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This paper proposes to uskalgebrasto specify the semantics of interactive systems in a natural
way. Dialgebras are a conservative extension of coalgebralsis categorical model, from the point
of view that we provide, the notions of observation and iatépn are separate features. This is
useful, for example, in the specification of process eqaeiveds, which are obtained as kernels of the
homomorphisms of dialgebras. As an example we present yimela©onous semantics of the CCS.

1 Introduction

The notions ofnteractionandobservatiorplay a key role in the semantics of concurrent and interactiv
systems. Arinteractivesystem or process (imagine a web service, or an operatirigrsyss typically
not required to terminate, but it is not always equivalenth® deadlocked machine. This is because,
along the execution of a system, the external environmealiogved to interact with the program and
observe some side effects (typically, output from the systself).

However clear in principle, this intuition is lost whenewbe semantics of an interactive system
is modelled usindabelled transition system@&TSs) or their categorical generalisation, the so-called
coalgebras The reason is that every interaction that a system makés thvit external world, be it
originated from the environment, or from an internal actadrthe system itself, is described in the same
way, as a transition from one state to the next.

In this work we turn our attention to a class of categoricabtiele calleddialgebras Dialgebras are a
straightforward generalisation of both algebras and egaigs. We interpret these models as a framework
where one can describe separately the states of the sys$tenmteéractions that the environment and a
process may have in each state, and the resulting obsersatio our interpretation, dialgebras provide
side-effecting operations, therefore providing both eatg and observations simultaneously.

The above is strongly reminiscent of the distinction betwegput and output in computer science.
Thinking of interaction with the environment as an input tpracess, and observation as its output,
Mealy machines [5] come to mind. These are functibrsX — O x X, for X, | andO the set of states
of the system, possible input values, and possible outguesarespectively. It turns out that one of the
simplest and more familiar examples of a dialgebra is a Me®ghine; in the same fashion, one of the
simplest and more familiar examples of coalgebra is an LT motivates the following slogan.

Coalgebras generalise labelled transition systems; diadfpras generalise Mealy machines.

As it happens with coalgebras w.r.t. LTSs, the merit of theegalisation is in the fact that, since
dialgebras form a category, these generalised Mealy mesldre now equipped with a standard notion
of equivalence, which is given by the kernel of morphismshef¢ategory.

So, in our framework, the semantics of a programming langusigiven in terms of a dialgebra. The
latter, as we will see, is a functiohfrom a setFX to a setBX. F andB are parametrised iK, which is
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the set of states of a systefdescribes a type axperimentshat an ideal observer can conduct. Then,
results are observed, belonging to theBXtof possibleobservations The way to define the semantics
is by choosing appropriate experiments and observatiams,dafining such a functiori. From this
information, using a small amount of category theory, addath equivalence relation, called dialgebraic
bisimilarity, is defined orX. Roughly speaking, two processes are dialgebraic bigiifilaey exhibit the
same observations in the same experiments, and the stayaetcth after the experiments are bisimilar.

An example where it is useful to distinguish between inteéoacand observation iasynchronous
semantics. Asynchronous communication may be summarigedying that “the observer can not see
the input actions of a process”. More precisely, the obseraa not tell input actions from internal
computations. In the dialgebraic perspective that we mepan asynchrony, the observer can either
sit and look at the system, seeing its output and internalpcations, or try to send messages to it.
However, a process can either read a message, or consumesagaegithout actually reading it, and
store it for later processing. The observer can not tell Weedases apart.

We provide a dialgebraic semantics of the asynchronous @@ prove that the obtained equiv-
alence relation coincides with strong asynchronous biaiity. In this case, we make a distinction
between an underlyingperational semanticerhich is expressed by the well-known LTS for the CCS,
and the dialgebraic semantics, built on top of it, which gpesthe semantic equivalence relation. Bisim-
ilarity of the LTS of the operational semantics, which isoatlsesynchronousemantics, is not taken into
account in the definition of the dialgebraic semantics.

