
SOFSEM '93 - Hrdonov, Sumava, Czech Republic, 21.11. - 3.12.1993

KNOWLEDGE ENGINEERING

Michael Wilson

SERC Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, UK

Abstract: Knowledge Engineering is the aspect of systems engineering which addresses uncertain
process requirements by emphasising the acquisition of knowledge about a process and representing
this knowledge in a Knowledge Based System. The discipline has moved from one producing small
expert systems to one producing embedded KBS in larger computational solutions.
This transition has resulted in the development of methodologies that guide the knowledge
engineering of a product. The KADS methodology is described to show how structured knowledge
engineering of a problem can be based on documented techniques for project management, analysis,
and design. However, such techniques still result in the development of independent systems in
isolated domains and do not optimise the re-use of general knowledge. The CYC project to represent
a portable set of general knowledge that can be used as a basis for any novel system is described.
MMI 2 is the third project described which addresses the engineering of knowledge about
communication itself, rather than a discrete problem domain, into the interface of computer systems
to improve the interaction with the user, as well as the solving of domain problems.

Keywords: Knowledge Engineering, KBS Methodology, KADS, Cyc, MMI2, Multimodal System.

1. INTRODUCTION TO KNOWLEDGE ENGINEERING.

If systems engineering is the discipline of producing software and hardware solutions to users'
information needs, then sub-disciplines can be defined to address development techniques designed
to minimise identifiable risks. Software engineering provides the mechanisms for validating the
implementation of well specified algorithms. Human Computer Interaction provides analysis and
design techniques based on prototyping of the user interface to address aspects of systems where the
risks are associated with the users' needs, or the system usability. Data engineering addresses the
permanent storage of large amounts of data and the efficient retrieval of the relatively small portion
required for any process. In contrast, knowledge engineering addresses the structure of complex but
ill defined processes where the solution to defining the process is to define the knowledge involved in
the process explicitly in a knowledge based system (KBS).

Conventional software development follows the waterfall life cycle model. This requires complete
system requirements at the start of development. Errors later in development can be fixed at little cost;
errors at the start of development incur large costs. If the risks of failure of the project are associated
with the efficiency of the implementation of a system this is appropriate. If the risk of a project failing
is due to the uncertainty of the algorithms to perform the functions required, user requirements or
enterprise objectives then an approach which is flexible at the start of the process is appropriate.
Conventional software engineering approaches produce efficiently implemented code to execute
algorithms to perform required functions which will always produce the correct outcome for correct
input. The knowledge engineering approach allows users and experts to describe requirements and
methods to perform the required functions at a high level close to the one in which they think about
the task: the Knowledge Level. These can then be presented back to them for validation of the content,
and modification.

If algorithms to perform the required functions cannot be determined then heuristics which produce
correct outcomes sufficiently often for some task requirements can be used - there may not be

sufficiently detailed domain theory to supply algorithms so human expertise in the domain can be
used. If heuristic knowledge cannot be acquired which produces correct outcomes sufficiently
frequently then the project should be terminated - there may not be domain expertise to acquire. Since
this possibility continues after initial problem definition (including feasibility studies) into the
acquisition of knowledge, then staged contracting should be used to protect the client, and the
commitments made by the developer.

Knowledge Engineering (the process of developing KBS) differs from conventional software
engineering mainly at the early stages of the life cycle when user requirements and functional
methods (or Knowledge) are being acquired. The tools for implementation, user interface design,
testing, maintenance and updating systems may differ, but the principles which govern all software
systems are the same. Therefore, although the early stages of knowledge acquisition will involve a
knowledge engineer and a (or more) domain experts, later stages will involve software engineers for
implementation/integration.

Since the expert's knowledge must be represented at the Knowledge Level rather than at lower
computationally efficient levels during knowledge acquisition, the computational representation at
high levels normally persists throughout a KBS life cycle. Therefore the delivery process for KBS is
not the same as for normal software. It is generally constrained into a triptych architecture including a
knowledge base containing a representation of the acquired knowledge, an inference engine which
reasons over this knowledge, and a data area to store the data from a particular "run" of the system.
This allows the processing to be separated away from the knowledge and isolated in the inference
engine, leaving the knowledge free of procedures below the knowledge level.

Knowledge based system development has passed through an academic research phase from the late
1960's until the early 1980's. It then entered a phase dominated by feasibility studies based on small
expert systems; this involved many companies exploring the technology, and much publicity for the
topic which promoted promises that were not met. In 1982 there were thought to be only 30
prototype knowledge based systems in existence. In this stage it tried to discard the Run-Debug-Edit
life cycle of single University researchers and develop a prototyping approach which would support
commercial development teams. The approach used was mainly that of prototyping small systems
with expert system shells to capture the knowledge of human experts in professional jobs. The
present, third phase, started in the late 1980's and involves the production of practical systems
through an engineering approach. These use development methods which divide the problem spaces,
large toolkits which supply modules to execute knowledge in many ways, and most frequently result
in small KBS incorporated into larger products. By 1992 over 2000 commercial knowledge based
systems were in use (Touche Ross, 1992).

1.1 CURRENT PROBLEMS IN KNOWLEDGE ENGINEERING

Given the changes from the age of small expert system to the age of commercial KBS integrated into
systems Knowledge Engineering must address the issue of reliable methodology to meet the practical
engineering objectives it now has. Secondly, the systems produced through knowledge engineering
methods must be able to re-use not only abstract ideas, but also implementation level knowledge. To
do this issues of portability and interoperability must be addressed. A consequence of addressing
these two issues could be to lose the apparent freedom provided by expert systems and to become
bound by the formalities of software engineering. To avoid this, knowledge engineering must
maintain its influence on user interfaces and the ability of KBS to explain their reasoning. These
three issues will be explored in detail in the body of the paper by considering three projects, one of
which addresses each.

2. KBS DEVELOPMENT METHOD - THE KADS PROJECT

Many attempts have been made in the last decade to produce KBS development methods (reviewed
in Wilson et al 89) of which some have emphasised the integration of KBS and conventional systems
such as the Gemini method from the UK. Of these, the most complete method which provides a

detailed description of the knowledge analysis and design stages of knowledge engineering is the
KADS system.

