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ABSTRACT

Motivation: Systems biology attempts to describe complex systems
behaviors in terms of dynamic operations of biological networks.
However, there is lack of tools that can effectively decode complex
network dynamics over multiple conditions.
Results: We present principal network analysis (PNA) that can
automatically capture major dynamic activation patterns over
multiple conditions and then generate protein and metabolic
subnetworks for the captured patterns. We first demonstrated
the utility of this method by applying it to a synthetic dataset.
The results showed that PNA correctly captured the subnetworks
representing dynamics in the data. We further applied PNA to
two time-course gene expression profiles collected from (i) MCF7
cells after treatments of HRG at multiple doses and (ii) brain
samples of four strains of mice infected with two prion strains.
The resulting subnetworks and their interactions revealed network
dynamics associated with HRG dose-dependent regulation of cell
proliferation and differentiation and early PrPSc accumulation during
prion infection.
Availability: The web-based software is available at:
http://sbm.postech.ac.kr/pna.
Contact: dhhwang@postech.ac.kr; seungjin@postech.ac.kr
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Systems biology attempts to describe systems behaviors in terms
of dynamic operations of biological networks (Hood et al., 2004).
A number of gene expression studies have been performed to
understand network dynamics over multiple conditions (Hwang
et al., 2009). However, it is challenging to decode network dynamics
from the multi-conditional gene expression data due to (i) diverse
activation patterns of nodes over multiple conditions; (ii) dense
interactions (edges) among the nodes; and (iii) the large size of
the global network.

∗To whom correspondence should be addressed.

To understand complex network dynamics, it is common in
systems approaches to extract major subnetworks (Hwang et al.,
2009). The common tasks for generation of such subnetworks
include: (i) identification of differentially expressed genes (DEGs)
between various conditions, (ii) clustering of the DEGs based on
their differential expression patterns and (iii) reconstruction of
subnetworks using the genes belonging to major clusters and their
interaction partners from the global interactome. However, as the
numbers of both time points and conditions increase, the generation
of major subnetworks using this approach often becomes intractable
due to the complexity in the above tasks.

There have been several methods for automatically generating
active subnetworks (ASs) that are composed of (i) active nodes
showing significant changes over conditions (node-based methods)
or (ii) active edges having the interacting nodes whose gene
expression levels were co-varied over conditions (edge-based
methods). Most of node-based methods (Ideker et al., 2002; Scott
et al., 2005; Sohler et al., 2004) generate ASs by identifying
subnetworks including mainly the active nodes, but they do
not consider the correlation between activation patterns of the
interacting nodes.An edge-based method (Guo et al., 2007) results in
a subnetwork composed of the active edges for which the interacting
nodes are co-varied in their gene expression levels. However, both
node- and edge-based methods generate the subnetworks with a
mixture of different activation patterns, which makes it inefficient
to sort out complex network dynamics in terms of the resulting
subnetworks.

We propose a new concept of ‘principal subnetwork’for analyzing
complex network dynamics. We define a principal subnetwork (PS)
by anAS including both nodes and edges that share a particular major
(or principal) activation pattern. Several PSs showing a number of
major activation patterns can be generated from a single dataset.
Thus, analyzing the individual PSs and their interactions can allow
us to efficiently sort out complex network dynamics. In this study, we
developed principal network analysis (PNA) that can automatically
(i) capture principal activation patterns over multiple conditions and
(ii) generate the corresponding protein and metabolic subnetworks
(PSs) to the captured patterns based on the orthogonal non-negative
matrix factorization (ONMF). We demonstrated the utility of PNA
by applying it to three datasets. The results showed that the collective
analysis of PSs and their interactions can effectively generate
network-driven hypotheses for given problems.