Using a LTS is not necessary at all to specify a dialgebra. Weamostly for the sake of sim-
plicity: the asynchronous LTS semantics of process calswdiready well-understood. The operational
semantics could in turn be defined as a dialgebra directihestructure of processes (sg&for a brief
discussion). On the other hand, the usage of a (howeverfiguBobperational semantics upon which
a process equivalence is based can be considered at leasirang pattern for the design of process
equivalences. The definition of the semantic equivalencgbaaplit in three steps, that we cakecute
interact observe

execute: the system is run by the means of its operational semangpesjfging some side effects of the
process at each state of its execution;

interact: the observer does experiments on the running system;

observe: results are collected, allowing the observer to classifycpsses by how they react to experi-
ments, giving rise to the behavioural equivalence of choice

In coalgebras, these three steps are often tied to eachaidenot so easily separated. Dialgebras
give us a different perspective on bisimilarity, where samtons are originated by a running process,
and some others by the external environment. The procestharehvironment may be very different,
and the syntax of experiments is not (necessarily) the santkeasyntax of processes. This is not so
uncommon. Think e.g. of analysis or monitoring for secuptyptocols. The entities (systems) that
are being “observed” may be unknown machines or even humagse The syntax of experiments
conducted on such entities may have nothing in common wélefttities themselves.

Example 1. For a classical example, think of an human (the observenoint fof a drink-vending ma-
chine. The observer can make experiments, such as pressrguttons, inserting coins etc. A pre-
condition for being able to tell something (and eventualyf g drink) is that the machine is running.
That is, a current state of the machine is defined, and the imat¢tas an underlyingperational se-
mantics which is what the machine really does, independently framatthe observer sees. While the
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machine is running, the observer performs its experimeants, observes some side-effects. The ma-
chines reaches a new state. This is an example where thefsyhéxperiments” (e.g. inserting a coin,
or pressing a button) is not the “syntax of the vending maghivhich would be describing its internal
mechanics.

Related work. The study of dialgebras in computer science was initiatefffjrfor the categorical
specification of data types, and further investigated ferdhme purpose inl[9]. So far, they have not
been explored in detail. In this work we divert from the earliesearch line: we find applications of
dialgebras to programming language semantics, and lodlkedi¢havioural equivalences they induce on
processes. Moreover, even though we do not provide exanmaies current paper, we do not restrict our
attention just to the polynomial functors as the syntax @ieginents (therefore, we use the equivalences
from kernels of morphisms instead of the relational liftumged in[[9]). This is since we expect that more
complex functors may have useful applications (§8e

Map of the paper. In §2 we give the definitions of algebras and coalgebras, for esispn with
dialgebras. I3 we give the definition of a dialgebra and explain their i@t use. {4 we present
the asynchronous semantics of the CCS{Hnve give a dialgebraic semantics to the CCS that coincides
with the asynchronous one. #&l we informally discuss other examples of dialgebras. Ririal {7 we
sketch some possible future directions.

2 Algebras and Coalgebras

Algebras and coalgebras provide an established methogd@oghe specification of programming lan-
guage syntax and semantics. We give here a brief introdutitithe definitions of algebra and coalgebra
in a category, tailored to a comparison between these twsieartions and that of a dialgebra. For more
details and pointers to the rich existing literature on bfgse and coalgebras, séel[10].

First we give the preliminary notion oflkernel For the category-theoretical concepts that we men-
tion, we refer the reader to some basic category theory beedk €.9. [2]).

Definition 1. The kernel off : X — Y in a categonC is the pullback (if it exists) of the diagrar f.

When C = Set the kernel off (up-to isomorphism) is the s&er f = {(x1,%2) € X x X | f(x1) =
f(x2)}, equipped with the two obvious projections; this is an egerce relation oix.