The KADS KBS development method is the most developed Knowledge Engineering method which
has been used on many projects within Europe and is starting to be taken up in the USA. The method
has been developed through two major CEC Esprit funded research projects since 1984 as well as
various small projects in individual companies. Through this time, the notations used in the method
have changed, and elements have been included or removed from the method. Even the expansion of
the acronym has changed during its development from "Knowledge Acquisition and Documentation
System" to "Knowledge Acquisition and Design System" among other things; the present version of
KADS is termed "Common KADS", where KADS is used as a name rather than an acronym. In this
paper an overview of the development method, and the theoretical basis for it will be presented. It is
not possible in the space available to describe the complete development method. Those attracted by
this summary can find details of the method in three books: Tansley & Hayball (1993) described the
development method for the knowledge engineer or system developer; Hickman et al (1989)
describes the approach for development managers including the incorporation of KADS into Boehm's
spiral model of development management; Schreiber et al (1993) describes the theoretical basis for
the KADS method.

The central theme in KADS is modelling - the descriptions produced of the future systems and its
domain are models. In Analysis one models the required behaviour of the system - specifying what
the system will do. In Design, one models how the system is going to meet those requirements in
terms of modules of program code - specifying the overall system architecture and how KBS
components of the system will work (KADS does not support the design of non-KBS components).
KADS includes the development activities required to produce seven models over the Analysis and
Design Phases of development.

As well as modelling the behaviour of the system and the context within which it will work, KADS
also provides a document framework for recording more general requirements and constraints. This
should ensure that non-KBS areas integrate with the KBS components, and that requirements can be
traced from different sources. The Analysis and Design phases of development are hierarchically
decomposed into stages, which in turn are broken down into Activities. Each Phase, Stage and
Activity is described in terms of the document which is the result of it. The complete breakdown and
set of documentation is shown in Table 1.

As shown in table 1, the first stage of the KADS analysis is the Process Analysis. This starts by
identifying the overall organisational process that the system will support. It then decomposes and
describes this process using the conventional technique of Data Flow Diagrams (DFDs). This breaks
down the process into high-level tasks which either the system or some other agent will perform. This
stage is completed by assigning such agents to tasks and data stores. In particular, the knowledge
bases tasks are identified. A Process Glossary complements the decomposition and distribution by
acting as a data dictionary to the DFDs.

The results of the Process Analyses are taken by the Co-operation Analysis where the system
boundaries are analysed in more detail, particularly, the user-system interface. The three required
outputs of the analysis are: a detailed User Task Model describing the system's operations in terms of
the user's tasks and the required interactions with the system; a System Task Model which describes
the system's internal state changes and co-operation between internal system agents; a specification
of the user-system interface itself (usually through a prototype). The fourth optional component is a
User Model which describes the characteristics of the user agent.

The third and best developed model in KADS is the Expertise Analysis which investigates and
describes the problem solving components of the knowledge based tasks identified in the Process
Model. The Expertise Analysis builds up an Expertise Model from its four layers: the Domain Layer
which describes the static factual knowledge about the domain; the Inference Layer which defines the
inference steps which the KBS can make; the Task Layer which defines the basic problem solving
tasks; and the Strategy Layer which defines how tasks are constructed, modified or chosen.

The development of the Expertise Model is the central knowledge engineering component of the
KADS method which will be described in more detail after a summary of the remainder of the
Analysis and Design Phases. Table 1 also includes the System Overview and the Constraints Analysis
in the Analysis Phase which are 'maintenance type' activities. The System Overview maintains an up-
to-date and overall description of the future system, whereas Constraints Analysis is just like
conventional requirements analysis for mostly non-functional requirements.

Phase Stage Activity Results

Analysis Analysis Documentation
Process Analysis Process Model

Analyse and Decompose Process Process Decomposition+
Process Glossary

Assign Tasks and Data Stores Process Distribution+
Process Glossary

Cooperation Analysis Cooperation Model
Analyse User Task(s) User Task Model+

[User Model]
Analyse System Task(s) System Task Model
Define User Interface User Interface Spec.

Expertise Analysis Expertise Model
Analyse Static Knowledge Domain Structures
Select Generic Task Model Generic Task Model
Construct Expertise Model Domain layer+

Inference Layer+
Task Layer+
Strategy Layer+

Constraints Analysis Constraints Document
Analyse Constraints Environmental+

Technical+
Policy

System Overview System Overview Doc.
Produce/Update System Objectives+
System Overview System Functions+

System Structures+
Information Req's.

Design Design Documentation
Global Design Global System

Architecture
Specify Sub-systems Sub-system Definitions
Specify Sub-system interfaces Sub-system interface

definitions
KBS Design KBS sub-system

Define KBS Design Framework KBS Design Framework
Decompose KBS Functions Function Blocks+

Domain/Data Model
Assign Design Methods Problem Solving

Methods+
Knowledge
Representation

Assemble Design Elements Module Specifications+
Module Interfaces

Table 1: All Stages, Phases, Activities and Results in the KADS KBS development method.

The KADS design phase is decomposed into two major stages of Global Design which breaks down
the overall design problem into the KBS and non-KBS sub-systems, and the design of each of the

KBS sub-systems. KADS extends the model based approach to apply to these design stages and
includes a library of models of generic problem solving approaches and algorithms, and knowledge
representations which can be used to support the detailed KBS design. However, these will not be
described in detail here, other than to say that they correspond to the models used in analysis which
will now be described in more detail.

It was stated above that the Expertise Model and corresponding analysis was divided into four layers.
This is true in that they are derived from Brahman's seven layer model of knowledge representation,
but for practical purposes these layers can be viewed as being representations on a cycle of varying
abstraction shown in Figure 1. The whole expertise model itself exists at a more abstract level than
the task performed by a human in the domain, or the resultant system. In turn, although an
instantiated expertise model is an implementation independent representation of the problem-solving
capability of a prospective system, it is more concrete than an uninstantiated model would be. KADS
provides a library of uninstantiated models for the inference and task layer called Generic Task
Models which can be used to motivate the analysis and knowledge acquisition. Each of the four
layers of the Expertise Model will be outlined before considering the process of developing them.