© The Author 2010. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 391



[10:51 27/1/2011 Bioinformatics-btq670.tex] Page: 392 391–398

Y. Kim et al.

Fig. 1. Construction of an activation weight matrix. PNA first transforms multi-dimensional expression data into log2-fold changes (A) and unfolds it into a
two-dimensional matrix (B). We then represent the edges with the adjacency matrix Adj (C). Using a weighting function (D), the PNA then computes both
edge (A∗

Edge) and node (A∗
Node) activity weights (E and F), unfolds the A∗

Edge into a vector and concatenates it with A∗
Node, resulting in a weight vector for

each condition (G and H). For the ONMF analysis, we represented the activity weight matrix (X) with X = Xup−Xdown (I) and then concatenated Xup and
Xdown to result in Xcon = [Xup, Xdown] (J).

2 MATERIALS AND METHODS

2.1 A synthetic network and synthetic gene expression
data

2.1.1 Development of a synthetic network model A geometric random
graph has been used as a protein network model (Higham et al., 2008).
To build the network model, we produced a geometric random graph by
distributing nodes at random uniformly on the unit square and assigning an
edge to every pair of nodes for which the corresponding nodes are close
enough according to the Euclidean distance (in this study, we used 0.25 as a
cutoff). Using this procedure, we generated a network model including 100
nodes and 748 edges (Supplementary Figure S1A).

2.1.2 Generation of synthetic gene expression data We then generated
synthetic time-course gene expression for the network model. We used 13
different time points at two different conditions. For the 60 nodes among
100 nodes in the network model, we categorized them into six groups,
each of which includes ten nodes and then assigned one of the following
six gene expression patterns to each group (Supplementary Figure S1B and
Figure 2A): (i and ii) time-dependent up-regulation (log2-fold change = 1)
during the early and late stages, respectively, (iii) condition-dependent up-
regulation, and (iv–vi) the same patterns as in (i–iii) but for down-regulation
(log2-fold change = −1). The remaining 40 nodes were set to have no change
(log2-fold change = 0) over time. Finally, we added the Gaussian noise
[mean = 0 and standard deviation (SD) = 0.2]. As a result, we generated a
100×13×2 three-dimensional array containing log2-fold changes ranging
from −1.5606 to 1.6542 (note that log2-fold change = 0 at time zero for all
genes).

2.2 Interactome and gene expression data
2.2.1 Human interaction data We gathered human interaction data from
NCBI and KEGG (Kanehisa and Goto, 2000) database. There are (i) 37 811

non-redundant protein–protein and protein–DNA interactions (upper panel
in Figure 1C; 33 370 from NCBI and 10 092 from KEGG) and (ii) 6752
synthetic pseudo-interactions, pairs of metabolic enzymes involved in two
consecutive metabolic reactions (bottom panel in Figure 1C; 5739 reactions
from KEGG) for 9663 proteins.

2.2.2 Gene expression profiles of heregulin-treated MCF7 cells We
obtained time-course gene expression data from GEO database (GSE6462).
The data were collected from MCF7 breast cancer cells that were treated
with a growth hormone, heregulin (HRG), at four different doses of 0.1, 0.5,
1 and 10 nM (Nagashima et al., 2007). The mRNA expression levels for
22 277 probes (12 791 genes) were measured at seven time points (5, 10, 15,
30, 45, 60 and 90 min) after treatment of HRG at each dose, resulting in a
22277×7×4 dataset, as well as a control with no HRG treatment.

2.2.3 Gene expression profiles of prion-infected brain tissues We obtained
seven time-course gene expression profiles from ArrayExpress (E-MTAB-
76). The data were collected from five strains of mice (B6, B6.I, FVB,
Prnp0/1, and Tg4053) infected with two prion strains (RML and 301V;
Hwang et al., 2009): (i) B6-RML, (ii) B6-301V, (iii) B6.I-RML, (iv)
B6.I-301V, (v) FVB-RML, (vi) Prnp0/1-RML and (vii) Tg4053-RML. See
Supplementary Table S1.

