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The interaction of poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) with Au or Ag nanospheres, Au
nanostars, and Ag nanoprisms was investigated using surface-enhanced Raman scattering (SERS). The SERS investigation
showed that adsorption of MEH-PPV strongly depends on the nature of the nanoparticle surface. On gold nanostars that
present a thick layer of capping polymer, SERS spectrum is only observed in relatively concentrated MEH-PPV solution
(1mmol L−1). On the other hand, Au and Ag nanospheres present SERS spectra down to 10−6mol L−1 and no chemical
interaction of MEH-PPV and metal surface is observed. The spectra of MEH-PPV on Ag nanoprisms with PVP as stabilizing
agent suggest that the capping polymer induces a planar conformation of MEH-PPV and consequently an increase of
conjugation length. These results give support for the application of MEH-PPV on optoelectronics in which interfacial effects
are critical in the device efficiency and stability.

1. Introduction

Poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene]
(MEH-PPV), structure in Figure 1, is an electroluminescent
conjugated polymer that presents improved processability
compared to its parent polymer: poly(1,4-phenyleneviny-
lene) (PPV), see also Figure 1 [1, 2]. This class of polymers
has attracted interest in fundamental and applied research
due to its potential application in photonic and electronic
devices such as in light-emitting diodes and photovoltaic
cells [3–6].

Although the growing interest in the application of
MEH-PPV in optoelectronics, critical challenges concern-
ing the stability and efficiency remain and they are directly
related to the interfaces within these devices. In particular,
the interface between metal electrodes and the conjugated
polymer plays a significant role in the device performance
and stability [7, 8]. Additionally, the use of plasmonic nano-
particles (Ag or Au) combined with conjugated polymers has
attracted great attention aiming at enhancing their lumines-
cence, resulting in more efficient devices [9–12]. The

performance of solar cells based on conjugated polymers
can be also improved by the enhancement of solar harvesting
in devices containing Au or Ag nanoparticles [13, 14].

Raman spectroscopy is an important tool for studying the
structure of conducting polymers. The correct choice of
exciting radiation allows the use of Raman spectroscopy to
investigate different chromophoric segments or to probe
modifications in the polymer chains after doping [15–17].
Theoretical and experimental vibrational studies of PPV
and its oligomers are well reported in the literature describing
the structure and the modifications in the neutral and
conducting states (n-doped and p-doped) [18–22]. This
vibrational characterization has been extended to the PPV-
based polymers such as the MEH-PPV, since the polymer
backbones are similar [23–26].

Surface-enhanced Raman scattering (SERS) enables the
study of conducting polymers within only a few nanometers
around metal nanostructures, and hence, this technique is
suitable to probe interfacial effects [27]. The interface
between polymer and electrode comprising MEH-PPV and
thermal evaporated gold or silver was investigated by SERS,
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showing significant differences between the SERS spectra on
these metals assigned to different conformations of MEH-
PPV chains [23]. SERS spectra of individual chromophores
on single MEH-PPV chains were reported showing two
different configurations of the chromophores associated
to the packed and loose conformation of the polymer
backbone [28].

In this work, we investigated the interaction of MEH-
PPV with Ag and Au nanoparticles presenting different
morphologies and stabilizing agents using SERS. The SERS
spectra of MEH-PPV on these nanoparticles were recorded
and the changes in the spectra were correlated with the
influence of the nature of the nanoparticle in the structure
of the polymer.

2. Materials and Methods

2.1. Materials and Instruments. Poly[2-methoxy-5-(2-ethyl-
hexyloxy)-1,4-phenylenevinylene] (MEH-PPV) (Aldrich)
Mn 40–70 kDa, chloroform (Vetec), AgNO3 (Aldrich),
tetrachloroauric acid (Aldrich), polyvinylpyrrolidone (PVP)
with average mol wt 40,000Da (Sigma-Aldrich), N,N-
dimethylformamide (DMF) (Vetec), and sodium citrate
(Sigma-Aldrich) were used as received.

UV–VIS spectra were recorded on a Shimadzu UV-1800
UV–VIS spectrophotometer. Scanning electron microscopy
(SEM) was performed on a FEI Magellan scanning electron
microscope, with a field emission gun source. Emission spec-
tra were obtained using a Horiba Fluorog3 and a 450W
Xenon lamp as excitation source.

Raman measurements were recorded on a Bruker
SENTERRA Raman microscope with a He-Ne laser source
at 632.8 nm and a diode laser at 785nm. The laser beam
was focused on the sample by a 50x lens (NA=0.51),
and the laser power has always been kept at 0.2mW in
order to avoid sample degradation.

