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Several automated border detection approaches for three-dimensional echocardiography have been developed in recent years, allowing
quantification of a range of clinically important parameters. In this review, the background and principles of these approaches and the differ-
ent classes of methods are described from a practical perspective, as well as the research trends to achieve a robust method.
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Introduction

Motivation
Since 2008, all major ultrasound systems feature real-time three-
dimensional echocardiography (RT3DE). RT3DE has been used,
for example, to measure left ventricular (LV) volume and mass,
to evaluate various cardiac valve problems, and to assess a spec-
trum of morphological cardiac disorders.1 –3 It offers possibilities
for functional analysis and quantification, by avoiding the classical
limitations associated with M-mode and two-dimensional echo
(2DE).4 The wealth of information in these time series of 3D
data sets, however, precludes the manual tracing of borders in
all these images. Therefore, automated tools for analysing these
four-dimensional (4D) data sets are highly desirable. Such tools
can reduce the workload and yield consistent and reproducible
results for the quantification of cardiac function.

Since the breakthrough of RT3DE, several automated tools for
quantitative image analysis appeared in literature and have
become commercially available. In this review, we discuss their
principles, provide some critical insights into their possibilities,
and propose directions for future developments.

Development of real-time
three-dimensional echocardiography
and automated analysis
Initially, dynamic 3D echocardiography was hampered by slow
acquisition and disappointing image quality. Nevertheless, some

approaches for automated analysis were proposed, especially on
3D transoesophageal (TEE) data sets5 acquired by ECG-triggered
image plane rotation. Between 1990 and 1995, the first real-time
3D imaging systems using sparse-array matrix transducers were
developed at Duke University, resulting in the Volumetrics RT3D
system, which sparked several automated methods for LV quanti-
fication.6,7 The breakthrough of RT3DE came around 2002 with
the Philips Sonos 7500 system and the X4 matrix transducer, pro-
viding much better image quality. Shortly thereafter, 3D analysis
approaches became available (TomTec 4D LV-Analysis, version
1,8 and Philips QLab 3DQ-Advanced9). Meanwhile, other
vendors have introduced RT3DE systems [GE-Vingmed Vivid
7 with 3V probe (2004), Siemens-Acuson Sc2000 with 4Z1c
probe (2008), and Toshiba Artida with PST-25SX probe and 3D
wall tracking (2008)]. TomTec Imaging Systems pioneered many
of the tools for 3D acquisition and analysis in the early days, includ-
ing those on several manufacturers’ analysis platforms. 3D image
acquisition technology is advancing at a rapid pace; Philips
expanded 3D functionality with its iE33 platform, the X3-1 trans-
ducer, the X7-2 paediatric transducer, and the first matrix TEE
transducer (X7-2t). GE-Vingmed has introduced a new platform
(Vivid E9) with improved 3D functionality.

Promises and challenges
Real-time three-dimensional echocardiography vs.
two-dimensional echo
The clinical advantages and practical use of RT3DE have been pre-
sented in a number of recent reviews.2– 4 RT3DE is also especially
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important for quantification of LV volumes, LV mass, segmental wall
motion and synchrony, etc. Because all structures can be seen in
context, a consistent outlining of the whole endocardial surface
is usually possible. There is no underestimation of volume due to
foreshortening or shape assumptions, like in 2DE. However, the
image quality, frame rate, and resolution of RT3DE are lower
and artefacts such as shadowing are more common than in 2DE.
The amount of image information is enormous, making manual
analysis cumbersome.

Challenges in real-time three-dimensional
echocardiography analysis
Quantitative analysis of RT3DE is generally more challenging than,
for example, of computed tomography (CT) or magnetic reson-
ance (MR), for multiple reasons.

(i) Parts of the anatomy are not imaged, due to dropouts (for
structures parallel to the ultrasound beam), shadowing
(behind acoustically obstructive structures such as ribs and
lungs), and scan sector limitations. Because of the relatively
large footprint of 3D transducers, shadowing is often a
problem.

(ii) Artefacts caused by side lobes, reverberations, clutter, etc.
are common. Most artefacts increase with reduced ultrasound
penetration, which is frequent in obese or older patients.

(iii) Pixel intensity does not directly reflect any physical property
of the tissue. Ultrasound images are formed by sound reflec-
tion and scattering, resulting in the typical ultrasound speckle
patterns. Different tissues and blood are often not distin-
guished by intensity, but only by subtle differences in
(moving) speckle patterns. The exact interface between
blood and tissue is not always clear.