3 PNA FRAMEWORK

3.1 Generation of an activity weight matrix
3.1.1 Evaluation of activity of edges and nodes We represented
the synthetic time-course gene expression data as a 100×7×4
three-dimensional array including mRNA levels in 13 time points at
two different conditions (Figure 1A). This array was then unfolded
in condition-wise to form a 100×28 matrix (Figure 1B). The fold
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changes in each time point (the blue box in Figure 1B) were
used to evaluate the activities of both nodes and edges. For this
evaluation, we represented the edges (protein–protein, protein–DNA
and pseudo-metabolic interactions) in an adjacency matrix Adj
where Adj(i, j) = 1 when elements i and j interact with each other
and Adj(i, j) = 0 otherwise (Figure 1C).

The activities of all these edges were computed as the edge
weights using a weighting function (Figure 1D) including two
multivariate logistic functions (Henrick and Bovas, 1973):

Aij =
⎛
⎝1+C

∑

k=i,j

exp
(−K

(
fk −T

))
⎞
⎠

−1

−
⎛
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∑
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(−K
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))

⎞
⎠

−1

,

where fi and fj are the log2-fold change values of the genes
corresponding to the interacting proteins i and j. Also, C and K
(C =1 and K =5 by default) are the parameters controlling the shape
of the multivariate logistic distribution, and T is a shifting parameter
(0.5 by default) added to produce zero when fi and fj are both zeros.
In the above equation, the first term captures co-activation of genes
while the second term, the origin symmetry of the first term, captures
co-repression. This logistic function-based weighting of the edges
effectively prevents ONMF from being biased toward the samples
with large fold change value. This function results in (i) a positive
weight (up to 1) if both fi and fj have positive log2-fold changes (e.g.
Aαβ = 0.99 for the α−β edge with fα = 2.2 and fβ = 1 in Figure 1D),
suggesting that the interaction is likely to be active in the condition;
(ii) zero either when both fi and fj are zero, or when fi and fj have
the opposite signs; and (iii) a negative weight (up to −1) if both fi
and fj have negative log2-fold changes. These activities of edges are
then deposited into the edge weight matrix (Figure 1E). Similarly,
the node weights were computed using the same weighting function,
assuming that each node forms a homodimer, and then arranged into
a 100×1 node weight vector ANode(k) (Figure 1F). The edge weight
matrix was then unfolded into a vector and concatenated with the
node weight vector, resulting in a weight vector for each condition
(Figure 1G). Finally, this weight vector is added as a column to the
whole weight matrix (Figure 1H). Thus, the resulting weight matrix
(X) contains the activity information of nodes and edges over all the
conditions.

3.1.2 Conversion of the weight matrix to a non-negative matrix
A non-negative matrix factorization (NMF; Lee and Seung, 1999)
requires the input matrix to be non-negative. To generate a non-
negative matrix, we first represented the weight matrix as X
= Xup−Xdown· Xup is the weight matrix (X) whose negative
elements were replaced with zeros, whereas Xdown is X whose
positive elements were replaced with zeros and the negative
elements were changed into their absolute values (Figure 1I). These
two matrices were then concatenated to generate a non-negative
matrix (Xcon =|Xup, Xdown|; Figure 1J). NMF can now capture
relationships between up- (Xup) and down-regulation (Xdown). See
Supplementary information 1 for details.

3.2 Application of Orthogonal NMF to the weight
matrix

3.2.1 Orthogonal non-negative matrix factorization (ONMF)
Given a non-negative matrix Xcon (N ×M), the NMF (Lee and
Seung, 1999) iteratively computes N × k basis matrix (W) and k ×M

activation matrix (H) so that ||Xcon – WH ||2 is minimized, where
||·||2 represents the Frobenious norm. NMF has been successfully
applied to various data including gene expression data (Brunet
et al., 2004; Kim et al., 2003). Several variants of NMF have
been developed by adding extra-constraints for their own purposes.
For example, non-smooth NMF (nsNMF) employed a constraint to
ensure the sparseness in the bases and activations (Pascual-Montano
et al., 2006).

