources used by difibrent tasks, and Max the maximum capacity of a set
of resources. The first three parameters are lists of domain variables. The semantics
of the constraint is that the sum of the resources used by single tasks, in each time
point, cannot be greater than the threshold Max. In order to express the
before v after disjunctioil we can write:

cumulative([S/, Sj], [D,, Dj], [1,1] 1).
In this way, we avoid the two tasks to overlap. However, this constraint cannot be
used in order to represent more complex qualitative ~onstraints such as
Task, bejbre v overlapped_by Taskj [1]. We can express this kind of constraints in
our framework, by properly combining relations and operations between relation
variables, see [22]. From this perspective, our approach is more general since it
caa be applied to any kind of disjunctive constraints. Obviously, the propagation
peribrmed by the cumulative constraint is much more powerful since it is based
on the best available pruning techniques.

As tar as the transitive closure of the network is concerned (as described in
Section 3.2.1~, in [20] the authors propose an efficient and incremental propaga-
tion algorithm lbr (linear~ Two-Variables-Per-lnequa!iO' (TVPI) constraints. This
algorithm can be embedded in a constraint solver thus increasing its pertbr-
mance on these kinds of constraints. The transitive closure of the network can
be ~'omputed also in our framework with some ditterences with respect to [20]:
first, we pertbrm a qualitative closure on binary constraints, while in [20] they
perform a more complex closure that introduces more constraints containing op-
erators such as sum, difference, and so on; second, our transitive closure is guid-
ed by the user that imposes, at language level, the composition operator among
relation variables, while in [20] the transitive closure is embedded in the con-
straint solver.

This paper, even though presenting these differences, suggests to us an interesting
future direction for treating operators in our framework. For example, given the
constraint store {X < Y + 5, Y < Z} we would like to deduce the constraint
X < Z + 4. A possibility could be to represent a relation R as a triple (Rel. Val,
Op) where Rel is an ordering relation, Val is a value "rod Op an operator. The mean-
ing of the relation rei(X,R, D is that the application of the operator Op to the vari-
able X and the value leal is in relation Rel with Y.

Other works, like Re[~. [2 !,3] treat relations as matrices of admitted sets of values
and in that sense they reason on constraints. In particular, the work presented in [21]
is based on a relation algebra with operations on relations which are basically the
same used in our paper. However, w~. work on an intensionai representation of re-
lations as relation symbols and uot on admitted values.

E. Lamina et al. I Z Logic Programming 38 (1999) 93-110 109

5. Conclusion and future work

We have presented an extension of the CLP framework for reasoning on con-
straints. The extension has been first introduced as a general framework, then spe-
cialized on integers and sets. We provided sc:ae examples that show the increased
expressive power of the extended C L P (F D . , aguage and the effectiveness of the ap-
proach in dealing with disjunction.

Future works are aimed to:
• implement the relation variable constraints at lower level thus increasing the effi-

ciency of the relation based propagation;
• define heuristics on relation variables and value ordering during the labeling step,

as those suggested in [28];
• extend the language in order to cope with operators as briefly suggested in Sec-

tion 4;
• specialize the extension proposed on other relation domains;
• apply the extended language to real life applications in the field of scheduling and

planning and compare the proposed approach with a pure CLP one.

Acknowledgements

Authors' work has been partially supported by CNR, Committee 12 on Informa-
tion Technology (Project SCI*SIA). We would like to thank Pascal Van Hentenryck
for useful discussions during our visit at Brown University and Carmen Gervet for
providing the Conjunto code of the bin packing problem. In addition, we would like
to thank the anonymous referees for their helpful comments on earlier versions of
this paper.

References

[1] J.F. Allen, Maintaining knowledge about temporal intervals, Communications of the ACM 26 (1083)
832-843.

[2] P. Van Beck, Reasoning on qualitative temporal information, Artificial lnteiligence 58 (1992) 297-
326.

[3] P. Van Beck, R. Detcher, Constraint tightness and looseness versus local and global consistency,
Journal of the ACM 44 (4) (1997) 549-584.

[4] N. Beldiceanu, E. Contejean, Introducing global constraints in CHIP, Mathematical Computer
Modelling 20 (12) (1994) 97-123.

[5] B. Carlson. S. Haridi, S. Janson, AKL(FD) - A concurrent language for FD programming.
in: Proceedings of lhe International Logic Programming Symposium, MIT Press, Cambridge, MA,
1994.