(iv) The sequential scanning of ultrasound lines merges infor-
mation from different time moments into one image. For
quickly moving structures, this leads to spatial distortion and
sharp transitions between ‘older’ and ‘newer’ image parts. In
RT3DE, this is particularly prominent where subvolumes
from different heartbeats are stitched together to image the
complete LV.

Border delineation is needed for
quantification
To derive useful clinical parameters from RT3DE, one should
outline the structures of interest, e.g. the endocardial border deli-
neating the 3D lumen. Classically, this is done manually. In a stan-
dard biplane volume analysis, there are just a few borders to draw.
The earliest 3D echo analysis software either required manual deli-
neations in many cross-sectional views (TomTec Echoview), which
were then spatially interpolated to a single 3D volume, or used
manual delineation in two perpendicular views, after which the
standard biplane Simpson’s rule is applied (Philips QLab 3DQ). A
typical complete volumetric analysis would require internally con-
sistent manual drawing of hundreds of borders (10–20 borders in
15–30 3D images). Therefore, for an objective, reproducible
quantification and a practical workflow, an automated analysis is
highly desirable.

Image processing for
real-time three-dimensional
echocardiography

Computer analysis of images: the image
interpretation pyramid
Automated image analysis or image processing involves complicated
computer processing that mimics the human visual interpretation
system. Although we humans perform visual perception constantly
with ease, we do not realize how we actually do it. [A look at some
of the well-known optical illusions (http://www.michaelbach.de/ot/)
demonstrates how much hidden interpretation is going on in our
‘infallible’ vision system.] To clarify the possibilities and limitations,
we will use the metaphor of the image interpretation pyramid
(Figure 1). We can distinguish multiple levels in how we derive
meaning from the light that reaches our eyes. At the bottom
(level 0) resides the basic information that our retina cells
provide: light intensity and colour, comparable to the pixels in a
digital image. At level 1, image features are located: patches with
similar information, edges where brightness varies, corners,
motion, etc. At level 2, such features aggregate into patterns or
objects with some relation to our world. Higher up (level 3), we
have a scene with an interaction of objects. At the top (level 4),
some meaningful interpretation is produced, e.g. ‘a wall motion
abnormality that is likely caused by a stenosis in the left anterior
descending coronary’. The levels represent increasing abstraction
as well as data reduction. In medical image interpretation, knowl-
edge on anatomy and pathology is contained at levels 3 and
4. The knowledge on the imaging modality resides at levels 1
and 2—i.e. the way structures and artefacts appear in an ultra-
sound image.

For interpretation, we employ a huge amount of specialized
knowledge at each level, by fitting ‘models’ of what we know
and need to the data, and disposing of the ‘uninteresting’ infor-
mation. A model signifies prior knowledge of what is meaningful or
expected. However, this is not a simple bottom-up process, and
interaction between levels often occurs, to deal with conflicting
or ambiguous possibilities, to fill in missing information, etc. With
the current state of technology, only limited aspects of the
human visual interpretation can be mimicked in a computer and
only relatively simple models are employed in automated image
analysis.

Overview of three-dimensional
segmentation methods
Awide range of image processing approaches for LV quantification in
RT3DE have been proposed. These are generally identified as seg-
mentation, border detection, object detection, tracking, registration, or
classification. Segmentation is defined as dividing an image into differ-
ent objects or classes (such as tissue and blood), or as finding their
borders (border detection). In object detection, the presence and pos-
ition of certain structures (such as a valve) is determined. It is often
linked to classification, an approach where pixels or parts of images
are given a label based on some decision scheme. In tracking, the
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position of a point or structure in an image is followed over time. In
registration, the deformation between images (such as consecutive
images in time, or follow-up images vs. baseline) is determined, so
that the displacement is known for any point.

Although the distinctions are not strict, these techniques
provide different solutions for related problems. For example,
strain estimation may use registration or tracking, and a fully auto-
mated localization of the LV may use both classification and
segmentation.

In this review, we will concentrate on finding ventricular borders
in non-contrast-enhanced echocardiograms, for single or time
series of 3D images. Most papers focus on endocardial border
detection; a few also discuss the epicardium (Table 1). In principle,
most automated methods are suitable for both. However, the epi-
cardium is harder to detect since it is usually less visible and has a
varying appearance in different segments. Epicardial border detec-
tion is usually assisted by the endocardial border detection, e.g. by
assuming typical distances between both borders.