Among various NMF methods, we employed orthogonal NMF
(ONMF) to generate non-redundant subnetworks. ONMF (Yoo and
Choi, 2008) imposes an orthogonality constraint on either W or H
(W in this study):

arg min
W,H

‖X−WH‖2/2,WTW=I,W≥0,H≥0,

where I is an identity matrix. The orthogonality constraint on W
results in as non-redundant weights of nodes and edges in each
pattern as possible, thus resulting in non-redundant subnetworks.
Non-redundancy among subnetworks is useful for interpreting the
networks. For the discussion on determination of the number of
basis, see Supplementary information 2.

3.2.2 Summarization of ONMF solutions Like other NMF
methods, ONMF also suffers from the local minima problem. To
resolve this problem, we applied ONMF to the same weight matrix
(Xcon) n times (n=30 was used in this study) with different
initialization and then used (i) a metaclustering method (Badea,
2005) and (ii) a template-based method to summarize the resulting
n Hs and Ws (Supplementary information 3 for details). We
implemented metaclustering, as described in Badea (2005), except
that we used ONMF instead of the standard NMF. To summarize
the n Hs and Ws, metaclustering performs another NMF including
a random initialization, which tends to result in a different solution
depending on the initialization.

Thus, we developed an alternative template-based method that
can result in a unique solution given n Hs (templates) and Ws.
This method selects the most representative H and W among the n
templates as a solution. For a pair of templates, they are rewarded
by one whenever a pair of rows (activations) from the two Hs is
the same (correlation coefficient >0.99): thus, the maximum score
between the two Hs is the number of bases when the two Hs share all
the patterns. Using this scheme, for each template, we computed the
scores between the template and n−1 others and then added up the
scores to generate a cumulative score. This procedure was repeated
for all n templates. Finally, the representative template (Hf ), as well
as the corresponding Wf , was chosen as the one with the largest
cumulative score. Both summarization methods are implemented
in PNA software. After obtaining Wf and Hf from these methods,
we ordered the columns of Wf and rows of Hf in the descendent
manner of Euclidean norms of the rows of Hf to prioritize the
activation patterns according to their significance (Figure 2B).

3.3 Reconstruction of the principal subnetworks (PSs)
3.3.1 Generation of the PSs from ONMF results We
reconstructed the PS (e.g. Figure 3) for each activation pattern
resulting from ONMF by selecting both nodes and edges
significantly contributing to the pattern. Such nodes and edges
were selected as the ones with P-values of bases values (Wf ) less
than a cutoff value (e.g. 0.01 or 0.05). To compute the P-value for
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Fig. 2. A PNA application to the synthetic data. Six differential expression patterns were assigned to the nodes in the synthetic network (A). ONMF correctly
captured the six differential expression patterns (B). The resulting PSs successfully represented the activation patterns in the synthetic data (C). We also
obtained the active subnetworks using jActiveModules (D) and the edge-based method (E) and then compared the performance of PNA with those of the
other two methods using FP, FN and accuracy (Acc) (F). See the text for details.

Fig. 3. Application of PNA to the gene expression data from HRG-treated MCF cells. ONMF captured six activation patterns in the data (A). Differential
expression of the top 20 genes is well-correlated with the activation patterns in A (B). To investigate HRG dose dependent dynamics, we reconstructed the PS
for H5 (HRG dose-dependent activation) using the selected nodes (red) and edges (C). The blue boundary indicates that the corresponding node also belongs
to PS1. We then explored the interactions between two PSs for H6 (low-dose specific down-regulation; red nodes) and H4 (high-dose specific up-regulation;
red boundary) (D). See the text for details.

each basis value, we first randomly permuted the elements of Xcon
to generate Xrand and then applied ONMF to Xrand, resulting in
Wf −rand and Hf −rand . Unlike Wf resulted from the original Xcon,
which would include systematic activation patterns in the data,
Wf −rand and Hf −rand should include random activation patterns.
We then computed an empirical distribution of such random

basis values (Wf −rand ; Supplementary Figures S2A and S2C).
Finally, we computed a P-value of the observed basis value (an
element of Wf ) for each node (or edge) by the right-sided test
using the empirical distribution. Due to the difference between
the distributions of basis values for nodes and edges, the above
procedure including: (i) randomization of Xcon, (ii) estimation of
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the empirical distribution and (iii) computation of P-values was
done separately for nodes and edges (Supplementary Figure S2).
See Supplementary information 4 for details. Using the selected
nodes and edges, initial PSs are constructed. Note that PNA
separately reconstructs protein and metabolic PSs by using
protein–protein/protein–DNA interactions and pseudo-metabolic
interactions, respectively.