Definition 2. (algebra)Given a endofunctoF in a categoryC, anF-algebra is a paifX, f : FX — X).
An homomorphisnbetween twadF-algebras(X, f) and(Y,g) is an arrowh : X — Y such thatho f =
go Fh, that is, the following diagram commutes:

h
FX — 2 FY

X—Y

WhenF is apolynomialfunctor, andC is Set then the notion oF-algebra coincides with the classical
notion of algebra for a signature (to recover the full powkeguational specifications, one needs the
stronger notion of algebra ofraonad which is out of the scope of this discussion).
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Reminder: algebras specifyoperations on the elements of a set.

For example, one can specify the signature (not the equ&taira monoid by providing a set and
the interpretation of composition and identity. In otherrdsy a monoid can be regarded as an algebra
for the functorFX = 1+ X x X, that is, a seX and a functionf : 14 (X x X) — X. The functionf is the
co-pairing off; : 1 — X, which is the interpretation of the identity of the monoiddaf, : X x X — X,
which interprets composition.

Of particular relevance for programming language semantichat algebras specify trabstract
syntaxof programming languages, by providing operations on absByntax terms that can be applied
to build larger terms. The functdt provides a syntax to describe operations on elements, aalfjenra
(X, f) gives the semantics of such a syntax, by computing elementsf these operations.

Definition 3. (coalgebra)Given an endofunctoB in a categoryC, a B-coalgebra is a paifX, f : X —
BX). An homomorphisnbetween twa-coalgebrag X, f) and(Y,g) is an arrowh : X — Y such that
Bho f =goh, that is, the following diagram commutes:

h

X—Y

BX — . BY

A coalgebra in the categoigetof sets and functions is a functidn: X — BX for some behavioural
endofunctoB : X — X. The action ofB on objects yields a s&X for eachX, which is intended to be
thetransition typeor observation typef the system.

WhenBX = Zsin(L x X) andC is Set so thatX is a set, then &8-coalgebraf coincides with the
classical notion of labelled transition system (LTS) witibéls inL. Here,X is the set of states of the
systemL is the set of labels, and for atle X, f(x) is a set oflabelled transitionsthat is, pairs(¢,x)
consisting of a label and a destination state.

Reminder: coalgebras specifyobservations on the elements of a set.

For example, one can specify an interactive system by pirayid setX of states and a transition
function f : X — Zn(L x X) describing the non-deterministic observations that wernake about the
execution of a process, such as an input, an output, or amahteomputation. It is useful to think af,
in this specific case, as the typeside effect®f the program execution.

The crucial fact about coalgebras is that they form a categord the natural equivalence relation
obtained by the kernel of homomorphisms generalises Hesiityi of LTSs.

By changing the transition typB, one gains generality w.r.t. LTSs. For instance, one can use
the probability distribution functo in combination with other functors to express various degref
probabilistic systems [11].

3 Dialgebras

Behavioural equivalences, such as bisimilarity, are @ibiaot based on the syntax of processes. Rather,
an externabbserveris assumed, that can see their behaviour. Processes avalegtiwhen the external
observer can not tell them apart.
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In this section we introduce dialgebras. We will see thatrthteiral equivalence relation induced by
morphisms is still based on behaviours. However, the eatainserver is now endowed with the power
to interact with the system, by doirexperimentandobservingthe results.

Definition 4. (dialgebra)Given a category, and two endofunctd?ﬂz, B:C— C, a(F,B)-dialgebrais
a pair(X, f) whereX is an object and : FX — BXis an arrow ofC.

We will just refer to such a structure aslmlgebrawhenF andB are clear from the context. In the
remainder of this section, let us fix two endofunctBrandB.

We callF theinteractionfunctor, as it is intended to provide a syntax for constngtxperiments.
The functorB is theobservationfunctor, which is the type of the observed results.