The methods mostly operate on B-mode data [envelope of the
radiofrequency (RF) signal]. Although the phase information

contained in the RF signal is very important for detecting subtle
cardiac deformation in strain analysis,10 it may be less beneficial
in detecting tissue boundaries. However, both approaches may
benefit from each other. In contrast to most strain analysis
methods, 3D segmentation methods operate typically in the Car-
tesian 3D space rather than in the polar (scanline) domain, since
generally some kind of 3D geometrical assumption of the LV is
employed, which is cumbersome in the polar domain.

For obvious reasons, we cannot give a detailed overview of all
available methods; the most important ones are summarized in
Table 1. For more in-depth technical details, we refer to the excel-
lent overview by Noble and Boukerroui.11

Geometrical models
The most common border detection approaches are based on geo-
metrical models. The border is represented as a curved surface
which separates the lumen from the cardiac wall. This surface is
influenced by geometrical constraints, e.g. the surface must
resemble a certain shape (such as an ellipsoid), it must be
‘smooth’ in some respect, etc.

Figure 1 The image interpretation pyramid.
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To find the borders, an initial guess of the surface is placed on
the image, either automatically or interactively. This surface is
then optimized or ‘deformed’ to a new position, guided by image
features (e.g. edges), which are associated with the true border.
This is often done iteratively: the features close to the surface are
used to repetitively update the surface, until it does not change sig-
nificantly anymore.

Most methods use energy-based optimization. These
approaches are known as deformable models, balloons, snakes,
and active contours.7,9,12– 16 A mathematical ‘energy’ function is
defined, which consists of an ‘external’ and an ‘internal’ com-
ponent. The external component is determined by the image fea-
tures, and the internal component limits the area and curvature of
the surface to ensure smoothness. The total function is then opti-
mized iteratively. These methods may differ in the mathematical
representation of the contours, the type of image features, and
the way of obtaining the initial guess of the surface.

One of the earliest examples is the TomTec 4D LV-Analysis
(version 1).8,17 The mitral valve annulus is manually annotated in
eight long-axis cross-sections, in end-diastole (ED) and end-systole
(ES). An ellipse is placed close to the annotated points as the initial
guess. The borders in these cross-sections are then detected using
intensity-based features close to the ellipse. The borders are rep-
resented by a spline (a mathematical description of a smooth
curve). These 2D borders are then spatially interpolated to a 3D
surface. In a newer version of this software (TomTec 4D
LV-Analysis, version 2; Figure 2), manually traced borders in
three views (the four-chamber view, and views at 608 and 1208
rotation) in ED and ES are used as initialization. A 3D spatio-
temporal deformable model is then applied,17,18 which ensures a
smooth surface in time and space. The TomTec 4D RV-Function
software uses essentially the same approach in the right ventricle

(RV). In this case, the method is initialized by manual delineation
of the borders in two perpendicular long-axis views.19

The Philips QLab 3DQ-Advanced software20,21 (Figure 3) uses
five manually placed points (four on the mitral valve annulus and
one on the apex) in ED and ES as initialization. This method also
uses a coarse-to-fine (multiscale) scheme, gradually going from
global changes in position of the surface (driven by global rotations,
translation, scaling, and shear) to local refinements for each surface
segment.9

Recently, GE introduced the 4D LVQ tool in the EchoPAC soft-
ware22 (Figure 4), which uses 18 manually placed points as initiali-
zation (mitral valve annulus and apex on three apical views, in ED
and ES).

Geometrical modelling uses multiple levels of the image
pyramid, employing a geometrical surface (level 2), driven by
image features (level 1) and intensities (level 0). They are quite
flexible, allowing a wide variety of shapes. Therefore, they are
especially useful if the borders are expected to vary a lot, e.g. if
congenital heart disease is present.15 However, it is difficult to
achieve the right balance between surfaces which are too
smooth (too indistinctive for all pathological variabilities) and sur-
faces which are entirely implausible.

Shape-free methods
Shape-free methods rely heavily on image pixels and features
(levels 0 and 1 of the image pyramid). Few assumptions are
made on the shape of the border; arbitrary shapes are allowed.

