
On Simulation-Sound Trapdoor CommitmentsPhilip MacKenzie� Ke YangyDecember 2, 2003AbstractWe study the recently introduced notion of a simulation-sound trapdoor commitment (SSTC)scheme. In this paper, we present a new, simpler de�nition for an SSTC scheme that admitsmore e�cient constructions and can be used in a larger set of applications. Speci�cally, we showhow to construct SSTC schemes from any one-way functions, and how to construct very e�cientSSTC schemes based on speci�c number-theoretic assumptions. We also show how to constructsimulation-sound, non-malleable, and universally-composable zero-knowledge protocols using SSTCschemes, yielding, for instance, the most e�cient universally-composable zero-knowledge protocolsknown. Finally, we explore the relation between SSTC schemes and non-malleable commitmentschemes by presenting a sequence of implication and separation results, which in particular implythat SSTC schemes are non-malleable.1 IntroductionThe notion of a commitment is one of the most important and useful notions in cryptography. Intu-itively, a commitment is the digital equivalent of a \sealed envelope." A party Alice would commit toa value by placing it into a sealed envelope, so that the value may later be revealed by Alice openingthe envelope, but cannot be viewed by any other party prior to this opening (this is known as the\secrecy" or \hiding" property), and cannot be altered (this is known as the \binding" property).Commitments have been useful in a wide range of applications, from zero-knowledge protocols (e.g.,[4, 15, 34]) to electronic commerce (e.g., remote electronic bidding), and have been studied extensively(e.g., [3, 40, 41]).A commitment scheme is simply a method for generating and opening commitments. One canconstruct a formal de�nition of security for a commitment scheme directly from the properties in-herent in the intuitive description above. However, often these properties turn out to be insu�cientwhen commitments are used as building blocks in larger protocols or when multiple commitments areused concurrently. This has motivated researchers to de�ne and construct commitment schemes withadditional properties. We discuss them briey below.A trapdoor commitment (TC) scheme is a commitment scheme with an additional \equivocability"property. Roughly speaking, for such a commitment scheme there is some trapdoor information whoseknowledge would allow one to open a commitment in more than one way (and thus \equivocate").Naturally, without the trapdoor, equivocation would remain computationally infeasible [4, 25, 2].A non-malleable commitment (NMC) scheme is a commitment scheme with the property that(informally) not only is the value v placed inside a commitment secret, but seeing this commitmentdoes not give another party any advantage in generating a new commitment that, once v is revealed,can then be opened to a value related to v [22, 20, 29, 21, 17].1�Bell Labs { Lucent Technologies, 600 Mountain Ave., Murray Hill, NJ 07974. E-mail:philmac@research.bell-labs.com.yComputer Science Department, Carnegie Mellon University, Pittsburgh, PA 15213. E-mail: yangke@cs.cmu.edu.Part of the this research was done at Bell Labs. This research was also partially sponsored by National Science Foundation(NSF) grants CCR-0122581 and CCR-0085982.1The original de�nition of [22] states (informally) that another party does not even have any advantage in creating anew commitment to a value related to v, regardless of the ability to open the new commitment. However, we will usethe de�nition based on opening. 1

A universally composable commitment (UCC) scheme is a commitment scheme with a very strongproperty that intuitively means that the security of a commitment is guaranteed even when commit-ment protocols are concurrently composed with arbitrary protocols [6, 7, 18]. To achieve universalcomposability, a commitment scheme seems to require equivocability, non-malleability, and further-more, extractability. Roughly speaking, an extractable commitment scheme has a modi�ed secrecyde�nition, which states that there is a secret key whose knowledge would allow one to extract thevalue placed in a commitment. Naturally, without this knowledge, the value would remain hidden.We note that the notion of a UCC scheme appears to be strictly stronger than the other notions ofcommitment schemes. In particular, Damg�ard and Groth [17] show that a UCC scheme implies securekey exchange, while both TC schemes and NMC schemes can be constructed from one-way functions.1.1 Simulation Sound Trapdoor CommitmentIn this paper, we focus our attention on another extension of commitment schemes, namely simulationsound trapdoor commitment (SSTC) schemes. An SSTC scheme is a TC scheme with a strengthenedbinding property, called simulation-sound binding. Roughly speaking, in an SSTC scheme, an adver-sary cannot equivocate on a commitment with a certain tag, even after seeing the equivocation of anunbounded number of commitments with di�erent tags (i.e., the adversary may request an equivoca-tion oracle to generate an unbounded number of commitments with di�erent tags, and then to openthem to arbitrary values). Here, a tag for a commitment is simply a binary string associated with thecommitment.The term \simulation soundness" was �rst used to describe a property of zero-knowledge proofsby Sahai [47], and intuitively meant that even though an adversary could see simulated proofs ofincorrect statements, it could not itself produce a new simulated proof of any incorrect statement.Garay et al. [31] �rst applied this term to trapdoor commitments. They gave a slightly stronger,although more complicated, simulation-sound binding property and an e�cient construction basedon DSA signatures. Their de�nition was speci�cally tailored to the goal of developing a universally-composable zero-knowledge (UCZK) proof that was secure in the presence of adversaries that couldadaptively corrupt parties.2Perhaps the most interesting feature of SSTC schemes is that they are both very powerful and verye�cient to construct. As we will show later in this paper, SSTC schemes are non-malleable and canbe used to construct simulation-sound, non-malleable, and/or universally composable zero-knowledgeprotocols. On the other hand, SSTC schemes can be constructed from one-way functions only, incontrast to UCC schemes, which are considered highly unlikely to be constructible from one-wayfunctions alone [17]. Also, based on speci�c number-theoretic assumptions (e.g., strong RSA, or theDSA assumption), very e�cient SSTC schemes can be constructed, as we show in the paper. Theseconstructions in turn yield UCZK protocols that are more e�cient than all previously known ones,which are either based on UCC schemes [7, 18, 17] or on the previous de�nition of SSTC schemes [31].31.2 Summary of ResultsSimpler De�nition We provide a simpler de�nition of SSTC schemes than the one by Garay et. al. [31].Though the binding property in our de�nition is weaker, it is still su�cient in many applications (e.g.,to construct UCZK protocols that are secure in the presence of adversaries that can adaptively corruptparties).2They use the term identi�er in place of the term tag, and intuitively, in their de�nition [31], a commitment madeby the adversary using identi�er id is binding, even if the adversary has seen any commitment using identi�er id opened(using an oracle that knows a trapdoor) once to any arbitrary value, and moreover, any commitment using identi�erid 0 6= id opened (again using the oracle) an unbounded number of times to any arbitrary values.3In fact, this (improved e�ciency) is one of the main motivations to study the new simpler de�nition of SSTC.2

We also discuss various design issues in the de�nition, and most notably, the choice betweende�nitions based on the tag of the commitment and on the body of the commitment. Informally, atag-based de�nition requires that an adversary cannot equivocate a commitment com with a certaintag so long as it does not see the equivocation of any commitment with the same tag. On the otherhand, a body-based de�nition requires that the adversary cannot equivocate a commitment com solong as the commitment com itself has not been equivocated. (Note that we use the term \body" torefer to the bit-string that is the commitment.) For brevity, a scheme secure according to the tag-based de�nition will be called a tag-based scheme, and a scheme secure according to the body-basedde�nition will be called a body-based scheme.In our paper, we choose to focus on tag-based schemes since they admit simpler constructions andseem to be the most appropriate for our applications. In particular, there exists a conversion from tag-based schemes to body-based ones with the addition of a one-time signature scheme. This is a rathercommon technique, and we discuss it later in the paper. We also show a rather general transformationfrom body-based schemes to tag-based ones. Furthermore, in constructing secure zero-knowledgeprotocols in the UC framework, where the communication is normally assumed to be authenticated, itis natural to use a tag-based scheme, setting the tag to be the pair of the identities of the prover andthe veri�er. In this way, one can avoid the overhead of the added one-time signature scheme causedby the tag-based scheme to body-based scheme conversion. We give more details later in this paper.E�cient Constructions We present various constructions of SSTC schemes. The �rst constructionis a generic one based on the (minimal) assumption that one-way functions exist. Our constructionis similar to that of a UCC commitment scheme in Canetti et. al. [9]. However, because SSTCschemes do not require the extractability property, we are able to simplify the construction, andhave it rely on a weaker assumption. The next two constructions are based on speci�c number-theoretic assumptions, namely the strong RSA assumption and the DSA assumption(see Appendix F).These two constructions are very e�cient, both involving only a small constant number of public keyoperations. The construction based on DSA is similar to the one given by Garay et. al. [31], but isabout twice as e�cient.Interestingly, all of our constructions are heavily based on signature schemes that are existentiallyunforgeable against adaptive chosen message attacks. We show that this is not a coincidence, in thatthere is a straightforward conversion of any SSTC scheme into a signature scheme.Applications We show constructions of unbounded simulation-sound, unbounded non-malleable,and universally composable zero-knowledge (ZK) protocols using SSTC schemes in the common ref-erence string (CRS) model. In particular, we show how to (1) convert a �-protocol [13] (which is aspecial three-round, honest-veri�er protocol where the veri�er only sends random bits) into an un-bounded simulation-sound ZK protocol; and (2) convert an
-protocol [31] (which is a �-protocolwith a straight-line extractor) into an unbounded non-malleable ZK protocol, and further into auniversally-composable ZK protocol. The constructions are conceptually very simple. In fact, they allshare the same structure, and all use a technique from Damg�ard [16] and Jarecki and Lysyanskaya [36].The same technique was also used in Garay et. al. [31] in constructing a universally-composable ZKprotocol that is secure against adaptive corruptions.Our constructions are very e�cient, and in particular our construction of a universally-composableZK protocol is more e�cient than previous constructions based on universally-composable commitmentschemes [7, 9, 18]. First, we gain e�ciency by using an SSTC scheme instead of a UCC scheme, sinceour most e�cient SSTC constructions are more e�cient than any known UCC constructions. Forinstance, the UCC constructions of [7, 9] are for bit commitments, and thus have an expansion factorof at least the security parameter. The UCC construction of [18] has constant expansion factor,but requires a CRS of length proportional to the number of parties times the security parameter.3

Recently and independent from this work, Damg�ard and Groth [17] presented a UCC scheme with aconstant expansion factor with a CRS whose length is independent of the number of parties. However,their scheme is still quite complicated, since it requires interaction, and uses two di�erent types ofcommitments, one a non-malleable commitment scheme, and the other a special \mixed commitmentscheme." Second, we gain e�ciency by avoiding the Cook-Levin theorem [11, 38].4The second idea was used by Garay et. al. [31], who observed that one can construct honest-veri�erzero-knowledge protocols with very e�cient straightline extractors for many natural problems. Theycalled these
-protocols, and showed how to construct UCZK protocols from these
-protocols inthe CRS model without using the Cook-Levin theorem, thus achieving very e�cient constructions.Intuitively, they managed this by \shifting" the burden of extractability from the commitments tothe underlying
-protocols. In particular, they used a technique involving signatures to convert an
-protocol into a UCZK protocol secure against static corruptions, and then they used an SSTC scheme(with a stronger de�nition than in this paper, as discussed above) to further convert the UCZKprotocol secure against static corruptions into a UCZK protocol secure against adaptive corruptions.In this paper, we use an SSTC scheme (with the new de�nition introduced in this paper) to constructUCZK protocols secure against both static and adaptive corruptions in the CRS model. Comparedto that in [31], our construction is simpler and more e�cient. The savings are twofold: the simplerSSTC construction (with a weaker de�nition) cuts the overhead of SSTC by half, and the direct useof the tag-based scheme further eliminates the need for one-time signature schemes.Relation to Non-malleable Commitments We discuss the relation between SSTC schemes andNMC schemes [22, 20, 21, 17].5 At �rst glance, binding and non-malleability (or analogously, equiv-ocation and malleability) seem like very di�erent notions: while the former concerns the adversary'sability to open a commitment to multiple values, the latter concerns the adversary's ability to produceand open a commitment to a single value related to a previously committed value. However, theyare actually closely related, and we shall show that simulation-sound binding implies non-malleability(when both are appropriately de�ned). In fact, a similar observation was used implicitly in [20, 21, 17]to construct NMC schemes. In particular, these NMC schemes are all based on trapdoor commit-ment schemes that satisfy a weak notion of simulation-sound binding. (Note that these results alluse body-based de�nitions instead of tag-based de�nitions.) However, the exact relationship betweenthe notions of simulation-sound binding and non-malleability was not known, e.g., if simulation-soundbinding is strictly stronger than non-malleability, or if they are equivalent.We study the exact relationship between these two notions in this paper. To do this, we needto resolve some technical issues. First, just as SSTC schemes can be tag-based or body-based, NMCschemes can also be tag-based or body-based, where a tag-based NMC scheme is informally de�ned asone in which seeing a commitment (to some value v) with a certain tag does not give an adversary anyadvantage in generating a new commitment with a di�erent tag that can later be opened to a valuerelated to v. Since we focus on tag-based SSTC schemes, we will focus on their relation to tag-basedNMC schemes.6 (Analogous results could be obtained for the relationship between body-based SSTCschemes and body-based NMC schemes.) Second, an SSTC scheme is a TC scheme, so to make auseful comparison, we consider non-malleable trapdoor commitment (NMTC) schemes. Third, sincean adversary for an SSTC scheme is allowed to query an equivocation oracle, we will also considerNMTC schemes in which an adversary is allowed to query an equivocation oracle.4In previous constructions, they build a UCZK protocol �L for an NP-complete language L (e.g. Hamiltonian Cycleor Satis�ability), and then the UCZK protocols for any NP language is reduced to �L via the Cook-Levin theorem,which is not very e�cient.5Technically, when we refer to an NMC scheme, we will always mean an �-non-malleable commitment scheme, followingthe notation proposed in [22].6Tag-based NMC schemes are also related to UCC schemes. In particular, it can be shown that a UCC scheme isalso a tag-based NM commitment scheme in which the tag is the identity of the committing party.4

Finally, we re�ne our de�nitions of SSTC schemes and NMTC schemes by specifying the numberof equivocation oracle queries an adversary is allowed to make. An equivocation oracle, on a commitquery, produces a commitment gcom and on an decommit query, opens gcom to an arbitrary value. Wesay a TC scheme is SSTC(`), if it remains secure if the adversary is allowed to make at most ` commitqueries to the oracle (with no restriction on the number of decommit queries). We de�ne NMTC(`)schemes similarly. We use SSTC(1) and NMTC(1) to denote the schemes where the adversary canmake an unlimited number of commit queries. With the re�ned de�nitions (except for those relatedto the de�nition in [17], discussed below), we shall then prove that, for any constant `, SSTC(`+1) isstrictly stronger than NMTC(`) and NMTC(`) is strictly stronger than SSTC(`). (In particular, notethat even an SSTC(1) scheme is strictly stronger than an NMC scheme, since an NMTC(0) schemeis at least as strong as an NMC scheme.) Furthermore, SSTC(1) is equivalent to NMTC(1). SeeFigure 1. This makes it clear that the two notions, simulation-sound binding and non-malleability,are very closely related.SSTC(0) SSTC(1) � � � SSTC(`� 1) SSTC(`) � � � SSTC(1)6 ��� 6 ��� 6 ��� 6 ��� ?6NMTC(0) NMTC(1) � � � NMTC(`� 1) NMTC(`) � � � NMTC(1) - strictly imply-� equivalentFigure 1: The relation between SSTC and NMTC schemesAs mentioned above, the de�nition of non-malleable commitments in Damg�ard and Groth [17](which they call reusable non-malleable commitments) does not quite �t into the equivalence andseparation results above. Their de�nition states that seeing one or more commitments does not giveanother party any advantage in generating one or more commitments that can later be opened tovalues related to the values in the original commitments. However it can be shown that SSTC(1)implies a reusable NMC scheme. As mentioned above, one can characterize their construction of areusable NMC scheme as constructing a trapdoor commitment schemes that satis�es a slightly weakernotion of simulation-sound binding, and showing that this implies a reusable NMC scheme.2 Preliminaries and De�nitionsFor a distribution D, we say a 2 D to denote any element that has non-zero probability in D, i.e., anyelement in the support of D. We say a R D to denote a is randomly chosen according to distributionD. For a set S, we say a R S to denote that a is uniformly drawn from S.If f and g are functions we say that f is eventually less than g, written f �ev g, if there is aninteger k0 such that for all k � k0, f(k) � g(k). A function �(k) is negligible, if it is eventually lessthan k�c for any positive c.All our de�nitions will assume that adversaries are non-uniform probabilistic polynomial-time(PPT) algorithms.De�nition 2.1 Two sequences fXkg and fYkg of random variables are computationally indistin-guishable if and only if there exists a negligible function �(k) such that for every non-uniform PPTA, jPr(A(Xk) = 1)� Pr(A(Yk) = 1)j �ev �(k):A commitment scheme is a two-phase protocol between a sender and a receiver, both probabilisticpolynomial-time Turing machines, that operate as follows. In the commitment phase, the sendercommits to a value v by computing a pair (com; dec) and sending com to the receiver, and in thedecommitment phase, the sender reveals (v; dec) to the receiver, who checks whether the pair is valid.5