Definition 5. (dialgebra homomorphisnGiven two dialgebragX, f) and(Y,g), adialgebra homomor-
phismfrom (X, f) to (Y, g) is an arrowh: X — Y such thago Fh = Bho f, that is, the following diagram
commutes

h
FX — " FY
f g
Bh

BX —— BY

(F,B)-dialgebras and their homomorphisms form a category. Gieathen B = Id (the identity
functor) one recovers the category Bfalgebras, and wheR = Id one recovers the category 8f
coalgebras. In this work, we only focus on dialgebras in diegorySetof sets and functions.

Example 2. Non-deterministic Mealy machines are dialgebras for theforsFX =1 x X andBX =
Z5in(0 x X), for | the set of input values arfd the set of output values.

A dialgebra allows one to specify a set of experimdrks that, when executed trough give rise
to observations ilBX. For a comparison, we mentidnalgebras A bialgebra[12] is a paif f,g) of
an algebraf : FX — X and a coalgebrg : X — BX having the same underlying s¥t The algebra
is used to construct elements, the coalgebra to observe tB@ery bialgebra is also a dialgebra (the
compositego f : FX — BX). Whereas a bialgebra specifies a set equipped with twoaepaithough
possibly nicely interacting, coalgebraic and algebraierafions, adialgebra specifies a set equipped
with operations that behave algebraically and coalgealigiat the same time. The interpretation of the
“algebraic operations” (the experiments) of a dialgebrasdoot yield a result, but rather an observation
on it. When using dialgebras, just like in algebras, the nlesecan formally specify a structure (the
experiment) that will be executed; just like in coalgebrdie observer interacts with the system in a
step-wise fashion: at each state, an experiment can be cauglwyielding observations and possibly
subsequent states, on which further experiments are pessib

Reminder: dialgebras specifyoperations on the elements of a set, that yieldbservations as a result.

We now define the underlying equivalence of a dialgebra.

Definition 6. (dialgebraic bisimilarity)Given a dialgebrdX, f), dialgebraic bisimilarity is the relation
~C X x X induced by the kernel of any homomorphisims (X, f) — (Y,g) on the underlying seX.
That is, we say that~y < 3(Y,g).3h: (X, f) — (Y,0).h(x) = h(y).

1in [@], F andB just are required to have the same codomain, not to be enctofisn The simplified definition we adopt is
sufficient for this paper.
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In the rest of the paper, we are going to see how to use diagebmodel asynchrony. An example
characterisation of the equivalence induced by morphissng back-and-forth condition, as typical in
bisimilarity of LTSs, is given in Definitioh 12 and Theorém 1.

4 The asynchronous CCS

4.1 Syntax and operational semantics

Thecalculus of communicating systef@CS) [6] is a simple language for studying interactive sy,
featuring interleaved parallel composition and synctration over named channels. In this paper, we
use the asynchronous semantics. The definitions we adog from the ones for tha-calculus in[[1];

we refer the reader to that work for an in-depth study of abymay in process calculi.

Let C denote a countable set ohannels DefineL; =C, L, = {c[ce C}, Ly = {1}, L=LU
Lo UL, the set ofinput labels output labelsinternal labels andlabels respectively. These labels are
observations on a system, representing sendih@r(receiving €) an input signal on a channe] or
doing an internal computation step

Definition 7. (CCS syntaxJhe syntax of the asynchronous CCS is defined by the follogiagnmar,
wherec ranges over a countable €&bf channel names

P:=0|1.P|cP|C|P||P|P+Q

We omit the replication and restriction constructs. Thisla;e for ease of explanation as adding
them does not affect our proofs. From now on Xetenote the set of agents. In the syntax, 0 represents
the empty process, that does nothimd? performs an internal computation step and then behaves as
c.P waits for an input signal on channeland then behaves &s ¢ sends an output signal on chanogl
Py || P, is the parallel composition d® andP,; P+ Q denotes non-deterministic choice.