Domain Strategy

Inference Task

Increasing Abstraction Increasing Domain Dependency

Generic Task Models

Figure 1: Levels of abstraction in the KADS Expertise Model

The Domain Layer is concerned with the definition of static domain knowledge, consisting of
structures of domain concepts and relationships between concepts. This knowledge is termed 'static'
since it is describes a domain while being neutral as to how it is used for inferencing. Domain
concepts can be structured into ontologies using isa hierarchies, frames, rule sets or other
representations. The structures of domain concepts are known in KADS as Domain Structures.

 The Inference Layer describes the basic inferential capability in terms of inference types, domain
roles and inference structures linking these for tasks at the task layer. It identifies the inferences that
can be made over the static knowledge in the domain layer for selected tasks. 'Inference types' are
descriptions of the way in which domain concepts, structures or relations can be used to make
inferences. For example, the 'classify' inference type takes an object with its attributes and derives the
class of the object. Inference types direct the way in which static domain knowledge may be used,
and provide 'handles' for the control of inference by the next, Task Layer. 'Domain roles' define the
functions which domain structures may perform. For example, in a diagnosis task in the medical
domain, HIV may be either an hypothesis to be verified or a solution resulting from a reasoning
process. These are two different roles for a single domain concept within a problem solving process.
the third component in the layer is the 'inference structure' which is a network of inference types and
domain roles which constrains a reasoning process by explicitly describing which inferences can be
made, and implicitly defining which cannot be made. Inference structures are depicted in a graphical
form where domain roles are represented by rectangles and inference types by ellipses (for example,
Figure 2).

Variables

Observables

Solution

Abstractions

Solutions

specializeabstract

match

Figure 2: Inference Structure for Heuristic Classification

The third layer in the Expertise Model is the Task Layer which describes how the individual
inferences within the Inference Layer may be sequenced in order to satisfy the required problem
solving goals. The representation used is a task structure which can be defined statically (with a fixed
control structure) or dynamically (e.g. as a result of planning at the inference layer). Task Structures
are typically simple sequences of inferences wrapped in some conventional procedural control
structures, such as selection (IF ... THEN... ELSE) and repetition (e.g. FOR, WHILE and REPEAT).
However, they may include more complex controls structures such as parallelism, and temporal
dependency.

The fourth layer of the Expertise Model is the Strategy Layer which provides the strategic knowledge
to select, sequence, plan or repair the corresponding Task Structures. The following types of strategic
knowledge may be described: Goal selection, Task structure selection, Goal sequencing, Task
structure configuration, mode of KBS operation, inference control & repair.

Complaint

Observables

Reference System

Diagnosis
Possible Cause

Repair
System with working element

Fault System

Working Elements

Design

Detailed design
Problem Statement

Partial Design

Figure 3: Input/Output descriptions of three task models (input on left, output on right; solid lines
necessary, dashed lines optional).

So far I have described the KADS method as an engineering approach with a development structure
with stages, resulting documents, models to be developed, and the decomposition of the Expertise
Model has been described to show the notations which can be used. This allows Knowledge
Engineers to approach problem solving tasks with poorly expressed algorithms in the same way as
data intensive tasks may be approached by Data Engineers, or detailed algorithm implementation
could be approached by Software Engineers. This moves knowledge engineering out of the
prototyping stage in research departments and allows the integration of these techniques into serious
software development. However, the major contribution of KADS takes it one stage further and
addresses the identification of problem solving tasks and the re-use of task level descriptions through
Generic Task Models.

• SYSTEM ANALYSIS
• Identification

Diagnosis
Single Model Diagnosis

Systematic Diagnosis
Localisation
Causal Tracing

Multiple Model Diagnosis
Mixed Mode Diagnosis

Verification
Correlation

Assessment
Monitoring
Classification

Simple Classification
Heuristic Classification
Systematic Refinement

• Prediction
Predication of Behaviour
Prediction of Values

• SYSTEM MODIFICATION
• Repair
• Remedy
• Control
• Maintenance

• SYSTEM SYNTHESIS
• Design

Hierarchical Design
Incremental Design

• Configuration
Simple Configuration
Incremental Configuration

• Planning
• Scheduling
• Modelling

Table 2: The hierarchy of Generic Task Models in the KADS Task Library

Clancey (1985) had the insight that all heuristic classification tasks had a common inference
structure, which is represented as a KADS inference structure in Figure 2. Since then several teams
have attempted to categorise tasks at this level in order to provide a simple classification of the tasks
addressed through knowledge engineering (e.g. Chandrasekaran, 1986, Steels, 1990 Wilson, 1989).
KADS achieves this and provides a library of Generic Task Models (GTMs) which are models of
problem solving tasks which are not tied to a domain. These GTMs are used to initiate and drive the
knowledge acquisition process during Expertise Model development. For each task, the model
describes it at the Task and Inference Layers (the shaded potion of Figure 1). Both the Domain and
Strategic layers are strongly domain dependent and therefore little generic information can be given
for them.

The library of GTMs is presented as a hierarchy. The top node represents tasks, the next layer has
three entries: Systems Analysis which deal with an examination of the elements or structure of some
entity; System Modification which deals with tasks which update or change some entity (often after a
process of analysis and synthesis, but which modify the entity after finding a solution); thirdly,
System Synthesis which deals with tasks which build up an entity from constituent parts. The full
hierarchy of GTMs is presented in Table 2.

For each GTM the input and output descriptions are presented (see Figure 3) to aid the knowledge
engineer in selecting the appropriate GTM for a system by encouraging him to consider the
knowledge based tasks in the Process Model in terms of their inputs and outputs. GTM's are used as a
starting point for developing Expertise Models. The selection of the GTM and the Analysis of Static
Knowledge are the first two stages of the expertise analysis and are performed in parallel. Once the
GTM is selected the specialisation of its terminology to that of the problem domain collected in the
Analysis of Static Knowledge can begin. This population is then continued as the model develops
through step-by-step refinement, eliciting knowledge from documents, task simulations and through
structured interviews. It is likely that the expertise model will require some form of prototyping to
experimentally test the hypothesis that the knowledge acquired is that appropriate for the task, and
that it is sufficient.