Informally, a commitment scheme satis�es the hiding property, meaning that for any v1 6= v2 ofthe same length, a commitment to v1 is indistinguishable from a commitment to v2, and the bindingproperty, meaning that once the receiver receives c, the sender cannot open the commitment c to twodi�erent values, except with negligible probability.We will always assume that commitments are labeled with a tag tag . While this is not a factor inthe security of basic commitment schemes, it will be useful in de�ning certain enhanced commitmentschemes, as will be obvious below. We also assume that there is a commitment generator function thatgenerates a set of parameters for the commitment scheme. In other papers this is often referred toas a trusted third party or as the common reference string generation,7 and it is especially importantwhen we de�ne trapdoor commitment schemes below. (We include it in the basic de�nition to moreconveniently de�ne trapdoor commitment schemes.)Finally, for readability in our formal de�nitions, when we discuss distribution ensembles and neg-ligible functions, we will often use the phrase \for all x" when we actually mean \for all sequencesfxkg," where xk denotes a value of x dependent on the security parameter k, and of length polynomialin k. Formally, we de�ne a commitment scheme as follows.De�nition 2.2 [Commitment Scheme] CS = (Cgen;Ccom;Cver) is a commitment scheme if Cgen,Ccom, and Cver are probabilistic polynomial-time algorithms such thatCompleteness For all v and tag,Pr[pk Cgen(1k); (com; dec) Ccom(pk; v; tag) : Cver(pk; com;v; tag ; dec) = 1] = 1:Binding There is a negligible function �(k) such that for all non-uniform probabilistic polynomial-time adversaries A,Pr[pk Cgen(1k); (com; tag ; v1; v2; dec1; dec2) A(pk) :(Cver(pk; com; v1; tag ; dec1) = Cver(pk; com; v2; tag ; dec2) = 1) ^ (v1 6= v2)] �ev �(k):Hiding For all pk generated with non-zero probability by Cgen(1k), for all v1; v2 of equal length,and for all tag, the following probability distributions are computationally indistinguishable:f(com1; dec1) Ccom(pk; v1; tag) : com1g and f(com2; dec2) Ccom(pk; v2; tag) : com2g:Next, we de�ne trapdoor commitment schemes.(We borrow some notation from Reyzin [45].)De�nition 2.3 [Trapdoor Commitment Scheme]TC = (TCgen;TCcom;TCver;TCfakeCom;TCfakeDecom) is a trapdoor commitment scheme if TCgen(1k)outputs a public/secret key pair (pk; sk), TCgenpk is the related function that restricts the outputof TCgen to the public key, (TCgenpk;TCcom;TCver) is a commitment scheme and TCfakeCom andTCfakeDecom are probabilistic polynomial-time algorithms such thatTrapdoor Property For all identi�ers tag and values v, the following probability distributionsare computationally indistinguishable:f(pk; sk) TCgen(1k); (gcom; �) TCfakeCom(pk; sk; tag); fdec TCfakeDecom(�; fdec; v) :(pk; tag ; v;gcom; fdec)gand f(pk; sk) TCgen(1k); (com; dec) TCcom(pk; v; tag) : (pk; tag ; v; com; dec)g:7We do not use the term \common reference string" in our de�nition, since these parameters may be generated in anumber of ways, and in particular, they may be generated by the receiver. In protocols where this value actually comesfrom a common reference string, we will make this clear. 6

3 Simulation-Sound Trapdoor CommitmentsIn [31], simulation-sound trapdoor commitment (SSTC) schemes were introduced, in order to constructa universally-composable zero-knowledge (UCZK) protocol secure against adaptive corruptions. In-tuitively, they de�ned an SSTC scheme as a trapdoor commitment scheme with a simulation-soundbinding property that guarantees that a commitment made by the adversary using tag tag is binding,even if the adversary has seen any commitment using tag tag opened (using a simulator that knowsa trapdoor) once to any arbitrary value, and moreover, any commitment using tag tag 0 6= tag opened(again using the simulator) an unbounded number of times to any arbitrary values.Here we introduce a simpler de�nition for an SSTC scheme where the simulation-sound bindingproperty is such that adversary can only succeed on a tag that has never been used in a commitment,rather than on a tag that has never been used in a commitment that has been decommitted in twodi�erent ways.8 Since this can only reduce the success probability of the adversary, it is a weakerproperty. However, we will show that it also su�ces for the desired application in [31], namely, forconstructing UCZK protocols secure against adaptive adversaries.De�nition 3.1 [SSTC Scheme] TC = (TCgen;TCcom;TCver;TCfakeCom;TCfakeDecom) is an SSTCscheme if TC is a trapdoor commitment scheme such thatSimulation-Sound Binding There is a negligible function �(k) such that for all non-uniformprobabilistic polynomial-time adversaries A,Pr[(pk; sk) TCgen(1k); (com; tag ; v1; v2; dec1; dec2) AOpk;sk(pk) :(TCver(pk; com; v1; tag ; dec1) = TCver(pk; com; v2; tag ; dec2) = 1) ^ (v1 6= v2) ^ tag 62 Q]�ev �(k);where Opk;sk operates as follows, with Q initially set to ;:On input (commit; tag):compute (gcom; �) TCfakeCom(pk; sk; tag), store (gcom; tag ; �), and add tag to Q. Return gcom.On input (decommit;gcom; v):if for some tag and some �, a tuple (gcom; tag ; �) is stored, compute fdec TCfakeDecom(�;gcom; v).Return fdec.For the remainder of the paper, SSTC will refer to this new de�nition, and SSTC(GMY) will referto the old de�nition of [31].3.1 SSTC scheme based on any one-way functionHere we present an e�cient SSTC scheme TC based on a signature scheme, which in turn may bebased on any one-way function [46]. TC is the aHC scheme from Canetti et al. [9] with the followingchanges:1. The underlying commitment scheme based on one-way permutations is replaced by the com-mitment scheme of Naor [40] based on pseudorandom generators (which can be built from anyone-way function).2. An extra parameter tag is included, and the one-way function f and corresponding NP languagefyj9x s.t. y = f(x)g used in the underlying non-interactive Feige-Shamir trapdoor commitment[26] is replaced by the signature veri�cation relation f((sig vk; tag); �)j1 = sig verify(sig vk; tag ; �)g.8Note that in addition to the simulation-sound binding property being modi�ed, our de�nition of the underlyingtrapdoor commitment scheme is slightly di�erent than the one given in [31].7

In detail, the scheme goes as follows. TCgen(1k) generates a veri�cation/signing key pair for a sig-nature scheme (sig vk; sig sk) sig gen(1k). For a bit m, TCcom(sig vk;m; tag) uses the NP-reductionof the relation f(sig vk; tag)j9� s.t. 1 = sig verify(sig vk; tag ; �)g to the Hamiltonicity relation, to ob-tain a graph G (with q nodes) so that �nding a Hamiltonian cycle in G is equivalent to �nding �.Then it follows the aHC scheme of [9]:� To commit to 0, pick a random permutation � of the nodes of G, and commit to the entriesof the adjacency matrix of the permuted graph one by one, using Com (an underlying non-interactive perfectly-binding commitment scheme that produces pseudorandom commitments).To decommit, send � and decommit to every entry of the adjacency matrix. The receiver veri�esthat the graph it received is �(G).� To commit to 1, choose a randomly labeled q-cycle, and for all the entries in the adjacencymatrix correspond to edges on the q-cycle, use Com to commit to 1 values. For all the otherentries, produce random values. (These will be indistinguishable from commitments due to thepseudorandomness of the commitments.) To decommit, open only the entries corresponding tothe randomly chosen q-cycle in the adjacency matrix.TCfakeCom(sig vk; sig sk; tag) computes the graph G associated with (vk; tag), computes � =sig sign(sig sk; tag), and using � �nds a Hamiltonian cycle in G. Then it picks a random permu-tation � of the nodes of G, commit to the entries of the adjacency matrix of the permuted graph oneby one, using Com , and sets � (G;HC(G)).TCfakeDecom(�; com; v) runs as follows. If v = 0, it decommits using a normal decommitment to0. If v = 1, it decommits using a normal decommitment to 1, using the Hamiltonian cycle HC(G) asthe q-cycle.To show the simulation-sound binding property, we show that if an adversary can break thisproperty, we can break the underlying signature scheme as follows. (We assume that the underly-ing signature scheme is existentially unforgeable against an adaptive chosen-message attack.) Takea veri�cation key sig vk and its corresponding signature oracle (from the de�nition of existential un-forgeability against an adaptive chosen-message attack). For each commitment to a value v usingtag 0, compute a signature � on tag 0 using the signature oracle. From signature �, one can computea Hamiltonian cycle in G, and thus run TCfakeCom as above (except using the signature oracle tocompute �) to produce a commitment com. To open a commitment c to a value m, run TCfakeDecomas above.Now say the adversary gives a double opening with tag , for which no commitment was requested,and thus no call to the signature oracle was made. In particular, say the adversary decommits to 0and 1 for a commitment com. Then one can extract a Hamiltonian cycle in G, and thus a signatureon tag , breaking the signature scheme.3.2 SSTC scheme based on DSAHere we present an e�cient SSTC scheme TC based on DSA. For a de�nition of DSA, see Appendix F.It is a simpli�ed version of the DSA-based SSTC(GMY) scheme from [31]. TCgen(1k) generates a DSApublic/private key pair (pk; sk), where pk = (g; p; q; y) and sk = (g; p; q; x). For a message m 2 Zq,TCcom((g; p; q; y);m; tag) �rst computes � R Zq, g0 g� mod p, and h = gH(tag)yg0 mod p. (Notethat if s is the discrete log of h over g0, then (g0 mod q; s) is a DSA signature for tag .) Then it generatesa Pedersen commitment [44] tom over bases (g0; h), i.e., it generates � R Zq and computes the commit-ment/decommitment pair ((g0; c); (m;�)), where c (g0)�hm. TCfakeCom((g; p; q; y); (g; p; q; x); tag 0)computes a DSA signature (g00; s) on tag 0 using the secret key, computes g0 (gH(tag 0)yg00)s�1 mod pand h (g0)s mod p, generates �0 R Zq, and sets c h�0 mod p. It outputs commitment (g0; c) and8

auxiliary information (�0; s). Then TCfakeDecom((�0; s);m) outputs (m; (�0 �m)s mod q), which is adecommitment to m.To show the simulation-sound binding property, we show that if an adversary can break thisproperty, we can break DSA as follows. (We assume that DSA is existentially unforgeable against anadaptive chosen-message attack.) Take a DSA key vk0 and its corresponding DSA signature oracle(from the de�nition of existential unforgeability against an adaptive chosen-message attack). It iseasy to see that the equivocation oracle, and in particular the commit queries to that oracle, may beimplemented using the DSA signature oracle on the requested tag 's.Now say the adversary gives a double opening with tag , for which no commitment was requested,and thus no call to the DSA signature oracle was made. In particular, say it gives openings (m;�)and (m0; �0) of (g0; c). Then (g0 mod q; (�0��)=(m�m0) mod q) is a signature on tag , breaking DSA.3.3 SSTC scheme based on Cramer-Shoup signaturesHere we present an e�cient SSTC scheme TC based on Cramer-Shoup signatures (for a de�nition ofCramer-Shoup signatures, see Appendix F).TCgen(1k) generates a public/private key pair (pk; sk) for Cramer-Shoup signatures, where pk =(N;h; x; e0;H) and sk = (p; q). For a message m 2 Ze, TCcom((N;h; x; e0;H);m; tag) �rst computes(y0; x0; e) as in the Cramer-Shoup signature protocol for tag , and sets x00 xh�H(x0) mod N . (Notethat if y is eth root of x00 modulo N , then he; y; y0i is a Cramer-Shoup signature for tag .) Then it usesthe unconditionally-hiding commitment scheme from [12] based on e-one-way homomorphisms (specif-ically, based on the RSA encryption function with public key (e;N), i.e., f(a) : ae mod N) over basex00. That is, it chooses � R Z�N and computes the commitment/decommitment pair ((y0; e; c); (m;�)),where c (x00)mf(�) mod N . TCfakeCom((N;h; x; e0;H); (p; q); tag 0) computes a signature he; y; y0ion tag 0 using the secret key, computes x0 (y0)e0h�H(tag 0) mod N and x00 xh�H(x0) mod N , gener-ates �0 R Z�N, and sets c (�0)e mod N . It outputs commitment (y0; e; c) and auxiliary information(�0; y). Then TCfakeDecom((�0; y);m) output (m;�0y�m mod N), which is a decommitment to m.To show the simulation-sound binding property, we show that if an adversary can break thisproperty, we can break the Cramer-Shoup signature scheme as follows. (We assume that Cramer-Shoup signatures are existentially unforgeable against an adaptive chosen-message attack.) Takea Cramer-Shoup key vk0 and its corresponding signature oracle (from the de�nition of existentialunforgeability against an adaptive chosen-message attack). It is easy to see that the equivocationoracle, and in particular the commit queries to that oracle, may be implemented using the Cramer-Shoup signature oracle on the requested tag 's.Now say the adversary gives a double opening with tag , for which no commitment was requested,and thus no call to the signature oracle was made. In particular, say it gives openings (m;�) and(m0; �0) of (y0; e; c) with m > m0. Then (x00)m�m0 � (�0��1)e mod N and by e-one-wayness of theRSA encryption function, the value y such that ye � x mod N may be computed. and he; y; y0i is asignature on tag , breaking Cramer-Shoup.SSTC Signatures All three of our previous constructions of SSTC schemes are heavily based onsignature schemes. In fact, this is not a coincidence, since one can easily derive a digital signaturescheme from any SSTC scheme, as the next theorem demonstrates. Intuitively, to sign a messagem, one exhibits the ability to open a commitment with labelm to both the message 0 and the message1. More precisely, let SIGTC = (sig genTC; sig signTC; sig verifyTC) be speci�ed as follows.� sig genTC(1k) computes (pk; sk) TCgen(1k), sets sig vk = pk, sig sk = (pk; sk), and outputs(sig vk; sig sk). 9

� sig sign((pk; sk);m) generates (gcom; �) TCfakeCom(pk; sk;m), fdec0 TCfakeDecom(�;gcom; 0),and fdec1 TCfakeDecom(�;gcom; 1), and then outputs (gcom; fdec0; fdec1).� sig verify(pk;m; (gcom; fdec0; fdec1)) outputs TCver(pk;gcom; 0;m; fdec0)^TCver(pk;gcom; 1;m; fdec1).Theorem 3.2 Given an SSTC TC, SIGTC is a signature scheme that is existentially unforgeableagainst an adaptive chosen message attack.Proof: Say a forger F , given public key sig vk = pk and a signature oracle, is able to forge asignature in SIGTC. Then we give an adversary A that breaks the simulation-sound binding propertyof the TC as follows. A takes a TC public key pk and an oracle S, gives F sig vk = pk as thepublic key of SIGTC and plays the part of the signature oracle by running the sig sign procedure,but using S to generate commitments and decommitments. Since F breaks SIGTC, it produces amessage m and a signature (gcom; fdec0; fdec1) for some \fresh" m with non-negligible probability. ThenA outputs (gcom;m; 0; 1; fdec0; fdec1) with non-negligible probability, where TCver(vk;gcom; 0;m; fdec0) =TCver(vk;gcom; 1;m; fdec1) = 1, and m (as a tag) was not used in any commit queries to S. Thiscontradicts the simulation-sound binding property of TC.4 Application to ZK proofsWe show how an SSTC scheme can be used to construct unbounded simulation-sound ZK protocols,unbounded non-malleable ZK protocols, and universally composable ZK protocols. Our constructionsare conceptually simpler than those given by Garay et al. [31].All our results will be in the common reference string (CRS) model, which assumes that thereis a string uniformly generated from some distribution and is available to all parties at the start ofa protocol. Note that this is a generalization of the public random string model, where a uniformdistribution over �xed-length bit strings is assumed.4.1 Unbounded Simulation Sound ZKIntuitively, a ZK protocol is unbounded simulation sound if an adversary cannot convince the veri�erof a false statement with non-negligible probability, even after interacting with an arbitrary number of(simulated) provers. We use the formal de�nition from [31], and present this de�nition in Appendix Afor completeness.Our construction starts with a class of three-round, public-coin, honest-veri�er zero-knowledgeprotocols, also known as �-protocols [13]. We briey describe �-protocols here and defer the formalde�nitions to Appendix B.Consider a binary relation R(x;w) that is computable in polynomial time. A �-protocol � for therelation R proves membership of x in the language LR = fx j 9 w; s:t: R(x;w) = 1g. For a given x,let (a; c; z) denote the conversation between the prover and the veri�er. To compute the �rst and the�nal messages, the prover invokes e�cient algorithms a�(x;w; r) and z�(x;w; r; c), respectively, wherew is the witness, r is the random bits, and c is the challenge from the veri�er (as the second message).Using an e�cient predicate �(x; a; c; z), the veri�er decides whether the conversation is accepting withrespect to x. The relation R, and the algorithms a(�), z(�) and �(�), are public.We assume the protocol � has a simulator S� that, taking the challenge as input, generates anaccepting conversation. More precisely, we have (a; c; z) S�(c), such that the distribution of (a; c; z)is computationally indistinguishable from the real conversation.The protocol USSR[pk](x) is shown in Figure 1, and uses an SSTC scheme TC. Say � is a �-protocolfor relation R. The prover generates a pair (sig vk; sig sk) for a strong one-time signature scheme10