Definition 8. (CCS operational semantic3he operational semantics is given in the form of a LTS
t: X — Ziin(L x X), defined by the following rules:

cP-%P(n) TP-SP(tay) ¢S 0(out)

P a9 Y ) PP Oy
PIQ—P[Q PIQ—P|Q PIQ—P[Q
PP —>apl (su Q= —;QI (sun)
P+Q—FP P+Q—(Q

Rules(in), (tau), and (out) are straightforward. Rulegpar) and (par’) allow components to run in
parallel in an interleaved fashion. Rulgyn allows a process that can do an input and a process that can
do an output to synchronise. Rulesim and(sum) allow a non-deterministic choice to take place.

4.2 Asynchronous bisimilarity

We define asynchronous bisimulation and bisimilarity digefor CCS terms.

Definition 9. (CCS asynchronous bisimilarityd relation R C X x X is anasynchronous simulatioif
and only if, wheneve(x,y) € R, andx -2, ¥, then there i/ such that:
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e if a =T ora = cfor somec, theny —*+ y and(X,y) € R;

e if a = cfor somec, thenc]ly —y and(X,y) € R
or, equivalently
if a = cfor somec, then(X,y') € Rand eithey —y ory ——y’ withy =c|| y".

An asynchronous bisimulatiois a simulatiorR such thaR is a simulation Asynchronous bisimilarity
is the largest bisimulation.

We writex ~ y whenevel is asynchronous bisimilar tg or equivalently there is some asynchronous
bisimulationR such that(x,y) € R. In asynchronous bisimilarity, input labels can be matcheasely”
by at transition that stores an output process in parallel withékecution. We are going to see how
to turn this definition into dialgebraic bisimilarity. Befthat, we remark that synchronous bisimilarity
(that would be obtained by employing strong bisimilarity the LTS from Definitior 8) is included in
the asynchronous one. The inclusion is strict. Two procets® are not synchronous bisimilar but are
asynchronous bisimilar aec.0+ 7.0 andt.0 (example adapted from![1], where a thorough discussion
can be found).

5 Observing interactions

Asynchronous bisimilarity does not coincide with the cediic bisimilarity obtained from the tran-
sition system of Definition]8. We define a dialgebra whose &states is that of the CCS agents, and
where dialgebraic bisimilarity is asynchronous bisimtiar

5.1 Dialgebra for the asynchronous CCS
First, we define, and fix hereafter, a specific pair of intécgicand observation functors.

Definition 10. (CCS interaction and observation functokske let the interaction functor beX = X +
Lo x X, and the observation functor IBX = Zn((LoUL;) x X).

For any seiX, an element of the disjoint unionFX is either in the formx or (c,x), for c € C and
x € X. Roughly,eis the syntax of an experiment where we can either observexbeution ofx, or
send a signal ta on channek. An elementt of BX is a set of pairgc,x) or (1,X) for c € C and
X € X. The element is a transition ta< labelled with either the observation of an output signal on a
certain channel, or of an internal computation step. Notidgbels appear. Input is modelled as the
argument of a function, instead of as a side-effect. Thia Ifne with the idea that input is an action of
the environment, not an action of the process.

We now define dF, B)-dialgebra for the CCS. From now on, wheneves a dialgebra, we use the

shorthande iﬁ X to denote tha{8,x) € f(e), and omitf when clear from the context.
Definition 11. (CCS dialgebraic semantic3)he (F,B)-dialgebraf : FX — BX, whereX is the set of
CCS processes equipped with the operational semanticsfivfiixan [8, is defined by the following rules:

x2sx a=t1va=c X—sx X s X

(run)

(store)

i
X -5 X (C,X) —>¢ X (G,X) =t C| ¥
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Premises of rules use the operational semantics of Defii@ioRule(run) expresses the fact that
we can observe the output and internal computation stepssgéteam. Rulgin) states that whenever
a procesx can do input, the experimeiit,x) yields the observation of an internal computation step.
By Rule (store), whenever a process can do an internal computation stepijttban also store an input
signal from the environment for subsequent processing. obiservations for théin) and(store) rules
are the same, therefore an observer can not distinguistptiiieation of either one of the two rules.

