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Abstract
After the recent devastating tsunami in southern Asia, I tried to find a simple
way to present the physics of this phenomenon to students—in particular, the
origin of the dispersion relation and the consequent wave properties. Being
unable to locate a suitable source for a truly elementary approach, I developed
the simple derivation presented here by extending to shallow-water waves a
clever capillary wave model recently developed by Behroozi and Podolefsky
(2001 Eur. J. Phys. 23 225). The main properties of tsunami waves can thus
be obtained with an elementary and straightforward procedure suitable for
undergraduates in physics and other disciplines.

1. Introduction

The tsunami that devastated southern Asia on 26 December 2004 attracted the attention of a
broad and diversified public to this extreme wave phenomenon. Many Internet sites can be
found explaining the basic features that make it so destructive and distinguish it from other
types of water waves: its causes, the extremely long wavelengths and the behaviour when it
reaches a coastal region [2]. However, I could not find a source presenting in simple terms
the physical origin of these characteristics and in particular of the dispersion relation that
underlies the last one.

I propose here a very simple yet rigorous derivation, suitable for undergraduate physics
students and also for students in other domains. This approach overcomes the difficulties of
the two standard ways to present the subject. The first one [2] simply consists in introducing
the link between the wave group velocity and the water depth without explaining its origin.
This tactic is suitable for a very broad audience but unsatisfactory for college students since,
for example, its starting hypotheses are not self-evident.

The second approach [3] is a complete derivation of the dispersion relation based on
the (sometimes questioned [1]) irrotational character of the water motion and on mass
conservation. Even with substantial simplifying assumption, the derivation is quite complex
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and involves non-intuitive notions such as the velocity potential. In several cases, derivations
of this kind start by treating a very complicated model and then resort to approximations—
simplifying the results only a posteriori [3].

The present simple approach was inspired by a brilliant solution recently elaborated by
Behroozi and Podolefsky [1] for the problem of capillary gravity waves in deep water. With
a similar strategy, my treatment leads to the dispersion relation for shallow-water waves and
to the link between wave amplitude and energy—the essential elements to understand the
destructive character of tsunamis.

It should be noted that a simple but correct way to comprehend tsunamis is important
beyond mere scientific curiosity. A large portion of the casualties in south Asia was caused
by trivial misunderstandings of the physical mechanism. For example, the lack of knowledge
about large time intervals between different phases of the phenomenon prevented many people
from taking simple life-saving precautions—such as leaving the beaches and getting to high
ground after the first anomalous water retreat from the shore. Hopefully, a more widespread
knowledge of the nature of tsunamis could mitigate their human impact.

2. The teaching strategy

The objective is to present to the students the following points establishing the physics
background of tsunamis: (1) the typical wavelength magnitudes, (2) the differences between
the wave behaviour far from a coast and in coastal areas, (3) the capacity to travel over very
long distances.

2.1. Prerequisites

The students should have a general knowledge of elementary mechanics, a basic knowledge of
wave properties (wavelength, frequency, period, the fact that they carry energy and momentum,
the phase and group velocity) and some notion of fluid mechanics (such as the Bernoulli law
and the notion of viscosity).

2.2. The model and its presentation

The introductory part of the presentation to students should stress the general characteristics
of tsunamis and their difference with respect to the common waves observed near a beach.
First the causes: tsunamis are initiated by earthquakes, landslides, volcanic eruptions, more
rarely by meteorites and nuclear tests, and then sustained by gravity—whereas wind is an
important factor in common beach waves [2]. This discussion should also argue that using the
term ‘tidal waves’ for tsunamis is not appropriate since tides are not their origin.

The next step of the presentation should explain that tsunamis have very long wavelength
λ and period. The λ-values typically range from kilometres to hundreds of kilometres, thus
they are much longer than the hundreds of metres of common wind-generated waves near a
beach. Since the ocean floor is nowhere deeper than 11 km (the Mariana trench), this implies
that even in deep-sea areas tsunamis behave as shallow-water waves for which λ/H > 1 (H =
sea depth). When they reach a coastal area, their characteristics change but of course not the
shallow-water nature.

The discussion should then move to the wave-related motion of water particles. On the
basis of the students’ practical experience with real waves, one can lead them to understand
that the local particle motion occurs along circular or elliptical paths. The students should



Explaining the physics of tsunamis to undergraduate and non-physics students 403

y

x

H

x,y

xδ yδ

yoδ2

xoδ2

Figure 1. Water waves correspond to a local elliptical motion of the water particles. The figure
defines the motion parameters used in the text: the average particle position (x, y), the shifts δx and
δy with respect to the average position and the motion amplitudes δxo and δyo. H is the unperturbed
water height.

have already seen in elementary mechanics that, for a constant average position (the centre of
the trajectory), such a motion corresponds to an equation set as

δx = δxo sin(±ωt), (1)

δy = −δyo cos(±ωt), (2)

where δx and δy are the shifts with respect to the average position in a vertical x–y plane
(see figure 1) and δxo and δyo are constants (δxo �= δyo for an elliptical motion). When the
motion is associated with a wave propagating along the horizontal x-axis, equations (1) and
(2) obviously become

δx = δxo sin(kx ± ωt), (3)

δy = −δyo cos(kx ± ωt). (4)

One should note at this point that equation (4) is affected by a problem: the vertical motion
does not reduce to zero at the sea bottom ( y = 0 m), as it should. To eliminate this problem,
one must assume that δyo is not simply a constant but a decreasing function of the altitude
y—see figure 1.