2.2. Synthesis of Silver Nanoparticles

2.2.1. Silver Nanoparticles. Silver nanospheres were prepared
following the well-established method described by
Creighton et al. using AgNO3 as silver source and NaBH4

as reducing agent [29]. UV–VIS spectrum of colloid presents
maximum absorption at 398nm (Supplementary material –
Figure S1). This colloid presents silver nanospheres in
the range of 1 to 50 nm and borate as primary stabilizing
agent [29].

Silver nanoprisms were synthesized in DMF follow-
ing the procedure described by Pastoriza-Santos and
Liz-Marzan [30]. Briefly, 0.160 g of PVP and 0.037 g of
AgNO3 were dissolved in 10mL of DMF and the mixture
was kept under reflux for 30min. The mixture was centri-
fuged at 14000 rpm for 10min, and the solid was dispersed
in DMF. UV–VIS spectrum of silver nanoprisms dispersed
in DMF is characteristic of triangular nanoprisms with max-
imum absorptions at 610 nm (Supplementary material –
Figure S2). The nanoparticles present mean size of 45nm
and PVP as stabilizing agent.

2.2.2. Gold Nanoparticles. Gold nanospheres were prepared
using the method described by Frens [31]. UV–VIS spectrum
of gold colloid presentsmaximum absorption at 522nm. Typ-
ically, this colloid presents spherical nanoparticles with mean
diameter of 15 nm (Supplementary material – Figure S3).

Gold nanostars were synthesized following a procedure
described by Senthil Kumar et al. [32]. Briefly, Au Frens’ col-
loid was used as seed in DMF solution containing PVP and
HAuCl4; after one week, the colloidal suspension becomes
blue, indicating the formation of nanostars. UV–VIS spec-
trum of gold nanostars presents a broad absorption band with
maximum at 590nm (Supplementary material – Figure S4).

2.2.3. SERS Characterization. A stock solution of 1mg/mL of
MEH-PPV in chloroform was prepared; the adequate vol-
ume of this solution was mixed with the metal nanoparticles
suspensions to obtain the desired polymer concentration.
Silver or gold nanoparticle suspensions were incubated for
12 h with MEH-PPV at a final concentration of about 10−3,
10−4, 10−5, and 10−6mol L−1 in which the molarity was calcu-
lated on the basis of monomeric units (C18H28O2)n. After the
polymer adsorption, the suspension was centrifuged and
rinsed with solvent to remove the remaining solubilized free
polymer. The solid was deposited on a glass slide and dried at
room temperature.

3. Results and Discussion

3.1. SERS of MEH-PPV on Gold Nanoparticles. Figure 2
presents Raman spectra of MEH-PPV at 633 and 785nm in
the range of 1700 to 900 cm−1, which is dominated by the
backbone modes. MEH-PPV presents a strong emission in
the range of 500 to 650nm, overlapping the Raman spectra
in visible exciting radiation (Supplementary material –
Figure S5). The assignment of vibrational modes was based
on previously vibrational studies of PPV and MEH-PPV
[18–22, 28]. In the high frequency region, the spectrum at
785 nm presents bands assigned primarily to the backbone
modes at 1623 cm−1 (vinyl ν(C=C)), 1581 cm−1 (ring
ν(C=C)), 1310 cm−1 (vinyl ν(C=C)+ δ(C=C–H)), 1283 cm−1

(ring ν(C=C)+ δ(C=C–H)), and 967 and 1110 cm−1

(β(C=C–H)) [18, 19, 21].
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Figure 1: Chemical structure of poly[1,4-phenylenevinylene] (PPV)
and poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene]
(MEH-PPV).
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Figure 3 shows the SERS spectrum of MEH-PPV on gold
nanostars. The SERS spectrum resembles the Raman
spectrum of the solid MEH-PPV (Figure 2) and is only
observed for relatively concentrated MEH-PPV solutions
(1× 10−3mol L−1). These observations can be correlated with
SEM images of gold nanostars (inset of Figure 3). Even
though these nanoparticles present multiple pods suitable
for large SERS enhancement, it is evident that the presence
of a PVP layer on gold surface prevents the adsorption of
MEH-PPV on the surface, resulting in a SERS spectrum sim-
ilar to the Raman of the solid polymer. Also, the presence of

the fluorescence background suggests that MEH-PPV is not
adsorbed directly on the gold surface; when the polymer is
close to the metal surface, its fluorescence is quenched.