3. COMMON KNOWLEDGE - THE CYC PROJECT

KADS presents a methodology to guide the construction of knowledge based systems and to motivate
the analysis and knowledge acquisition. The Expertise model is divided into four layers, and abstract
implementation independent libraries are provided for these to guide the knowledge engineer in
identifying the structures, inferences and classes of domain knowledge expected for different tasks.
This method reduces the uncertainty in knowledge acquisition and provides reuse of abstract
descriptions of knowledge. However, KADS allows the use of many different forms of knowledge
representation and each new system developed will be constructed from scratch as far as the
implementation is concerned. The second major developments in knowledge engineering are to
facilitate knowledge re-use or sharing at the level of implemented knowledge representations.

There are currently three major problems in re-using implemented knowledge. Firstly, there are a
wide variety of approaches to knowledge representation, and knowledge that is expressed in one
formalism cannot be directly incorporated into another formalism which prevents knowledge sharing
at the implemented representation level. Secondly, if the knowledge was shared by communication
between existing modules rather incorporating source code, interface protocols for interoperability
would be required which do not exist. Thirdly, for knowledge sharing in either of these ways, or at a
more abstract level, the ontologies would have to be compatible which they are not; for example, one
type hierarchy might split the concept Object into Physical_Object and Abstract_Object, but
another might divide Object into Decomposible_Object and Non_Decomposible_Object.

There are currently several large projects addressing the issues of knowledge sharing by addressing
each of these three cases. In the USA, the ARPA & NSF Knowledge Sharing Effort (KSE) has been
considering all of them since 1989 (Neches et al, 1991) by designing re-usable knowledge library
structures using common knowledge representation schemes with translators between them,
extensions to knowledge bases to support interoperability, portable reasoning processes to operate on
the knowledge representation. The common reasoning elements, and interoperability supports will
not be considered further here as we focus on re-usable common knowledge. Brachman and
Levesque (1984) have shown that if a representation system is sufficiently expressive to be useful,
then the inferences that a reasoner draws over it will be incomplete. The mechanisms employed to
control this incompleteness will be similar to the domain roles and inference structures in the KADS
methodology placed over the static domain knowledge, to allow the reasoning processes access to the
knowledge.

The re-usable knowledge library structures of the KSE use a four layer structure with topic-
independent fundamental models (or time, causality, etc.) at the bottom, application independent
models of domain structures above this, then the application dependent layer of domain specific
extensions to this developed on the shared layers, and finally the run time instances at the top layer
created during the running of a knowledge base.

The KSE draws on public funds at several research institutes in universities and companies (Stanford,
Maryland, Unysis, Bell Labs, etc.) who must compromise on the approach taken, with the
consequence that it is too diverse to allow a clear explanation here. A second project at a single

commercial company the MCC Corporation using their own commercial funds is developing a very
similar approach to re-usable knowledge by developing a general ontology corresponding to the
bottom two layers of the KSE layered structure(Lenat et al, 1986; Lenat & Guha, 1990; Guha and
Lenat, 1990, 1993). Consequently, the major difference between the KSE and Cyc projects is that the
first advocates shared reusable knowledge bases built at different sites incorporating controlled
heterogeneity, whereas Cyc advocates the development of a single representation using a single
language as a homogenous and more manageable structure (although the Cyc ontology would be
entirely suitable as one of the components reused by the KSE approach).

The purpose of the Cyc project is to produce an artefact which is an ontology of general, common-
sense knowledge which can be used as a basis for knowledge engineering domain task solution, for
guiding automated knowledge acquisition & machine learning, and for natural language processing.
There are published disputes between the KSE and Cyc project representatives, and between the Cyc
and more theoretical researchers. Cyc is engineering an ontology today, even though some of the
philosophical problems about its structure, or AI problems about reasoning over it have not been
theoretically solved (Quine, 1969).

Like KADS, Cyc is another long term project which started in the early 1980's and is continuing into
the late 1990's, involving about 200 person years of effort. The size and duration have the
consequence that the approach taken at the outset in many things is not still being used, as changes
have had to be made to overcome problems. The major example of this is in the representation
language used: CycL. This started as a frame system of mainly declarative knowledge (Lenat et al,
1986; Lenat & Guha, 1990) incorporating numerical certainty factors; it has become a constraint
language representation divided between purely declarative knowledge (the Epistemological Level)
and procedural inference knowledge (Heuristic Level) which has abandoned numerical certainty
factors using reasoning by argumentation as a default reasoning mechanism (Guha and Lenat, 1990,
1993). The expressive power required to represent a general common-sense knowledge base has
necessitated that the current representation language be like a first order predicate calculus (including
disjunction, negation, universal and existential quantification, etc.) with some second order
extensions (including both reification of individual proposition and reflection of the inferential
processes in the language; modal operators, limited quantification over predicates, a context
mechanism, etc.).

The current Cyc system contains about 2 million independent assertions explicitly represented as
axioms in the CycL. For example, the following axiom states that "the human resources department
of a company plays the primary role of mediating and hiring employees" (in this, (#%ForAll x S P)

can be read as (∀ ∈x S) P(x); (#%ist c P) states that assertion P holds true in context c.):

(#%ist #%LargeCorpInternalsMt
(#%ForAll x (#%HumanResourcesDepartment #%allInstances)

(#%actsInCapacity x #%mediatorInProcesses
#%EmployeeHiring #%MainFunction)))

To get a feel for the size and structure of the ontology, this is one of several thousand axioms in the
LargeCorpInternalsMt microtheory, which is one of about two dozen microtheories which make up
Cyc's knowledge of organisations. This is a substantial enlargement on the 100 to 200 rules normally
found in a stand alone expert system built in a shell in the mid 1980's, or even the 7000 rules found in
the most famous commercially used KBS, Digital Corporation's product configuration system XSEL.

The Cyc project is producing this large ontology structured into two layers. The upper layer which a
user would interact with is the Epistemological Level, below this is a procedural layer containing
specialised inference procedures as well as stated knowledge called the Heuristic Level. To access
the Epistemological Level the user (or user knowledge base program) would use the CycL to describe
statements, and a functional interface to control the operations on these. There are six operations at
the functional interface (there are strong similarities between this two layered approach, the
functional interface and the representation language and that used in the MMI2 system described in
the next section):

Assert (xKB KB→∑) : given a sentence and a knowledge base, the result is a knowledge base in

which the sentence is an axiom.