The simplest possible function is linear: δyo ∝ constant × y. One can specifically
propose the linear form δyo = δxoky that has an additional advantage: being proportional to
k = 2π/λ it forces the vertical motion amplitude to remain limited. In fact, the maximum
motion amplitude corresponds to the value of δyo for the sea top, y = H, thus it equals
δxokH = 2πδxoH/λ. Since in most cases H/λ � 1, this means that the vertical amplitude is
smaller than the horizontal amplitude δxo, in agreement with the empirical observations1.

In summary, the proposed local motion equations for the shallow water wave are

δx = δxo sin(kx ± ωt), (5)

δy = −δxoky cos(kx ± ωt). (6)

Equation (6) gives in particular the water-surface wave when y is replaced by H: δy =
−δxokH cos(kx ± ωt).
1 More formally, the δyo = δxoky factor guarantees that the velocity is consistent with the continuity equation.
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Figure 2. (a) Two important configurations of the stationary wave of equations (9) and (10):
maximum deformation of the water surface (corresponding to zero velocity components in the
entire water mass) and the flat-surface case (that maximizes the velocity magnitudes and the kinetic
energy). (b) Definition of the water volume of width L and length λ for which the potential and
kinetic energies are calculated. (c) The potential energy difference between the two configurations
simply correspond to the energy required to lift water from the second half of the area to the first
half.

Equations (5) and (6) correspond to the following velocity components:

vx = δxo(±ω) cos(kx ± ωt), (7)

vy = δxoky(±ω) sin(kx ± ωt). (8)

The next objective is to find the dispersion relation, i.e., the link between ω and k. The
procedure is simply based on the conservation of energy (assuming a non-compressible liquid
with no viscosity) and can be greatly simplified—following the strategy of Behroozi and
Podolefsky [1]—by treating a linear combination of the motion of equations (5) and (6) that
produces a stationary wave:

δx = δxo[sin(kx + ωt) − sin(kx − ωt)] = 2δxo cos(kx) sin(ωt), (9)

δy = −δxoky[cos(kx + ωt) − cos(kx − ωt)] = 2δxoky sin(kx) sin(ωt). (10)

Consider now (figure 2(a)) two interesting configurations of this standing wave: first, for
sin(ωt) = 1 and therefore cos(ωt) = 0, there is a maximum deformation of the water
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surface corresponding to δy = 2δxokH sin(kx)—whereas both velocity components are zero
everywhere in the water mass. This means that there is only potential energy and not kinetic
energy. In contrast, for sin(ωt) = 0 and therefore cos(ωt) = 1 the water surface is flat whereas
the velocity magnitudes and the kinetic energy are maximized.

In the absence of dissipation due to viscosity, turbulence and other factors, the energy must
be conserved. Therefore, the potential energy difference �U between the two configurations
must correspond to the kinetic energy K in the second one.

This result can be quantitatively analysed in the case of a water volume of length λ

(along the x-axis) and width L (figure 2(b)). The potential energy difference between the two
configurations corresponds (figure 2(c)) to the energy necessary to raise water from the second
half of the region to the first:

�U =
∫ λ/2

0
dx(ρLgδy)δy =

∫ λ/2

0
dx

(
ρLgδ2

y

) = 4ρLgδ2
xok

2H 2
∫ λ/2

0
sin2(kx) dx

= 2ρLgδ2
xokH 2π. (11)

On the other hand, the kinetic energy for the second configuration can be obtained by
integrating over the entire depth the kinetic energy of each mass element in the water volume.
Equations (9) and (10) give the following two velocity components for cos(ωt) = 1:

vx = 2δxoω cos(kx), (12)

vy = 2δxokyω sin(kx). (13)

Therefore
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and, since kH = 2πH/λ � 1

K ≈ 2ρLω2δ2
xoω

2πH

k
. (14)

By inserting equations (11) and (14) in the energy-conservation condition �U = K, we then
have

ω2 ≈ (gH)k2. (15)

This dispersion relation contains all the elements to understand the basic properties of shallow-
water waves and in particular of tsunamis.

2.3. Discussion

Equation (15) immediately leads to similar expressions for the magnitude of both the phase
velocity and the group velocity:

|vp| =
∣∣∣ω
k

∣∣∣ =
√

gH. (16)

|vg| =
∣∣∣∣dω

dk

∣∣∣∣ =
√

gH. (17)

As a practical case, consider a deep-sea depth H = 4000 m: the (phase or group) velocity
would be ≈200 m s−1 ≈ 713 km h−1. Thus, a tsunami in a deep-sea area can travel over very
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long distances within minutes or hours, with the speed of a jet plane. For the deepest ocean
areas, the speed could exceed 1180 km h−1.