and sends sig vk to the veri�er. Then the prover generates the �rst message a of � and sends itscommitment coma to the veri�er, using the signature veri�cation key sig vk as the commitment tag .After receiving the challenge c, the prover generates and sends the third message z of �, opens thecommitment coma, signs the entire transcript using the signing key sig sk, and sends the signature onthe transcript to the veri�er. (To be speci�c, the transcript consists of all values sent or received bythe prover in the protocol, except the �nal signature.)prover veri�er(sig vk; sig sk) sig gen1(1k)a a�(x;w; r)(coma; deca) TCcom(pk; a; sig vk) sig vk; coma-� cz z�(x;w; r; c)s sig sign1(sig sk; transcript) a; deca; z; s- TCver(pk; coma; a; sig vk; deca)��(x; a; c; z)sig verify1(sig vk; transcript)Figure 2: USSR[pk](x): An unbounded simulation-sound ZK protocol for relationship R with commoninput x and common reference string pk, where pk is drawn from the distribution TCgen(1k). Theprover also knows the witness w such that R(x;w) = 1.Now we describe the simulator S = (S1;S2) for protocol USSR[pk](x). S1(1k) generates a key pairof the SSTC scheme by invoking (pk; sk) TCgen(1k), and then outputs (pk; sk). The behavior ofS2(sk) is more involved. On input x, it �rst checks if x 2 L̂R and aborts if not. Then, it generatesa strong one-time signature key pair (sig vk; sig sk) as the prover. Next, S2(sk) fakes a commitmentby generating (gcom; �) TCfakeCom(pk; sk; sig vk) and sends gcom to the veri�er. On receiving thechallenge c, it uses the simulator of protocol � to compute an accepting conversation: (a; c; z) S�(c).Next, S2 generates a decommitment to a by setting fdec TCfakeDecom(�;gcom; sig vk; a) and signsthe transcript using the strong one-time signature scheme; let s be the signature. Finally S2 sendsover (a; fdec; z; s) as the third message.Theorem 4.1 The protocol USSR[pk](x) is a USSZK argument.The proof is postponed to Appendix D.4.2 Unbounded Non-malleable ZKIntuitively, a ZK protocol is unbounded non-malleable if an e�cient witness extractor successfullyextracts a witness from any adversary that causes the veri�er to accept, even when the adversary isalso allowed to interact with any number of (simulated) provers. We use the formal de�nition from [31]and present this de�nition in Appendix A for completeness.Our construction of the NMZK protocol is very similar to that of the USSZK protocol presentedabove, where the only di�erence is that the �-protocol is replaced by an
-protocol. Recall that an
-protocol [31] is like a �-protocol with the additional property that it admits a polynomial-time,straight-line extractor (an
-protocol works in the CRS model). A bit more formally, there exists apair of polynomial-time algorithms (E1; E2) with the following properties. E1 generates a pair (�; �):(�; �) E1, where � is a \simulated CRS" that is computationally indistinguishable from the realdistribution and � is the \backdoor information". E2 will produce a \potential-witness" ~w from the11

backdoor information � and an accepting conversation (a; c; z): ~w E2(x; �; (a; c; z)). Furthermore,we have the property that the potential-witness ~w is indeed a witness if there exists another acceptingconversation (a; c0; z0) with the same �rst-message, but di�erent challenges. We include the formalde�nitions in Appendix B.The protocol NMR[pk;�](x) is shown in Figure 3. It is very similar to the protocol in Figure 2, butnote that here we assume that � is an
-protocol with � being the CRS.prover veri�er(sig vk; sig sk) sig gen1(1k)a a�(x;w; r; �)(coma; deca) TCcom(pk; a; sig vk) sig vk; coma-� cz z�(x;w; r; c; �)s sig sign1(sig sk; transcript) a; deca; z; s- TCver(pk; coma; a; sig vk; deca)��(x; a; c; z)sig verify1(sig vk; transcript)Figure 3: NMR[pk;�](x): A non-malleable ZK protocol for relationship R with common input x andcommon reference string (pk; �), where pk is drawn from the distribution TCgen(1k) and � is drawnfrom the distribution of the CRS for protocol �.The simulator S = (S1;S2) for protocol NMR[pk;�](x) works almost exactly the same as in protocolUSSR[pk](x). S1(1k) generates a key pair of the SSTC scheme by invoking (pk; sk) TCgen(1k), andthen sets � R Dk, where D is the distribution ensemble for the CRS of protocol �. Next, S1(1k)outputs ((pk; �); sk). S2(sk) �rst checks that common input x 2 L̂R and aborts if not. Thenit generates a strong one-time signature key pair (sig vk; sig sk) as the prover. Next, S2 generates(gcom; �) TCfakeCom(pk; sk; sig vk), and sends gcom to the veri�er. On receiving the challenge c, ituses the simulator of protocol � to compute an accepting conversation: (a; c; z) S�(c). Next, S2 gen-erates a decommitment to a by setting fdec TCfakeDecom(�;gcom; sig vk; a) and signs the transcriptusing the strong one-time signature scheme; let s be the signature. Finally S2 sends over (a; fdec; z; s)as the third message.The extractor E = (E1; E2) for protocol NMR[pk;�](x) is straightforward. E1(1k) generates a key pairof the SSTC scheme by invoking (pk; sk) TCgen(1k), and then generates (�; �) E�;1(1k). Next,E1(1k) outputs ((pk; �); sk; �). E2(�) simply runs as the veri�er V until V outputs a bit b. If b = 1,then E2(�) takes the conversation (a; c; z) of protocol � and invokes the extractor for protocol �:w E�;2(x; �; (a; c; z)); if b = 0, then E2(�) sets w ?. Finally E2(�) outputs (b; w).Theorem 4.2 The protocol NMR[pk;�](x) is an NMZK argument of knowledge for the relation R.The proof to this theorem is very similar to that to Theorem 4.1 and is postponed to Appendix D.4.3 Universally Composable ZKThe universal composability paradigm was proposed by Canetti [6] for de�ning the security andcomposition of protocols. To de�ne security one �rst speci�es an ideal functionality using a trustedparty that describes the desired behavior of the protocol. Then one proves that a particular protocoloperating in a real-life model securely realizes this ideal functionality, as de�ned below. Here we brieysummarize the framework as de�ned in Canetti and Krawczyk [8].12

A (real-life) protocol � is de�ned as a set of n interactive Turing Machines P1; : : : ; Pn, designatingthe n parties in the protocol. It operates in the presence of an environment Z and an adversary A,both of which are also modeled as interactive Turing Machines. The environment Z provides inputsand receives outputs from honest parties, and may communicate with A. A controls (and may view)all communication between the parties. (Note that this models asynchronous communication on openpoint-to-point channels.) We will assume that messages are authenticated, and thus A may not insertor modify messages between honest parties.9 A also may corrupt parties, in which case it obtainsthe internal state of the party. (In the non-erasing model, the internal state would encompass thecomplete internal history of the party.)The ideal process with respect to a functionality F , is de�ned for n parties P1; : : : ; Pn, an envi-ronment Z, and an (ideal-process) adversary S. However, P1; : : : ; Pn are now dummy parties thatsimply forward (over secure channels) inputs received from Z to F , and forward (again over securechannels) outputs received from F to Z. Thus the ideal process is a trivially secure protocol with theinput-output behavior of F .More details are given in Appendix C.The zero-knowledge functionality. The (multi-session) ZK functionality as de�ned by Canetti [6]is given in Figure 4. In the functionality, parameterized by a relation R, the prover sends to thefunctionality the input x together with a witness w. If R(x;w) holds, then the functionality forwardsx to the veri�er. As pointed out in [6], this is actually a proof of knowledge in that the veri�er isassured that the prover actually knows w.F̂RZK proceeds as follows, running parties P1; : : : ; Pn, and an adversary S:Upon receiving (zk-prover; sid; ssid; Pi; Pj ; x; w) from Pi: If R(x;w) then send (ZK-PROOF;sid; ssid; Pi; Pj ; x) to Pj and S. Otherwise, ignore.Figure 4: The (multi-session) zero-knowledge functionality (for relation R)Garay et al. [31] proved that any \augmentable" NMZK protocol can be easily converted to a UCZKprotocol in the FDCRS-hybrid model, assuming static corruptions. Intuitively, an NMZK protocol isaugmentable if the �rst message sent by the prover contains the common input x and a special �eld auxin which the prover can �ll with an arbitrary string without compromising security. (In the conversionto UCZK in [31], the auxiliary string contains the sid, the ssid, and the identities of the prover andveri�er.)It can be readily veri�ed that the protocol NMR[pk;�](x) can be easily made augmentable by addingx and aux in the �rst message. We denote the slightly modi�ed protocol where the aux �eld is set to(sid; ssid; Pi; Pj) by ANMR[pk;�](x). Then it follows that ANMR[pk;�](x) is a UCZK protocol for relationR, assuming static corruptions.However, one can simplify this protocol by removing the one-time signature scheme, only includingthe identities of the prover and veri�er in the auxiliary string, and using this auxiliary string as the tagof the commitment scheme. This simpli�ed scheme, MYZKR[pk;�](x), is shown in Figure 5. (Note thatsince we are assuming authenticated communication in the UC framework, the identities Pi and Pj willbe known to both parties, and thus do not need to be explicitly sent in our protocol.) Furthermore,this protocol can be easily modi�ed into one that remains secure against adaptive corruption in theerasing model. In fact, all that is needed is to have the prover erase the randomness used in the
-protocol before sending the �nal message.9This feature could be added to an unauthenticated model using a message authentication functionality as describedin [6]. 13

Pi (prover) Pj (veri�er)a a�(x;w; r; �)(coma; deca) TCcom(pk; a; hPi; Pji) x; coma -� cz z�(x;w; r; c; �) a; deca; z - TCver(pk; coma; a; hPi; Pji; deca)��(x; a; c; z)Figure 5: MYZKR[pk;�](x): A UCZK protocol for relationship R with common reference string (pk; �)where pk is drawn from the distribution TCgen(1k) and � is drawn from the distribution of the CRSfor protocol �.Theorem 4.3 The protocol MYZKR[pk;�](x) is a UCZK protocol for relation R, assuming static cor-ruptions. By erasing the randomness (r) used in the
-protocol before the �nal message, it is a UCZKprotocol for relation R, assuming adaptive corruption (in the erasing model).The proof is postponed to Appendix D.5 Comparison to Non-Malleable CommitmentsWe explore the exact relation between SSTC schemes and NMC schemes.5.1 De�nitions of NM commitmentsOur de�nition for non-malleable (NM) commitments is based on the de�nition in [21], which, tech-nically speaking, de�nes the notion of �-non-malleability, instead of strict non-malleability. For theclarity of presentation, we shall use the term \non-malleability" to mean �-non-malleability, and willnote any places where our results have application to strict non-malleability.Informally, similar to the de�nition in [21], we say a commitment scheme is non-malleable if whenan adversary sees a commitment com1, generates its own commitment com2, and sees com1 opened,it cannot then open com2 to a value related to com1 with any greater probability than a simulatorthat never saw com1 in the �rst place. Note that this is also called non-malleability with respect toopening [20] and di�ers from the original de�nition of [22] that was discussed in the introduction,and which is also called non-malleability with respect to commitment. Our de�nition di�ers from thede�nition in [21] as follows.� We only de�ne NM trapdoor commitment (NMTC) schemes, since that is what will be of mostinterest in comparisons to SSTC schemes. Non-trapdoor versions of these de�nitions are straight-forward.� We use tag-based de�nitions instead of body-based de�nitions. Again this is what will be of mostinterest in comparisons to SSTC schemes. Body-based de�nitions are straightforward. In fact,most of our results relating SSTC schemes and NMTC schemes also hold when these schemesare de�ned using body-based de�nitions. We will discuss this later.As mentioned in the introduction, the recent work of Damg�ard and Groth [17] generalizes andstrengthens the de�nition of non-malleable commitments to be reusable, i.e., to have the property thatseeing one or more commitments does not give another party any advantage in generating one or morecommitments that can later be opened to values related to the values in the original commitments.14

Their de�nition also stipulates that the distribution of committed messages is dependent on the publickey. However, we will continue to use the simpler de�nition, since it exempli�es the relation betweenSSTC schemes and NMTC schemes. Later we will discuss how to obtain similar relations to reusableNMTC schemes.In the following we assume tags are strings of length polynomial in the security parameter k.De�nition 5.1 [Non-Malleable Trapdoor Commitment (NMTC) Scheme] TC = (TCgen;TCcom;TCver;TCfakeCom;TCfakeDecom) is an NMTC scheme if TC is a trapdoor commitment scheme withthe following property:Non-Malleability There exists a negligible function �(�) such that for all polynomials r(�) and allprobabilistic polynomial-time adversaries A = (A1;A2), there exists a polynomial q(�; �), suchthat for all non-negligible10 � > 0, there exists a simulator S running in time q(k; ��1) suchthat for all polynomial-time computable valid relations R (see below), for all tags tag1, and alldistributions D samplable in time r(k),�A;tag1;D;R(k)� �0S;tag1;D;R(k) �ev �+ �(k);where�A;tag1;D;R(k) def= Pr[(pk; sk) TCgen(1k);m1 R D; (com1; dec1) TCcom(pk;m1; tag1);(com2; tag2; �) A1(pk; com1; tag1;D); (m2; dec2) A2(pk; �;m1; dec1) :(TCver(pk; com2;m2; tag2; dec2) = 1) ^ (tag1 6= tag2) ^R(m1;m2)]and �0S;tag1;D;R(k) def= Pr[m1 R D;m2 S(1k; tag1;D) : R(m1;m2)]:A relation R is valid if for all m, R(m;?) = 0.Remark 5.2 As in the de�nitions of [20, 21, 17], our de�nition does not allow the adversary toreceive any history (side information) about the messages to which commitments are made.We generalize the de�nition above and consider NMTC(`) schemes, which are NMTC schemes inwhich A1 and A2 are allowed to query an oracle Opk;sk as de�ned in the SSTC de�nition, but withat most ` commit queries allowed. (Note that there is just one oracle that both A1 and A2 call,and thus at most a total of ` commit queries between them.) Also the condition in the de�nition of�A;tag1;D;R(k) is restricted to tag2 62 Q, where Q is the list of tags used in commit queries to Opk;sk.Note that an NMTC scheme is an NMTC(0) scheme. We use ` =1 to denote an oracle which acceptsan unbounded number of commit queries.We similarly generalize the de�nition of SSTC schemes and consider SSTC(`) schemes. Then anSSTC(0) scheme is just a TC scheme, and an SSTC(1) scheme is what we have called an SSTCscheme.Notice that we have de�ned NMTC schemes as tag-based, as opposed to body-based, as usuallyseen in literature [22, 20, 29, 21, 17]. As we have explained in the introduction, this is because wede�ned our SSTC schemes to be tag-based as well. However, this is not a signi�cant distinction sincethere exists fairly generic reductions from one to the other. Our next theorem shows such a reductionfrom body-based NMTC schemes to tag-based ones.Here, we assume the commitment scheme allows commitments to strings of arbitrary length. Asimilar theorem could be shown for commitment schemes which allow only �xed length commitments,say of length equal to the security parameter.10In other words, � may be a function of k such that ��1 is bounded by a polynomial in k.15