3.3.2 Removal of false positive nodes and edges After
constructing the initial PS for each activation pattern, we further
removed the insignificant nodes (e.g. node P-value >0.05) that
do not densely interact with the significant nodes. They tend to
be included due to the edges for which interacting nodes have
partially shared expression patterns (e.g. early up-regulation in S1 of
Figure 2A) with the activation pattern (e.g. late up-regulation in S2
of Figure 2A). First, we identified all nodes with P-values larger than
a cutoff value (e.g. 0.05; white nodes in Supplementary Figure S3).
Then, for each identified node, we counted the number of significant
interactors (e.g. node P-value <0.05). Finally, we removed those
nodes (e.g. small white nodes in Supplementary Figure S3) having
the number of significant interactors less than another user-defined
cutoff value l (l = 2 by default for protein networks and l = 1 for
metabolic networks).

4 RESULTS AND DISCUSSION

4.1 Application of PNA to synthetic gene expression
data

To demonstrate the utility of PNA, we first applied it to the synthetic
gene expression data (see Section 2.1.2). Figure 2A shows six
differential expression patterns each of which was assigned to the
ten nodes in a subnetwork: (i) early up-regulation to the 10 nodes
in S1; (ii) late up-regulation in S2; (iii) condition-dependent up-
regulation in S3; and (iv–vi) the same patterns as in i–iii) but for
down-regulation in S4–S6. Note that ‘zero’ exists at time zero for
every pattern including early up and down-regulated genes (S1 and
S2 in Figure 2A; same in Figures 2C and 3A and B). For the PNA
application, we used the following parameters and cutoff values:
C = 1, K = 5 and T = 0.5 for the weight matrix construction, the
number of basis (k) = 6 for ONMF, P-value cutoff = 0.05, and the
reduction cutoff (l) = 2. The rows of Hf in Figure 2B show that
ONMF successfully captured the six differential expression patterns
in the synthetic expression data (e.g. H1 captured the early up-
regulation in S1 while H4 captured late down-regulation in S5). Six
principal subnetworks (PSs) corresponding to H1–H6 are shown in
Figure 2C. The red nodes and edges represent the selected ones with
P-values <0.05 (see Section 3.3.1). Each PS (e.g. PS1) correctly
captured the 10 nodes (e.g. the nodes in S1) and all the edges among
the 10 nodes (e.g. thick lines in S1 of Figure 2A) in the subnetwork
showing the corresponding activation pattern (e.g. H1). Other than
PS1 and PS2, the PSs included the white nodes that were selected
by their edge P-values (<0.05), not by their node P-values (≥0.05),
and for which the numbers of significant interactors (red nodes) were
larger than or equal to the reduction cutoff (l = 2). For example, PS3
that represents S2 having late up-regulation included the white nodes
in S1 due to (i) the partially shared activation patterns (i.e. their edge
P-values <0.05) between the late (S2) and early up-regulation (S1)
and (ii) their intense interactions (l ≥ 2) with the red nodes in S2.

Note that PNA attempts to include such white nodes, which can be
removed by using their node P-values, because they can improve the
interpretation of PS3 by providing the information of interactions
between S1 and S2.