5.2 Characterising dialgebraic bisimilarity

A characterization of the equivalence induced by dialgélmaomorphisms for the functofsandB of
Definition[10 can be given as follows.

Definition 12. (Back-and-forth bisimilarity of dialgebraspiven a(F,B)-dialgebraf : FX — BX, a
relationR C X x X is aback-and-forth simulatioif and only if, for all (x,y) € Randc € C:

1. whenevex —%¢ X, there isy’ such thaty —¢ y and(X,y) € R;
2. whenevelc,x) — ¢ X, there isy’ such thaC,y) —¢ Y and(X,y) € R.

A bisimulation is a simulatiork such thatR ! is a simulation. Two elements of are saidbisimilar if
and only if there is a bisimulation relating them. The cgo@®ding relation is called bisimilarity.

We write X ~ y to denote thak is bisimilar toy.
Proposition 1. Back-and-forth bisimilarity is an equivalence relation.

Theorem 1. (back-and-forth vs. kernelVhen F and B are as in Definitién 110, dialgebraic bisimilarity
from Definition[6 and back-and-forth bisimilarity from Defian [12 coincide.

Proof. Fix a dialgebra(X, f). First, consider a dialgebréy,g) andh: (X,f) — (Y,g). We show
that kerhis a back-and-forth bisimulation, therefore it is included~. Assumehx = hy for some
xy € X. Foralla € L, by definition of homomorphism, we haegFh(a,x)) = Bh(f(a,x)). There-
fore g(a,hy) = Bh(f(a,x)). Let (B,X) € f(a,x). Then(B,hX) € Bh(f(a,x)), therefore(f,hx)
g(a,hy) = g(Fh(a,y)), thus by commutativity3,hx) € Bh(f(a,y)). Then there is som¢ such that
(B,Y) € f(a,y) andhX = hy. This proves thaker his a simulation. Notice that the kernel of a function
is an equivalence relation, therefaiieer h) = = ker h), thus proving thaker his a bisimulation. For the
other direction of the proof, I€k| denote the equivalence classxah X,_. Consider the quotient dialge-
bra(X,_, f,_), with f,_(a, [x]) = {(B,[X])[(B,X) € f(x)}. Notice thatf,_ is well defined by definition
of ~. The quotient functiomx = [x] is obviously a homomorphism of dialgebras, and it is the that
wheneveix ~ y thenh(x) = h(y). O

Finally, we prove that asynchronous and back-and-forthrilarity coincide.

Theorem 2. (asynchronous vs. back-and-fortAyynchronous bisimilarity from Definitidd 9 and back-
and-forth bisimilarity coincide for the set X of CCS agetitsit is: for all X y € X, we have x-y if and
only if x~~y. Therefore, by Theorelm 1, asynchronous bisimilarity aatjdbraic bisimilarity coincide.

Proof. We provide the proof just for completeness, as it is immedieim the characterisation of asyn-
chronous bisimilarity as a 1-bisimilarity inl[1]. We provestt ~ is a back-and-forth bisimulation. Sym-
metry, and Cag@ 1 from Definitinl12 are obvious. For Casepghase(C,x) —s X. Then we distinguish
two cases.
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e if Rule (in) is applied to(C,x), we havex — X. We now look at Definitioi19. Since~ y, we
havec] y — y with X ~y. We inspect the rules in Definitidd 8. The rules that can beiegp
to c | y are(par) and(syn (and(par’) which is treated in the same way gsar)). Therefore we
have eithely —— y’ with y = ¢ || y’, ory — y. By applying either Ruldin) or (store) from
Definition[11, we obtair(C,y) —¢ Y and sinceX ~ y we get the thesis.

e if Rule (store is applied to(C, x), thenx — x” with X = ¢ || X". Thereforey — y” andx’ ~ y".
It is well known and easy to prove thgt ~y’ = ¢ || X" ~ c || y’. Therefore by applying Rule
(store) we get(C,y) — Y andx ~ Y, g.e.d.