Clustering
Clustering techniques are often used to categorize image pixels into
distinct groups, based on image features. For example, one can cat-
egorize each pixel into myocardial tissue or blood, based on its
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Table 1 Automated border detection methods

Category Subcategory Method

Geometrical
models

Deformable models via energy
function optimization

2D þ T: TomTec 4D LV-Analysis, version 1,8,17,55,56,63–69 also for epicardial borders70

3D þ T: TomTec 4D LV-Analysis, version 2,17,18,57,71,72 for right ventricle,19,73 –76 QLab 3DQ
Advanced: LV endocardium,21,54,56,58,71,77,78 also for epicardium,70,79 left atrium80,81

4D LVQ in GE EchoPAC22 guided by registration,13 congenital heart disease,15 epicardial and
endocardial,14,16,24,82 other academic papers7,9,12

Other optimization types Dynamic programming and pattern matching,83 geometrical model for tracking62,84

Shape-free
methods

Clustering Clustering of pixels: Gaussian distribution with interactive thresholding,23 Rayleigh distribution,24

multiscale intensity-based features,25 phase-based features26,27

Level sets For LV,29,32 also for epicardial borders,85 multi-scale level sets,30,31 LV þ RV28

Statistical
modelling

Active shape models Multislice shape model,34,36 optimization via Kalman filtering35

Active appearance models 3D data,38,39 triplane data37

Classification Pixel/feature Edge segments,40 surface86

Entire image Marginal space learning, probabilistic boosting tree41,42

Tracking Registration Global spatial transform,13,82 local spatial transform46,47

Speckle tracking Strain estimation: Toshiba Artida,50–52 block matching,48,49,53,87 optical flow,48 combined with
statistical motion patterns44,45
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intensity.23 The underlying assumption is that the intensity distri-
bution in tissue (high intensities) differs from the distribution in
blood (low intensities). Methods may use different distributions;
e.g. the Gaussian23 and the Rayleigh distributions (which is more tai-
lored to ultrasound images).24 Besides intensities, other types of fea-
tures may be used (e.g. features based on phase25,26). The segmented
object may not necessarily be in one piece, thus allowing maximum
freedom in shape and topology. However, given the peculiarities in
ultrasound imaging, it is often necessary to incorporate higher-level
knowledge. Therefore, clustering is often integrated into modelling
methods (e.g. geometrical models and motion models27), to give a
more stable detection.

Level sets
The level sets6,28– 32 approach is quite similar to energy-based
deformable models. However, with level sets, the curved surface
is defined by a different deformation equation such that the
shape of the borders is much less restricted. (Theoretically speak-
ing, energy-based deformable models are explicit mathematical
formulations of level sets and are therefore closely related; in prac-
tice, however, level sets give much more flexible shapes.) The
detected border may consist of multiple disconnected surfaces.

This is potentially useful in pathological cases (e.g. ventricular
septal defects) or for segmenting the whole-blood pool in all
four chambers simultaneously. Obviously, due to the shape-free
nature, the method is sensitive to shadowing and dropouts.

Population-based statistical models
Statistical modelling methods model the statistical variations in
actual patient data from large sets of images with expert-drawn
borders. Statistical modelling condenses patient variability into a
relatively simple mathematical model which has only a few par-
ameters, but with very strong descriptive power. The patient varia-
bility is expressed as an ‘average’ and several ‘typical modes of
variation’ (i.e. eigenvariations), obtained using principal component
analysis. Both the borders (shape model) and the image intensities
(texture model) can be represented in this way. By choosing differ-
ent weights (i.e. parameters) for each eigenvariation, a wide range
of shapes and images can be synthesized, covering all patient vari-
ation. As it models the variability from real data, the method deals
with knowledge at pyramid level 2.

By explicitly learning variations from real examples, the method
finds only plausible results, even if they are very complex. It cap-
tures the expert’s definition of proper border definitions (which

Figure 2 TomTec 4D LV-Analysis. The border detection method is based on geometrical modelling using spatio-temporal splines. Courtesy
of TomTec Imaging Systems GmbH (Unterschleissheim, Germany).
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may not necessarily be the ‘brightest’ edge in the image), even in
the presence of typical ultrasound artefacts. It can also be
extended to model all cardiac phases simultaneously.33 However,
a large database is needed which is representative of the expected
variations, including pathological cases. Also, the accuracy depends
directly on the quality and consistency of the expert-drawn
borders.