Theorem 5.3 Let TC be a body-based NMTC scheme. Let TC0 be TC, but with the tag added to themessage being committed. That is, TCgen0(1k) returns the result of TCgen(1k), TCcom0(pk; v; tag)returns the result of TCcom(pk; hv; tag i; tag), and TCver0(pk; com; v; tag ; dec) returns the result ofTCver(pk; com; hv; tagi; tag ; dec). Then TC0 is a tag-based NMTC scheme.Proof: This proof relies on the binding property of TC, as well as the non-malleability property. Takeany A0 = (A01;A02) for TC0. Then construct A = (A1;A2) for TC as follows. A1(pk; com1; tag1) com-putes (com2; tag2; �) A01(pk; com1; tag1) and returns (com2; tag2; (�; tag2)). A2(pk; (�; tag2);m1; dec1)computes (m2; dec2) A02(pk; �;m1; dec1) and returns (hm2; tag2i; dec2). Take the simulator S guar-anteed to exist by the non-malleability of TC. Then we construct a simulator S 0 for TC0 as fol-lows. S 0(1k; tag1;D0) computes hm2; tag2i S(1k; tag1;D) and returns m2, where D = fhm; tag1i :m D0g. Now take any distribution D0, and any relation R0. Let D be constructed as above, andde�ne R(hm1; tag1i; hm2; tag2i) = R0(m1;m2). Then by the non-malleability of TC,�A;tag1;D;R(k)� �0S;tag1;D;R(k) �ev �(k):It is easy to verify that �0S;tag1;D;R(k) = �0S0;tag1;D0;R0(k), so to prove the theorem we only need toshow that �A0;tag1;D0;R0(k) � �A;tag1;D;R(k) is negligible. (Note that �A0;tag1;D0;R0(k) is de�ned usingthe tag-based de�nition, while �A;tag1;D;R(k) is not.) Here it is easy to verify that this di�erence isbounded by the probability of the adversary generating an identical commitment with a di�erent tagfor a related message. Formally,�A0;tag1;D0;R0(k)� �A;tag1;D;R(k)� Pr[pk TCgen(1k); v1 R D; (com1; dec1) TCcom(pk; v1; tag1);(com2; tag2; �) A1(pk; com1; tag1); (v2; dec2) A2(pk; s; v1; dec1) :(TCver(pk; com2; v2; tag2; dec2) = 1) ^ (com1 = com2) ^ (tag1 6= tag2) ^R(v1; v2)]:We show that this probability is negligible by showing that an adversary B may be constructedthat breaks the binding property of TC with the same probability. Let B run as follows, givenpk TCgenpk(1k). B chooses m1 R D0 and sets v1 hm1; tag1i. Then B computes(com1; d1) TCcom(pk; v1; tag1);(com2; tag2; �) A1(pk; com1; tag1); and(v2; dec2) A2(pk; �; dec1):Then if (TCver(pk; com2; v2; tag2; dec2) = 1) ^ (com1 = com2) ^ (tag1 6= tag2), B outputs the tuple(com1; tag1; v1; v2; dec1; dec2). Note that v1 6= v2, since tag1 6= tag2, v1 = hm1; tag1i and v2 =hm2; tag2i for some m2 2 D (by the de�nition of A2). Also, TCver does not check the identi�ers,so TCver(pk; com2; hm1; tag1i; tag2; dec2) = TCver(pk; com2; hm2; tag2i; tag2; dec2) = 1. Thus B breaksthe binding property of TC with probability at least �̂A0;tag1;D0;R0(k)��A;tag1;D;R(k), so this di�erencemust be negligible in k.Note that Theorem 5.3 could be generalized to apply to non-trapdoor commitment schemes andto strict non-malleable commitment schemes (as opposed to �-non-malleable commitment schemes).However, we do not know any easy way (e.g., without adding a more complicated construction, like azero-knowledge proof) to convert a body-based NMTC(`) scheme into a tag-based NMTC(`) scheme,for any ` > 0. The problem is dealing with the oracles, and the fact that one restricts success using atag-based de�nition, and the other restricts success using a body-based de�nition.Now considering the problem of converting tag-based SSTC or NMTC schemes to body-based SSTCor NMTC schemes, it seems that a simple construction like the one in Theorem 5.3 does not su�ce.16

Instead, one could construct a body-based scheme by generating a veri�cation/signing key pair fora strong one-time signature scheme (see Appendix E), using the veri�cation key as the tag in thetag-based commitment, signing the tag-based commitment using the signing key, and giving the pair(the tag-based commitment and the associated signature) as the full commitment. As this is a fairlystandard technique, used in, e.g. [31], we omit the analysis here.5.2 Relations between SSTC and NMTCFirst we show that for all ` � 0, an SSTC(` + 1) scheme is also an NMTC(`) scheme. We use thenotation A(�;!) to denote a probabilistic algorithm A that has its random bits �xed to !. (Note thatall probabilistic subroutines called by A will also have their random bits �xed.)Theorem 5.4 Let TC be an SSTC(`+ 1) scheme. Then TC is an NMTC(`) scheme.Proof: This proof has the same structure as, but is a generalization of, the proof of Theorem 1in [21].11Take any polynomial r(�), any PPT A = (A1;A2) for the unbounded non-malleability of TC.Construct a simulator S that depends on a parameter � and runs as follows, with Opk;sk queriesanswered by S (which it can do since it will know sk).S(1k; tag1;D) :(pk; sk) TCgen(1k)Fix random tape !(gcom1; �1) TCfakeCom(pk; sk; tag1)(com2; tag2; �2) AOpk;sk1 (pk;gcom1; tag1;D)Repeat at most 2��1 ln 2��1 times:m1 R Dm2 DecommitValid(pk; com2; tag2; �2;gcom1; �1; tag1;m1;!)If m2 6= ? breakOutput m2In the de�nition of M above, DecommitValid(pk; com2; tag2; �2;gcom1; �1; tag1;m1) is de�ned asfollows. DecommitValid(pk; com2; tag2; �2;gcom1; �1; tag1;m1)fdec1 TCfakeDecom(�1;gcom1; tag1;m1)(m2; dec2) A2(pk; �2;m1; fdec1)If (TCver(pk; com2;m2; tag2; dec2) = 1) ^ (tag1 6= tag2)gthen output m2else output ?By inspection, for any r(�) and PPT A, assuming D is samplable in time r(k) then there is apolynomial q(�; �) such that for all non-negligible � > 0, S runs in time q(k; ��1).De�ne Expt(pk; com2; tag2; �2;gcom1; �1; tag1; !) as follows:12Expt(pk; com2; tag2; �2;gcom1; �1; tag1; !) :Repeat at most 2��1 ln 2��1 times:m1 R Dm�2 DecommitValid(pk; com2; tag2; �2;gcom1; �1; tag1;m1;!)If m�2 6= ? then breakoutput m�211Their proof shows that a speci�c trapdoor commitment scheme with a slightly stronger binding property (similar toa body-based SSTC(1) but not quite as strong) is also an body-based NMTC scheme.12Note that in Expt, ! is preceded by a comma and not a semicolon. Therefore it is a parameter to Expt, and is notthe random bits of the tape for running Expt. ! will be used to �x the random bits for a subroutine of Expt.17

Now for any identi�er tag1, any distribution D samplable in r(k) time, and any relation R, let�̂A;tag1;D;R(k) = Pr[(pk; sk) TCgen(1k);! R
; (gcom1; �1) TCfakeCom(pk; sk; tag1);(com2; tag2; �2) AOpk;sk1 (pk;gcom1; tag1;D);m1 R D;m2 DecommitValid(pk; com2; tag2; �2;gcom1; �1; tag1;m1;!) : R(m1;m2) = 1]and notice that �A;tag1;D;R(k)� �̂A;tag1;D;R(k) is negligible, by the trapdoorness property. Speci�cally,since the only di�erence between the two experiments is that one uses TCfakeCom and TCfakeDecomand the other uses TCcom, by trapdoorness there exists a negligible function �(k) such that �A;tag1;D;R(k)��̂A;tag1;D;R(k) �ev �(k). (This is where we use the fact that R is a polynomial-time relation, becausethe distinguisher runs it, and we need the distinguisher to be polynomial time.)Now notice that�0S;tag1;D;R(k) = Pr[(pk; sk) TCgen(1k);! R
; (gcom1; �1) TCfakeCom(pk; sk; tag1);(com2; tag2; �2) AOpk;sk1 (pk;gcom1; tag1;D);m1 R D;m�2 Expt(pk; com2; tag2; �2;gcom1; �1; tag1;!) : R(m1;m�2) = 1]As in [21], let us denote the generation of a random tuple = (pk;gcom1; �1; com2; tag2; �2; !) by �(1k). For a given tag1 and D, de�ne a tuple = (pk;gcom1; �1; com2; tag2; �2; !) as being good ifit satis�esPr[m1 R D;m2 DecommitValid(pk; com2; tag2; �2;gcom1; �1; tag1;m1;!) : m2 6= ?] � �=2Note that this probability distribution is only over the random choice of m1. Let GOOD() be theevent of that is good. For a tuple = (pk;gcom1; �1; com2; tag2; �2; !), we write DecommitValid(m1;)to denote experiment DecommitValid(pk; com2; tag2; �2;gcom1; �1; tag1;m1;!), and we write Expt() todenote experiment Expt(pk; com2; tag2; �2;gcom1; �1; tag1; !).Then̂�A;tag1;D;R(k)� �0S;tag1;D;R(k)� Pr[�(1k);m1 R D;m2 DecommitValid(m1;) : R(m1;m2) ^ GOOD()]+Pr[�(1k);m1 R D;m2 DecommitValid(m1;) : R(m1;m2) ^ :GOOD()]�Pr[�(1k);m1 R D;m�2 Expt() : R(m1;m�2) ^ GOOD()]�Pr[�(1k);m1 R D;m�2 Expt() : R(m1;m�2) ^ :GOOD()]� Pr[�(1k);m1 R D;m2 DecommitValid(m1;) : R(m1;m2) ^ GOOD()]+�=2�Pr[�(1k);m1 R D;m�2 Expt() : R(m1;m�2) ^ GOOD()]This implies�̂A;tag1;D;R(k)� �0S;tag1;D;R(k)� Pr[�(1k);m1 R D;m2 DecommitValid(m1;);m�2 Expt() :R(m1;m2) ^R(m1;m�2) ^ GOOD()]+�=2 18

= Pr[�(1k);m1 R D;m2 DecommitValid(M;);m�2 Expt() :R(m1;m2) ^R(m1;m�2) ^ (m�2 = ?) ^ GOOD()]+Pr[�(1k);m1 R D;m2 DecommitValid(m1;);m�2 Expt() :R(m1;m2) = 1 ^R(m1;m�2) ^ (m�2 6= ?) ^ GOOD()]+�=2To bound the �rst probability, recall that in the experiment for choosing m�2, we are given up to2��1 ln 2��1 tries to obtain m�2 6= ?, and in each attempt, the probability is at least �=2 assuming thatGOOD() occurs. ThenPr[�(1k);m1 R D;m2 DecommitValid(m1;);m�2 Expt() :R(m1;m2) ^R(m1;m�2) ^ (m�2 = ?) ^ GOOD()]� Pr[�(1k);m1 R D;m2 DecommitValid(m1;);m�2 Expt() :R(m1;m2) ^R(m1;m�2) ^ (m�2 = ?)jGOOD()]� �=2:Now call the second probability �A;tag1;D;R(k). Note that if TC is not an NMTC(`) scheme, thenfor all negligible �(k) there is a function r(�), a PPT adversary A, a non-negligible � > 0, a distributionD samplable in r(k) time, an identi�er tag1 and a polynomial-time computable valid relation R suchthat for an in�nite set of natural numbers k,�A;tag1;D;R(k) � �(k):Using this we will show how to construct a PPT adversary B that contradicts the fact thatTC is an SSTC(` + 1) scheme. For (pk; sk) TCgen(1k), B(pk) generates ! R
, calls its oraclewith (commit; tag1) to get gcom1 (with (gcom1; �1) stored by the oracle), computes (com2; tag2; �2) AOpk;sk1 (pk;gcom1; tag1;D) by forwarding Opk;sk calls by A to its own oracle.Let = (pk;gcom1; �1; com2; tag2; �2; !) (Note that B does not see �1, but it is stored by theoracle.) Thus is generated with the same distribution as �(1k). Then B(pk) generates m1 R D andruns m2 DecommitValid(m1;) and m02 Expt(), but replacing TCfakeDecom(�;gcom; tag ;m) inDecommitValid with a query decommit(gcom;m). B(pk) outputs (com2; tag2;m2;m02; dec2; dec02) (wheredec2 and dec02 are generated along with m2 and m02).Note that if A makes at most ` commit queries to its oracle, then B makes at most `+ 1 commitqueries to its oracle. Also note that since � is non-negligible, B runs in probabilistic polynomial time.To analyze the success probability, note that if the condition de�ning �A;tag1;D;R(k) is satis�ed, thenB succeeds, since neither m2 nor m02 is ?, they are di�erent, and the commitment com2 has beenopened to each one. So B succeeds with probability at least �A;tag1;D;R(k). This contradicts the factthat TC is an SSTC(`+ 1) scheme. Thus TC is an NMTC(`) commitment scheme.To relate our results to reusable non-malleable commitment schemes as de�ned in [17], we needto consider adversaries that input a vector of commitments (and later decommitments), and outputa vector of commitments (and later decommitments). To be speci�c, let (t; u)-NMTC(`) denote areusable NMTC commitment scheme with an input vector of size t and an output vector of size u.Then using a proof similar to above, but with some additional ideas from [17], we can prove thefollowing theorem.1313As in [17], we change the de�nition of a valid relation (over vectors of messages) to one in which all messages including? are allowed, but where the probability of the relation being true cannot be increased by changing a message in thesecond (adversarially-chosen) vector to ?. 19

Theorem 5.5 Let TC be an SSTC(`+ t) scheme. Then TC is a (t; u)-NMTC(`) scheme.Now we look at the opposite direction.Theorem 5.6 Let TC be an NMTC(`) scheme. Then TC is an SSTC(`) scheme.Proof: First note that if there is at most one possible tag, then the TC must be an SSTC(`)scheme by the binding property of TC. So assume there are more than one possible tags. Say ascheme TC is not an SSTC(`) scheme. Then there exists a polynomial �(�) and a PPT adversaryB that, when given a public key generated by TCgen(1k) and with access to an oracle to which itcan make at most ` commit queries, for in�nitely many k's, produces with probability more than�(k) a tuple (com; tag ; v1; v2; dec1; dec2) such that tag was not queried to commit, v1 6= v2, andTCver(pk; com; v1; tag ; dec1) = TCver(pk; com; v2; tag ; dec2) = 1.From B we construct an adversary A = (A1;A2) that breaks the non-malleability of the scheme.AOpk;sk1 (pk;gcom1; tag1;D) runs B(pk), answering queries to Opk;sk with its own oracle, until it getsan output (com2; tag2; v21; v22; dec21; dec22). If tag2 = tag1, tag2 was queried to commit, v21 = v22,TCver(pk; com2; v21; tag2; dec21) 6= 1, or TCver(pk; com2; v22; tag2; dec22) 6= 1, then generate a ran-dom commitment and output it, and have A2 simply open that commitment. Otherwise, output(com2; tag2; (v21; v22; dec21; dec22)). Then A2(pk; (v21; v22; dec21; dec22); fdec1; v1) checks if R(v1; v21),and if so A2 outputs (v21; dec21), else A2 outputs (v22; dec22). Note that since B calls the oracle atmost ` times, so does A.Since B is polynomial time, there must be a polynomial p(k) such that jv21j; jv22j � p(k). LetC(1k; v) be an polynomial-time deterministic encoding function that maps a string of length at mostp(k) into a unique string of length exactly p0(k), where p0(k) is also a polynomial. For instance,C(1k; v) could map v to the string zjvj0p(k)�jvj,where z = jvj encoded in dlog p(k)e bits.Let D be uniform over f0; 1gp0(k)+1 and let r(k) be the time to sample that distribution, which isobviously polynomial.Let R be a polynomial-time relation taking two inputs of length p0(k) + 1 and at most p(k),respectively, and having the properties that (1) for any v2 2 f0; 1g�p(k),Pr(v1 R D : R(v1; v2)) = 12 ;and (2) there is no correlation or only negative correlation between di�erent second inputs, i.e., forany v21; v22 2 f0; 1g�p(k) with v21 6= v22,Pr(v1 R D : R(v1; v22)jR(v1; v21)) � 12 :As an example, let R be the following relation, where v[j] denotes bit j of string v. (We are slightlyabusing notation here by assuming that boolean operations result in 1 or 0, and these are then usedas elements of Z2.) R(v1; v2) = 24p0(k)Xj=1 (v1[j] � w2[j]) + v1[p0(k) + 1]35 mod 2;where w2 = C(1k; v2). In other words, R is the inner product of the �rst p0(k) bits of v1 with thep0(k)-length encoding of v2, exclusive-or the (p0(k) + 1)st bit of v1.14 Let tag1 be an identi�er thatis output by B at most half the time B succeeds. This identi�er must exist since there are at least14Note that one can also construct relations with the two desired properties if the commitment scheme �xes the bitlength of a message, e.g., to 1 (a single bit) or k. 20

two possible identi�ers. Then using the properties of R, and using the fact that the probability thattag2 = tag1 is at most 12 when B succeeds, it is easy to see that for in�nitely many k's,�A;tag1;D;R(k) � (1� �(k)2)�12�+ �(k)2 �34� = 12 + �(k)8 ;and that for any simulator S, �0S;tag1;D;R(k) � 12 :Thus TC is not an NMTC(`) scheme.5.3 Separations between SSTC and NMTCTheorem 5.7 Assuming the hardness of the discrete logarithm problem, there exists an SSTC(`)scheme that is not NMTC(`), for every ` � 0.Proof: We shall prove the theorem constructively. For every ` � 0, we construct a scheme DL` thatis SSTC(`) (assuming the hardness of discrete logarithm) but not NMTC(`).Our construction is a modi�ed version of the non-malleable commitment scheme based on discretelogarithms by Di Crescenzo et.al. [21]. Before describing the construction in more detail, we discusssome intuition behind the construction.Given security parameter k, let Gq denote a �nite (cyclic) group of order q, where q is prime andjqj = k. Let g be a generator of Gq, and assume it is included in the description of Gq. We will assumethat elements in Gq can be e�ciently sampled uniformly at random, and that for a random y 2 Gq,it is computationally infeasible to compute x such that y = gx. This value x is the discrete log of y,and this assumption is called the Discrete Logarithm (DL) assumption. (For instance, Gq may be amultiplicative subgroup of Z�p, for some large prime p where qj(p� 1).)Notice that the group G is isomorphic to the additive group Zq in a straightforward manner (infact Zq is a �eld, a fact we shall use later). Now let us turn our attention to polynomials over Zq. Wewrite a degree-` polynomial as P (x) = a0+a1 �x+ � � � a` �x`. We state two extremely useful facts thatshall be employed in our construction. These facts are used as well in secret sharing and thresholdcryptography [49].1. (`+ 1)-wise independenceA random degree-` polynomial is (` + 1)-wise independent. In other words, for a degree-`polynomial P (x), the knowledge of its value on ` positions does not yield any information of itsvalue on a new position. More precisely, by a random polynomial, we mean one whose coe�cientsare chosen from Zq uniformly at random. Then, for any x1; x2; :::; x`+1 2 Zq, such that the xi'sare all distinct for i = 1; 2; :::; `+1, and any y1; y2; :::; y` 2 Zq, P (x`+1) is still uniformly randomover Zq, for a random polynomial P (�) conditioned on P (xi) = yi, for i = 1; 2:::; `.2. (`+ 2)-wise dependenceA degree-` polynomial is (` + 2)-wise dependent. For any distinct x1; x2; :::; x`+2 2 Zq, thereexist constants �1; �2; ::; �`+1 2 Zq such that for any degree-` polynomial P (x), �1 � P (x1) +�2 � P (x2) + � � � + �`+1 � P (x`+1) = P (x`+2).15 Furthermore, these constants can be e�cientlycomputed. As a direct corollary, given ` pairs f(xi; yi)g`, and �; �0 2 Zq, one can e�cientlycompute u; v 2 Zq, such that P (�0) = u � P (�) + v (1)for any degree-` polynomial P (x) satisfying that P (xi) = yi for i = 1; 2; :::; `.15This is essentially Lagrange Interpolation. 21