Unasssert (xKB KB→∑) : Given a knowledge base containing an axiom, the result is the

knowledge base with the axiom removed (this is the undo of assert).

Deny (xKB KB→∑) : Given a knowledge base containing an axiom, or from which a sentence is

theorem (derivable by inference) the result is a knowledge base where the sentence is neither an
axiom, nor is it derivable by inference.

Justify (xKB sentences→∑): If a sentence is true in a knowledge base, then the result is the

minimal subset of the knowledge base from which it can be derived.

Ask (xKB truth value bindings→ − ∨∑): Given a sentence and a knowledge base, the result is

the truth value of the sentence, and the values for any free variables (similar to a Prolog goal).
Bundle: This provides a macro operation for sets of the other functions. Bundle allows some
optimisation to take place on the ordering of the functions and their evaluation which would not be
possible if they were executed independently.

At the Epistemological Level interaction is through these interfaces where sentences are expressed in
CycL. The user views the knowledge base as a single KBS. Beneath this layer, the Heuristic Level
efficiently implements reasoning procedures over what are divided knowledge bases called
microtheories. The details of these inference procedures and the divisions between microtheories will
not be explained here beyond saying that they resemble the inference and task layer interactions in
the KADS development method. An important consequence of this microtheory division is that
inferences are drawn from within microtheories and are not complete over the entire ontology (that
is, they do not infer all the facts which can be derived from a general inference rule over the body of
domain knowledge). Therefore, the inference mechanisms can be efficient, and importantly different
tasks will result in different inferences from the same underlying domain knowledge. Indeed, an
assertion can be true in the context of one task while being false in the context of another. The
Epistemological Level is the one through which user, or control program interaction is undertaken.

This diversion into the internal structure of Cyc has been to show the form of interaction with it. The
purpose in discussing Cyc is to illustrate the development of large portable ontologies which can be
used as the basis for KBS in specific domains. The ontology of Cyc is organised around the concept
of categories (also called classes or collections). The categories are organised in a
generalisation/specialisation hierarchy (a directed graph rather than a tree since each category has
several direct generalisations) (see Figure 4).

Thing

Represented Thing Individual Object

Spatial Thing Event=Process Intangible Object

SomethingOccurring

CommercialTransaction

Buying

SociallyAppropriateFormOfDoingAnAction

Collection

ObjectType

TangibleObjectType

RentingBuyingATangible

PersonType

Figure 4: Some of Cyc's collections.

The major distinction in most ontologies is that between 'instances' (INST) and 'subtypes' (ISA) (i.e.
MarvinMinsky INST ComputerScientist, ComputerScientist ISA Person). This simple distinction
can be very confusing if considered in terms of mathematical sets. Cyc maintains the relations
'instance' (and the inverse 'instanceOf') and 'spec' (and the inverse 'genis'). If one looks at the
distinction between IndividualObject and Collection, IndividualObjects include elements such as
Fred, TheWhiteHouse and TheFourthofJuly1990 (that is non-sets), which can have parts but not
instances. Collections in contrast have instances and are akin to sets, e.g. Chair (the set of all chairs),
Buying (the set of all buying events). A second confusion which can arise concerns the legality of the
attachment of attribute predicates to objects. For example, age and weight cannot be attached to
Chair since it is a Collection, although they must be attachable to instances of the collection such as
Chair905. As well as collections of individuals, Cyc also employs collections of collections, such as
PersonType which includes Person, ComputerScientist, and Texan, which are themselves
collections which include MarvinMinsky, etc.

This description could continue through the details of mass and count nouns, the representation of
time, events and processes, the representation of proper nouns, the compositionality of objects into
compound objects, and many other issues which knowledge engineers, linguists and philosophers can
debate at length. Unfortunately, such a lengthy description would still not provide enough detail to
use the Cyc system, nor would it enlighten you as to the underlying issues of knowledge engineering.
Each of these and many other issues can be debated. Cyc has chosen a solution to each of them. It has
also chosen to represent in its ontology a large number of general items. Not all items in the world
have been represented, and not all the solutions chosen to these classic problems will be agreed with
by all academics. Cyc has been developed to be a usable system for KBS development taking an
engineering approach to these issues. A more important question then is, how does Cyc know when it
has enough information or workable solutions to these problems?

As with most engineering solutions the answer is that it works so far. As with somebody jumping off
a 20 storey building, they can say "So far, so good" until the last few inches of the fall. Will Cyc fail
catastrophically when faced with a real problem, or will it degrade gracefully? The project has been
running for nearly ten years. They have introduced a large number of rules and a large number of
objects into the system. They aim to represent most of the knowledge found in a single volume desk
sized encyclopaedia. They have had to change the representation language considerably since the
project started, but it has been stable for several years now. They have had to add in new high level
concepts into the ontology, but the tools exist to do this in man hours rather than man years. They
have performed various test developments as the project continues and the ontology now appears to
be stable enough to cope with them. Nobody knows the properties of the problem they are addressing
enough to know if they are about to encounter a catastrophe. However, informed judgement suggests
that they will not.

Cyc is not yet a commercially available tool. It is currently being used at about 20 sites who are
developing research systems around it. The ontology is still being grown to meet the needs of these
and to cover the planned scope of general knowledge. A recent test system was to produce an
interface to a distributed heterogeneous database system for motor car retailing. The development
process was faster than comparable planned projects and resulting system was both usable and
efficient. Soon Cyc will start being used more generally as a practical ontology by knowledge
engineers to provide a portable pre-existing ontology which will facilitate the re-use of low level
knowledge in the way the KADS facilitates the reuse of abstract models of task knowledge to guide
KBS development.

4. INTELLIGENT USER INTERFACES - THE MMI 2 PROJECT

The remaining attractive feature of early 1980's expert systems which has not been considered is that
of the user interface and explanation. To many, expert systems introduced windows and mice into
computing. Although, these user interface techniques existed before expert systems, integrated AI
toolkits were amongst the first to popularise them. Now they are prevalent in most office systems.
Expert systems also appeared intelligent because they could explain their reasoning and appeared to

communicate intelligently about the problem they were solving. As with the two previous topics of
methods and ontologies, this was not a generalisable property which would scale up to large systems
where the domain was complex or broad.