Using the 633nm excitation radiation, SERS spectra of
MEH-PPV on gold Frens’ colloid are detected for MEH-
PPV concentrations down to 1× 10−5mol L−1 (Figure 4).
The fluorescence background is no longer observed due to
enhancement of the Raman signal and quenching of fluores-
cence due to the proximity of MEH-PPV to the gold surface.
There is no significant shift of the bands of SERS spectra of
MEH-PPV compared to the Raman of solid indicating a lack
of chemical interaction to the surface. This result differs to
those reported for the SERS of MEH-PPV deposited on gold
electrodes in which a new band at 854 cm−1 and a decrease in
the relative intensity of the bands at about 1300 and
1580 cm−1 are observed [23]. The difference between the
results indicates that polymer processing, that is, spin coating
deposition or adsorption form solution phase and/or the
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Figure 2: Raman spectra of MEH-PPV: (a) λ0 = 633 nm and (b)
λ0 = 785 nm.
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Figure 3: SERS spectrum of MEH-PPV on gold nanostars
(1× 10−3mol L−1). λ0 = 633 nm. Inset: representative SEM image
of gold nanostars.
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Figure 4: SERS spectra of MEH-PPV on gold Frens’ colloid at
different concentration. λ0 = 633 nm.
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Figure 5: SERS spectra of MEH-PPV on silver Creighton’s colloid
at different concentration. λ0 = 633 nm.
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nature of gold surface (thermal evaporated gold films or
citrate-stabilized gold nanoparticles) play an important role
on the structure of MEH-PPV on the metal surface.

3.2. SERS of MEH-PPV on Silver Nanoparticles. The SERS
spectra of MEH-PPV on silver Creighton’s colloid are shown
in Figure 5, and the SERS signal is detected for concentra-
tions down to 10−5mol L−1. These spectra are similar to the
spectrum of solid MEH-PPV (Figure 2) showing minimal
structural variation from the bulk. This is in agreement to
the behavior of MEH-PPV deposited on silver electrodes
probed by SERS in which no significant spectral variations
were observed under excitation at 785 and 532 nm [23]. Fluo-
rescence background is present in the SERS spectrum at
1× 10−4mol L−1 and it is not observed for the more diluted
one. In the samples with higher MEH-PPV concentration, a
thicker polymer layer is formed, and the fluorescence
quenching is not effective.

The SERS spectra of MEH-PPV on silver nanoprisms are
shown in Figure 6(a), the SERS signal is detected for concen-
trations down to 10−6mol L−1. The nanoprisms present
mean size of 45nm (Figure 6(b)) and PVP as stabilizer. In
contrast to the SERS of MEH-PPV on silver Creighton’s col-
loid, the spectra of MEH-PPV on silver nanoprisms exhibit
notable differences with respect to the solid MEH-PPV.

The difference of SERS spectra of MEH-PPV on Ag nanopr-
isms and on Creighton’s Ag colloid can be attributed to the
PVP layer. The PVP-stabilized nanostructures present SERS
selectivity due to a discriminatory binding of analytes
adsorbed on the polymer layer [33]. There is an enhancement
of the band at 1546 cm−1, the ratio I1546/I1582 is a measure of
conjugation length, this ratio increases with the conjugation
length. Also, the band observed in the Raman spectrum of
the solid (Figure 2) at 966 cm−1 is absent in the SERS spectra
on silver nanoprisms. This band is assigned to CH out-of-
plane wagging and the observation of this band in Raman
spectrum is related to the distortion of vinylene groups in
PPV chains from a planar form. These results indicate that
PVP layer induces the adsorption of MEH-PPV with planar
form, consequently with increase of conjugation length. Also,
the band at 1266 cm−1 in the SERS spectra can be assigned to
bipolaronic species, this band is observed in the Raman spec-
trum of p-doped PPV [22]. P-type doping of conducting
polymers corresponds to an oxidation reaction, this redox
reaction can take place on the silver nanoparticle surface;
the oxidation of polyaniline on silver nanoparticles was pre-
viously detected using SERS [34]. It is important to note that
silver surface together with PVP layer induces the adsorption
of p-doped MEH-PPV chains with higher conjugation length
on the metal surface.
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Figure 6: (a) SERS spectra of MEH-PPV on silver nanoprisms at different concentration. λ0 = 633 nm. (b) Representative SEM image of silver
nanoprisms.
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4. Conclusion

The SERS spectra of MEH-PPV were recorded in a concen-
tration range of 10−3 to 10−6mol L−1 on Au or Ag nanoparti-
cles with different morphology and capping agents. From
these SERS results, it appears clear that the adsorption of
MEH-PPV strongly depends on the nature of the nanoparti-
cle surface. SERS spectra of MEH-PPV on gold nanostars
that present a thick layer of PVP is only observed in relatively
concentrated MEH-PPV solution. In contrast, when Au and
Ag nanoparticles with citrate or borate as stabilizing agent,
respectively, chemical interaction of MEH-PPV and metal
surface is not observed in SERS spectra. When Ag nanopr-
isms with PVP on the surface is used as SERS substrate,
MEH-PPV chains present an increase of conjugation length
induced by PVP.
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