Very roughly speaking, we shall use the �rst fact to show that our construction is SSTC(`), andthe second fact to show that it is not NMTC(`). We explain it in more detail next.The DLl scheme is a modi�ed version of the commitment scheme by Di Crescenzo et. al. [21],which in turn is based on Pedersen commitments [44]. (A Pedersen commitment to a message m isgmhr for a random r, where h 2 Gq is a value such that the discrete log of h base g is unknown.) InDLl, the public key pk consists of a universal one-way hash function H : f0; 1g� 7! Zq and a signaturescheme SIG = (sig gen; sig sign; sig verify) secure against one-time existential forgery. The public keypk also consists of the description of Gq (which we will henceforth denote simply as Gq), and (`+ 1)random elements in Gq, denoted by g0; g1; ::::; g`. The corresponding secret key consists of the discretelogarithms of the gi's base g. In other words, sk = (a0; a1; :::; a`) such that gai = gi, for i = 0; 1; :::; `.To commit to a message m 2 Zq with tag , a sender �rst generates a fresh veri�cation/signingkey pair for a strong one-time signature scheme using (sig vk; sig sk) sig gen(1k) and then computes� H(sig vk). We call � the \seed" of the commitment. Notice that since H(�) is a universal one-wayhash function, � is in some sense \fresh." Next, the sender picks a random r 2 Zq and computesB = �g0 � g�1 � g�22 � � � g�`` �m � gr: (2)We call B the \body" of the commitment. Finally the sender generates a signature s on tag usingsig sk1, and sends over com = (sig vk; tag ; B; s) as the commitment. To decommit, the sender simplyexhibits (m; r), and then the receiver veri�es that Eq.(2) holds and the signature is valid.The protocol is described in Figure 6. Notice that the DKOS protocol [21] can be regarded as avariation (where a message authentication code replaces the strong one-time signature scheme) of thespecial case of DL` with ` = 1.S (input m 2 Zq, tag) R(Commitment phase)(sig vk; sig sk) sig gen(1k)� = H(sig vk)B = �g0 � g�1 � g�22 � � � g�`` �m � grs sig sign(sk; tag) sig vk; tag ; B; s-(Decommitment phase) m; r - � = H(sig vk)B ?= �g0 � g�1 � g�22 � � � g�`` �m � gr1 ?= sig verify(vk; tag ; s)Figure 6: The DL` commitment scheme. The public key is pk = (H; p; q; g; g0; :::g`).To see that this is a trapdoor commitment scheme, we show how to produce commitments thatcan be equivocated with the secret key (i.e., we construct TCfakeCom and TCfakeDecom). Using thesecret key sk, we de�ne a polynomial P (x) = a0+a1 �x+ � � �+a` �x`. Notice that if gi's are randomlychosen, then ai's are random elements in Zq, and thus P (x) is a random degree-` polynomial. Now,Eq.(2) can be simpli�ed to B = gP (�)�m+r. Notice that the polynomial P (x) is explicitly expressed in22

the secret key sk, but only implicit given by the public key pk. Notice that with knowledge of P (�),where � is the seed of a commitment, one may equivocate that commitment. More precisely, say onewishes to produce a commitment with tag that can be equivocated on decommitment. One generatesa signature key pair (sig vk; sig sk), computes the seed � = H(sig vk), picks a random t 2 Zq, producesB = gt as the body of the commitment, and sets the commitment to (sig vk; tag ; B; s), where s is thesignature on tag using sig sk. Note that using sk, one can e�ciently compute P (�). Thus to openthis commitment to a message m, one simply computes r = t � P (�) � m and sends (m; r) as thedecommitment. This shows that DL` is a trapdoor commitment scheme.Next, we show that the DL` scheme has the simulation-sound binding property.First consider a commitment com = (sig vk; B; s) with seed � = H(sig vk). Suppose it is openedin two di�erent ways: dec0 = (m0; r0) and dec1 = (m1; r1). Then gP (�)�m0+r0 = B = gP (�)�m1+r1 , soP (�) = (r1 � r0)=(m0 �m1). In other words, given two openings to the same commitment, com, onecan easily extract P (�) for the seed �.Now we can see the intuitive reason why DL` is secure. Imagine an adversary A that interactswith an equivocation oracle (i.e., the oracle given in the description of the simulation-sound bindingproperty) to obtain arbitrary decommitments for ` commitments. Intuitively, A obtains the valuesof P (x) on ` di�erent seeds (we denote them by �1; �2; :::; �`). If we can force A to use a new seed� in the commitment it wishes to equivocate (which is achieved by means of the universal one-wayhash function H and the strong one-time signature scheme SIG), then one can easily extract P (�).However, since the values P (�1); :::; P (�`) do not carry any information about P (�) (by the (` + 1)-wise independence property), this value should have been computationally infeasible to produce, bythe security of the Pedersen commitment scheme (which is based on the DL assumption).More precisely, say an adversary A breaks the simulation-sound binding property of DL`. Thenwe will construct a \breaker" B that breaks the DL assumption. B takes as input Gq and an elementh 2 Gq chosen uniformly at random, and will output logg h with a probability that negligibly close tothe probability that A breaks the simulation-sound binding property. We use the variable X to denotelogg h (which is a priori unknown to B). B runs a copy of A and interacts with A as the equivocationoracle. B works in three phases.1. Key GenerationB generates the public key in the following way. First, B generates ` signature key pairs(sig vki; sig ski) and computes the corresponding seeds �i = H(sig vki) for i = 1; 2; :::; `. SinceH(�) is a universal one-way hash function, we may assume that the �i's are distinct. B alsopicks ` random elements �1, �2, ..., �`. Next, B picks an �0 2 Zq uniformly at random (andthus we may assume that �0 is distinct from all previous �i's) and sets �0 = X (symboli-cally). Then, B solves for the unique degree-` polynomial P (x) = a0 + a1 � x+ � � �+ a` � x` suchthat P (�i) = �i for i = 0; 1; :::; `. This involves inverting a Vandermonde matrix and can bedone e�ciently. As a result, B is able to obtain two series of constants fAig, fBig, such thatai = Ai � X + Bi for i = 0; 1; : : : ; `. Now, B sets gi = hAi � gBi for i = 0; 1; :::; ` and outputspk0 = (H;SIG1; Gq; g0; g1; :::; g`) as the public key of the DL` scheme. In this way, we have thatg0 � g�i1 � � � g�ì` = g�i (3)for i = 0; 1; 2; :::; `. (Note that g�0 = gX = h.) It is also easy to verify that since h was chosenuniformly at random from Gq, the distribution of pk0 is identical to the distribution of the publickey of DL`.2. Simulating the Equivocation OracleAfter generating the public key, B runs a copy of A and answers oracle queries, but at most `commit queries. For the ith query (commit; tag i), B uses the ith stored key pair (sig vki; sig ski)23

and the corresponding seed �i = H(sig vki) as the seed for the commitment. Then B chooses arandom ti, computes Bi = gti as the body, and sends ci = (sig vki; tag i; Bi; sig sign(sig ski; tag i))as the commitment. Notice that in the way the public key is set up, B knows P (�i) = �i andthus can decommit to any message easily. In particular, on receiving a query (decommit; ci; v),B opens ci to value v by replying (v; ti � �i � v).3. Extracting the Discrete LogSay A produces a commitment gcom = (sig vk0; tag 0; B; s) and two associated decommitmentsfdec0 = (m0; r0) and fdec1 = (m1; r1), with m0 6= m1 and tag 0 6= tag i for all i 2 f1; : : : ; `g. By thefact that the strong one-time signature scheme SIG1 is existential unforgeable and that H is auniversal one-way hash function, we may assume that sig vk0 6= sig vki and H(sig vk0) 6= �i, forall i 2 f1; : : : ; `g. Let � = H(sig vk0). Then B may compute P (�) = (r1 � r0)=(m0 �m1). NowB knows the value of P (�) on `+ 1 distinct points �1, �2, ..., �`, and �. Thus it computes u; vas in Eq.(1), such that P (�0) = u � P (�) + v, and hence compute P (�0). But X = �0 = P (�0),and X is the discrete log of h base g. Therefore B is able to compute the discrete log of h.Finally, we show that DL` is not NMTC(`), due to the (` + 2)-wise dependence of degree-` poly-nomials. We shall present an adversary A that asks the equivocation oracle for multiple openingsto ` commitments, receives a commitment com and then produces a commitment com0, such that itcan always open com0 to whatever message com is opened to. Clearly, such an adversary completelybreaks non-malleability (speci�cally, for the equality relation).We now describe the adversary A. Recall that associated with the public key is a \hidden" randompolynomial P (x). First, A obtains the value of P (x) on ` di�erent inputs by means of the equivocationoracle, and then receives a commitment com = (sig vk; tag ; B; s). Let � = H(sig vk). Then A picks aseed �0 (by generating a new signature key pair and applying H to the veri�cation key) and computesu; v as in Eq.(1), such that P (�0) = u � P (�) + v. Next, A submits a commitment com0 with �0 as theseed and B0 = Bu as the body. After receiving the opening (m; r) for the commitment com, A canalso open com0 to m by computing r0 = u � r� v �m (mod q). It is easy to verify that (m; r0) is a validopening: B0 = Bu = (gP (�)�m+r)u = gu�P (�)�m+u�r = g(P (�0)�v)�m+u�r = gP (�0)�m+(u�r�v�m)Theorem 5.8 If there exists an NMTC(`) scheme, then there exists an NMTC(`) scheme that is notSSTC(`+ 1).Proof: The idea behind this proof is that we can modify any NMTC(`) scheme and have it \leak" someinformation about the secret key when answering oracle queries (from the de�nition of simulation-sound binding) to equivocate a commitment. We control the leak in such a way that ` commit queriesdo not yield any information, but `+ 1 commit queries will leak the secret key. This will imply thatthe modi�ed scheme is still NMTC(`), but not SSTC(`+ 1).More precisely, consider an arbitrary NMTC(`) scheme TC = (TCgen;TCcom;TCver;TCfakeCom;TCfakeDecom). Without the loss of generality, we may assume that the secret key sk produced byTCgen(1k) is an element in Zq for some prime number q (we can alway encode sk as a �eld element in a�eld large enough), and furthermore that q is at least k bits long. Now we modify TC slightly to producea new commitment scheme TC0 = (TCgen0;TCcom0;TCver0;TCfakeCom0;TCfakeDecom0). In TC0, thedecommitment dec0 contains an additional pair of elements (x; y) 2 Zq�Zq which we call the \leakingchannel". The commitment function TCcom0 �lls the leaking channel with a random element pairin Zq, and the veri�cation function TCver0 ignores it. Thus the \basic" commitment/decommitment24

functionality remains unchanged with the addition of the leaking channel. In fact, the leaking channelis only used by the functions TCfakeCom0 and TCfakeDecom0 to \leak" the information about thesecret key sk, as we explain next.In TC0, the public key pk0 is the same as pk. The secret key sk0 consists of the secret key sk of theoriginal scheme TC and a random degree-` polynomial P (x) = a0+a1 �x+ � � �+a` �x` over Zq satisfyingthat P (0) = sk (or equivalently, a0 = sk). Here, a random polynomial over Zq is a polynomial whosecoe�cients are chosen uniformly at random from Zq.The leaking channel is used by the faking functions to leak the values of P (x) on random elementsof Zq. More precisely, the new commitment-faking function TCfakeCom0(pk; sk; tag) �rst invokesTCfakeCom by setting (c; �) TCfakeCom(pk; sk; tag), and then picks a random x 2 Zq, sets �0 =(�; x; P (x)) and outputs (c; �0). The new decommitment-faking function TCfakeDecom0(�0; c; tag ; v),where �0 = (�; x; P (x)), outputs (TCfakeDecom(�; c; tag ; v); x; P (x)). Notice that TCfakeDecom0 �llsthe leaking channel with the information of P (x) over a particular input x.We now prove that the new scheme TC0 remains NMTC(`). First, the standard hiding/bindingproperty of TC0 follows straightforwardly from that of TC. Next, the trapdoor property of TC0 remainsessentially unchanged from that of TC. This is because (x; P (x)) is uniformly distributed over Zq�Zqfor random x 2 Zq and random P (�), except when x = 0, which happens with probability 1q , andtherefore the leaking channel in TCcom0 is statistically indistinguishable from the leaking channel inTCfakeCom0=TCfakeDecom0.Finally, the non-malleability of TC0 follows almost straightforwardly from that of TC. Notice thatan adversary making up to ` commit queries learns at most ` pairs (xi; P (xi)) from the leaking channel.Since each xi is uniformly chosen at random, the probability that xi = 0 for some i, or that xi = xjfor some i and j, is at most `+`2q , which is negligible. Now we may suppose the xi's are all nonzeroand distinct. Since P (x) is a random degree-` polynomial, P (x1), P (x2),..., P (x`) are all independentuniformly random elements in Zq and therefore they don't carry any information about sk = P (0).Thus for any adversary A0 that breaks TC0, we can easily construct an A that breaks TC. EssentiallyA runs a copy of A0, and simulates the faking oracle for TC0 by �lling the leaking channel with arandom element pair (xi; yi) 2 Zq � Zq in the reply to the decommitment of the ith commitment Arequests.However, the TC0 scheme is obviously not SSTC(`+ 1), since with `+ 1 queries, an adversary candetermine P (0) by Lagrange interpolation (except when there is a collision, i.e., xi = xj for some iand j in the leaking channel, which happens with negligible probability as discussed above). Thus theadversary completely breaks the scheme.We mention that Theorems 5.4, 5.5, 5.6, 5.8, and 5.7 would also apply to the body-based de�nitionsof SSTC and NMTC schemes.AcknowledgmentsWe would like to thank Ivan Damg�ard for helpful comments and suggestions, particularly in relatingthe results in our paper to those in [17].References[1] N. Bari�c and B. P�tzmann. Collision-free accumulators and fail-stop signature schemes without trees. InAdvances in Cryptology { EUROCRYPT '97 (LNCS 1233), pp. 480{494, 1997.[2] D. Beaver. Adaptive zero-knowledge and computational equivocation. In 28th ACM Symp. on Theory ofComputing, pp. 629{638, 1996. 25