We then compared the PSs from PNA with the active subnetworks
(ASs) from jActiveModule (Ideker et al., 2002) and an edge-
based method (Guo et al., 2007). To generate the ASs using
jActiveModule, we first computed P-values of all the genes being
differentially expressed by chance at each time point and then
used them as the input to jActiveModule plugin (ver 2.23) in
Cytoscape (ver 2.6). We used the following parameters: overlap
threshold = 0.8, enabled ‘adjust score for size’and ‘regional scoring’,
search depth = 1 and max depth from start nodes = 2. For the edge-
based method, we developed background models, as described
in Guo et al. (2007), and then performed simulated annealing
with the following parameters: the number of iteration = 30 000,
starting temperature = 1, and ending temperature = 0.001. Figure 2D
shows the three ASs from jActiveModule (see the other ASs
in Supplementary Figure S4). Each AS includes the nodes (red)
selected by jActiveModule and all the edges existing between
the selected nodes. jActiveModule does not discriminate the six
differential expression patterns in terms of the ASs (e.g. AS1
includes the nodes from all subnetworks S1–S6). Figure 2E
shows the AS resulting from the edge-based method. Similarly to
jActiveModuel, the AS tends to include all the nodes with the six
differential expression patterns and the edges within the individual
subnetworks (e.g. the edges in S1). Furthermore, it appears to fail
to include the significant nodes (e.g. nodes 13, 17 and 18 in S2)
with no interactions in the corresponding subnetwork. To compare
the three methods in their performance, we performed a number
of experiments for each method using different combinations
of parameters (Figure 2F; Supplementary information 5). False
positives (FPs) were defined by the nodes selected from the 40 nodes
with no change (see the nodes in the middle of Fig. 2A) while false
negatives (FNs) were defined by the nodes not selected from the
60 nodes in S1–S6. PNA outperformed the other two methods by
achieving significantly higher accuracy than jActiveModule and the
edge-based method (P = 2.568×10−64 and 2.104×10−162 from
KS test for PNA versus jActiveModule and PNA versus edge-based
method, respectively). Note that Figures 2C–E were the results
obtained by using one of parameter sets generating the median
accuracy in the individual methods.

4.2 Application of PNA to gene expression data from
HRG-treated MCF cells

We also applied PNA to gene expression data collected from HRG-
treated MCF7 cells to understand HRG dose-dependent dynamics
in terms of PSs. In this application, we excluded pseudo-metabolic
interactions to focus on the reconstruction of protein subnetworks
using 37 811 protein interactions and used the same parameters and
cutoff values used in 4.1. PNA resulted in the six activation patterns
(the rows of Hf , sorted by their significance, in Figure 3A) including
(i–ii) dose-independent early up- (H1) and down-regulation (H2);
(iii) high-dose specific up-regulation (H4); and (iv) low-dose specific
down-regulation (H6) and (v–vi) other dose-dependent regulations
(H3 and H5). Differential expression patterns of top 20 nodes
with the smallest node P-values (Figure 3B) together with those
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in Supplementary Figure S5 show that PNA captured consistent
patterns in the data (Supplementary information 6).

Figure 3C shows the PS that describes biological processes with
slow activation after the HRG treatment in a dose-dependent manner
(H5). The same node coloring scheme was used as in Figure 2C.
The PS shows several modules associated with (i) HRG-EGFR,
(ii) TNF and (iii) IL6 signaling, (iv) their downstream pathways
(e.g. MAPK and NFKB), (v) transcriptional regulators (e.g. JUN,
FOSL1/2 and SRF), (vi) CDK-cyclin module (e.g. CDKN1A and
CCNE1) and (vii) apoptosis related module (e.g. CASP9, MCL1,
GADD45 and PMAIP1). The PS reveals these modules closely
interact with each other: EGFR to which HRG binds interacts with
MAPK pathways, which then interacts with the NFKB pathway
(Belich et al., 1999) via MAP kinases (MAP3k14 and MAP3K8) (see
the arrows in Figure 3C). This association is consistent with previous
findings that HRG can promote cell proliferation by inducing
CDKN1A and Cyclins (e.g. CCNE1) via MAPK-NFKB pathways
(Foehr et al., 2000; Yang et al., 2008).