Next, we prove that- is an asynchronous bisimulation. Suppgsey andx —=s x'. We look at Definition
[@. The cases fom = T or a = ¢ are obvious. Suppose = ¢ for somec. By Rule(in) in Definition[11
we have(C,x) —¢ X and byx ~ y we get(C,y) —s y with X ~ y. Either Rule(in) or (store) from
Definition[I can be applied t(t,y). Therefore eithey — y/, ory — y” with y = || y’. In both
cases, we have|[y — y andx ~ Y, from which the thesis. O

6 Discussion on further examples

The example that we present is very simple, and purposetusirdte just the idea of an observer that
can interact with the examined system. More interestintgdi@as can be described by either moving
to a richer category thaBet or by changing the interaction and observation functor.bviefly describe
some possible constructions, whose detailed study isdefuture work.

Complex systems Consider dialgebras of the forf: Zn(X) — L x P5in(X). At each step in time,
from a setp € Zin(X), a side effect irL is observed, and a new set of elemepitss obtained. Such
a function may be used to represent systems where the semdefiends on a number of entities that
collaborate. At each step in time, the system evolves, sdthelements may be “destroyed” and new
elements can be created, while some side effetttimkes place. The behaviour of the systermisre
than the sum of its partsn the sense that it is not determined by the behaviour d@lsions. The
semantics of x}, that is,x in isolation, may be totally unrelated to the semantics ay, the set{x,y}.
Notice thatf : Zn(X) — L x P5in(X) is also a coalgebra iSetfor the functorT (X) = L x X, having
Z5in(X) as underlying set. However, it's obvious that the obtainetion of bisimulation is not the
same, even by just looking at types. Seefngs a coalgebra, one gets a relation @, (X); seeing it
as a dialgebra, one gets a relationXythat takes into account how elements behave when joindueto t
same sets of other elements.

Chemical reactions In many cases programming language semantics has beerethdpi chemi-
cal and biological processes. Consider the finite multifgettor .7 (X) = {m: X — N | {x | m(x) #

0} is finite}. Think of X as a set of elements that take pantéactionsin variable quantities. A dialgebra

f: . #(X)— .#(X) specifies how a given reaction evolves by creating a muiteéeroducts from a
multi-set of reagents. The obtained notion of bisimilantyakes reagents equivalent when substituting
one with the other in any reaction yields equivalent progluict the same quantities.

The m-calculus A very similar development to the one presented here, exérimg the use of a dif-
ferent base category, is the semantics of the asynchromausdculus. Similarly to what happens for
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the synchronous pi-calculus and coalgebras [3], one wosgdtle functor categorget, wherel is the
category of of finite sets and injections. The semantics @auwolve the endofunctor for fresh name
allocation & which is typical of functor categories, which is needed toparly model bound output.
Dialgebras usingd correspond to Mealy machines with name allocation alonguiutwhose study is
possibly of interest independently from the specific agian of therr-calculus.

Testing semantics Even though we spoke of interaction and observation, we didmention so far
the family oftesting equivalenceee [7]), where interaction and observation play a key. roksting
equivalences are defined as those obtained by putting agzratparallel with an arbitrary other process
making use of a distinguished channel. Output on such chagmals that a test has been successful.
Binary dialgebras come to mind as an effective way to reprtesech kinds of equivalence relations.
However, in testing equivalences, one is not able to obgeove many synchronisation steps between
processes are needed before the success signal is senta Sewctantics could be defined by observing
the behaviour of a process as a single “big step”; howeverwiould defeat the implicit coinductive
properties of dialgebras. A common feature of dialgebrad @algebras is that observations lead to
successor states, and then in a coinductive fashion fugttpEriments/observations can be done on these
successor states. However, in the case of testing equogadgethere is no successor state: once success
is signalled, the experiment is concluded. Further ingasgibn may yield non-obvious coinductive ways
to represent these kind of relations on processes.