[6] A. Colmeraue~., An introduction to prolog I!I, ACM Communication 33 (7) (1990) 70-90.
[7] Y. Colomban,, Constraint programming: An eflioent and practical approach to solving the job-shop

scheduling, in: Proceedings of the Second International Conference on Principles and Practice of
Constraint Programming, 1996, pp. 149-163.

[8] R. Dechter, 1. Meiri, J. Pearl, Temporal constraint networks, Artificial Intelligence 49 (1991) 61-95.
[9] M. Dincbas, P. Van Hentenryck, M. Simonis, Solving large combinatorial problems in logic

programming, Journal of Logic Programming 8 (1-2) (1990) 75--93.

110

[1o1

E. Lamina et al. I J. Logic Programming 38 (1999) 93-110

M. Dincbas, P. Van Hentenryck, M. Simonis, A. Aggoun, T. Graf, F. Berthier, The constraint logic
programming language CHIP, in: Proceedings of the International Conference on Fifth Generation
Computer System, 1988, pp. 693-702,

[11] A. Dovier, E.G. Omodeo, E. Pontelli, G. Rossi, {log}: A language for programming in logic with
finite sets, Journal of Logic Programming 28 (1) (1996) 1-44.

[12] ECRC ECLiPS " User Manual Release 3.5, 1992.
[13] T. Friihwirth, Temporal Reasoning with Constraint Handling Rules, ECRC-94-05, ECRC, 1994.
[14] C. Gervet, Propagation to reason about sets: Definition and implementation of a practical language,

Constraints 1 (1997) 191-244.
[15] P. Van Hentenryck, V. Saraswat, Y. Deville, Design implementation and evaluation of the constraint

language cc(FD), Technical Report CS-93-02, Brown University, 1993.
[16] P. Van Hentenryck, Y. Deville, The cardinality operator: A new logical connective for constraint

logic programming, in: F. Benhamou, A. Colmerauer (Eds.), Constraint Logic Programming:
Selected Research, MIT Press, Cambridge, MA, 1993.

[17] M. Henz, M. Mehl, M. Miiller, T. Miiller, J. Niehren, R. Scheidhauser, C. Schulte, G. Smolka, R.
Treinen, J. Wiirtz, The Oz Handbook, DFKI, RR-94-09, 1994.

[18] ILOG, ILOG Solver 4.2 Reference Manual, 1998.
[19] J. Jaffar, M.J. Maher, Constraint logic programming: A survey, Journal of Logic Programming 19120

(1994) 503-582.
[20] J. Jaffar, M.J. Maher, P.J. Stuckey, R.H.C. Yap, Beyond finite domains, in: Proceedings of the

Second International Workshop on Principles and Practice of Constraint Programming, 1994.
[21] P.B. Ladkin, R.D. Maddux, On binary constraint problems, JACM 41 (3) (199,~,) 435-469.
[22] E. Lamina, P. Mello, M. Milano, Temporal reasoning in a meta constraint logic programming

architecture, Annals of Mathematics and Artificial Intelligence 22 (1998) 139-158.
[23] B. Legeard, E. Legros, CLPS: A set constraint logic programming language, Laboratoire

d'Automatique de Besancon Institut de Productique, 1991.
[24] J, Lever, B. Richards, R. Hirsh, Temporal Reasoning and Constraint Solving, IC-Park, Deliverable

CHIC ESPRIT Project EP5291, 1992.
[251 A.K. Mackworth, Consistency in networks of relations, Artificial Intelligence 8 (1977) 99--! 18.
[26] M. Milano, Reasoning on constraints in CLP(FD), University of Bologna, 1998.
[27] V.A. Saraswat, Concurrent Constraint Logic Programming, Carnegie-Mellon University, 1989.
[28] S.F. Smith, C. Cheng, Slack-based heuristics for constraint satisfaction scheduling, Proceedings of

AAA193, 1993.
[29] M.B. Vihlin, H. Kautz, P. Van Beck, Cotw~raint propagation algorithms for ~ .~p~,~,-:~ rca,~oning: A

revised report, in: D.S. Weld, J. De KIcer (Eds.), Readings in Qualitative Rca,~o~,ag ab~,ut Physical
Systems, Morgan Kaufinann, Los Altos, CA, 1990, pp. 373381.