[3] M. Blum. Coin ipping by telephone. In IEEE Spring COMPCOM, pp. 133{137, 1982.[4] G. Brassard, D. Chaum, and C. Cr�epeau. Minimum Disclosure Proofs of Knowledge. JCSS, 37(2):156{189,1988.[5] J. Camenisch and M. Michels. Separability and e�ciency for generic group signature schemes. In Advancesin Cryptology { CRYPTO '99 (LNCS 1666), pages 414{430, 1999.[6] R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. In 42nd IEEESymp. on Foundations of Computer Sci., pp. 136{145, 2001.[7] R. Canetti and M. Fischlin. Universally composable commitments. In Advances in Cryptology { CRYPTO2001 (LNCS 2139), pp. 19{40, 2001.[8] R. Canetti and H. Krawczyk. Universally Composable Notions of Key Exchange and Secure Channels. InEUROCRYPT 2002 (LNCS 2332), pp. 337{351, 2002. Full version in ePrint Archive, report 2002/059.http://eprint.iacr.org/.[9] R. Canetti, Y. Lindell, R. Ostrovsky and A. Sahai. Universally composable two-party computation. In34th ACM Symp. on Theory of Computing, pp. 494{503, 2002. Full version in ePrint archive, Report2002/140. http://eprint.iacr.org/, 2002.[10] R. Canetti and T. Rabin. Universal Composition with Joint State In ePrint archive, Report 2002/047,http://eprint.iacr.org/, 2002.[11] S. A. Cook. The complexity of theorem-proving procedures. In 3rd IEEE Symp. on Foundations of Com-puter Sci., pp. 151{158, 1971.[12] R. Cramer and I. Damg�ard. Zero-Knowledge Proofs for Finite Field Arithmetic, or: Can Zero-KnowledgeBe for Free? In Advances in Cryptology { CRYPTO '98 (LNCS 1462), pages 424{441, 1998.[13] R. Cramer, I. Damg�ard, and B. Schoenmakers. Proofs of partial knowledge and simpli�ed design of witnesshiding protocols. In Advances in Cryptology { CRYPTO '94 (LNCS 839), pages 174{187, 1994.[14] R. Cramer and V. Shoup. Signature scheme based on the strong RSA assumption. In ACM Trans. onInformation and System Security 3(3):161-185, 2000.[15] I. Damg�ard. On the existence of bit commitment schemes and zero-knowledge proofs. In Advances inCryptology { CRYPTO '89 (LNCS 435), pp. 17{29, 1989.[16] I. Damg�ard. E�cient Concurrent Zero-Knowledge in the Auxiliary String Model. In Advances in Cryptology{ EUROCRYPT 2000 (LNCS 1807), pp. 418{430, 2000.[17] I. Damg�ard and J. Groth. Non-interactive and reusable non-malleable commitment schemes. In 35th ACMSymp. on Theory of Computing, pp. 426{437, 2003.[18] I. Damg�ard and J. Nielsen. Perfect hiding and perfect binding universally composable commitment schemeswith constant expansion factor. In Advances in Cryptology { CRYPTO 2002 (LNCS 2442), pp. 581{596,2002. Full version in ePrint Archive, report 2001/091. http://eprint.iacr.org/, 2001.[19] A. De Santis, G. Di Crescenzo, R. Ostrovsky, G. Persiano and A. Sahai. Robust non-interactive zeroknowledge. In Advances in Cryptology { CRYPTO 2001 (LNCS 2139), pp. 566{598, 2001.[20] G. Di Crescenzo, Y. Ishai, and R. Ostrovsky. Non-interactive and non-malleable commitment. In 30thACM Symp. on Theory of Computing, pp. 141{150, 1998.[21] G. Di Crescenzo, J. Katz, R. Ostrovsky, and A. Smith. E�cient and Non-Interactive Non-Malleable Com-mitment. In Advances in Cryptology { EUROCRYPT 2001 (LNCS 2045), pp. 40{59, 2001.[22] D. Dolev, C. Dwork and M. Naor. Non-malleable cryptography. SIAM J. on Comput., 30(2):391{437, 2000.Also in 23rd ACM Symp. on Theory of Computing, pp. 542{552, 1991.26

[23] T. ElGamal. A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans.on Information Theory, 31:469{472, 1985.[24] S. Even, O. Goldreich, and S. Micali. On-line/O�-line digital signatures. J. Cryptology 9(1):35-67 (1996).[25] U. Feige and A. Shamir. Witness Indistinguishable and Witness Hiding Protocols. In 22nd ACM Symp.on Theory of Computing, pp. 416{426, 1990.[26] U. Feige and A. Shamir. Zero-Knowledge Proofs of Knowledge in Two Rounds. In Advances in Cryptology{ CRYPTO '89 (LNCS 435), pp. 526{544, 1989.[27] FIPS 180-1. Secure hash standard. Federal Information Processing Standards Publication 180-1, U.S. Dept.of Commerce/NIST, National Technical Information Service, Spring�eld, Virginia, 1995.[28] FIPS 186. Digital signature standard. Federal Information Processing Standards Publication 186, U.S.Dept. of Commerce/NIST, National Technical Information Service, Spring�eld, Virginia, 1994.[29] M. Fischlin and R. Fischlin. E�cient non-malleable commitment schemes. In Advances in Cryptology {CRYPTO 2000 (LNCS 1880), pp. 413{431, 2000.[30] E. Fujisaki and T. Okamoto. Statistical zero knowledge protocols to prove modular polynomial relations.In Advances in Cryptology { CRYPTO '97 (LNCS 1294), pp. 16-30, 1997.[31] J. A. Garay, P. MacKenzie, and K. Yang. Strengthening Zero-Knowledge Protocols using Signatures. InAdvances in Cryptology { EUROCRYPT 2003 (LNCS 2656), pp. 177{194, 2003.[32] R. Gennaro, S.Halevi, and T. Rabin. Secure hash-and-sign signatures without the random oracle. InAdvances in Cryptology { EUROCRYPT '99 (LNCS 1592), pp. 123{139, 1999.[33] O. Goldreich. Foundations of Cryptography - Volume 1 (Basic Tools). Cambridge University Press, ISBN0-521-79172-3, 2001.[34] O. Goldreich, S. Micali and A. Wigderson. Proofs that yield nothing but their validity or All languages inNP have zero-knowledge proof systems. J. ACM, 38(3):691{729, 1991.[35] S. Goldwasser, S. Micali and R. Rivest. A digital signature scheme secure against adaptive chosen-messageattacks. SIAM J. Comput., 17:281{308, 1988.[36] S. Jarecki and A. Lysyanskaya. Adaptively Secure Threshold Cryptography: Introducing Concurrency,Removing Erasures. In Advances in Cryptology { EUROCRYPT '00 (LNCS 1807), pp. 221{242, 2000.[37] D. W. Kravitz. Digital signature algorithm. U.S. Patent 5,231,668, 27 July 1993.[38] L. A. Levin. Universal sorting problems. Problemy Peredaci Informacii, 9:115{116, 1973. In Russian. Engl.trans.: Problems of Information Transmission 9:265{266.[39] P. MacKenzie, T. Shrimpton, and M. Jakobsson. Threshold password-authenticated key exchange. InAdvances in Cryptology { CRYPTO 2002 (LNCS 2442), pp. 385{400, 2002.[40] M. Naor. Bit commitment Using Pseudo-Randomness. J. Cryptology 4(2):151{158 (1991).[41] M. Naor, R. Ostrovsky, R. Venkatesan, and M. Yung. Perfect zero-knowledge arguments for NP can bebased on general complexity assumptions. In Advances in Cryptology { CRYPTO '92 (LNCS 740), pp.196{214, 1992.[42] M. Naor and M. Yung. Public-key cryptosystems provably secure against chosen ciphertext attacks. In22nd ACM Symp. on Theory of Computing, pp. 427{437, 1990.[43] P. Paillier. Public-key cryptosystems based on composite degree residue classes. In Advances in Cryptology{ EUROCRYPT '99 (LNCS 1592), pp. 223{238, 1999.27

[44] T. P. Pedersen. Non-Interactive and Information-Theoretic Secure Veri�able Secret Sharing. In Advancesin Cryptology { CRYPTO '91 (LNCS 576), pp. 129{140, 1991.[45] L. Reyzin. Zero-knowledge with public keys. Ph.D. Thesis, MIT, 2001.[46] J. Rompel. One-way functions are necessary and su�cient for secure signatures. In 22nd ACM Symp. onTheory of Computing, pp. 387{394, 1990.[47] A. Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext security. In 40thIEEE Symp. on Foundations of Computer Sci., pp. 543{553, 1999.[48] C. P. Schnorr. E�cient identi�cation and signatures for smart cards. In Advances in Cryptology { EURO-CRYPT '89 (LNCS 434), pp. 688{689, 1989.[49] A. Shamir. How to Share a Secret. In CACM 22(11), pp. 612{613 (1979).A ZK proof De�nitionsHere we provide de�nitions related to zero-knowledge proofs and proofs of knowledge. They are basedon de�nitions of NIZK proofs from [19], but modi�ed to allow interaction.For a relation R, let LR = fx : (x;w) 2 Rg be the language de�ned by the relation. For anyNP language L, note that there is a natural witness relation R containing pairs (x;w) where w is thewitness for the membership of x in L, and that LR = L. We will use k as the security parameter.For two interactive machines A and B, we de�ne hA;Bi[�](x) as the local output of B after aninteractive execution with A using CRS �, and common input x. The transcript of a machine is simplythe messages on its input and output communication tapes. Two transcripts match if the orderedinput messages of one are equivalent to the ordered output messages of the other, and vice-versa. Weuse the notation tr ./ tr0 to indicate tr matches tr0.For some de�nitions below, we need to de�ne security when an adversary is allowed to interact withmore than one instance of a machine. Therefore it will be convenient to de�ne a common wrappermachine that handles this \multi-session" type of interaction.16 For an interactive machine A, wede�ne A to be a protocol wrapper for A, that takes two types of inputs on its communication tape:(start; �; x; w): For this message A starts a new interactive machine A with label �, commoninput x, private input w, a freshly generated random input r, and using the CRS of A .(msg; �;m): For this message A sends the message m to the interactive machine with label � (ifit exists), and returns the output message of that machine.We de�ne the output of A to be a tuple (x; tr; v), where x is the common input (from the startmessage), tr is the transcript (the input and output messages A) and v is the output of A. (Inparticular, if A is a veri�er in a zero-knowledge protocol, this output will be 1 for accept, and 0 forreject.) We say A 1 is the wrapper of A that ignores all the subsequent start messages after seeingthe �rst one. E�ectively, A 1 is a \single-session" version of A.We say two interactive machines B and C are coordinated if they have a single control, but twodistinct sets of input/output communication tapes. For four interactive machines A, B, C, and D wede�ne (hA;Bi; hC;Di)[�] as the local output of D after an interactive execution with C and after aninteractive execution of A and B, all using CRS �. Note that we will only be concerned with this ifB and C are coordinated.We note that all our ZK de�nitions use black-box, non-rewinding simulators, and our proofs ofknowledge use non-rewinding extractors.16This is similar to the \multi-session extension" concept in Canetti and Rabin [10].28

De�nition A.1 [Unbounded ZK Proof] � = (D;P;V;S = (S1;S2)) is an unbounded ZK proof(resp., argument) system for an NP language L with witness relation R if D is an ensemble ofpolynomial-time samplable distributions, P, V, and S2 are probabilistic polynomial-time interactivemachines, and S1 is a probabilistic polynomial-time machine, such that there exist negligible functions� and � (the simulation error), such that for all k,Completeness For all x 2 L of length k, all w such that R(x;w) = 1, and all � 2 Dk the probabilitythat hP(w);Vi[�](x) = 0 is less than �(k).Soundness For all unbounded (resp., polynomial-time) adversaries A, if � R Dk, then for all x 62 L,the probability that hA;Vi[�](x) = 1 is less than �(k).Unbounded ZK For all non-uniform probabilistic polynomial-time interactive machines A, we havethat jPr[ExptA(k) = 1]�Pr[ExptSA(k) = 1]j � �(k), where the experiments ExptA(k) and ExptSA(k)are de�ned as follows: ExptA(�) : ExptSA(�) :� R Dk (�; �) S1(1k)Return h P ;Ai[�] Return h S 0(�) ;Ai[�]where S 0(�) runs as follows on common reference string �, common input x and private input w:if R(x;w) = 1, S 0(�) runs S2(�) on common reference string � and common input x; otherwiseS 0(�) runs Snull, where Snull is an interactive machine that simply aborts.17We point out that this de�nition only requires the simulator to simulate a valid proof, which isimplemented by having S 0 have access to the witness w and only invoking S2 when w is valid.18However, S2 does not access the witness and will simulate a proof from the input x only.De�nition A.2 [Same-String Unbounded ZK] � = (D;P;V;S = (S1;S2)) is a same-stringunbounded ZK argument system for an NP language L with witness relation R if � is an unboundedZK argument system for L with the additional property that the distribution of the reference stringoutput by S1(1k) is exactly Dk.We only de�ne same-string unbounded ZK arguments since, as shown in [19], any protocol that issame-string unbounded ZK must be an argument, and not a proof.The following de�nes unbounded simulation-sound zero-knowledge (USSZK). This has been usefulin applications. In particular, as shown in [47], the one-time version su�ces for the security of a (non-interactive) ZK protocol in the construction of adaptive chosen-ciphertext secure cryptosystems usingthe Naor-Yung [42] paradigm. We directly de�ne the unbounded version, needed in other applicationssuch as threshold password-authenticated key exchange [39].De�nition A.3 [Unbounded Simulation-Sound ZK]� = (D;P;V;S = (S1;S2)) is an unbounded simulation-sound ZK proof (resp., argument) system foran NP language L if � is an unbounded ZK proof (resp., argument) system for L and furthermore,there exists a negligible function � such that for all k,Unbounded Simulation SoundnessFor all non-uniform probabilistic polynomial-time adversaries A = (A1;A2), where A1 and A2 arecoordinated, we have that Pr[ExptA(k) = 1] � �(k), where ExptA(k) is de�ned as follows:17Without loss of generality, we assume that if the input to P is not a witness for the common input, P simply aborts.18A must supply a witness, since P is restricted to polynomial time, and thus may not be able to generate a witnessitself. This may seem odd compared to de�nitions of standard ZK that assume an unbounded prover, but it does seem tocapture the correct notion of unbounded ZK, and in particular does not allow A to test membership in L. See Sahai [47]for more discussion. 29

ExptA(k) :(�; �) S1(1k)(x; tr; b) (h S 00(�) ;A1i; hA2; V 1i)[�]Let Q be the set of transcripts of machines in S 00(�)Return 1 i� b = 1, x 62 L, and for all tr0 2 Q, tr 6./ tr0where S 00(�) runs as follows on CRS �, common input x and private input w: S 00(�) runs S2(�)on CRS � and common input x.In the above de�nition, we emphasize that S2 may be asked to simulate false proofs for x 62 LR,since S 00 does not check whether (x;w) 2 R. The idea is that even if the adversary is able to obtainacceptable proofs on false statements, it will not be able to produce any new acceptable proof on afalse statement.The following de�nes non-malleable zero-knowledge (NMZK) proofs (resp., arguments) of knowl-edge. If a protocol is NMZK according to our de�nition, then this implies the protocol is also a NMZKin the explicit witness sense (as de�ned in [19]). Moreover, we show that the protocol is also UCZKin the model of static corruptions. Also note that simulation soundness is implied by this de�nition.De�nition A.4 [Non-malleable ZK Proof/Argument of Knowledge] � = (D;P;V;S = (S1;S2);E = (E1; E2)) is a non-malleable ZK proof (resp., argument) of knowledge system for an NP languageL with witness relation R if � is an unbounded ZK proof (resp., argument) system for L and further-more, E1 and E2 are probabilistic polynomial-time machines such that there exists a negligible function� (the knowledge error) such that for all k,Reference String Indistinguishability The distribution of the �rst output of S1(1k) is identicalto the distribution of the �rst output of E1(1k).Extractor Indistinguishability For any � 2 f0; 1g�, the distribution of the output of V 1 is iden-tical to the distribution of the restricted output of E2(�) 1, where the restricted output of E2(�) 1does not include the extracted value.Extraction For all non-uniform probabilistic polynomial-time adversaries A = (A1;A2), where A1and A2 are coordinated machines, we have that jPr[ExptEA(k) = 1] � Pr[ExptA(k) = 1]j � �(k),where the experiments ExptA(k) and ExptEA(k) are de�ned as follows:ExptA(k) : ExptEA(k) :(�; �) S1(1k) (�; �1; �2) E1(1k)(x; tr; b) (h S 00(�) ;A1i; hA2; V 1i)[�] (x; tr; (b; w)) (h S 00(�1) ;A1i; hA2; E2(�2) 1i)[�]Let Q be the set of transcripts Let Q be the set of transcriptsof machines in S 00(�) . of machines in S 00(�1) .Return 1 i� b = 1 and Return 1 i� b = 1, (x;w) 2 R, andfor all tr0 2 Q, tr 6./ tr0 for all tr0 2 Q, tr 6./ tr0where S 00(�) runs as follows on CRS �, common input x and private input w: S 00(�) runs S2(�)on CRS � and common input x.In the above de�nition, as in the de�nition of USSZK protocols, we emphasize that S2 may beasked to simulate false proofs for x 62 LR, since S 00 does not check whether (x;w) 2 R. The idea isthat even if the adversary is able to obtain acceptable proofs on false statements, it will not be ableto produce any new acceptable proof for which a witness cannot be extracted.B �-protocols and
-protocolsHere we overview the basic de�nitions and properties of �-protocols [13]30