Active shape models
Active shape models use mainly a shape model for border detec-
tion.34– 36 First, the average shape is placed on the image. The par-
ameters of the shape model are then found iteratively: similar to
the geometrical models, the local image features drive the shape
model to the actual borders, but here, the statistical shape
model is the geometrical constraint. Only ‘plausible’ shapes are
found in this way.

Active appearance models
Active appearance models use a somewhat different border detec-
tion strategy, by taking both texture and shape variability into
account.37– 39 An appearance model is obtained by applying princi-
pal component analysis on the combination of the shape and
texture models (Figure 5). The model is then adapted to match
the image iteratively: the difference between the model-
synthesized image and the real image determines the next best
estimate of the appearance model. Since the active appearance

model uses a model of the texture, it uses more expert knowledge
than the active shape method. This is especially useful in regions
which contain typical artefacts. However, this requires that the
texture model can represent all expected variations, and more
examples are needed.

Classification using expert-created
databases
Classification techniques use expert-created databases for auto-
mated grouping and recognition of many types of objects, such
as fingerprints, handwritten text, speech, etc. Owing to its
versatility, classification can be adapted to all levels of the image
pyramid, for categorizing image pixels (level 0) and features
(level 1), and even for image interpretation (level 4).

Experts distinguish different groups or regions in a large data-
base of example data. This database is used to learn a division
between classes of objects, given their features. The feature distri-
bution of both classes must be as distinct as possible, by selecting
the most descriptive features, the appropriate distributions, and a
suitable mathematical method to learn the division.

In the past, classification was mostly applied to divide the image
on a very local basis: classifying each pixel (blood or cardiac tissue)
or small sets of features (edge or no edge40). Recent methods use
all features in the image to detect the entire LV border.41 Parts of
an image are classified by placing boxes of different sizes on the

Figure 3 Philips QLab 3DQ-Advanced software. The method is initialized using five manually placed points on the apex and mitral valve
annulus, after which a deformable model is applied. Courtesy of Philips Medical Systems (Andover, MA, USA).
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image in different positions. The classifier determines for each box
whether it contains a centred LV. The strength of this method lies
in the use of a classifier (a so-called probabilistic boosting tree),
which automatically selects a powerful combination of simple fea-
tures. In practice, the classification algorithm follows a
coarse-to-fine scheme (marginal space learning). This method was

used to detect anatomical planes (four-chamber, two-chamber,
and short-axis cross-sections)42 and the 3D borders in ED.41

Siemens is in the process of integrating these methods into the
Acuson sc2000 system.43

This promising technique uses expert knowledge for border
detection, by learning from real patient data. Also, the detection

Figure 4 Left ventricular surface detection using 4D LVQ in EchoPAC software. (A) Borders are initialized by manual annotation of mitral
valve annulus and apex in the standard apical views. Three extra SAX views were used to further verify the detected surface. (B) The complete
four-dimensional surface detection at end-systole with time–volume curve. Courtesy of J. Hansegård (GE Vingmed Ultrasound, Horten,
Norway).
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can be very fast. However, many consistently delineated example
images are needed to build an accurate classifier, considerably
more than for statistical models (around 4000 examples43).

Intensity-based tracking
As tracking involves the estimation of motion, it is strictly speaking
not a border detection method; rather, it can be used to propagate
borders throughout the cardiac cycle, by applying the estimated
motion frame-by-frame to the borders in the first frame.

Most often, tracking uses only image intensities (pyramid level 0)
to guide the border detection. If two images are very similar, the
motion can be estimated quite accurately. However, tracking is
sensitive to image noise and artefacts. Therefore, information
from higher levels of the image pyramid, such as knowledge of
cardiac motion patterns,44,45 are often effective.

Registration
Registration methods find the spatial correspondence between
images. This is estimated by iteratively optimizing a similarity
measure between two images. This measure is often based on
local image intensities (e.g. sum-of-squared differences, cross-
correlation), or on overall intensity distributions, such as mutual
information. The latter, less strict criterion makes it especially
useful in registering images of different image modalities. The
spatial correspondence is expressed by a spatial transform: global
transforms such as rotation, translation, scaling, and shear;13 or
more complex, local transforms, such as deforming a spline
grid.46,47 The complexity of the transform influences the precision
of the motion pattern, but also the computation time. Usually,
many iterative steps are needed, which makes registration
methods relatively slow. Therefore, registration is often applied
in a coarse-to-fine manner, by increasing the image resolution
and the complexity of the transform in each stage.