7 Conclusions and future work

The construction we have seendiil has obvious similarities with barbed equivalence and thighasyn-
chronous semantics of thecalculus by Honda and Tokoro (both described in [1]). Thakpectable,
since in the end we are trying to describe the same equivaletation.

In the case of the asynchronous CCS, itis not difficult toveca coalgebraic semantics. This is done
by translating the dialgebraic semantics along the isohisnpsX + Lo x X — Pfin((Lo + L1) x X) =
(Li+1) x X = Phin((Lo+Lg) x X) 2 X — (Pin((Lo +L1) x X)) *2 (indeed, after noting that, 22 L).
Notice that the latter is genuinely a coalgebra for the fanc#sn (Lo + L) x —)5+1. Itis not difficult to
see that such a translation preserves and reflects the kaeanduced by kernels of homomorphisms
(of dialgebras in one case, of coalgebras in the other).

Even though it might be interesting to derive a coalgebraimantics for the asynchronous CCS,
we do not discuss the details of such a construction: thegserpf using this language as an example
is not to provide a new semantics for asynchronous procdsslicaRather, the asynchronous CCS is
possibly the simplest language where it makes sense togligsh between moves of the environment
and moves of the system being examined in order to define tharges. Our aim is to show how such a
distinction is naturally encoded using dialgebras, ani thélt-in definition of behavioural equivalence
makes them appealing as an alternative to coalgebras ip#uoifisation of interactive systems.

We summarise below some possible future directions and gpestions.

Inductively defined dialgebras. We defined a dialgebra for the asynchronous CCS by assuming an
existing operational semantics. It is indeed possible &xifp such a semantics using dialgebras. First,
because coalgebras actuadise dialgebras withF = Id. Moreover, one could easily define &R, B)-
dialgebra, forF and B as in §5, directly by induction on terms forming the set of ageKtsin the
same fashion of bialgebras and distributive laws. It wouwdrélevant to study distributive laws and
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specification languages for inductively defined dialgebi@ltowing the same route of bialgebras. Doing
so, it would be possible to guarantee that a given dialgelsenantics of a calculus is also a congruence
with respect to the operators of the algebra describingyittax.

Logics Dialgebras are equipped inl [9] witialgebraic specificationseven though neither a full ade-
quacy result relating logical equivalence and bisimilanitor Birkoff-style theorems are established. It
ought to be clarified what is a logical formalism that adeglyaspecifies dialgebras. Such a logic would
be an intermediate language between modal and equatiayial [6he work [8], relating dialgebras to
the so-called@bstract logicds possibly relevant. This research line should take adwpnof, and extend,
the many existing studies in the field of coalgebraic modgikclo

Non-polynomial interaction functors Dialgebras are parametrised in the interaction and obgerva
functors. Non-polynomial interaction functors, such ag ea probability distribution over the input
values, could provide valuable case studies. Modulo therghton functor being “probabilised”, too,
such dialgebras may be used to represent a kind of prokabNiealy machines, where the probability
distribution of the input determines that of the output. Hosld be understood whether in the case of
non-polynomial interaction functors there is some gaindpressive power w.r.t. coalgebras.

Minimisation Coalgebras have an elegant and simple minimisation proeediased oriteration
along the terminal sequenand generalising partition refinement for automata. Areehmmanonical
models in dialgebras? The results [in [9] seem to point out$hah a theory would be very difficult
in the presence of so-callddnary methodsdue to non-closure of bisimulations under union, and the
lack of a final dialgebra. However, the (dialgebraic) bidamty quotient may still exist in interesting
cases. More work is required on this side. The precise comditvhen final dialgebras and bisimilarity
quotients exist should be clarified. Also notice thatl inf9k assumed to be polynomial. Since we seek
for non-polynomial interaction functors too, we expectttbame work on the side of canonical models
will be needed in order to understand how bisimilarity oflgébra can be decided, possibly by finite
representations derived from the definitiond=odndB.
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