First we start with some de�nitions and notation. Let R = f(x;w)g be a binary relation andassume that for some given polynomial p(�) it holds that jwj � p(jxj) for all (x;w) 2 R. Furthermore,let R be testable in polynomial time. Let LR = fx : (x;w) 2 Rg be the language de�ned by therelation, and for all x 2 LR, let WR(x) = fw : (x;w) 2 Rg be the witness set for x. For any NPlanguage L, note that there is a natural witness relation R containing pairs (x;w) where w is thewitness for the membership of x in L, and that LR = L.Now we de�ne a �-protocol (A;B) to be a three move interactive protocol between a probabilisticpolynomial-time prover A and a probabilistic polynomial-time veri�er B, where the prover acts �rst.The veri�er is only required to send random bits as a challenge to the prover. For some (x;w) 2 R, thecommon input to both players is x while w is private input to the prover. For such given x, let (a; c; z)denote the conversation between the prover and the veri�er. To compute the �rst and �nal messages,the prover invokes e�cient algorithms a(�) and z(�), respectively, using (x;w) and random bits asinput. Using an e�cient predicate �(�), the veri�er decides whether the conversation is acceptingwith respect to x. The relation R, the algorithms a(�), z(�) and �(�) are public. The length of thechallenges is denoted tB , and we assume that tB only depends on the length of the common string x.We will need to broaden this de�nition slightly, to deal with cheating provers. We will de�ne L̂Rto be the input language, with the property that LR � L̂R, and membership in L̂R may be tested inpolynomial time. We implicitly assume B only executes the protocol if the common input x 2 L̂R.All �-protocols presented here will satisfy the following security properties:� Weak special soundness: Let (a; c; z) and (a; c0; z0) be two conversations, that are accepting forsome given x 2 L̂R. If c 6= c0, then x 2 LR. The pair of accepting conversations (a; c; z) and(a; c0; z0) with c 6= c0 is called a collision.� Special honest veri�er zero knowledge (SHVZK): There is a (probabilistic polynomial time)simulator M that on input x 2 LR generates accepting conversations with a distribution thatis indistinguishable19 from when A and B execute the protocol on common input x (and A isgiven a witness w for x), and B indeed honestly chooses its challenges uniformly at random.The simulator is special in the sense that it can additionally take a random string c as input,and output an accepting conversation for x where c is the challenge. In fact, we will assume thesimulator has this special property for not only x 2 LR, but also any x 2 L̂R.Speci�cally, there is a negligible function �(k) such that for all non-uniform probabilistic polynomial-time adversaries A = (A1;A2), we have that jPr[ExptA(k) = 1] � Pr[ExptMA (k) = 1]j � �(k),where the experiments ExptA(k) and ExptMA (k) are de�ned as follows:ExptA(k) : ExptMA (k) :(x;w; s) A1(1k) (x;w; s) A1(1k)If (x;w) 62 R return 0 If (x;w) 62 R return 0r R f0; 1g� c R f0; 1gka a(x;w; r) Return A2(s;M(x; c))c R f0; 1gkReturn A2(s; (a; c; z(x;w; r; c)))Some of the �-protocols also satisfy the following property.� Special soundness: Let (a; c; z) and (a; c0; z0) be two conversations, that are accepting for somegiven x, with c 6= c0. Then given x and those two conversations, a witness w such that (x;w) 2 Rcan be computed e�ciently.19Often this is required to be perfectly indistinguishable, but we generalize the de�nition slightly to only requirecomputational indistinguishability. 31

A simple but important fact (see [13]) is that if a �-protocol is HVZK, the protocol is witnessindistinguishable (WI) [25]. Although HVZK by itself is de�ned with respect to a very much restrictedveri�er, i.e. an honest one, this means that if for a given instance x there are at least two witnessesw, then even a malicious veri�er cannot distinguish which witness the prover uses.B.1
-protocolsAn
-protocol (A;B)[�] for a relation R = f(x;w)g and CRS �, is a �-protocol for relation R withthe following additional properties.1. For a given distribution ensemble D, a common reference string � is drawn from Dk and eachfunction a(�), z(�), and �(�) takes � as an additional input. (Naturally, the simulator M in thede�nition of �-protocols may also take � as an additional input.)2. There exists a polynomial-time extractor E = (E1; E2) such that the reference string output byE1(1k) is statistically indistinguishable from Dk. Furthermore, given (�; �) E1(1k), if thereexists two accepting conversations (a; c; z) and (a; c0; z0) with c 6= c0 for some given x 2 L̂R, thenE2(x; �; (a; c; z)) outputs w such that (x;w) 2 R.20Informally, one way to construct
-protocols is as follows. Our common reference string will consistof a random public key pk for a semantically-secure encryption scheme. Then for a given (x;w) 2 R,we will construct an encryption e of w under key pk, and then construct a �-protocol to prove thatthere is a w such that (x;w) 2 R and that e is an encryption of w.As with �-protocols, we will use the _ notation to denote an \OR" protocol, even if one or bothof these protocols are
-protocols.C The Universal Composability FrameworkIn more detail, the execution in the real-life model and the ideal process proceeds basically as follows.The environment Z drives the execution. It can provide input to a party Pi or to the adversary, A orS. If Pi is given an input, Pi is activated. In the ideal process Pi simply forwards the input directlyto F (this is the \direct forwarding" that we discussed in the introduction), which is then activated,possibly writing messages on its outgoing communication tape, and then handing activation back to Pi.In the real-life model, Pi follows its protocol, either writing messages on its outgoing communicationtape or giving an output to Z. Once Pi is �nished, Z is activated again. If the adversary is activated,it follows its protocol, possibly giving output to Z, and also either corrupting a party, or performingone of the following activities. If the adversary is A in the real-life model, it may deliver a messagefrom the output communication tape of one honest party to another, or send a message on behalf ofa corrupted party. If the adversary is S in the ideal process, it may deliver a message from F to aparty, or send a message to F . If a party or F receives a message, it is activated, and once it �nishes,Z is activatedAt the beginning of the execution, all participating entities are given the security parameter k 2 Nand random bits. The environment is also given an auxiliary input z 2 f0; 1g�. At the end of theexecution, the environment outputs a single bit. Let REAL�;A;Z denote the distribution ensemble ofrandom variables describing Z's output when interacting in the real-life model with adversary A andplayers running protocol �, with input z, security parameter k, and uniformly-chosen random tapesfor all participating entities. Let IDEALF ;S;Z denote the distribution ensemble of random variables20Notice that this extraction property is similar to that of weak special soundness of �-protocols, where there existsan accepting conversation even for an invalid proof, but two accepting conversations guarantees that the proof is valid.Here, the extractor can always extract something from any conversation, but it might not be the witness if there isonly one accepting conversation. However, having two accepting conversations sharing the same a guarantees that theextracted information is indeed a witness. 32

describing Z's output after interacting with adversary S and ideal functionality F , with input z,security parameter k, and uniformly-chosen random tapes for all participating entities.A protocol � securely realizes an ideal functionality F if for any real-life adversary A there existsan ideal-process adversary S such that no environment Z, on any auxiliary input, can tell with non-negligible advantage whether it is interacting with A and players running � in the real-life model,or with S and F in the ideal-process. More precisely, REAL�;A;Z c� IDEALF ;S;Z , where c� denotescomputational indistinguishability. (In particular, this means that for any d 2 N there exists k0 2 Nsuch that for all k > k0 and for all inputs z, jPr[REAL�;A;Z(k; z)]� Pr[IDEALF ;S;Z(k; z)]j < k�d).To formulate the composition theorem, one must introduce a hybrid model, a real-life model withaccess to an ideal functionality F . In particular, this F-hybrid model functions like the real-life model,but where the parties may also exchange messages with an unbounded number of copies of F , eachcopy identi�ed via a unique session identi�er (sid). The communication between the parties and eachone of these copies mimics the ideal process, and in particular the hybrid adversary does not haveaccess to the contents of the messages. Let HYBF�;A;Z denote the distribution ensemble of randomvariables describing the output of Z, after interacting in the F-hybrid model with protocol �. Let� be a protocol in the F-hybrid model, and � a protocol that secures realizes F . The composedprotocol �� is now constructed by replacing the �rst message to F in � by an invocation of a newcopy of �, with fresh random input, the same sid, and with the contents of that message as input;each subsequent message to that copy of F is replaced with an activation of the corresponding copyof �, with the contents of that message as new input to �.Canetti [6] proves the following composition theorem.Theorem C.1 ([6]) Let F , G be ideal functionalities. Let � be an n-party protocol that securelyrealizes G in the F-hybrid model, and let � be an n-party protocol that securely realizes F . Thenprotocol �� securely realizes G.D ProofsWe present the proofs to some of the theorems in the paper.First, we present the exclusive collision lemma to be used in some of the proofs. See [31] for aproof.Lemma D.1 (The Exclusive Collision Lemma) Let A be a random variable and Ba a randomvariable whose distribution is parameterized by a value a in the support of A. For every a in thesupport of A, and for every b1 and b2 in the support of Ba, let Colla(b1; b2) be a predicate de�ninga collision. Let q be the maximum (over all a in the support of A) probability of a collision of twoindependent random variables B1a and B2a, i.e., q = maxafProb[Colla(B1a; B2a)]g. Let �(a; b) be apredicate, and let p = Prob[�(A;BA)]. Let �0(a; b1; b2) = �(a; b1)^ �(a; b2)^ (:Colla(b1; b2)). Then wehave Prob[�0(A;B1A; B2A)] � p2 � q, where B1A and B2A are independent conditioned on A.Proof: (Proof of Theorem 4.1)Completeness: Straightforward.Unbounded ZK: By inspection, S1(1k) produces exactly the same distribution as the real protocol.Next, notice that S 0 runs S2 only when (x;w) 2 R; that the trapdoor property of the SSTC schemeensures that the faked commitment/decommitment are computationally indistinguishable from thereal commitment/decommitment; and that protocol � is honest-veri�er ZK, and is thus witness indis-tinguishable. The unbounded ZK-ness follows from these facts by a straightforward hybrid argument.Unbounded simulation soundness: The proof here is quite similar to the proof of unboundedsimulation soundness of the USSZK construction in [31]. Roughly speaking, we prove that any adver-sary that breaks the unbounded simulation soundness of the ZK protocol can either be used to fake33

a signature for the strong one-time signature scheme or to open a commitment in two di�erent ways.The �rst case will violate the security of the strong one-time signature scheme, and the second casewill violate the unbounded simulation soundness of the SSTC scheme.The basic argument is that for an adversary to break the unbounded simulation soundness, oneof two cases must hold. The �rst case is when the adversary creates a new proof accepted by theveri�er that uses one of the public keys for the strong one-time signature scheme that were used bythe simulator. In this case, for the transcript to be di�erent, it must be that it signs a new transcript,and thus forges in the strong one-time signature scheme.The second case is when the adversary uses a new public key for the strong one-time signaturescheme. Then the adversary's commitment uses a new identi�er. Recall that if x 62 LR, then for each�rst message to � there is at most one challenge that leads to an accepting conversation. This impliesthat if the adversary could answer two challenges, it must open its commitment in two di�erent ways,breaking the simulation soundness of the commitment scheme.For an adversary A = (A1;A2), recall the experiment ExptA(k) in the de�nition of unboundedsimulation sound ZK. Let p = Pr[ExptA(k) = 1]. Our goal is to show that p is negligible.Say a forgery occurs if V accepts, and the veri�cation key sig vk in that session was used by S2,but with a new transcript/signature pair. Let Expt1A(k) be ExptA(k) except that if a forgery occurs,the experiment halts and fails. Let p0 = Pr[Expt1A(k) = 1].First, by the existential unforgeability property of SIG1, we show that the di�erence between pand p0 is negligible. We do this by constructing a non-uniform probabilistic polynomial-time attackerB1 that can break SIG1 with probability �1 = 1c (p � p0), where c is the number of sessions A2 startswith the simulator in ExptA(k). The input to B1 is a veri�cation key sig vk and a signature oracleOSignsig vk. B1 chooses d R f1; : : : ; cg, and then runs the experiment ExptA(k), running the simulatorand veri�er as normal, except for inserting sig vk into the dth instance of S2 and using OSignsig vkto perform the signature operation for sig vk in that instance. If a forgery occurs with veri�cationkey sig vk, B1 halts and outputs the forgery, i.e., the transcript and signature provided by A2 for itssession with V. The view of A in this slightly modi�ed experiment is the same as the view of A inExptA(k) until a forgery occurs. Thus, since a forgery occurs with probability p � p0, and since if aforgery occurs, B1 will break the SIG1 on sig vk with probability 1c , B1 breaks SIG1 with probability�1 = 1c (p� p0).Next, we show that p0 is negligible. We do so by constructing a probabilistic polynomial-timeattacker B that breaks the simulation-sound binding property of the SSTC scheme TC with probabilityat least �0 = (p0)2 � 2�k. The input to B is a public key pk for the SSTC scheme TC and a simulatorSTC(sk) with the corresponding secret key, as in the de�nition of the SSTC scheme (De�nition 3.1).The breaker B runs the experiment Expt1A(k), running the simulator S and veri�er V as normal,except for using pk as the common reference string. When S2 needs to open a decommitment, B asksthe supplied simulator STC to do so. Before V sends a challenge to A2, B forks the experiment andcontinues independently in each sub-experiment (thus giving independent random challenges to A2).Then B examines the output (x; tr1; b1) and (x; tr2; b2) in each sub-experiment. If b1 = b2 = 1 andx 62 LR (call this a successful sub-experiment), and also the challenges in each sub-experiment aredistinct, then we conclude that the adversary A must have successfully decommitted to two di�erent�rst messages of protocol �. In other words, A has produced (a1; deca1) and (a2; deca2) such thatTCver(pk; coma; a1; sig vk; deca1) = 1 and TCver(pk; coma; a2; sig vk; deca2) = 1 for some coma. Weknow that it must be the case that a1 6= a2, since by weak special soundness of protocol �, if x 62 LR,then there do not exist two accepting conversations with the same �rst-message in �.Now we determine the success probability of B. First note that for each sub-experiment, theview of A is perfectly indistinguishable from the view of A in Expt1A(k), and thus the probability ofsuccess in each sub-experiment is p0. Second, note that the probability of a random collision on k-bitchallenges is 2�k. Then we can determine the success probability of B using Lemma D.1, as follows.34

A is a random variable denoting possible runs of experiments up to the challenge from V. Ba is arandom variable denoting the remainder of a run of an experiment after initial part a in the support ofA. For any a in the support of A, and for any b1 and b2 in the support of Ba, the predicate Colla(b1; b2)is de�ned to be true if the challenges from V are equal in b1 and b2. Thus a pair (a; b) indicates afull run of the experiment, the predicate �(a; b) indicates success in the experiment, and the predicate�(a; b1; b2) indicates success in each sub-experiment corresponding to runs (a; b1) and (a; b2), with thechallenges from V in b1 and b2 being distinct. Therefore �(a; b1; b2) indicates that B0 succeeds, andhence by Lemma D.1, we see that B0 succeeds with probability at least �0 = (p0)2 � 2�k.Proof: (Proof of Theorem 4.2)Completeness: Straightforward.Reference string indistinguishability: Straightforward.Extractor indistinguishability: It follows from the extractor indistinguishability of �[�](x).Unbounded ZK: By inspection, S1(1k) produces exactly the same distribution as the real protocol.Next, notice that S 0 runs S2 only when (x;w) 2 R; the trapdoor property of the SSTC scheme en-sures that the faked commitment/decommitment are computationally indistinguishable from the realcommitment/decommitment; and that protocol � is honest-veri�er ZK, and is thus witness indistin-guishable. The unbounded ZK-ness follows from these facts by a straightforward hybrid argument.Extraction: The proof is very similar to the proof of unbounded non-malleability of the NMZKconstruction in [31]. It is also very similar to the proof of simulation-soundness of Theorem 4.1.For an adversary A = (A1;A2), recall the experiments ExptA(k) and ExptEA(k) in the de�nition ofnon-malleable ZK. Let p1 = Pr[ExptA(k) = 1] and p2 = Pr[ExptEA(k) = 1]. Our goal is to show thatjp2 � p1j is negligible.Say a forgery occurs if V or E2 accepts, and the veri�cation key sig vk in that session was usedby S2, but with a new transcript/signature pair. Let Expt1A(k) be ExptA(k) except that if a forgeryoccurs, the experiment halts and fails. Let p01 = Pr[Expt1A(k) = 1]. Similar to the proof of Theorem 4.1,we can show that p01 = p1 � c�1, where c is the number of sessions A2 starts with the simulator inExptA(k), and �1 is negligible.Now let Expt2A(k) be ExptEA(k) except that if a forgery occurs, the experiment halts and fails. Asabove, we can show that p02 = p2 � c�2, where �2 is negligible.Let p00 be the probability in Expt2A(k) that E2(�) outputs (1; w) for a session with common inputx, and (x;w) 62 R. Using the extraction property of protocol �, as in the proof of Theorem 4.1one can show that there is a non-uniform probabilistic polynomial-time breaker B that breaks thesimulation-sound binding property of the SSTC scheme TC with probability at least �0 = (p0)2 � 2�k.Thus p00 is negligible.By extractor indistinguishability again, the probability of producing output b = 1 with a uniquetranscript in Expt1A(k) and Expt2A(k) is the same, so p02 = p01 � p00.Then p1 = p01 + c�1 = p02 + p00 + c�1 = p2 � c�2 + c�1 + p00, so jp2 � p1j � c�1 + c�2 + p00, which isnegligible.Proof: (Proof of Theorem 4.3)We will prove the theorem for the case of adaptive corruptions. The case of static corruptions issimilar. For simplicity, we denote the protocol MYZKR[pk;�](x) with the extra erasing step by �̂.Let A be an adversary that operates against protocol �̂ in the FDCRS-hybrid model. We constructan ideal process adversary S such that no environment Z can tell whether it is interacting with A and�̂ in the FDCRS-hybrid model, or with S in the ideal process for F̂RZK.For simplicity, we will assume only one copy of F̂RZK is accessed by Z. Obviously we could duplicatethe actions of S for each copy of F̂RZK (di�erentiated by the sid value).Formally, let � be the
-protocol in the construction of protocol �̂ with simulator S� and extractorE� = (E�;1; E�;2). 35