Speckle tracking
Speckle tracking finds corresponding speckle patterns in different
frames. The most popular speckle-tracking methods are based on
block matching or optical flow; in most cases, a rough estimate is
first found using block matching, which is then refined using optical
flow.48 Both methods can be implemented in a coarse-to-fine
scheme.49 Recently, Toshiba has introduced the Artida system,
which has a 3D speckle-tracking method50– 52 (Figure 6).

Block matching looks for similar speckle patterns in two images
by transforming part of an image to match another image.53 The
transform corresponding with a maximal similarity measure (e.g.
cross-correlation) is the estimated motion. The transform, e.g.
translation and rotation, is applied in fixed intervals. Therefore,
the computation time is limited, but the accuracy of the motion
estimation is also limited to these intervals.

Optical flow uses image gradients to estimate motion. The
motion is found by solving a mathematical equation that relates
the spatial and temporal image gradient to the motion. The most
common methods either incorporate global constraints (smooth-
ness of the motion in the entire image) or local constraints (con-
stant motion within a small image region). If applied to cardiac
images, statistical models of the cardiac motion may be used as a
constraint instead.45 Since optical flow allows a seamless inte-
gration of scaling and shearing, the method can (theoretically)
also be used to estimate subtle motion patterns, to easily derive
parameters such as strain and strain rate.

Discussion
All approaches described above have been evaluated with positive
outcome. Especially the commercial systems that have been avail-
able for some time (Philips QLab and TomTec 4D LV) have been
used in many studies (Table 1). Here, we will discuss some aspects
and comparisons between the different approaches.

Figure 5 (A) Three-dimensional appearance model of the left ventricle, showing the average appearance and the main variations. (B) Four-
chamber, two-chamber, and short-axis cross-sections of a three-dimensional image with manually delineated borders. (C) The corresponding
image and borders, synthesized by the appearance model.
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Ground truth for borders and
quantitative parameters
Validation of automated border detection in medical images is not
trivial. An accurate ground truth for border delineation and volume
measurement is absent.

First of all, direct in vivo assessment of borders or volumes in
humans is impossible. Ex vivo materials, animal experiments, casts,
phantoms, etc. are regularly used for fundamental validation;
these can be controlled well, but rarely resemble the human in
vivo situation.

Secondly, RT3DE borders and volumes are often compared
with other imaging modalities like MR imaging (MRI) or CT, but
these give a different impression of the same anatomy, due to
the underlying physical principles of imaging. Especially, the heavy
trabeculations on the LV endocardial wall induce differences
between ultrasound and MRI.54 Several studies have shown that
it is possible to get good correspondence between volumes
derived from MR and RT3DE,8,17,55 – 57 provided that adapted

tracing conventions are applied. Reconsideration of the classical
tracing conventions is required, using the insights of such studies.54

Thirdly, the automated borders can be compared with borders
drawn by experts. However, considerable variability will exist
between the borders of different experts, between different insti-
tutions, and even within one expert, if an analysis is repeated.
Barely noticeable variations can cause significant changes in
volume.54 Also, interpretation consensus will decrease for images
of lower quality or clinically more difficult cases. In practice, an
automated method is considered acceptable if it is within a pre-
determined range of expert variability.

Comparison of different approaches
It is even more difficult to determine which method performs best,
or under which circumstances, methods succeed or fail. Especially,
image quality plays an important role in the quality of RT3DE analy-
sis. Comparing the numbers in different evaluation studies is mean-
ingless. The analysis circumstances, image quality, and patient data
may vary widely. Few studies compare methods on the same set of
data.17,22,56,58 Usually, a single set of manually drawn borders or
analyses on MRI or CT are used as ‘reference standards’, with limit-
ations as sketched above. The general conclusion is often that the
results do not differ significantly, and that one method is superior
in terms of reduced user interaction, processing time or observer
variability. Of course, these are important secondary issues, but
which method delivers the most accurate results remains
unanswered.