PNA provides two ways to explore the interactions among the
PSs. First, we can indicate the shared nodes and edges between
two PSs (e.g. PS1 and PS5 for H1 and H5, respectively) using
either PS as a reference PS (e.g. PS5), thus permitting to explore
the interaction between PSs in the context of the reference PS.
Figure 3C shows the interactions between PS1 (dose-independent
early up-regulation) and PS5 (dose-dependent late up-regulations)
using the PS5 as a reference PS. The nodes belonging to PS1
are indicated by the blue boundaries. Interestingly, most of white
nodes (EGFR, TNFRs, MAPKs and NFKB) have blue boundaries,
indicating dose-dependent functional links between PS5 and PS1.

Second, we can reconstruct different PSs and then combine them
to explore their interactions. Figure 3D shows the combined PS
of two PSs for H6 (low-dose specific down-regulation) and H4
(high-dose specific up-regulation). The selected nodes for PS6 and
PS4 were indicated by red node and boundary colors, respectively.
Interestingly, the combined PS shows a number of shared nodes
between PS4 and PS6 that were down-regulated in low dose of
HRG but up-regulated in high dose. Focusing on these shared nodes,
the combined PS shows two groups of network modules associated
with HRG-dependent anti-proliferation and differentiation, which is
consistent with previous findings (see Supplementary information
7). The PS further shows that these modules closely interact with
each other: ERBB4 to which HRG binds interacts with MAPK
pathways, which then interact with both cell cycle inhibitors
(BRCA1 and RBL2) and actin regulation related modules (IQGAP1)
(see the arrows in Figure 3D). Interestingly, both TGFB (TGFB2 and
BMPR2) and splicing related molecules (SF3B1, DHX9, EPRS and
ZFR) were shared in both PSs, suggesting their potential association
with anti-proliferation and differentiation (see also Supplementary
information 7). Note that each PS represents an averaged view of
protein interactions most of which are expected to be transient and
also includes an incomplete set of edges due to the yet incomplete
interactome data.

4.3 Comparison of PSs from PNA with ASs from
jActiveModule and an edge-based method

We then compared the PSs from PNA with the ASs from
jActiveModule and the edge-based method. Both jActiveModule
and edge-based method were applied as described in Section 4.1.

Supplementary Figure S6A summarizes the results. Combining the
numbers of nodes and edges in all subnetworks generated from
each method (i.e. six PSs from PNA, six ASs from jActiveModule,
and one AS from the edge-based method), PNA resulted in the
subnetworks with the largest number of nodes (2714 nodes),
compared to jActiveModule (1568 nodes) and the edge-based
method (1793 nodes), while jActiveModule resulted in a larger
number of edges (7801 edges) than PNA (5527 edges) and the
edge-based method (2790 edges). Supplementary Figure S6B shows
that 707 nodes were shared by the three methods, whereas 571
(jActiveModule), 189 (edge-based method), 992 nodes (PNA) were
specifically identified by each method.

We compared the performance of the three methods by counting
the number low-fold-change nodes (fold change ≤1.5 in all
conditions) in their resulting subnetworks. The nodes selected
by PNA but not by either jActiveModule or edge-based method
(Supplementary Figure S6C) showed clear differential expression
patterns (Supplementary Figure S6D), which are well-correlated
with Hs in Figure 3A, thus indicating a small number of low-fold-
change nodes (56 out of 2714). The nodes in the boxes were included
in the corresponding PSs because of their composite differential
expression. For example, the nodes in the box of PS6 showed both
low-dose specific down-regulation (H6 in Figure 3A) and high-dose
specific up-regulation (H4 in Figure 3A) and thus included in both
PS4 and PS6 (the shared nodes in Figure 3D). For jActiveModule
and the edge-based method, we counted low-fold-change nodes
among the nodes selected by either of two methods but not by PNA.
Supplementary Figures S6E and S6F show a large number of low-
fold-change nodes selected by jActiveModule (465 out of 657) and
edge-based method (107 out of 275), respectively.

Finally, we compared the performance of ONMF in identifying
principal activation patterns with that of non-smooth NMF
(nsNMF), another NMF variant. From this comparison, we found
that ONMF generated non-redundant PSs while nsNMF generated
redundant subnetworks and further that the differential expression
patterns of the selected nodes by nsNMF were not correlated with
the corresponding activation patterns (see Supplementary Figures S5
and S7).