At the beginning of the ideal process, the ideal adversary S generates (�; �) E�;1(1k) and(pk; sk) R TCgen(1k), uses (pk; �) as the common reference string for FDCRS, and stores sk and � .During the ideal process, S runs a simulated copy of A. Messages received from Z are forwardedto the simulated A, and messages sent by the simulated A to its environment are forwarded to Z.If S receives a message (ZK-PROOF; sid; ssid; Pi; Pj ; x) from F̂RZK, i.e., Pi is uncorrupted and hasgiven a witness w to F̂RZK such that (x;w) 2 R, then S simulates Pi using the trapdoor property of theSSTC scheme. In particular, S generates (gcom; �) TCfakeCom(pk; sk; hPi; Pji) and sends (x;gcom)to Pj as the �rst message. If Pi receives a challenge c from Pj , S simulates Pi as follows. First itinvokes the simulator S� to obtain an accepting conversation (a; c; z) S�(x; �; c). Then, S generatesa decommitment for a by setting fdec TCfakeDecom(�;gcom; hPi; Pji; a). Finally S sends (a; fdec; z)to Pj .If Pi is corrupted before receiving a challenge, then the witness w is revealed. In this case, Sgenerates a as a normal prover would, by a a�(x;w; r; �) where r is chosen randomly. Then Sgenerates a decommitment fdec for a, just as in the previous case. Thus all session values (w, a, r, andfdec) can be provided to A.If Pi is corrupted after sending out the �nal message, again the witness w is revealed. The sessionvalues a and fdec have already been determined (and sent), and the randomness r has been erased.Thus all non-erased session values (w, a, and fdec) can be provided to A.If Pj is uncorrupted and receives a �rst message from a prover Pi, say for a value x in session ssid,then S simulates Pj as in the actual protocol �̂, i.e., it sends back a random challenge c. When Pjreceives the �nal message (a; deca; z) in session ssid, S performs the veri�cations speci�ed in protocol�̂ (for the decommitment and
-protocol �) and, if these pass, proceeds as follows.1. If Pi is uncorrupted, S forwards the message (ZK-PROOF; sid; ssid; Pi; Pj ; x) to the actual un-corrupted Pj .2. If Pi is corrupted, but S had previously received a message (ZK-PROOF; sid; ssid; Pi; Pj ; x) fromF̂RZK | this happens when Pi is corrupted during a UCZK protocol | then using the witness wthat was revealed when Pi was corrupted, S sends (zk-prover; sid; ssid; Pi; Pj ; x; w) to F̂RZK; andforwards the response from F̂RZK to Pj.3. Otherwise, S runs the extractor E�;2(x; �; (a; c; z)) which outputs a potential witness w. S sends(zk-prover; sid; ssid; Pi; Pj ; x; w) to F̂RZK; and forwards any response from F̂RZK to Pj .Now we show that HYBFDCRS�̂;A;Z c� IDEALF̂RZK;S;Z ;which implies our theorem.First we de�ne a new experiment MixA;Z(k). Intuitively, this new experiment is a \mixture" of thehybrid model and the ideal process, in that an uncorrupted party acting as a prover is handled as in theideal process (i.e., the trapdoor property of the commitment scheme is used to enable it the simulationof a prover in the
-protocol), but an uncorrupted party acting as a veri�er is handled as in the hybridmodel (i.e., no extraction takes place).21 More precisely, the experiment generates (�; �) E�;1(1k)21It may be tempting to switch these (i.e., in the mixed protocol, the prover is handled as in the hybrid protocol,and the veri�er is handled as in the ideal protocol), and argue that simple trapdoor commitments would su�ce. Theargument would go as follows: (1) The output of the hybrid protocol and the mixed protocol would be indistinguishable,by the extraction property of the
-protocol; and (2) The output of the mixed protocol and the ideal protocol would beindistinguishable, by the trapdoorness property of the trapdoor commitment protocol, and by the SHVZK property ofthe
-protocol. However, this argument is awed. In particular, the SHVZK property does not hold if the adversary isalso given access to the knowledge of whether the
-protocol extractor is successful. In fact, the success/failure of thisextractor distinguishes between a real prover's output and the SHVZK simulator's output.36

and (pk; sk) R TCgen(1k), and just as in the case of IDEALF̂RZK;S;Z , (pk; �) is used as the commonreference string for FDCRS, and sk and � are stored. Then the experiment runs simulated copies of Z andA. Messages sent by Z to the adversary are forwarded to A, and messages sent by A to its environmentare forwarded to Z. If an uncorrupted party Pi receives input (zk-prover; sid; ssid; Pi; Pj ; x; w) fromZ with (x;w) 2 R, it generates its messages in the same way as S above. Corruptions are handledin the same way as S above. An uncorrupted party Pj responds to a prover as in the actual veri�erprotocol in �̂. Finally, the output of MixA;Z(k) is the output of Z.LetMIXA;Z denote the distribution ensemble of random variable describing the outputs ofMixA;Z(k).First, we can show that HYBFDCRS�̂;A;Z c� MIXA;Z . This follows from the trapdoor property of the SSTCscheme and a straightforward hybrid reduction to the SHVZK property of the
-protocol �.Now we show that MIXA;Z c� IDEALF̂RZK;S;Z , which will �nish the proof of the theorem.Let � = jPr[IDEALF̂RZK;S;Z(k)]�Pr[MixA;Z(k)]. We shall prove that � is negligible. Notice that theonly di�erence between experimentMixA;Z(k) and the ideal process is in the case when S is simulatingan uncorrupted veri�er Pj , and attempts to extract a witness from a corrupted prover Pi but fails.Thus � is a lower bound on the probability of failing to extract a witness.Now we de�ne an experiment ExptOneS;Z(k) that runs S and Z in the ideal process, returning 1on the failure of S to extract a witness. By the discussion above, Pr[ExptOneS;Z(k)] � �. Now say asession has index (�; �) if it is the �th session between prover Pi and veri�er Pj , and (Pi; Pj) is the�th di�erent prover/veri�er pair for which a session has been started. In this case, we say Pi (Pj) isthe prover (veri�er) associated with index (�; �). Let ExptOne(�;�)S;Z (k) denote the same experiment asabove, except that it returns 1 if and only if S fails to extract a witness for the �rst time in the sessionwith index (�; �). (Note that we may assume this experiment halts and outputs 0 if, assuming Pi andPj are the prover and veri�er, respectively, associated with index (�; �), Pj is ever corrupted, Pi isuncorrupted when Pj receives the �rst message in the session with index (�; �), or the session withindex (�; �) �nishes with a successful extraction.) Then if at most u sessions are started, it is easy tosee that for some (�; �) with �; � 2 f1; : : : ; ug, Pr[ExptOne(�;�)S;Z (k)] � �=u2. Call the lexicographically�rst such session index (�0; �0).Now let ExptTwo(�;�)S;Z (k) denote the same experiment as above, except that if the prover Pi as-sociated with index (�; �) is uncorrupted and starts a session with Pj , then the challenge c from Pjis chosen, an accepting conversation is produced by the simulator (a; c; z) S�(x; �; c), the commit-ment/decommitment pair is produced for a as normal by (coma; deca) TCcom(pk; a; hPi; Pji), and(x; coma) is sent to Pj . If Pj receives this message, it sends challenge c, and if Pi receives this challenge,it responds using the z value computed by the simulator. Note that Pi does not use the trapdoor prop-erty of the commitment scheme for tag hPi; Pji, but it still simulates the
-protocol � exactly as inExptOne(�;�)S;Z (k).22 By the trapdoor property of the commitment scheme, Pr[ExptTwo(�0;�0)S;Z (k)] � ,for some c� �=u2.Now we construct an adversary B that breaks the SSTC scheme TC with probability at least 2 � 2�k. Since u is polynomial, this will imply that , and hence �, is negligible. We describe theadversary B. Let B take a public key pk of TC along with its corresponding equivocation oracle.First B chooses random �; � 2 f1; : : : ; ug, and then it runs ExptTwo(�;�)S;Z (k) except for (1) changingthe common reference string to include pk as the public key of the SSTC scheme, (2) having S usethe equivocation oracle to fake commitments. Also, before sending a challenge in the session withindex (�; �) B forks the experiment and continues independently in each sub-experiment (i.e., sendingrandom independent challenges in the session with index (�; �) in each sub-experiment). Let � be the22Note that we would not be able to complete the simulation if Pj were corrupted, but in this case the experimentwould halt and output zero anyway. 37

event that each sub-experiment halts and outputs 1, and the challenges in each sub-experiment aredistinct. If � occurs, then we know that A has decommitted di�erently in the two sub-experiments.This is because of the extraction property of the
-protocol: if A had decommitted in the same way,then there would exist two accepting conversations with the same �rst-message, and a witness wouldhave been extracted. Thus B has obtained two di�erent decommitments for a commitment with taghPi; Pji. Note that by the authenticated channels assumption, since Pj is uncorrupted, no other partycould send a message ostensibly from Pj . Then by the de�nition of the experiment, the equivocationoracle is not called for the tag hPi; Pji By Lemma D.1, Pr(�) � 2 � 2�k. Therefore, B breaks theSSTC scheme TC with probability at least 2 � 2�k, as claimed above.E Signature Scheme De�nitionsA signature scheme SIG is a triple (sig gen; sig sign; sig verify) of algorithms, the �rst two being prob-abilistic, and all running in polynomial time (with a negligible probability of failing). sig gen takes asinput 1k and outputs a public key pair (sig vk; sig sk), i.e., (sig vk; sig sk) sig gen(1k). sig sign takesa message m and a secret key sig sk as input and outputs a signature � for m, i.e., � sig sign(sk;m).sig verify takes a message m, a public key vk, and a candidate signature �0 for m as input and re-turns the bit b = 1 if �0 is a valid signature for m for the corresponding private key, and otherwisereturns the bit b = 0. That is, b sig verify(sig vk;m; �0). Naturally, if � sig sign(sig sk;m), thensig verify(sig vk;m; �) = 1.Security for signature schemes We specify existential unforgeability against adaptive chosen-message attacks [35] for a signature scheme SIG = (sig gen; sig sign; sig verify). A forger is given sig vk,where (sig vk; sig sk) sig gen(1k), and tries to forge signatures with respect to sig vk. It is allowedto query a signature oracle (with respect to sig sk) on messages of its choice. It succeeds if afterthis it can output a valid forgery (m;�), where sig verify(sig vk;m; �) = 1, but m was not one of themessages signed by the signature oracle. We say a forger (t; q; �)-breaks a scheme if the forger runs intime t(k) makes q(k) queries to the signature oracle, and succeeds with probability at least �(k). Asignature scheme SIG is existentially unforgeable against adaptive chosen-message attacks if for all tand q polynomial in k, if a forger (t; q; �)-breaks SIG, then � is negligible in k.In a one-time signature scheme, security is formulated as above except that the adversary mayonly query the signature oracle once, and we call it \existential unforgeability against chosen-messageattacks," since the term \adaptive" only makes sense with multiple queries. We note that one-time signatures scheme can be made very e�cient since they don't need public-key cryptographicoperations [24]. In a strong one-time signature scheme [47], we require that a forger is not even ableto produce a di�erent valid signature on a message that was signed by the signature oracle. A strongone-time signature scheme can be constructed from any one-way function [47].F Number-Theoretic AssumptionsWe review some of the number-theoretic assumptions used in this paper.The Strong RSA assumption. The Strong RSA assumption is a generalization of the standardRSA assumption which (informally) states that given an RSA modulus N and an exponent e, it iscomputationally infeasible to �nd the e-th root of a random x. Informally, the strong-RSA assumptionstates that it is infeasible to �nd an arbitrary non-trivial root of a random x.38

More formally, we say that p is a safe prime if both p and (p�1)=2 are prime. Then let RSA-Gen(1k)be a probabilistic polynomial-time algorithm that generates two random k=2-bit safe primes p and q,and outputs N pq.Assumption F.1 (Strong-RSA) For any non-uniform probabilistic polynomial-size circuit A, thefollowing probability is negligible in k:Pr[N RSA-Gen(1k);x Z�N; (y; e) A(1k; x;N) : ye � x mod N ^ e � 2]The Strong RSA assumption was introduced by Bari�c and P�tzmann [1], and has been used inseveral applications (see [30, 32, 14]). It is a stronger assumption than the \standard" RSA assumption,yet no method is known for breaking it other than factoring N .The Cramer-Shoup Signature Scheme Cramer and Shoup [14] presented an e�cient signaturescheme that is existentially unforgeable against adaptive chosen-message attacks under the Strong RSAAssumption, formally de�ned in Appendix F. In addition to the main security parameter k, they usea secondary security parameter k0 for public key modulus size.23 The value k0 is dependent on k andis set so that known attacks on public key systems with modulus size k0 are at least as hard as knownattacks on hash functions and other brute-force attacks on systems with main security parameter k.Here we describe their scheme, which we denote SIGCS = (sig genCS; sig signCS; sig verifyCS).24� sig genCS(1k):p; q SafePrime(1k0=2); N pq; x; h R QRN ; e0 Prime(1k+1);H Hash(1k); sk hp; qi; vk hN;h; x; e0;Hi;return (vk; sk).� sig signCS(sk;m):y0 R QRN ; x0 (y0)e0 � h�H(m) mod N ; e Prime(1k+1)nfe0g;y �xh�H(x0)�e�1 mod �(N) mod N ;return he; y; y0i;� sig verifyCS(vk;m; he; y; y0i):if e is not an odd k + 1 bit number, or e = e0, return 0;x0 (y0)e0 � h�H(m) mod N ;if x � yehH(x0) mod N return 1, else return 0.As a technical note, instead of an expected polynomial-time algorithm for prime generation, weassume a probabilistic strict polynomial-time algorithm that has a negligible probability of failing.This has no e�ect on the following security result.Theorem F.2 ([14]) The Cramer-Shoup signature scheme is secure against adaptive chosen-messageattack, under the Strong RSA Assumption and the assumption that H is collision-resistant.23For today's technology, reasonable values may be k = 256 and k0 = 1024.24Some technical notations: a prime number p is a safe prime, if (p� 1)=2 is also a prime number. SafePrime(1n) isthe set of all n-bit safe prime numbers; Prime(1n) is the set of all n-bit prime numbers; QRN is the set of all quadraticresidues in Z�N, and Hash(1n) is a set of e�cient hash functions that maps strings of arbitrary length to an n-bit string.
39

DSA The Digital Signature Algorithm [37] was proposed by NIST in April 1991, and in May 1994was adopted as a standard digital signature scheme in the U.S. [28]. It is a variant of the ElGamalsignature scheme [23], and is de�ned as follows, with two security parameters k and k0 as in theCramer-Shoup signature scheme.25� sig genDSA(1k):q 0(1k); p Prime(1k0), where qj(p� 1); g R Z�p, where order(g) = q;x R Zq; y gx mod p; sk hg; p; q; xi; vk hg; p; q; yi;return (vk; sk).� sig signDSA(sk;m):v R Zq; r gv mod p; s v�1(H(m) + xr) mod q;return hr mod q; si.� sig verifyDSA(vk;m; hr0; si):If 0 < r0 < q, 0 < s < q, and r0 � ((gH(m)yr0)s�1 mod q mod p) mod q, return 1, else return 0.The security of DSA intuitively rests on the hardness of computing discrete logarithms, but thereis no known security reduction that proves this. However, it is often simply assumed that DSA isexistentially unforgeable against adaptive chosen-message attack.

25In the DSA standard, k, k0, and H are �xed in the following way: k = 160, k0 is set to a multiple of 64 between512 and 1024, inclusive, and hash function H is de�ned as SHA-1 [27]. However, we will use these parameters as if theycould be varied according to the security level desired. 40