To explain the issues of co-operative user interfaces to KBS further, an example system will be
described. The MMI2 system was developed as the result of another large research project started in
1989 taking 60 person years of effort with the purpose of demonstrating the architecture and
development method required to produce large scale co-operative interfaces to KBS (Binot et al,
1991). The demonstration task used in this system is that of designing local and wide area computer
networks for institutions such as hospitals or universities. The overall architecture of the MMI2

system is shown in Figure 6.

Knowledge engineers have tried to retain the intelligent interaction properties of expert systems by
introducing explicit co-operative user interfaces onto domain KBS which themselves involve explicit
knowledge of communication (see Wilson & Conway, 1991 for a review). These interfaces use
multimodal systems to divide the presentation and input modes from the dialogue management and
domain reasoning functions of the target system. Multimedia systems are an active area of
development with new commercial products being released monthly. However, although multimedia
systems can present graphics, video, or text, and can take keyboard, mouse or pen based input, they
rely on specialised underlying representations for each medium. Multimodal systems construct their
output from a single common logical meaning representation and decide the most effective and
efficient way to communicate this to users, then construct the output form for the user. Similarly,
they allow users to input information in a single mode (e.g. typing command language) or a
combination of modes simultaneously (e.g. combining natural language input with mouse clicks as in
"Put <click on object>that there <click on object>."). Figure 5 graphically shows the distinction
between the combined or independent use of modes, the simultaneous or successive use of modes,
and the use of an abstract meaning representation, or specific data representations by multimodal and
multimedia systems.

Exclusiveness

Synergy

Sequential Concurrent

Media Representations

Common Meaning

Representation

Fusion

Temporal

Constraints

Data/Meaning

Representation

Figure 5: Space of interaction architectures for multimedia & multimodal user interfaces on three
scales of Fusion of input and output media, Temporal Constraints on different media, and the
abstractness of the Data/Meaning representation behind the media.

The freedom provided to systems and users by multimodal systems firstly relies upon the use of a
common abstract meaning representation for all information sent to or received by all modes. The
representation used for this must be able to express all such information, therefore it requires the
expressiveness of the CycL language illustrated in the previous section. In the MMI2 system the
language is called the Common Meaning Representation (CMR) and is a first order logic with second
order extensions, employing promiscuous reification of objects, actions and events. This language is
used to pass between the Mode and Dialogue management layers of the MMI2 architecture, allowing

a clear interface where different modes can realise (generate images, language, etc.) any logical
CMR description.

The mode layer of the MMI2 system includes a window manager, and several modes. Each mode has
a generator to produce the mode from system generated CMR and a parser to produce it from user
input. The modes supported are English, French and Spanish natural language, Command Language,
Audio, graphics for CAD diagrams, business graphics (charts, tables, pie charts, hierarchies), direct
manipulation by the user on these, pen based gesture one these and the text modes. In addition to the
modes, tools are required to render the output and receive input. The natural language modes use
conventional natural language processing techniques, the graphics mode uses explicit knowledge
about the design of graphic presentations drawn from design theory and designer's expertise to
produce effective and efficient presentations (Chappel & Wilson, 1993).

The second necessity for a multimodal system which is synergistic and concurrent is that there is a
common reference context for all objects. MMI2 contains a Context Expert which stores all objects
referred to in the dialogue and which provides the Dialogue Manager with candidates to resolve
diexis and anaphora. The consequence of this is that each mode can refer to objects mentioned in
other modes. These two requirements are sufficient to support multimodal interaction, but they do not
in themselves support co-operative dialogue.

Dialogue Controller

Interface Synchronisation

Graphics Manager

Graphics Tools
Gesture Mode

Text Tools

Natural Langauge
Command
Language

Audio

Window Manager

Interface

Expert Context

Expert

Formal

Domain

Object

Oriented

Database

Expert

Informal

Domain

Expert

Communication

Expert

Semantic

Expert

Design

Analysis
Computer

Network

Design

KBS

User

Model

Mode

Layer

Application

Layer

Dialogue

Management

Layer

Figure 6: Architecture of the MMI2 Multimodal Man-Machine Interface for Knowledge Based
Systems.

MMI 2 does not include a broad knowledge base of common-sense knowledge such as that being
developed in Cyc. However, like Cyc it must include more than just the limited domain knowledge
for the demonstrator application for designing computer networks. Two other domains of knowledge
are represented: the domain of the user, and the domain if the interface itself.

The User Model contains a model of the beliefs of the user (Chappel et al, 1992). It monitors all
messages passing between the mode and dialogue management layers in CMR and extracts from
them beliefs which the user holds (both correctly and incorrectly with respect to the knowledge
stored in the KBS in MMI2 which are assumed to be correct), and the intentions of the user. This user
model then acts as a server to other parts of the system which require knowledge of the user, such as
the graphics manager for planning effective graphics communication, the natural language generators
for generating text, and the communications and informal domain experts. The user model is also

available for the evaluation or interpretation of predicates in CMR about the user (e.g. to answer
questions such has "Who am I?").

The Interface Expert contains information about the interface itself. These are available to answer
questions about the interface and its capabilities, but also for the evaluation of predicates in the CMR
about the interface. For example, if the user asks the system to "draw a bar chart of the cost of
computers on the network" then concepts such as BarChart are not network design concepts, but
interface concepts; so that their evaluation is against the domain of the interface rather than network
design.

The third domain is obviously the domain of the application itself, containing knowledge of computer
network design. This application is accessed through the formal domain expert which provides a
functional interface consistent with the User Model and Interface Expert. The application itself
consists of an object oriented database which stores and object and instance hierarchy for the
computer network domain similar to a subset of the Cyc ontology. In addition there are two sets of
domain heuristics, for design, and for the analysis of a design. These were developed following the
KADS methodology using task models for Hierarchical Design and Heuristic Classification operating
on the domain objects in the object-oriented database. Above the Heuristic Level of the application
itself, the Formal Domain Expert parallels the Epistemological Level in Cyc, or the Inference Layer
in the KADS Expertise Model.