4.4 Application of PNA to gene expression data from
prion infected brain tissues

We also applied PNA to gene expression data collected from
prion-infected brain tissues during the course of prion disease
(see Section 2.2.3). Before applying PNA, we performed
an additional normalization on the log2-fold changes (see
Supplementary information 8). In this application, we included
pseudo-metabolic interactions together with protein interactions to
generate both protein and metabolic subnetworks. We used the same
parameters except for the number of bases (k) = 20 and P-value
cutoff = 0.01. Among the 20 activation patterns resulted from PNA
(Supplementary Figure S8), Figure 4A shows top four activation
patterns. Differential expression patterns of top 20 genes with
the smallest P-values are well-correlated with the four activation
patterns (Figure 4B). The most significant activation pattern (H1)
shows up-regulation specific to the four conditions having early
accumulation of PrPSc after prion inoculation (see Supplementary
information 9).
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Fig. 4. Application of PNA to gene expression data from prion-infected tissues. The results show four strain-combination-dependent activation patterns (A), as
well as differential expression patterns of top 20 genes in each basis (B). Both PS (Supplementary Figure S9) and PMS (Supplementary Figure S10) for basis
1 (early PrPsc accumulation) using the significant nodes (red) and edges were reconstructed. Three pathways of the PMS (GAGs, fatty acids and arachidonates
to prostaliandins; C–E), previously reported to be associated with PrPsc accumulation are shown. The round, diamond and octagon nodes indicate proteins,
metabolitess and glycans, respectively. Red arrows indicate metabolic reactions, and gray edges indicate interactions between enzymes and either substrates
or products. See the text for details.

To investigate cellular processes associated with early PrPSc

accumulation, we then reconstructed PS1 (Supplementary
Figure S9). The PS1 includes the modules related to
(i) microglial/astrocytic activation (complement activation,
cell adhesion, cell motility, anti-apoptosis and several signaling
pathways including FcR-PLC, MAPK, Tnf-NFkB, ILs-Jak-Stat
and Tgf-Smad pathways), (ii) ECM reorganization (e.g. MMPs
and TIMP2) and cell-ECM interactions (collagens, integrins and
cytoskeleton) and (iii) lipid homeostasis. The PS1 suggests that
these cellular processes have potential association with early PrPSc

accumulation. To explore the interactions between these processes
and the ones commonly activated in all of the seven conditions (H3
in Figure 4A), we added blue boundaries to the nodes selected by
PS3 for H3. The shared nodes (red node and blue boundary colors)
between PS1 and PS3 indicate that they are commonly activated in
all seven combinations and further activated in the four conditions
with early accumulation of PrPSc, suggesting that the additional
activation may be responsible for the early accumulation.

Supplementary Figure S10 shows a principal metabolic
subnetwork (PMS) for H1. Three pathways of the PMS, previously
reported to be associated with early PrPSc accumulation (Hwang
et al., 2009), were shown in Figures 4C–E. The three pathways
indicated the increased degradation of GAGs (potential PrPSc

receptors; Figure 4C), fatty acids (components of sphingolipids;
Figure 4D) and arachidonates to prostaliandins (inflammation
mediators; Figure 4E).

5 CONCLUSION
This study presents PNA that can efficiently identify activation
patterns from the data showing complex dynamics and can also

generate their associated subnetworks (PSs). We demonstrated the
utility of this method by applying it to three datasets. The results
showed that PNA effectively captured major activation patterns in
the data and generated their associated PSs. As a result, the collective
analysis of these PSs and their interactions allowed us to generate a
couple of network-driven hypotheses regarding (i) dose-dependent
dynamic effects of HRG on cell proliferation and differentiation
and (ii) key processes controlling early PrPSc accumulation. These
hypotheses can be the subjects of detailed functional studies. In
summary, the collective analysis of PSs and their interactions
would support effectively generating network-driven hypotheses for
various problems in systems biology.
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