When the tsunami approaches a coastal region, the speed changes as the square root of the
depth. For example, if H = 10 m, then the speed becomes ≈10 m s−1 ≈ 36 km h−1. Even with
this drastic reduction, the wave speed is largely sufficient to outrun a swimmer or a running
person.

Equation (16) has other important consequences. Specifically, for a constant frequency it
implies that the wavelength λ = 2π/k changes as

√
H . Consider a wave with λ = 100 km =

105 m in a deep-sea area with H = 4000 m: the time required for the wave to travel along a
distance equal to λ (i.e., the period) is ≈105/(200) ≈ 500 s ≈ 8 min. When H = 10 m, λ

decreases to 5 × 103 m—however, the speed decreases at the same rate so that the time to
travel along λ remains the same. This implies that the typical time separating the different
events of a tsunami is always minutes or even hours, much longer than the period (5–20 s) of
wind-generated waves. This can cause tragic mistakes in judging the tsunami behaviour when
it reaches a beach: an initial harmless ‘drawdown’ (a sudden drop of the water height at the
shore) can attract people to the beach—and then is followed, after a relatively long time, by a
devastating gigantic wave that cannot be outrun.

The change in speed with the depth has a fundamental implication on the height of the
wave. This point must be discussed in detail since there is often a wrong perception that the
increase in height as the tsunami reaches the coast is due to the conservation of the water mass.
This is not true since the tsunami does not cause a translation of water but only a propagating
perturbation of the local motion of water particles.

The increase in height as the tsunami reaches a shore is instead due to the conservation of
energy [2]. With neither viscosity nor other losses, the energy flow associated with the wave
must remain constant. Equations (11) and (14) show that the wave energy is proportional
to the square of δyo—a parameter that in turn determines the wave height. Thus, the energy
flow is proportional to δ2

yovg and therefore (equation (17)) to δ2
yo

√
H : a constant energy flow

requires the wave height to be proportional to H−1/4.
The consequences are striking. Consider a tall and devastating tsunami wave with

δyo ≈ 15 m near the shore, say for H ≈ 2 m. The corresponding height in a deep-sea
area with H ≈ 4 × 103 m is smaller by a factor [2/(4 × 103)]1/4 ≈ 0.025, which gives
δyo ≈ 0.38 m = 38 cm—a rather normal wave, very difficult to note. Thus, the terrible nature
of the tsunami becomes visible only at the last minute and this complicates the early warning
procedures. On the other hand, the moderate wave height far from the shore opens the way to
an effective defensive strategy for boats (and even people): moving to deeper waters.

Finally, it should be stressed that the hypothesis of no energy losses is, of course,
unrealistic: losses do occur due to a variety of causes, including internal friction and solid-
water friction related to viscosity. Such losses are proportional to the speed. According to
equations (7), (8), (12) and (13), the speed is proportional to the frequency and therefore to
1/λ. The very long wavelength of tsunamis thus corresponds to limited losses: the waves can
travel over very large distances and cause catastrophic damage and loss of life very far from
their original cause.

In summary, our simple derivation of the dispersion law should enable the students to
understand the physics background of the key features of tsunamis. In particular:

• The wavelength of tsunamis is so long that they always behave as shallow-water waves
even in deep-sea areas.

• As for all shallow-water waves, their propagation speed is proportional to
√

gH , making
them very fast in deep waters and still quite fast close to the shore.
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• The typical time intervals between tsunami-related phenomena are of minutes to hours,
so that warning signs (such as earth shaking from a strong faraway earthquake or the
anomalous retreat of the sea water from the shore) leave sufficient time for life-saving
actions such as going to high ground or at least leaving the beach. On the other hand, the
long time delay can be deceiving and lead to tragic mistakes.

• The wave height can be gigantic close to the shore, but it is much smaller far at sea. This
makes the tsunamis difficult to detect but it also allows defensive actions such as moving
far from the coast and into the sea.

The presentation to the students could be completed by a rough calculation of the energy
carried by the wave per unit time and unit surface, compared for example to that of a fast-
moving truck.

3. Final remarks

The background for our extremely simple derivation is quite sound. The motion equations (5)
and (6) are first-order linear expansion in terms of ky � 1 of the hyperbolic functions in
the more advanced solutions of the wave equation. Therefore, the conceptual framework
is equivalent and based [3] on the continuity equation and the irrotational character of the
local motion (although this last hypothesis could be replaced, according to [1], by plausibility
arguments on the liquid particle trajectories)2.

We believe, however, that the mathematical simplifications make the treatment much
easier to follow for the targeted audience, without resorting to the drastic and unsatisfactory
tactics of introducing the dispersion law (and/or its consequences) with no justification and
no physical background. The derivation reveals that the basic physics of these dreadful
phenomena is rather simple. At the same time, its results show that the absence of simple
life-saving measures is absolutely unjustifiable.
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