The functional interface provided to the knowledge bases in the Formal Domain Expert, User Model
and Interface Expert includes three operations which correspond to the Assert, UnAssert and Ask
functions in the Cyc functional interface: Assert, Retract and Goal.

The use of three domains of knowledge through a common functional interface allows the dialogue
controller to be efficiently implemented and the system to be extensible through this common
interface. The different domain allow users freedom to act and ask about more than just the core
domain itself and provide some impression of cooperativity. Unfortunately, the addition of these two
domains alone do not achieve the structure of a co-operative human-human conversation. To do this
requires a representation of the Strategy and Task Levels from the KADS Expertise Model and
knowledge of communication argumentation to present the information to the user co-operatively. An
example will illustrate this point more clearly. When a user wishes to design a network they must
state some essential requirements such as a description of the building, the number of machines
required, and the cost of installation. There are also many optional requirements such as demands to
promote extensibility, and constraints on some environments being hazardous to network
performance (e.g. X-ray exposure). If the user fails to state all of the essential requirements, and asks
the system to perform a design, then it will merely fail to produce a design. It is necessary to provide
an explicit high level representation of the task model to ensure that the user is prompted for
requirements, and that the requirements stated are not contradictory. These task plans are represented
in the Informal Domain Expert. Before Goal predicates with free variables are interpreted against the
Formal Domain Expert they are passed to the Informal Domain Expert for informal evaluation that
pre-conditions on the task stage have been met. If they have not, then messages are passed back to
the Dialogue Controller.

In order for the Dialogue Controller to express these or other statements to the user, they must be
structured into complex messages to present the argument that is required in an effective way. To do
this MMI2 includes a communication planning module which turns sequences of functional interface
level formulae into large CMR structures which can be passed to the modes by planning the
argumentation structure of the message using knowledge of communication itself.

These facilities allow the user to communicate co-operatively with the system to achieve their task,
and to investigate the system and the state of a static design. The aspect of explanation which expert
systems possessed was to explain the reasoning they used. To provide this a set of explanatory
predicates are provided which operate on temporary representations produced by the design and
analysis heuristics to provide backward chaining traces of their reasoning (Justify, Expand, Elaborate,
Define, Exemplify, Analogy) the output of these is also re-structured by the communication expert to
produce co-operative responses to the user.

This description of MMI2 has covered the architecture and five principles required for co-operative
multimodal interaction:

1) The use of as single common meaning representation.

2) The use of a common context space for referents.

3) The use of multiple domains of expertise to support knowledge of the user and interface as well as
the domain.

4) The use of pragmatic task plans in the informal domain expert to guide dialogue.

5) The use of expertise about communication planning in the communication expert, graphics manger
and natural language modes to produce high quality, effectively planned communications.

5. CONCLUSION

In this paper the role of knowledge engineering has been described as the explicit representation of
knowledge used in processes at the knowledge level, and the representation of inference processes
which operate over it. Knowledge engineering has progressed from the 1980's stage of producing ad
hoc small expert systems in shells to producing reliable KBS which can be incorporated into larger
software and hardware systems.

The major foci of research at present are the establishment of development methods to ease
knowledge acquisition and the integration of KBS with conventional systems development, and the
development of portable, re-usable knowledge in the form of rules and ontologies. KADS has been
described as a knowledge engineering development methodology which has a theoretically derived
expertise model which identifies implementation independent representations for knowledge, and
provides libraries to support the modelling activities of knowledge engineers. There are several other
development methods within large corporations, or soon to be published by government agencies, but
they follow the same overall structure.

In the development of implementation specific re-usable knowledge, the Knowledge Sharing Effort is
developing standards for interworking heterogeneous knowledge bases following the model of
heterogeneous database interaction. In contrast, the Cyc project is developing a standard ontology
which can be used as the basis for many KBS projects, through the addition of domain specific layers
on top of it, built using a compatible knowledge representation language. Using a broad common-
sense core of knowledge such as that produced in Cyc as a basis for projects would be a start in
reducing the brittleness of knowledge bases - that is their collapse of reasoning outside the very
narrow domain in which they operate.

The remaining selling point of expert systems was the ability to explain themselves and present a co-
operative user interface which gave the impression that the system was intelligent in a wider sense.
The third strand of work described addresses the use of KBS within the user interface to support co-
operative interaction through the representation of knowledge about communication itself and the
user agent, and the use of a common meaning representation to support multimodal interaction.

In all three of these areas, development has been made in very large projects with many secondary
developments testing the ideas and constructions presented, and the main project adjusting the
artifact in the light of real use. This is essential if knowledge engineering is to develop because of the
use of heuristics. KADS divides general domain knowledge into a lower layer than inferences or the
tasks which control them. Cyc divides the Epistemological Layer of domain knowledge from the
Heuristic Layer which control inferences over it for tasks. MMI2 divides the worlds of interface
knowledge from that of domain knowledge, and divides the inference mechanisms of design and
analysis from the underlying domain ontology. All three of these examples represent domain

knowledge and then employ heuristic reasoning over it. In all three cases different heuristic reasoning
processes are used over the same underlying domain knowledge layer to perform different tasks.
Since these are heuristic reasoning systems they are not complete logical theorem provers. They do
not compute logical closure over the set of axioms - that is, they do not infer all the facts which can
be derived from a general inference rule over the body of domain knowledge. The heuristics limit the
search space and permit the reasoning to be computationally tractable. All three approaches illustrate
the finding of Brachman and Levesque (1984) that if a representation system is sufficiently
expressive to be useful, then the inferences that a reasoner draws over it will be incomplete. The
consequence in all three of these systems is that they do not attempt to draw the complete set of
inferences. They are only heuristically complete in that they effectively draw those inferences that a
task demands. Different tasks will result in different inferences from the same underlying domain
knowledge. Indeed, an assertion can be true in the context of one task while being false in the context
of another. This enables local consistency without demanding global consistency across on entire
method, knowledge base or ontology. In order to evaluate whether the set of inferences is complete
for a task it is necessary to evaluate if the heuristic reasoning processes are available to support each
task. This requires an engineering, statistical sampling of tasks and their required inference heuristics
to be performed and checked against each approach (method or ontology).