Need for well-validated data sets
In the light of the above, a large, standardized database is required
covering a range of image quality, of pathological and normal cases
with borders well validated by multiple observers. Such a database
is ideal for the objective comparison of methods or consecutive
versions of algorithms, to determine their limitations under
varying circumstances and for optimization purposes. Similar data-
bases exist in other domains, such as for brain MR (see http://www.
cma.mgh.harvard.edu/ibsr), chest radiographs, and liver segmenta-
tion in CT images.59 These databases may considerably boost
the improvement of methods, e.g. via large-scale competitions.59

Fully automated vs. interactive methods
From the viewpoint of logistics and user effort, fully automated
analysis would be highly attractive, by eliminating user variability
and allowing unsupervised and possibly on-line quantification.
In principle, it might even allow automated patient monitoring.
However, monitoring applications pose very severe requirements
on sensitivity and specificity. Given the highly varying image
quality, the complex nature of the ultrasound images, and the con-
siderable amount of artefacts, unsupervised analysis seems currently
far out of reach.

The clinician has the obligation and should have the possibilities
to verify and correct automated quantifications. Also, good
methods should ensure spatial and temporal consistency after cor-
rection, and should limit the effect of initialization and correction
on observer variability. Many of the current methods could be
improved in this respect.

Figure 6 Strain estimation based on speckle tracking in the
Toshiba Artida system. (Top) Peak circumferential strain at end-
systole. (Bottom) Torsion at early diastole. Courtesy of
W. Gorissen (Toshiba Medical Systems Europe, Zoetermeer,
The Netherlands).
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Future developments
Developments in 3D ultrasound segmentation have resulted in
multiple promising methods of which some have proven their prac-
tical value. It is clear that there are many possible improvements
and extensions.

Image quality
First of all, accuracy of 3D analyses is still seriously limited by the
3D image quality and severe artefacts. Further improvements in 3D
image quality will directly improve outcome of quantification. It can
be expected that image quality and resolution of RT3DE will
improve towards the quality of 2D ultrasound, since this is
mainly determined by instrumentation electronics and signal pro-
cessing capabilities. Higher frame rates will improve the accuracy
of ejection fraction and regional wall motion synchronicity
measures.

However, image quality and artefacts will always remain an issue
in ultrasound. Actually, a good method should estimate the image
quality and adapt its approach. Therefore, an internal estimate of
the reliability and probability of its outcome is an essential
aspect of a well-behaved automated method.

More prior knowledge on scene
and anatomic variability
The current segmentation approaches are mostly limited to a
single object: the LV endocardial surface. For RV and LA, some
experimental approaches are appearing (Table 1). Moreover, all
methods require manual initialization. They operate mainly on
abstraction levels 2 and 3 of the pyramid (features and objects);
for more abstract prior knowledge, they rely on human interven-
tion. Automated analyses can still be significantly improved by
using information at the higher abstraction levels. Population mod-
elling and high-level classification are being developed that incor-
porate knowledge of the higher abstraction levels. These
techniques may allow less user interaction and stay closer to
physiologically probable solutions. Interpretation of a multiobject
scene (endocardium, epicardium, valves, atria, and vessels) will
result in more and novel parameters and can also improve detec-
tion accuracy. Such ‘complete’ heart models have already shown
their value in CT.60 Both academic and commercial developments
are working in these directions.

Integration of contrast, Doppler, and
three-dimensional strain
Relatively, little work has been done on border detection of
contrast-enhanced RT3DE,36,45 and the integration of Doppler
and strain information with border detection.61 These terrains
may greatly extend the range of possible quantifications and
improve detection accuracy.

Real-time analysis
Ultimately, real-time analysis should provide direct quantification
during acquisition, allowing many new applications of RT3DE.
Some promising work takes place in this direction.43,62 The
optimal tool for RT3DE analysis in our view would indeed be a

fully automated real-time approach, provided that it is combined
with effective human supervision and smart interactive correction
as well as solid reliability estimates.

Conclusion
Much has been achieved recently in the field of automated analysis
of RT3DE, and much more is still to come. More automated initi-
alization, reliability feedback, and smart interactive correction tools
are expected. A standardized database of patient data might allow
improvement and quality assessment of different methods.

Current approaches still make limited use of available prior
knowledge. Powerful population-based multiobject models are
promising in this respect. Fully automated real-time analyses will
allow new applications for RT3DE. Such next-generation auto-
mated analyses will directly provide superior quantitative infor-
mation and boost the role of 3D echocardiography in clinical
practice.
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