The obvious aspect of knowledge engineering which this paper has not described is that of
knowledge acquisition itself. Knowledge acquisition is usually the process of understanding the
problem to be solved, the elicitation of knowledge from one or more experts in the problem area, the
encoding of this knowledge in some mediating representation or prototype, and the refinement of this
mediating representation by the expert until the body of knowledge is deemed complete and correct
for the identified problem This was perhaps the area of greatest practical benefit in the 1980's and
one in which techniques of knowledge elicitation have been taken into conventional software
requirements capture and validation. The techniques of knowledge elicitation are still required when
using a development method such as KADS, extending existing ontologies such as Cyc, or
developing intelligent communication system such as MMI2. There are many existing textbooks
which list knowledge elicitation techniques and which provide best practise guidance to those who
intend to use them (e.g. Diaper, 1989).

This paper has tried to identify and describe areas of knowledge engineering where there is active,
important current research, and which appear to be able to be combined together to extend a
discipline which has started to produce reliably engineered products, and overcome the excessive
publicity and exaggerated promises which the scientific discipline in which it is grounded (Artificial
Intelligence) repeatedly attracts.

Although the era of exaggerated expectations of expert systems has been passed. Although
knowledge engineering has begun to conform to engineering principles by adopting methodologies.
Although knowledge representations have become formalised in logic. Although frame systems have
been adopted as object oriented databases. Although knowledge acquisition techniques have been
adopted as conventional requirements capture techniques. Although the awareness for the enterprise
problem rather than the computer solution has been adopted into mainstream informatics. Although
the sensitivity to the user interface has become standardised in business computing. Although
semantic typing and constraints have been adopted into deductive database technology. The
fundamental distinction between knowledge engineering and mainstream computer science remains.
The heritage of Wittgenstein's conflict with Russelian mathematical philosophy remains. The insight
from psychology which was the foundation of artificial intelligence persists in knowledge
engineering today. Reasoning over large amounts of data which results in interesting results will be
incomplete. Algorithms are not sufficient and heuristic reasoning is required. Controlled reasoning
and segmented knowledge bases may be required, but the inference process will not be universal, it
must be tailored for a task; tailored for a purpose.

6. REFERENCES

[1] Binot, J-L., Falzon, P., Perez, R., Peroche, B., Sheehy, N., Rouault, J. and Wilson, M.D.:
Architecture of a multimodal dialogue interface for knowledge-based systems. Proceedings of the
Esprit '90 Conference, pp 412-433. Kluwer Academic Publishers: Dordrecht, 1990.

[2] Brachman, R.J. and Levesque, H.J.: The tractability of subsumption in frame based
description languages. In Proceedings of the Third National Conference on Artificial Intelligence, 34-
37. Menlo Park, Calif.: AAAI, 1984.

[3] Chandrasekaran, B.: Generic Tasks in Knowledge Based Reasoning: High Level
Building Blocks for Expert System Design. IEEE Expert 1(3): 23-30, 1986.

[4] Chappel, H., Wilson, M. and Cahour, B.: Engineering User Models to Enhance Multi-
Modal Dialogue. In J.A. Larson and C.A. Unger (Eds.) Engineering For Human-Computer
Interaction. Elsevier Science Publishers B.V. (North-Holland): Amsterdam, pp 297-315, 1992.

[5] Chappel, H. and Wilson, M.D.: Knowledge-Based Design of Graphical Responses. In
Proceedings of the ACM International Workshop on Intelligent User Interfaces, pp 29-36. ACM
Press: New York, 1993.

[6] Clancey, W.J.: Heuristic Classification, Artificial Intelligence, 27, 289-350, 1985.
[7] D. Diaper: Knowledge Elicitation: principles, techniques and applications. Chichester:

Ellis Horwood, 1989.
[8] Guha, R.V. and Lenat, D.B.: Cyc: a midterm report, AI Magazine. 11 (3), 32-59, 1990.
[9] Guha, R.V. and Lenat, D.B.: Re: CycLing paper reviews, Artificial Intelligence 61(1)

149-174, 1993.
[10] Hickman, F.R., Killin, J.L., Land, L., Mulhall, T., Porter, D. & Taylor, R.M.: Analysis

for Knowledge-Based Systems: a practical guide to the KADS methodology. Ellis-Horwood:
Chichester, 1989.

[11] Lenat, D.B., Prakash, M., and Shepard, M.: Cyc: using common sense knowledge to
overcome brittleness and knowledge acquisition bottlenecks. AI Magazine, 6, 65-85, 1986.

[12] Lenat, D.B. and Guha, R.V.: Building Large knowledge Based Systems, Addison-
Wesley: Reading, MA, 1990

[13] Neches, R., Fikes, R., Finin, T., Gruber, T., Patil, R., Senator, T., Swartout, W.R.:
Enabling Technology for Knowledge Sharing. AI Magazine. 12 (3), 36-56, 1991.

[14] Quine, W.V.: Natural Kinds. In Ontological Relativity and Other Essays (chapter 5).
New York: Columbia University Press, 1969.

[15] Schreiber, G., Wielings, B. & Breuker, J.: KADS: A principled Approach to Knowledge
Based Systems Development. Academic Press: London, 1993.

[16] Steels, L.: Components of Expertise. AI Magazine 11(2) 29-49, 1990.
[17] Tansley, D.S.W. & Hayball, C.C.: Knowledge Based Systems Analysis and Design: A

KADS Developer's Handbook. Prentice-Hall: London, 1993.
[18] Touche Ross: Knowledge Based Systems: Survey of UK Applications. Department of

Trade and Industry: UK, 1992.
[19] Wilson, M.D., Duce, D.A. and Simpson, D.: Life cycles in Software and Knowledge

Engineering: A comparative review. Knowledge Engineering Review, 3 (4), 189-204, 1989.
[20] Wilson, M.D.:Task Models for Knowledge Elicitation. In D. Diaper (Ed.) Knowledge

Elicitation: principles, techniques and applications, 197-220. Chichester: Ellis Horwood: 1989.
[21] Wilson, M.D. and Conway, A.: Enhanced Interaction Styles for User Interfaces, IEEE

Computer Graphics and Applications, 11, 79-90, March 1991.

